
Laurent Vanbever

ETH Zürich (D-ITET)

SWIFT

Predictive Fast Reroute upon Remote BGP Disruptions

November 25 2016

Munich Internet Research Retreat

Human factors are responsible

for 50% to 80% of network outages

Juniper Networks, What’s Behind Network Downtime?, 2008

The outage was due to a change to

 the site’s configuration systems

NYSE network operators identified

the culprit of the 3.5 hour outage,

blaming the incident on a

“network configuration issue”

National Research Council. The Internet Under Crisis Conditions: Learning from September 11

Internet advertisements rates

suggest that

The Internet was more stable

than normal on Sept 11

Internet advertisements rates

suggest that

The Internet was more stable

than normal on Sept 11

Information suggests that

operators were watching the news

instead of making changes

to their infrastucture

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Think of the network as a distributed system

running a distributed algorithm

IP router

This algorithm produces the forwarding state

which drives Internet traffic to its destination

Control plane

Data plane

Control plane

Data plane
Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

dest

Google

Yahoo!

ETHZ

0

… …

next-hop

… …
Skype

Forwarding state

1

0

2

0
1

2

Operators adapt their network forwarding behavior

by configuring each network device individually

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

Configuring each element is often done manually,

using arcane low-level, vendor-specific “languages”

interfaces	{	
			so-0/0/0	{	
								unit	0	{	
												family	inet	{	
																address	10.12.1.2/24;	
												}	
												family	mpls;	
								}	
				}	
			ge-0/1/0	{	
								vlan-tagging;	
								unit	0	{					
												vlan-id	100;	
												family	inet	{	
																address	10.108.1.1/24;	
												}	
												family	mpls;	
								}	
								unit	1	{	
												vlan-id	200;	
												family	inet	{	
																address	10.208.1.1/24;	
												}	
								}	
				}	
…	
}	
protocols	{	
				mpls	{											
								interface	all;	
				}	
				bgp	{	

Cisco IOS Juniper JunOS

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	

	redistribute	bgp	700	subnets

A single mistyped line is enough

to bring down the entire network

Anything else than 700 creates blackholes

My research goal? Automate!

Remove the need to rely on humans

Develop a complete & sound network controller which 
can automatically enforces high-level requirements

Monitor

Analyze Plan

Execute

Adaptative

Networked System

Network controller

control

algorithms

programmabilityvisibility

Monitor

Analyze Plan

Execute

Adaptative

Networked System

control

algorithms

programmabilityvisibility

Develop efficient and fine-grained

measurement techniques, i.e. sensors

Monitor

Analyze Plan

Execute

Adaptative

Networked System

control

algorithms

visibility programmability

Develop fine-grained declarative control interfaces

with a clear semantic, i.e. actuators

Monitor

Analyze Plan

Execute

Adaptative

Networked System

programmabilityvisibility

control

algorithms

Develop efficient control algorithms

leveraging this new generation of sensors/actuators

Monitor

Analyze Plan

Execute

Adaptative

Networked System

control

algorithms

visibility programmability

How can we program network-wide

 forwarding state in existing networks?

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

next-hop

300k
…… …

100.0.0.0/8

Forwarding state

1

0

1

0

1

The forwarding state computed by a router

depends on two inputs

0

1

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	

The router configuration specifies

how the router compute its state

0

1

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

next-hop

300k
…… …

100.0.0.0/8

Forwarding state

1

0

1

“I can reach 1.0.0.0/24”

The routing messages sent

by neighboring devices

Given a forwarding state we want to program,

we therefore have two ways to provision it

way 1

way 2

Given a network-wide forwarding state

the routing messages shown to the routers

the configurations run by the routers

to provision, one can synthesize

Given a forwarding state we want to program,

we therefore have two ways to provision it

Given a network-wide forwarding state

the routing messages shown to the routers

the configurations run by the routers

to provision, one can synthesizeoutput

inputs

functions

Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

[SIGCOMM’15]

3

10

1

1

A B

C D

destinationsource

traffic flow

Consider this network where a source

sends traffic to 2 destinations

3

10

1

1

A B

C

desired

3

10

1

1

A B

C D

initial

D

As congestion appears, the operator wants

to shift away one flow from (C,D)

impossible to achieve by  
reweighing the links

desired

3

10

1

1

A B

C
3

10

1

1

A B

C D D

initial

Moving only one flow is impossible though

as both destinations are connected to D

3

1

1

A B

C

10

D

3

1

1

A B

C

10

D

Fibbing  
 controller

routing
session

Let’s lie to the routers

3

1

1

A B

C

10

D

Fibbing  
 controller

routing
session

Let’s lie to the routers, by injecting

fake nodes, links and destinations

3

1

1

A B

C

10

D

Fibbing  
 controller

A

C

Lie

15

11

3

1

1

A B

C

10

D

Fibbing  
 controller

A

C

A

C

Lies are propagated network-wide

by the routing protocol

Fibbing  
 controller

3

1

1

A B

C

10

D

15

1

1

All routers compute their shortest-paths

on the augmented topology

Fibbing  
 controller

3

1

1

A B

C

1

15

D

10
1

C prefers the virtual node (cost 2)

to reach the blue destination…

Fibbing  
 controller

3

1

1

A B

C

1

15

D

10
1

As the virtual node does not really exist,

actual traffic is physically sent to A

Synthesizing routing messages is powerful

Theorem Fibbing can program

any set of non-contradictory paths

Theorem Fibbing can program

any set of non-contradictory paths

Theorem

any path is loop-free

paths are consistent

(e.g. [s1, a, b, d] and

[s2, b, a, d] are inconsistent)

(e.g., [s1, a, b, a, d] is not possible)

Fibbing can program

any set of non-contradictory paths

Compute and minimize topologies in ms

independently of the size of the network

We developed efficient algorithms

polynomial in the # of requirements

We tested them against real routers

works on both Cisco and Juniper

Synthesizing routing messages is fast

and works in practice

% of nodes changing next-hop

computation
time (s)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

% of nodes changing next-hop

computation
time (s)

0 20 40 60 80

% of nodes changing next−hop

tim
e

(s
ec

)

0.
00

1
0.

1
10

simple
merger (95−th)
merger (median)
merger (5−th)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

median

Fibbing computes routing messages to inject in ~1ms

fibbing.net

Check out our webpage

http://fibbing.net

Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

current focus

under submission

Works with a single protocol family

Dijkstra-based shortest-path routing

Can lead to loads of messages

if the configuration is not adapted

Suffers from reliability issues

need to remove the lies upon failures

Fibbing is limited by the configurations

running on the routers

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	

router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	

Network specification (N)

Physical topology (φN)

High-level requirements (φR)

SyNET

!	
!	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	

Inputs Outputs

protocols

routers

static

static, OSPF

static, OSPF, BGP

4 9 16

SyNET can generate configurations

for (small) networks

protocols

routers

static

static, OSPF

static, OSPF, BGP

4 9 16

1.8s

4.2s

13.8s

18.2s

37.0s

189.4s

116.1s

197.0s

577.4s

SyNET can generate configurations

for (small) networks

synet.ethz.ch

Check out our webpage

http://synet.ethz.ch

Fibbing

“the inputs”

Network programmability

through synthesis

SyNET

“the functions”

Now that we’ve programmability,

What can we do with it?

Monitor

Analyze Plan

Execute

Adaptative

Networked System

visibility programmability

control

algorithms

Laurent Vanbever

ETH Zürich (D-ITET)

SWIFT

Predictive Fast Reroute upon Remote BGP Disruptions

November 25 2016

Munich Internet Research Retreat

25.9 seconds

max. monthly downtime

under a 99.999% SLA

25.9 seconds

IP routers are slow to converge

upon remote link and node failures

R1

R1

R3

R2

0

1

0

1
R1

R3

R2 $

$$$

R1 prefers to send traffic via R2 when possible,

as it is much cheaper than via R3

0

1
R1

R3

R2 $

$$$

preferred

R4

R3

R5

R1

R3

R2

0

1

0

1

R4

R3

R5

R1

R3

R2
300k

300k

300k

300k

600k

600k

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

R4

R3

R5

R1

R3

R2
300k

300k

300k

300k

600k

600k

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

R4

R3

R5

R1

R3

R2

What if R3 fails?

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

R4

R5

R1

R3

R2
300k

WITHDRAWs

R2 sends 300k routing messages

withdrawing the routes from R3

R3

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

R4

R5

R1

R3

R2
300k

WITHDRAWs

R1 receives the messages one-by-one and

updates its forwarding table entry-by-entry

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

1

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

R4

R5

R1

R3

R2
300k

WITHDRAWs

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

1

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

1

0

0

0

1

R4

R5

R1

R3

R2
300k

WITHDRAWs

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

1

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

1

1

0

0

1

R4

R5

R1

R3

R2
300k

WITHDRAWs

Learning

about the failure

Internet convergence

Updating

 forwarding entries

a two-phase process

Phase 1 Phase 2

Learning

about the failure

Internet convergence

Updating

 forwarding entries

a two-phase process

Phase 1 Phase 2

Both of which are terribly slow…

Learning

about the failure

Internet convergence

Updating

 forwarding entries

a two-phase process

Phase 2Phase 1

dataset a month (July’16) worth of Internet updates

from ~200 routers scattered around the globe

methodology detect the beginning and end of a burst

using a 10 sec sliding window

We measured how long it takes for large bursts

of BGP updates to propagate in the Internet

0-2 2-8 8-15 15-30 30-60 60-90
90-120

120-200
>200

1101 809
308 247

92

21 14 18 9

106

105

104

103

103

102

101

burst duration (sec)

burst size

nb of bursts

0-2 2-8 8-15 15-30 30-60 60-90
90-120

120-200
>200

1101 809
308 247

92

21 14 18 9

106

105

104

103

103

102

101

burst duration (sec)

burst size

nb of bursts

We found a total of 2619 bursts over the month

0-2 2-8 8-15 15-30 30-60 60-90
90-120

120-200
>200

1101 809
308 247

92

21 14 18

106

105

104

103

103

102

101

burst duration (sec)

burst size

nb of bursts

~15% of the bursts takes more than 15s to be learned

9

0-2 2-8 8-15 15-30 30-60 60-90
90-120

120-200
>200

1101 809
308 247

92

21 14 18

106

104

103

103

102

101

burst duration (sec)

burst size

9

nb of bursts

~10% of the bursts contained more than 100k prefixes

105

Learning

about the failure

Internet convergence

Updating

 forwarding entries

a two-phase process

Phase 1 Phase 2

ETH recent routers

25 deployed

Cisco Nexus 7k

We measured how long it takes recent routers

to update a growing number of forwarding entries

convergence
time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150convergence

time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

worst-case

median case

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150convergence

time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

worst-case

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

~2.5 min.
Traffic can be lost for several minutes

Learning

about the failure

Internet convergence

Updating

 forwarding entries

a two-phase process

Phase 1 Phase 2

prefix-based

and hence, slow

Joint work with: Thomas Holterbach, Alberto Dainotti, Stefano Vissicchio

SWIFT: Predictive Fast Rerouting

learning

about the failure

speed up…

SWIFT: Predictive Fast Rerouting

learning

about the failure

solution predict the extent

of a failure from  
few messages

speed up…

SWIFT: Predictive Fast Rerouting

learning

about the failure

solution predict the extent

of a failure from  
few messages

speed and precisionchallenge

speed up…

SWIFT: Predictive Fast Rerouting

learning

about the failure

updating

the data plane

solution predict the extent

of a failure from  
few messages

speed and precisionchallenge

speed up…

SWIFT: Predictive Fast Rerouting

learning

about the failure

updating

the data plane

solution predict the extent

of a failure from  
few messages

update groups of entries

instead of individual ones

speed and precisionchallenge

speed up…

SWIFT: Predictive Fast Rerouting

learning

about the failure

updating

the data plane

solution predict the extent

of a failure from  
few messages

update groups of entries

instead of individual ones

speed and precision failure modelchallenge

speed up…

SWIFT: Predictive Fast Rerouting

out of few messages

Predicting1

Updating

groups of entries

2

Supercharging

existing systems

3

SWIFT: Predictive Fast Rerouting

out of few messages

Predicting1

Updating

groups of entries

Supercharging

existing systems

SWIFT: Predictive Fast Rerouting

5 61

4

2

3
7

8

5 61

4

2

10k

10k

3
7

8

1k

1k

1k

1k

1k

5 61

4

2

3
7

8

1k

1k

10k

10k

1k

1k

1k

51

4

2

7

8

1k

1k

6

3

WITHDRAWs

UPDATES
10k

10k

1k

1k

1k

The stream of messages following a disruption contain

redundant information about the failed resource

enables prediction

The stream of messages following a disruption contain

redundant information about the failed resource

Redundancy comes in two forms:

positive or negative

positive

negative affected prefixes must have been routed

on a path which does contain the failed link

unaffected prefixes are routed on paths which

do not contain the failed link

51

4

2

7

8

1k

1k

6

3

WITHDRAWs

UPDATES

affected prefixes:

(1 2 5 6 7)

(1 2 5 6 8)

(1 2 5 6)

unaffected prefixes:

(1 2)

10k

10k

10k

1k

1k

1k

1k

1k(1 2 5)

10k

1k

SWIFT leverages redundancy to predict which

link(s) has failed early on into the burst of updates

(A,B) 0.30

(A,D) 0.70
……

Links failure  
probability

WITHDRAW p1

WITHDRAW p2

…

Link (A,D) is dead

PredictionsBGP updates

p3 via [X, E, C, A]

Prediction
module

Step 1

burst detection

Whenever the frequency of WITHDRAWALs is higher

than a threshold (e.g., >99th percentile)

Step 1

burst detection

Whenever the frequency of WITHDRAWALs is higher

than a threshold (e.g., >99th percentile)

Step 1

burst detection

Step 2

link prediction

Withdrawal share Path share

WS(l, t) PS(l, t)

Whenever the frequency of WITHDRAWALs is higher

than a threshold (e.g., >99th percentile)

Return the link(s) that maximizes

the weighted geometric mean between:

fraction of withdraws

crossing link l

proportion of prefixes

withdrawn on link l

Step 1

burst detection

Step 2

link prediction

If all ASes inject at least one prefix,

BPA will always correctly pinpoint

the failed link

Theorem

When run on the full burst,

SWIFT is guaranteed to find the right link

(1,2)

(2,5)

(5,6)

other

link WS PS FS

(6,7)

(6,8)

51

4

2

7

8

1k

1k

6

3

WITHDRAWs

UPDATES
10k

10k

1k

1k

1k

(1,2)

(2,5)

(5,6)

other

link WS PS

1

1

1

0

.91

.95

1

0

FS

.95

.97

1

0

(6,7) 1 .7

(6,8) 1

.5

.5 .7

51

4

2

7

8

1k

1k

6

3

WITHDRAWs

UPDATES
10k

10k

1k

1k

1k

(1,2)

(2,5)

(5,6)

other

link WS PS

1

1

1

0

.91

.95

1

0

FS

.95

.97

1

0

(6,7) 1 .7

(6,8) 1

.5

.5 .7

51

4

2

7

8

1k

1k

6

3

WITHDRAWs

UPDATES
10k

10k

1k

1k

1k

If all ASes inject at least one prefix,

SWIFT will always correctly pinpoints

the failed link

Theorem

When run on the full burst,

SWIFT is guaranteed to find the right link

When run on the full burst,

SWIFT is guaranteed to find the right link

not that helpful…

Yet, SWIFT predictions work well

in realistic scenarios

Messages tend to be interleaved

providing diverse path information early on

Intuition

Also, SWIFT can compensate for lack of information,

by being overly cautious (rerouting more)

Returns set of links failures

all links with high fit score

Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,…

Returns set of links failures

all links with high fit score

Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,…

Increase the number of false positives

the # of prefixes wrongly predicted as dead

Good news

False positives are not an issue!

26 seconds

allowed downtime

for 99.999%

129 600 secondsvs

allowed free-riding

on a peering link

2.5K

5.0K

7.5K

10K

50th 75th 90th

87.50% 99.10% 99.99%

89.70% 98.80% 98.99%

92.99% 99.10% 99.99%

95.40% 99.60% 99.99%

SWIFT predicts ~90% of the withdrawn prefixes

based on only 2.5k messages

2.5K

5.0K

7.5K

10K

50th 75th 90th

0.2x 1.4x 8.9x

0.2x 1.6x 7.2x

0.2x 1.8x 7.8x

0.4x 2.8x 9.6x

Despite not being optimized for it,

SWIFT reroutes few number of non-disrupted prefixes

out of few messages

Predicting

Updating

groups of entries

2

Supercharging

existing systems

SWIFT: Predictive Fast Rerouting

Upon a prediction,

SWIFT needs to update the data-plane

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

~2.5 min.

In the Internet though,

any subset of prefixes can fail, in theory

~2700,000

number of possibilities…

In the Internet though,

any subset of prefixes can fail, in theory, not in practice

To speed-up update time, SWIFT groups

prefixes according to the paths they take

R1

0

1

R3

R2

R3

R2

R3

300k

300k

300k

300k

600k

600k

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

NH

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

tag

10 01 …

10 01 …

10 11 …

10 11 …

All prefixes going via (R1,R2) starts with 10

If (R1,R2) fails (or is predicted to have failed)

updating one rule is enough to reroute all traffic

m(10.*) >> fwd(1)

Since the AS graph is too large to be encoded,

SWIFT reduces it first using two techniques

Ignore any link seeing less than 1.5k pfxes

anything less converges fast enough already

Ignore link far away from the SWIFTed node

less likely to create large bursts of UPDATEs

These two optimizations enable to reroute

96% of the predicted prefixes using only 18 bits

out of few messages

Predicting

Updating

groups of entries

Supercharging

existing systems

3

SWIFT: Predictive Fast Rerouting

SWIFT controller

SDN
switch

BGP
controller

…

eBGP
sessions

REST API

peern

peer1

peer2

SDN & ARP
controller

SWIFT
engine

SWIFTED
IP router

SDN APIARP

We implemented a full SWIFT prototype which

can boost existing routers convergence performance

SWIFTED

Router

SDN

switch

SWIFT reduces the convergence time of a Cisco Nexus 7k

from 55s to maximum 3s (i.e., 95% decrease)

Munich Internet Research Retreat

Laurent Vanbever

November 25 2016

www.vanbever.eu

SWIFT

Predictive Fast Reroute upon Remote BGP Disruptions

http://www.vanbever.eu

