SWIFT

Predictive Fast Reroute upon Remote BGP Disruptions

Laurent Vanbever

ETH Zirich (D-ITET)

Munich Internet Research Retreat

November 25 2016




Human factors are responsible

for 50% to 80% of network outages

Juniper Networks, What’s Behind Network Downtime?, 2008



Facebook, Tinder, Instagram suffer
widespread 1Ssues

[f1 Share on Facebook Share on Twit [
0

UPDATED: Tuesday, Jan. 27 / 4:32 a.m. EST — A Facebook spokeswoman told Mashable
that the outage was due to a change to the site's configuration systems, and not a hacker
) attack. "Earlier this evening many people had trouble accessing Facebook and Instagram.
» {‘.\‘ This was not the result of a third party attack but instead occurred after we introduced a
BY JENNI RYALL change that affected our configuration systems. We moved quickly to fix the problem, and
both services are back to 100% for everyone.”, she said.

UPDATED: Tuesday, Jan. 27 / 2:14 a.m. EST — Facebook, Tinder and Twitter appear to be
back to normal after a 40 minute outage and mass freak out.



The outage was due to a change to
the site’s configuration systems



Traders work on the floor of the New York Stock Exchange (NYSE) in July 2015.
(Photo by Spencer Platt/Getty Images)

UPDATED: “Configuration Issue”
Halts Trading on NYSE

The article has been updated with the time trading resumed.

A second update identified the cause of the outage as a
“configuration issue.”

A third update added information about a software
update that created the configuration issue.



NYSE network operators identified
the culprit of the 3.5 hour outage,
blaming the incident on a
“network configuration issue’



Tle_lntgmcl Under
Grisis
Conditions

Learning from September 11

Committee on the Internet Under Crisis Conditions:
Learning from September 11

Computer Science and Telecommunications Board
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

OF THE NATIONAL ACADEMES

National Research Council. The Internet Under Crisis Conditions: Learning from September 11



Tlle_lntgmel Under
i
Conditions

Learning from September 11

Committee on the Internet Under Crisis Conditions:
Learning from September 11

Computer Science and Telecommunications Board
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

Internet advertisements rates

suggest that

The Internet was more stable

than normal on Sept 11



Tlle_lnlgmel Under
GrisiS
Conditions

Learning from September 11

Committee on the Internet Under Crisis Conditions:
Learning from September 11

Computer Science and Telecommunications Board
Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL

Internet advertisements rates
suggest that
The Internet was more stable

than normal on Sept 11

Information suggests that
operators were watching the news
instead of making changes

to their infrastucture



Job Snijders {x 2 Follow
‘ JobSnijders

Fun fact: most BGP route leaks happen on
Wednesdays, but in the weekend us humans
collectively take a break! :-)

Route leaks vs. Day of Week (2008 - 2016)
24.00%

18.00%
g 12.00%
€
6.00%
0.00%
Sun Mon Tue Wed Thu Fri Sat

Day of Week (UTC)

B Percentage of
routeleaks




Think of the network as a distributed system

running a distributed algorithm

Control plane

Data plane !

Control plane & e
.’.
A \V

Control plane

Data plane

.

.

.
‘l

... Control plane

Data plane

VZ
T e,
s '

Data plane

/ "0,... ‘
IP router . -

Control plane

Data plane

>

7

(

Control plane
PIane p,

.

Control plane
Data plane
L
Data plane /)
Control plane 4+**" '

A’ Data plane

Control plane

Data plane




This algorithm produces the forwarding state
which drives Internet traffic to its destination

Forwarding state

dest next-hop
Google 0
0 Yahoo! 1
Control plane | Sk»’/'r')e 0
Data plane
2 ETHZ 2




Operators adapt their network forwarding behavior
by configuring each network device individually



Configuring each element is often done manually,
using arcane low-level, vendor-specific “languages”

Cisco I0S

!
ip multicast-routing
!
interface Loopbacke
ip address 120.1.7.7 255.255.255.255
ip ospf 1 area ©
!
!
interface Etherneto/o
no ip address
!
interface Etherneto/0.17
encapsulation dotl1lQ 17
ip address 125.1.17.7 255.255.255.0
ip pim bsr-border
ip pim sparse-mode
!
!
router ospf 1
router-id 120.1.7.7
redistribute bgp 700 subnets
!
router bgp 700
neighbor 125.1.17.1 remote-as 100
|

address-family ipv4

redistribute ospf 1 match internal external 1 external 2

neighbor 125.1.17.1 activate
!
address-family ipv4 multicast

network 125.1.79.0 mask 255.255.255.0
redistribute ospf 1 match internal external 1 external 2

Juniper JunOS

interfaces {

s0-0/0/0 {
unit @ {
family inet {
address 10.12.1.2/24;

}
family mpls;

}

}
ge-0/1/0 {

vlan-tagging;

unit @ {
vlan-id 100;
family inet {

address 10.108.1.1/24;

}
family mpls;

}

unit 1 {
vlan-id 200;
family inet {

address 10.208.1.1/24;

}

}

}

}

protocols {
mpls {
interface all;
}

bep {



A single mistyped line is enough
to bring down the entire network

redistribute bgp 700 subnets Anything else than 700 creates blackholes




My research goal? Automate!
Remove the need to rely on humans



Develop a complete & sound network controller which
can automatically enforces high-level requirements



controller

> Analyze — Plan
k“ .”
Sy o
v
_ control
Monltor X TITTPTTTTTITIITS > ] > TITTTTTTTTITITT > Execute
algorithms
I I
Visibility programmability
‘ Adaptative ‘




Develop efficient and fine-grained
measurement techniques, i.e. sensors

Visibility



Develop fine-grained declarative control interfaces
with a clear semantic, i.e. actuators

programmability



Develop efficient control algorithms
leveraging this new generation of sensors/actuators

control
algorithms



programmability



How can we program network-wide
forwarding state in existing networks?



The forwarding state computed by a router
depends on two inputs

Forwarding state

prefix next-hop
0
] 1.0.0.0/24 0
/ S 7~
2 1.0.1.0/16 ] '&%'
300k 100.0.0.0/8 0 1

600k 200.99.0.0/24 1



The router configuration specifies
how the router compute its state

!
ip multicast-routing
!
interface Loopbacke
ip address 120.1.7.7 255.255.255.255
ip ospf 1 area ©
!
!
interface Etherneto/o
no ip address
!
interface Etherneto/0.17
encapsulation dotl1Q 17
ip address 125.1.17.7 255.255.255.0
ip pim bsr-border
ip pim sparse-mode
!
!
router ospf 1
router-id 120.1.7.7
redistribute bgp 700 subnets
!
router bgp 700
neighbor 125.1.17.1 remote-as 100
!
address-family ipv4
redistribute ospf 1 match internal external 1 external 2
neighbor 125.1.17.1 activate
!
address-family ipv4 multicast

mmdr tmwml, 1T 1 =Y\ N vame~l, AI'" AI'" Y N



The routing messages sent
by neighboring devices

Forwarding state

prefix next-hop
] 1.0.0.0/24 0
2 1.0.1.0/16 ]
300k 100.0.0.0/8 0

600k 200.99.0.0/24 1



Given a forwarding state we want to program,
we therefore have two ways to provision it



Given a forwarding state we want to program,
we therefore have two ways to provision it

Given a network-wide forwarding state

to provision, one can synthesize

the routing messages shown to the routers

the configurations run by the routers



Given a network-wide forwarding state

output to provision, one can synthesize

inputs the routing messages shown to the routers

functions the configurations run by the routers



Network programmability

Fibbing SyNET

“the inputs” “the functions”



Network programmability

Fibbing SyNET

“the inputs” “the functions”

[SIGCOMM’15]



Consider this network where a source
sends traffic to 2 destinations

source destination

traffic flow



As congestion appears, the operator wants
to shift away one flow from (C,D)

initial desired




Moving only one flow is impossible though
as both destinations are connected to D

desired

10 ! 10 I
(o)

impossible to achieve by
reweighing the links



10 ]

\?



Let’s lie to the routers

Fibbing

controller
1\
A B
Q \ \ routing
session
10 ]
) b




Let’s lie to the routers, by injecting
fake nodes, links and destinations

Fibbing

controller

.
.
o

session

10 1




Fibbing

controller

.
o*
o*
.
.*
.
.




Lies are propagated network-wide
by the routing protocol

O Fibbing &

— controller




All routers compute their shortest-paths
on the augmented topology



C prefers the virtual node (cost 2)
to reach the blue destination...

Fibbing

controller




As the virtual node does not really exist,
actual traffic is physically sent to A

Fibbing

controller




Synthesizing routing messages is powerful



Theorem Fibbing can program

any set of non-contradictory paths



Theorem Fibbing can program

any set of non-contradictory paths



Theorem Fibbing can program

any set of non-contradictory paths

——— any path is loop-free

(e.g., [s1, a, b, a, d] is not possible)

—— paths are consistent

(e.g. [s1, a, b, d] and
[s2, b, a, d] are inconsistent)



Synthesizing routing messages is fast
and works in practice

We developed efficient algorithms

polynomial in the # of requirements

Compute and minimize topologies in ms

independently of the size of the network

We tested them against real routers

works on both Cisco and Juniper



computation
time (s)

10 —

0.1 —

0.001 -

| | |
20 40 60

% of nodes changing next-hop

80



Fibbing computes routing messages to inject in ~Tms

computation 10 —
time (s)

0.1 —
median
0.001 - M-/ w y
I | | | I
0 20 40 60 80

% of nodes changing next-hop



Check out our webpage

fibbing.net

Fibbing: Small Lies for Better Networks

Fibbing is an architecture that enables central control over distributed routing. This
way, it combines the advantages of SDN (flexibility, expressivity, and manageability)
and traditional (robustness, and scalability) approaches.

Fibbing introduces fake nodes and links into an underlying link-state routing
protocol, so that routers compute their own forwarding tables based on the
augmented topology. Fibbing is expressive, and readily supports flexible load
balancing, traffic engineering, and backup routes. Fibbing works with any
unmodified routers speaking OSPF.

fake node

| Fibbing won the Best Paper Award at SIGCOMM 2015!

Read the papers Look at the presentations
Watch the demo Get the code



http://fibbing.net

Network programmability

Fibbing
“the inputs”

SYNET

“the functions”

current focus

under submission



Fibbing is limited by the configurations
running on the routers

Works with a single protocol family

Dijkstra-based shortest-path routing

Can lead to loads of messages

if the configuration is not adapted

Suffers from reliability issues

need to remove the lies upon failures



Inputs

Network specification (N)

Physical topology (¢pn) SYNET

High-level requirements (pg)

Outputs

!

ip mu |

! ip mu™
1Qter! |
1p ainter ,
1p 0 ip a,

! ip o |
! |
interi

InO iinter,
: M9 1 router bgp 700

inten | neighbor 125.1.17.1 rem
enca inter | 18 R

ip @ enca
ip p
ip p ip p
ipp
address-family ipv4 mul
route network 125.1.79.0 mas
redistribute ospf 1 ma
redi neighbor 125.1.17.1 ac

router ospf 1
router-id 120.1.7.7
redistribute bgp 700 su

address-family ipv4
redistribute ospf 1 ma
neighbor 125.1.17.1 ac



SYNET can generate configurations
for (small) networks

static

# protocols static, OSPF

static, OSPF, BGP

# routers

9

16



SYNET can generate configurations
for (small) networks

4 9 16
static 1.8s 18.2s 116.1s
static, OSPF 4.2s 37.0s 197.0s

static, OSPF, BGP 13.8s 189.4s 577.4s



Check out our webpage

synet.ethz.ch

SyNet: Network-wide Configuration Synthesis

SyNet automatically synthesizes configurations for routers running multiple
interacting protocols, including policy-based protocols (BGP) and shortest-path
protocols (OSPF), and it also supports static routes. SyNet guarantees that the
network's routers converge to a forwarding state that conforms with all high-level
requirements provided by the network operator.

Global Requirements

Path(10.0.1.0/24, A, [A,B,C,D])
Path(10.0.2.0/24, &, [&,D])

Path(100.0.10.0/24, A, [A,C])
Path(100.0.10.0/24, D, [D,B])
Reach(10.0.1.0/24, B, D)
Reach(10.0.2.0/24, B, D) Router A Confia
Reach(10.0.1.0/24, C, D) |
Reach(10.0.2.0/24, €, D) Router B Confia
11
‘ 2« Router C Confia
5yN°|' ... "Router D Config
" ! 106 interface to B
. intarface TenGigabitEthernetl/1/1
_, BGP. OSPF, Static Routes, ofc.. o 2255 LD addewss 130.1.1 255,255,258, 252
100.0.10.0/24 . 75 ip ospf coat 10
| 1! 206 intecface to ©
258 interface TenGlgabitEtharnacl/1/2
' ip addreas 130.0.1.5
BGP 2155255.255,255,252
OSPF ip ospf caat 5 ...
2 ! ststic cocute to B
s.ﬂ'lc :pnt;zf:‘llﬂfﬂ.g.D 255.255.255.0
130.0.1.2

10.0.1.0/24 10.0.2.0/24

Network Topology

Why Multiple Protocols?

Routing protocols have different expressiveness. Configuring multiple protocols is therefore often required to produce a forwarding
state compliant with the operator's requirements.

Automatic vs. Manual Configuration

Routing protocols are complex. Moreover, protocols often have complex interdependencies. For example, BGP uses interdomain
routing costs as input for selecting the best route. Not surprisingly, the majority of network downtimes are caused by incorrect



http://synet.ethz.ch

Network programmability

Fibbing SyNET

“the inputs” “the functions”



Now that we’ve programmability,
What can we do with it?



control
algorithms



SWIFT

Predictive Fast Reroute upon Remote BGP Disruptions

Laurent Vanbever

ETH Zirich (D-ITET)

Munich Internet Research Retreat

November 25 2016




25.9 seconds



max. monthly downtime
under a 99.999% SLA



IP routers are slow to converge
upon remote link and node failures









R1 prefers to send traffic via R2 when possible,
as it is much cheaper than via R3




$ — preferred

$$%



RS






R1’s Forwarding Table

prefix Next-Hop
1 1.0.0.0/24 0
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0




What if R3 fails?

R1’s Forwarding Table

prefix Next-Hop
1 1.0.0.0/24 0
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0




R2 sends 300k routing messages
withdrawing the routes from R3

R1’s Forwarding Table

300k
WITHDRAWs Ro

prefix Next-Hop
1 1.0.0.0/24 0
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0




R1 receives the messages one-by-one and
updates its forwarding table entry-by-entry

R1’s Forwarding Table

300k
WITHDRAWs Ro

prefix Next-Hop
1 1.0.0.0/24 0
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0




R1’s Forwarding Table

300k
WITHDRAWs Ro

prefix Next-Hop
1 1.0.0.0/24 1
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0




R1’s Forwarding Table

300k
WITHDRAWs Ro

prefix Next-Hop
1 1.0.0.0/24 1
2 1.0.1.0/16 1
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0




R1’s Forwarding Table

300k
WITHDRAWs Ro

prefix Next-Hop
1 1.0.0.0/24 1
2 1.0.1.0/16 1
300k 100.0.0.0/8 1

600k 200.99.0.0/24 0




Internet convergence

a two-phase process

Phase 1 Phase 2

Learning Updating

>
about the failure forwarding entries




Internet convergence

a two-phase process

Phase 1 Phase 2
Learning R Updating
about the failure forwarding entries

Both of which are terribly slow...



Internet convergence

a two-phase process

Phase 1 Phase 2

Learning Updating

>
about the failure forwarding entries




We measured how long it takes for large bursts
of BGP updates to propagate in the Internet

a month (July’16) worth of Internet updates

from ~200 routers scattered around the globe

detect the beginning and end of a burst

using a 10 sec sliding window



burst size

nb of bursts

106,

105 |

104 |

103

103 |
102 |

10"}

0-2

2-8 8-15 15-30 30-60 60-90 120-200
90-120

burst duration (sec)

>200




We found a total of 2619 bursts over the month

106,

¥
+
=+

burst size 5 | _
o i H r
104 | é - '

103

o
'H -
L

3L
nb of bursts 10

102 |

10"}

0-2 2-8 8-15 15-30 30-60 60-90 120-200
90-120 >200

burst duration (sec)



~15% of the bursts takes more than 15s to be learned

106

¥
+
=+

burst size 5 | _
07y i % .

o
T
L

7 : —
104 | - , ' I

g | I
103 - . - - .

3L
nb of bursts 10 247

| 92 :
1074 — 21 14 18 9 ;
10" |

0-2 2-8 815 15-30 30-60 60-90 120-200

90-120 >200

burst duration (sec)



~10% of the bursts contained more than 100k prefixes

106 — | . . . .
burst size | % i _
'|05 ; —l— | i s

104 |

b+
o
| 4

]O3 |

.
nb of bursts 10
102 |

10"}

0-2 2-8 8-15 15-30 30-60 60-90 120-200
90-120 >200

burst duration (sec)



Internet convergence

Phase 1 Phase 2

Learning Updating

>
about the failure forwarding entries




We measured how long it takes recent routers
to update a growing number of forwarding entries

Cisco Nexus 7k

ETH recent routers

25 deployed




convergence 150 —
time (s)

10 —

1 —

0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

# of prefixes



worst-case

convergence 150 —
time (s)

10 —

1 —

0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

# of prefixes



worst-case

convergence 150 —
time (s)
median case
10 —
1 —]
0.1 —

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

# of prefixes



Traffic can be lost for several minutes
~2.5 min.

150 —

10 —

0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

# of prefixes



Internet convergence

a two-phase process

Phase 1

Learning
about the failure

Phase 2

Updating
forwarding entries

> prefix-based +

and hence, slow




SWIFT: Predictive Fast Rerouting

Joint work with: Thomas Holterbach, Alberto Dainotti, Stefano Vissicchio



SWIFT: Predictive Fast Rerouting

speed up... learning
about the failure



SWIFT: Predictive Fast Rerouting

learning

predict the extent
of a failure from
few messages



SWIFT: Predictive Fast Rerouting

learning

predict the extent
of a failure from
few messages

speed and precision



SWIFT: Predictive Fast Rerouting

speed up... updating
the data plane

solution

challenge



SWIFT: Predictive Fast Rerouting

speed up... updating
the data plane

solution update groups of entries
instead of individual ones

challenge



SWIFT: Predictive Fast Rerouting

updating

update groups of entries
instead of individual ones

failure model



SWIFT: Predictive Fast Rerouting

1 Predicting

out of few messages

2 Updating

groups of entries

3 Supercharging

existing systems




SWIFT: Predictive Fast Rerouting

1 Predicting

out of few messages

Updating

groups of entries

Supercharging

existing systems













UPDATES
WITHDRAWS 10k




The stream of messages following a disruption contain
redundant information about the failed resource



The stream of messages following a disruption contain
redundant information about the failed resource

enables prediction



Redundancy comes in two forms:
positive or negative

positive unaffected prefixes are routed on paths which

do not contain the failed link

negative affected prefixes must have been routed

on a path which does contain the failed link



UPDATES
WITHDRAW:S

T

10k

affected prefixes:

12567
(1256 8)
(1256)

unaffected prefixes:

(12) 1k
(125)




SWIFT leverages redundancy to predict which
link(s) has failed early on into the burst of updates

BGP updates

WITHDRAW pl
WITHDRAW p2
p3 via [X, E, C, A

Prediction
module

l

Predictions

Link (A,D) is dead

(A.,B) 0.30

(AD) 0.70

Links failure
probability




Step 1
burst detection



Step 1 Whenever the frequency of WITHDRAWALs is higher
burst detection than a threshold (e.g., >99™ percentile)



Step 1 Whenever the frequency of WITHDRAWALs is higher
burst detection than a threshold (e.g., >99™ percentile)

Step 2

link prediction



Whenever the frequency of WITHDRAWALSs is higher
than a threshold (e.g., >99™" percentile)

Return the link(s) that maximizes

the weighted geometric mean between:

WS(Lt) PS(Lt)

fraction of withdraws proportion of prefixes
crossing link / withdrawn on link /



When run on the full burst,
SWIFT is guaranteed to find the right link

Theorem If all ASes inject at least one prefix,

BPA will always correctly pinpoint
the failed link



UPDATES
WITHDRAW:S

T

10k

link

(1,2)
(2,5)
(5,6)
(6,7)
(6,8)

other

WS

PS

FS



UPDATES
WITHDRAW:S

T

10k

link

(1,2)
(2,5)
(5,6)
(6,7)
(6,8)

other

WS

PS

91
.95

FS

.95
.97



UPDATES
WITHDRAW:S

T

10k

link

(1,2)
(2,5)
(5,6)
(6,7)
(6,8)

other

WS

PS

91
.95

FS

.95
.97



When run on the full burst,
SWIFT is guaranteed to find the right link

Theorem If all ASes inject at least one prefix,

SWIFT will always correctly pinpoints
the failed link



When run on the full burst,
SWIFT is guananteed to find the right link

not that helpful...



Yet, SWIFT predictions work well
in realistic scenarios

Intuition Messages tend to be interleaved

providing diverse path information early on



Also, SWIFT can compensate for lack of information,
by being overly cautious (rerouting more)

Returns set of links failures

all links with high fit score

Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,...



—— Returns set of links failures

all links with high fit score

—— Runs multiple times sequentially
after 2.5k, 5k, 7.5k, 10k,...

— |ncrease the number of false positives

the # of prefixes wrongly predicted as dead



Good news
False positives are not an issue!

26 seconds VS 129 600 seconds

allowed downtime allowed free-riding
for 99.999% on a peering link



SWIFT predicts ~90% of the withdrawn prefixes

based on only 2.5k messages

5.0K

/.5K

10K

87.50%

89.70%

92.99%

95.40%

75th

99.10%

98.80%

99.10%

99.60%

90th

99.99%

98.99%

99.99%

99.99%



5.0K

/.5K

10K

Despite not being optimized for it,
SWIFT reroutes few number of non-disrupted prefixes

0.2x

0.2x

0.2X

0.4x

75th

1.4x

1.6x

1.8X

2.8X

90th

8.9x

/.2X

/.8X

9.6X



SWIFT: Predictive Fast Rerouting

Predicting

out of few messages

2 Updating

groups of entries

Supercharging

existing systems




Upon a prediction,
SWIFT needs to update the data-plane



~2.5 min.

150 —

10 —

0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

# of prefixes



In the Internet though,
any subset of prefixes can fail, in theory



~ 7 700,000

number of possibilities...



In the Internet though,
any subset of prefixes can fail, in theory, not in practice



To speed-up update time, SWIFT groups
prefixes according to the paths they take



All prefixes going via (R1,R2) starts with 10

R1’s Forwarding Table

tag
1 1.0.0.0/24 10 01 ... 0
2 1.0.1.0/16 1001 ... 0
300 100.0.0.0/8 10 11 ... 0

600 200.99.0.0/24 1011 ... 0




If (R1,R2) fails
updating one rule is enough to reroute all traffic

m(10.%) >> fwd(1)



Since the AS graph is too large to be encoded,
SWIFT reduces it first using two techniques

Ignore any link seeing less than 1.5k pfxes

anything less converges fast enough already

Ignore link far away from the SWIFTed node
less likely to create large bursts of UPDATESs



These two optimizations enable to reroute

96% of the predicted prefixes using only 18 bits

Encoding Performance (%)

(-
O N N 00 00 O O O
oo ©o© U1 O U1 O U1 O

-
-
-
-

13 18 23 28 33
Number of bits reserved for
AS paths compression




SWIFT: Predictive Fast Rerouting

Predicting

out of few messages

Updating

groups of entries

3 Supercharging

existing systems




We implemented a full SWIFT prototype which
can boost existing routers convergence performance

SWIFT controller eBGP

sessions

BGP <«
controller ~——
/" |REST AP7\ peer
SWIFT SDN & ARP
<+

engine controller
| p. A

ARP SDN API peer:

peern
SWIFTED SDN
IP router switch






SWIFT reduces the convergence time of a Cisco Nexus 7k
from 55s to maximum 3s (i.e., 95% decrease)

100

Nexus 7K
Q *%*%x SWIFT
| -
>
80} —
©
> LL
>
i~
wn I
N 60
o
wn
[
A4 40¢ }
% *
o *
20f
0 bbb st OO TT TP PP TTT I PPTTT TR o Py, /
0 20 40 60 80 100

Time (s)



SWIFT

Predictive Fast Reroute upon Remote BGP Disruptions

Laurent Vanbever

www.vanbever.eu

Munich Internet Research Retreat

November 25 2016



http://www.vanbever.eu

