
An Accidental Internet Architecture

Munich Internet Research Retreat  
24-25 November 2016

Brian Trammell (ETH NSG)

An Accidental Internet Architecture

Post Sockets
a top-down architecture proposal,

and a way to think about the world after sockets
Munich Internet Research Retreat  

24-25 November 2016

Brian Trammell (ETH NSG), Colin Perkins (U. Glasgow),  
Tommy Pauly (Apple), and Mirja Kühlewind (ETH NSG)

(with thanks to Jason Lee and Laurent Chuat (ETH NetSec))

A few insights
• Applications deal in objects (messages) of arbitrary size

• Files, assets, media frames, etc. may depend on each
other, but usually don’t require a strict ordering.

• The network of the future is explicitly multipath.
• Future transports must guarantee security properties.
• Message reception is inherently asynchronous.
• There are two kinds of state in a transport connection:

ephemeral per-path state, and durable per-identity-pair state.
• Separating these makes new kinds of interaction possible.

Abstract Programming Interface
Classes and Entry Points

Association
long-term state,

end-to-end
cryptographic
parameters

Path
established

ephemeral state,
per-address-pair

parameters

Stream
platform-specific
read/write API

Listener
creates associations

on initial contact

Object

Local
interfaces,
identity

Remote
names, addresses,
public keys and

certificates

send()

handle()

Event Handler
receive()

ack()
expired()path_up()

path_down()

dormant()

open_stream()

Pathfinder
encapsulates method
to establish/restore
path(s) to a remote

Bound Remote

Bound Local

listen()

pathfind()

Abstract Programming Interface
Object and Stream properties

• Objects and streams have a niceness
• Nicer send()s/write()s yield to less nice

• Objects have a deadline
• An object will be cancelled if it cannot be realistically received

before this deadline
• Infinite-deadline objects are fully reliable

• Objects may have antecedents
• Other objects which should be sent before

• All of these work sender-side only
• Post needs no signaling: requires only an object framing primitive

from the underlying transport protocol for full functionality.

State Separation
• A connection between two endpoints is made up of two kinds of state with

different lifetimes:
• Association-scoped

• identities of endpoints (names, certificates, etc.)
• cacheable crypto state (resumption parameters, etc.)

• Path-scoped
• addresses of endpoints
• ephemeral transport state (ports,tokens, sequence nr, etc.)
• ephemeral crypto state (session keys, etc.)

• Transport layer to date has only dealt with ephemeral state.
• With durable state the distinction between “connected” and “disconnected”

disappears for the application.
• Associations can migrate from one endpoint to another

an API does not an architecture make
(or does it?)

• “The Internet” is defined by interfaces  
to the services and user agents it connects. 

• Thinking from a principle out results in a radical
reimagining of the Internet, with a challenging
deployment story and/or variable salvage value.

• Thinking from an interface down results in a more
incremental (but easily deployable) redesign.

what your dad
thinks the Internet is

stuff you  
work on

not your problem,
probably works

