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A few insights
• Applications deal in objects (messages) of arbitrary size 

• Files, assets, media frames, etc. may depend on each 
other, but usually don’t require a strict ordering. 

• The network of the future is explicitly multipath. 
• Future transports must guarantee security properties.
• Message reception is inherently asynchronous.
• There are two kinds of state in a transport connection: 

ephemeral per-path state, and durable per-identity-pair state. 
• Separating these makes new kinds of interaction possible.
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Abstract Programming Interface 
Object and Stream properties

• Objects and streams have a niceness 
• Nicer send()s/write()s yield to less nice 

• Objects have a deadline 
• An object will be cancelled if it cannot be realistically received 

before this deadline 
• Infinite-deadline objects are fully reliable 

• Objects may have antecedents 
• Other objects which should be sent before 

• All of these work sender-side only
• Post needs no signaling: requires only an object framing primitive 

from the underlying transport protocol for full functionality.



State Separation
• A connection between two endpoints is made up of two kinds of state with 

different lifetimes: 
• Association-scoped 

• identities of endpoints (names, certificates, etc.) 
• cacheable crypto state (resumption parameters, etc.) 

• Path-scoped 
• addresses of endpoints  
• ephemeral transport state (ports,tokens, sequence nr, etc.) 
• ephemeral crypto state (session keys, etc.) 

• Transport layer to date has only dealt with ephemeral state. 
• With durable state the distinction between “connected” and “disconnected” 

disappears for the application. 
• Associations can migrate from one endpoint to another



an API does not an architecture make 
(or does it?)

• “The Internet” is defined by interfaces  
to the services and user agents it connects. 

• Thinking from a principle out results in a radical 
reimagining of the Internet, with a challenging 
deployment story and/or variable salvage value. 

• Thinking from an interface down results in a more 
incremental (but easily deployable) redesign.
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