An Accidental Internet Architecture

Munich Internet Research Retreat
24-25 November 2016

Brian Trammell (ETH NSG)
An Accidental Internet Architecture

Post Sockets
a top-down architecture proposal,
and a way to think about the world after sockets
Munich Internet Research Retreat
24-25 November 2016

Brian Trammell (ETH NSG), Colin Perkins (U. Glasgow),
Tommy Pauly (Apple), and Mirja Kühlewind (ETH NSG)
(with thanks to Jason Lee and Laurent Chuat (ETH NetSec))
A few insights

- **Applications deal in objects** (messages) of arbitrary size
 - Files, assets, media frames, etc. may depend on each other, but usually don’t require a strict ordering.
- The network of the future is *explicitly multipath*.
- Future transports must *guarantee security properties*.
- Message reception is *inherently asynchronous*.
- There are **two kinds of state** in a transport connection: ephemeral per-path state, and durable per-identity-pair state.
 - Separating these makes new kinds of interaction possible.
Abstract Programming Interface
Classes and Entry Points

Listener
- Creates associations on initial contact

Local
- Interfaces, identity

Bound Local

Path
- Established ephemeral state, per-address-pair parameters

Bound Remote

Remote
- Names, addresses, public keys and certificates

Association
- Long-term state, end-to-end cryptographic parameters

Object

Stream
- Platform-specific read/write API

Event Handler
- Dormant(), receive(), path_down(), ack(), path_up(), expired()

Listener

Pathfinder
- Encapsulates method to establish/restore path(s) to a remote

Pathfind()

send()

handle()

open_stream()

listen()
Abstract Programming Interface
Object and Stream properties

- Objects and streams have a **niceness**
 - Nicer send()s/write()s yield to less nice
- Objects have a **deadline**
 - An object will be cancelled if it cannot be realistically received before this deadline
 - Infinite-deadline objects are fully reliable
- Objects may have **antecedents**
 - Other objects which should be sent before
- All of these work **sender-side only**
 - Post needs no signaling: requires only an object framing primitive from the underlying transport protocol for full functionality.
State Separation

• A connection between two endpoints is made up of two kinds of state with different lifetimes:
 • Association-scoped
 • identities of endpoints (names, certificates, etc.)
 • cacheable crypto state (resumption parameters, etc.)
 • Path-scoped
 • addresses of endpoints
 • ephemeral transport state (ports, tokens, sequence nr, etc.)
 • ephemeral crypto state (session keys, etc.)
• Transport layer to date has only dealt with ephemeral state.
 • With durable state the distinction between “connected” and “disconnected” disappears for the application.
 • Associations can migrate from one endpoint to another
an API does not an architecture make (or does it?)

- “The Internet” is defined by interfaces to the services and user agents it connects.

- Thinking from a principle out results in a radical reimagining of the Internet, with a challenging deployment story and/or variable salvage value.

- Thinking from an interface down results in a more incremental (but easily deployable) redesign.
what your dad thinks the Internet is stuff you work on not your problem, probably works