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Human factors are responsible 

for 50% to 80% of network outages

Juniper Networks, What’s Behind Network Downtime?, 2008





The outage was due to a change to 

 the site’s configuration systems





NYSE network operators identified  

the culprit of the 3.5 hour outage,  

blaming the incident on a 

“network configuration issue”



National Research Council. The Internet Under Crisis Conditions: Learning from September 11



Internet advertisements rates

suggest that 

The Internet was more stable

than normal on Sept 11 



Internet advertisements rates

suggest that 

The Internet was more stable

than normal on Sept 11 

Information suggests that

operators were watching the news

instead of making changes 

to their infrastucture
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Think of the network as a distributed system 

running a distributed algorithm

IP router



This algorithm produces the forwarding state 

which drives Internet traffic to its destination
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Operators adapt their network forwarding behavior 

by configuring each network device individually



!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

Configuring each element is often done manually,  

using arcane low-level, vendor-specific “languages”



interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

	redistribute	bgp	700	subnets

A single mistyped line is enough  

to bring down the entire network

Anything else than 700 creates blackholes



My research goal? Automate! 

Remove the need to rely on humans



Develop a complete & sound network controller which 
can automatically enforces high-level requirements
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Develop efficient and fine-grained  

measurement techniques, i.e. sensors
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Develop fine-grained declarative control interfaces 

with a clear semantic, i.e. actuators
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Develop efficient control algorithms 

leveraging this new generation of sensors/actuators
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How can we program network-wide 

 forwarding state in existing networks?



prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

next-hop

300k
…… …

100.0.0.0/8

Forwarding state

1

0

1

0

1

The forwarding state computed by a router 

depends on two inputs
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1

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	

The router configuration specifies 

how the router compute its state
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“I can reach 1.0.0.0/24”

The routing messages sent 

by neighboring devices



Given a forwarding state we want to program, 

we therefore have two ways to provision it



way 1

way 2

Given a network-wide forwarding state

the routing messages shown to the routers

the configurations run by the routers

to provision, one can synthesize

Given a forwarding state we want to program, 

we therefore have two ways to provision it



Given a network-wide forwarding state

the routing messages shown to the routers

the configurations run by the routers

to provision, one can synthesizeoutput

inputs

functions



Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”



Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

[SIGCOMM’15]
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Consider this network where a source  

sends traffic to 2 destinations
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As congestion appears, the operator wants  

to shift away one flow from (C,D)



impossible to achieve by  
reweighing the links
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Moving only one flow is impossible though 

as both destinations are connected to D
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Fibbing  
 controller

routing 
session

Let’s lie to the routers, by injecting 

fake nodes, links and destinations
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Lies are propagated network-wide 

by the routing protocol
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All routers compute their shortest-paths 

on the augmented topology



Fibbing  
 controller
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C prefers the virtual node (cost 2) 

to reach the blue destination…



Fibbing  
 controller
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As the virtual node does not really exist, 

actual traffic is physically sent to A



Synthesizing routing messages is powerful



Theorem Fibbing can program 

any set of non-contradictory paths



Theorem Fibbing can program 

any set of non-contradictory paths



Theorem

any path is loop-free

paths are consistent

(e.g. [s1, a, b, d] and

[s2, b, a, d] are inconsistent)

(e.g., [s1, a, b, a, d] is not possible)

Fibbing can program 

any set of non-contradictory paths



Compute and minimize topologies in ms

independently of the size of the network

We developed efficient algorithms

polynomial in the # of requirements

We tested them against real routers

works on both Cisco and Juniper

Synthesizing routing messages is fast 

and works in practice
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Fibbing computes routing messages to inject in ~1ms



fibbing.net

Check out our webpage

http://fibbing.net


Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

current focus

under submission



Works with a single protocol family

Dijkstra-based shortest-path routing 

Can lead to loads of messages

if the configuration is not adapted

Suffers from reliability issues

need to remove the lies upon failures

Fibbing is limited by the configurations 

running on the routers



!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	

router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	

Network specification (N )

Physical topology (φN)

High-level requirements (φR)

SyNET

!	
!	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	

Inputs Outputs



# protocols

# routers

static

static, OSPF

static, OSPF, BGP

4 9 16

SyNET can generate configurations 

for (small) networks



# protocols

# routers

static

static, OSPF

static, OSPF, BGP

4 9 16
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18.2s

37.0s

189.4s

116.1s
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577.4s

SyNET can generate configurations 

for (small) networks



synet.ethz.ch

Check out our webpage

http://synet.ethz.ch
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“the functions”



Now that we’ve programmability, 

What can we do with it?
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25.9 seconds



max. monthly downtime

under a 99.999% SLA

25.9 seconds



IP routers are slow to converge 

upon remote link and node failures
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R1 prefers to send traffic via R2 when possible, 

as it is much cheaper than via R3



0

1
R1

R3

R2 $

$$$

preferred



R4

R3

R5

R1

R3

R2

0

1



0

1

R4

R3

R5

R1

R3

R2
300k

300k

300k

300k

600k

600k



prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

R4

R3

R5

R1

R3

R2
300k

300k

300k

300k

600k

600k



prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

R4

R3

R5

R1

R3

R2

What if R3 fails?
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R2 sends 300k routing messages 

withdrawing the routes from R3

R3
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R1 receives the messages one-by-one and 

updates its forwarding table entry-by-entry
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Both of which are terribly slow…



Learning  
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dataset a month (July’16) worth of Internet updates

from ~200 routers scattered around the globe

methodology detect the beginning and end of a burst

using a 10 sec sliding window

We measured how long it takes for large bursts  

of BGP updates to propagate in the Internet
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We found a total of 2619 bursts over the month
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~15% of the bursts takes more than 15s to be learned
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~10% of the bursts contained more than 100k prefixes
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ETH recent routers

25 deployed

Cisco Nexus 7k

We measured how long it takes recent routers 

to update a growing number of forwarding entries



convergence
time (s)

# of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K



1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150convergence

time (s)

# of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

worst-case



median case
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~2.5 min.
Traffic can be lost for several minutes 



Learning  

about the failure

Internet convergence

Updating 

 forwarding entries

a two-phase process

Phase 1 Phase 2

prefix-based

and hence, slow



Joint work with: Thomas Holterbach, Alberto Dainotti, Stefano Vissicchio

SWIFT: Predictive Fast Rerouting
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about the failure
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the data plane

solution predict the extent 

of a failure from  
few messages

update groups of entries 

instead of individual ones

speed and precision failure modelchallenge

speed up…

SWIFT: Predictive Fast Rerouting
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The stream of messages following a disruption contain 

redundant information about the failed resource



enables prediction

The stream of messages following a disruption contain 

redundant information about the failed resource



Redundancy comes in two forms: 

positive or negative

positive

negative affected prefixes must have been routed

on a path which does contain the failed link

unaffected prefixes are routed on paths which

do not contain the failed link
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SWIFT leverages redundancy to predict which 

link(s) has failed early on into the burst of updates

(A,B) 0.30

(A,D) 0.70
……

Links failure  
probability

WITHDRAW p1

WITHDRAW p2

…

Link (A,D) is dead

PredictionsBGP updates

p3 via [X, E, C, A]

Prediction 
module



Step 1 

burst detection



Whenever the frequency of WITHDRAWALs is higher 

than a threshold (e.g., >99th percentile)

Step 1 

burst detection



Whenever the frequency of WITHDRAWALs is higher 

than a threshold (e.g., >99th percentile)

Step 1 

burst detection

Step 2 

link prediction



Withdrawal share Path share

WS(l, t) PS(l, t)

Whenever the frequency of WITHDRAWALs is higher 

than a threshold (e.g., >99th percentile)

Return the link(s) that maximizes  

the weighted geometric mean between:

fraction of withdraws 

crossing link l

proportion of prefixes 

withdrawn on link l

Step 1 

burst detection

Step 2 

link prediction



If all ASes inject at least one prefix, 

BPA will always correctly pinpoint 

the failed link

Theorem

When run on the full burst, 

SWIFT is guaranteed to find the right link
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If all ASes inject at least one prefix, 

SWIFT will always correctly pinpoints 

the failed link

Theorem

When run on the full burst, 

SWIFT is guaranteed to find the right link



When run on the full burst, 

SWIFT is guaranteed to find the right link

not that helpful…



Yet, SWIFT predictions work well 

in realistic scenarios

Messages tend to be interleaved

providing diverse path information early on

Intuition



Also, SWIFT can compensate for lack of information, 

by being overly cautious (rerouting more)

Returns set of links failures

all links with high fit score

Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,… 



Returns set of links failures

all links with high fit score

Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,… 

Increase the number of false positives

the # of prefixes wrongly predicted as dead



Good news 

False positives are not an issue!

26 seconds

allowed downtime 

for 99.999%

129 600 secondsvs

allowed free-riding 

on a peering link



2.5K

5.0K

7.5K

10K

50th 75th 90th

87.50% 99.10% 99.99%

89.70% 98.80% 98.99%

92.99% 99.10% 99.99%

95.40% 99.60% 99.99%

SWIFT predicts ~90% of the withdrawn prefixes 

based on only 2.5k messages



2.5K

5.0K

7.5K

10K

50th 75th 90th

0.2x 1.4x 8.9x

0.2x 1.6x 7.2x

0.2x 1.8x 7.8x

0.4x 2.8x 9.6x

Despite not being optimized for it,  

SWIFT reroutes few number of non-disrupted prefixes



out of few messages

Predicting

Updating

groups of entries

2

Supercharging

existing systems

SWIFT: Predictive Fast Rerouting



Upon a prediction, 

SWIFT needs to update the data-plane



1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150

# of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

~2.5 min.



In the Internet though, 

any subset of prefixes can fail, in theory



~2700,000

number of possibilities…



In the Internet though, 

any subset of prefixes can fail, in theory, not in practice



To speed-up update time, SWIFT groups  

prefixes according to the paths they take



R1

0

1

R3

R2

R3

R2

R3

300k

300k

300k

300k

600k

600k

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

NH

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

tag

10 01 …

10 01 …

10 11 …

10 11 …

All prefixes going via (R1,R2) starts with 10 



If (R1,R2) fails (or is predicted to have failed) 

updating one rule is enough to reroute all traffic

m(10.*) >> fwd(1)



Since the AS graph is too large to be encoded, 

SWIFT reduces it first using two techniques

Ignore any link seeing less than 1.5k pfxes

anything less converges fast enough already

Ignore link far away from the SWIFTed node

less likely to create large bursts of UPDATEs



These two optimizations enable to reroute  

96% of the predicted prefixes using only 18 bits



out of few messages

Predicting

Updating

groups of entries

Supercharging

existing systems
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SWIFT: Predictive Fast Rerouting



SWIFT controller

SDN  
switch

BGP 
controller

…

eBGP  
sessions

REST API

peern

peer1

peer2

SDN & ARP 
controller

SWIFT 
engine

SWIFTED  
IP router

SDN APIARP

We implemented a full SWIFT prototype which  

can boost existing routers convergence performance



SWIFTED 

Router

SDN 

switch



SWIFT reduces the convergence time of a Cisco Nexus 7k 

from 55s to maximum 3s (i.e., 95% decrease)
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