

All Your Location are Belong to Us: Breaking Mobile Social Networks for Automated User Location Tracking by Li *et al.* (2013)

Sub-Topic: Privacy

Benedikt Simon Beyer

Munich, May 16th 2019

Master-Seminar Internet of People: Connectivity, Mobility and Privacy

Leonardo Tonetto, Vaibhav Bajpai

Outline

- Introduction to the Topic
- Research Questions
- Classification of Location-based Social Networks
- Methodology
- Results
- How to mitigate the privacy threat by LBSNs?
- Critique and Implications

What are Location-Based Social Networks?

	Distance	Accuracy Limit	Coverage Limit	Number of Users	Platform	SDK	Category
				(millions)	or region		
Wechat	Y	100m	1km (Shanghai)	300 millions	iOS/Android/WP	Google	II
Skout	Y	0.5mile	N/A	5 millions	iOS/Android/WP	Google	II
Momo	Y	10m	N/A	30 millions	iOS/Android/WP	Baidu	Π
Whoshere	Y	100m	N/A	5 millions in 2012	iOS/Android	Google	Π
MiTalk	Y	100m	0.6km (Shanghai)	20 millions	iOS/Android	Baidu	II
Weibo	Y	100m	1600m	500 millions	iOS/Android/WP	Google	Π
SayHi	Y	10m	1000km	500 thousands	iOS/Android	Google	I/II
iAround	Y	10m	N/A	10 millions	iOS/Android	Baidu	I/II
Duimian	Y	100m	N/A	500 thousands	iOS/Android	Google	Π
Doudou Friend	Y	10m	N/A	1 million	iOS/Android	Amap	II
U+	Y	10m	N/A	10 millions	iOS/Android	Baidu	Π
Topface	Y	100m	N/A	50 million	iOS/Android	Google	Π
Niupai	Y	10m	N/A	61 thousands	iOS/Android	Google	Π
LOVOO	Y	100m	27.8km (Shanghai)		iOS/Android	Google	Π
KKtalk	Y	10m	N/A	320 thousands	iOS/Android	Google	Π
Meet24	Y	0.5mile	N/A		iOS/Android	Google	Π
Anywhered	Y	10m	N/A	750 thousands	Android	Baidu	II
I Part	Y	10m	1000m	8 millions	iOS/Android	Google	II
Path	Ν	N/A	N/A	10 millions	iOS/Android	Google	Ι
TweetCaster	Ν	N/A	N/A	10 millions	iOS/Android/WP	Google	Ι
Google Plus	Ν	N/A	N/A	10 millions	iOS/Android/WP	Google	Ι
eHarmony	Ν	N/A	N/A	5 millions	iOS/Android	Google	Ι
SinglesAroundMe	Ν	N/A	N/A	1 million	iOS/Android	Google	Ι

 Table 1: Summary of Location-based Friend Discovery Apps

Research Questions

- 1. Is it possible to make an **involuntary localization** of a **random** LBSN user by exploiting the **public available** information only?
 - No hacking
- 2. Could we **freely track** a particular user within a reasonably short time period?
 - Investigating three most popular LBSN apps (Wechat, Momo and Skout)

The answer to the two questions is **yes**.

Benedikt Simon Beyer | Politics and Technology | TUM School of Governance

Classification of Location-Based Social Networks

Two categories:

- 1. LBSNs with Exact Location Sharing
- 2. LBSNs with Indirect Location Sharing

Classification of Location-Based Social Networks LBSNs with Exact Location Sharing

- a) Open access Location Sharing (present the **exact** location without any restriction)
- b) User Authorized Location Sharing (users can decide with whom they share the exact location information)

Classification of Location-Based Social Networks LBSNs with Indirect Location Sharing

→ Special Location Hiding Techniques are implemented to obfuscate exact locations.

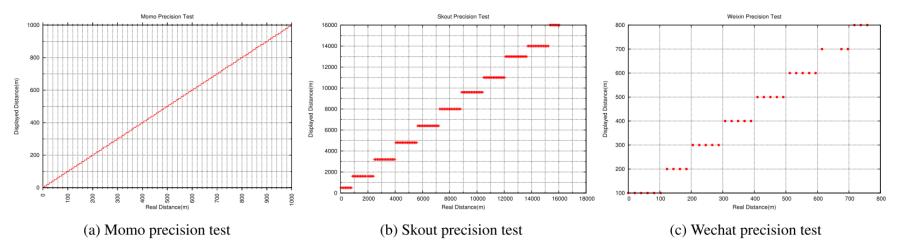
- a) Relative Distance Only (Wechat, Skout, Momo) - no geographical coordinates, only geographical distances
- a) Setting the Minimum Accuracy Limit

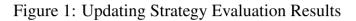
- accuracy is not better than 1 mile in Skout, Wechat 100m, and Momo 10m

b) Setting the Localization Coverage Limits

- only users within a certain range or region (e.g. Weachat 1000m) A maximal number of users visible is also possible

Benedikt Simon Beyer | Politics and Technology | TUM School of Governance


Classification of Location-Based Social Networks


Location Hiding Techniques in Practice

- Relative Distance only
- Relative Distance and
- Minimum Accuracy Limit
- Relative Distance,
- Minimum Accuracy Limit and
- Localization Coverage Limits

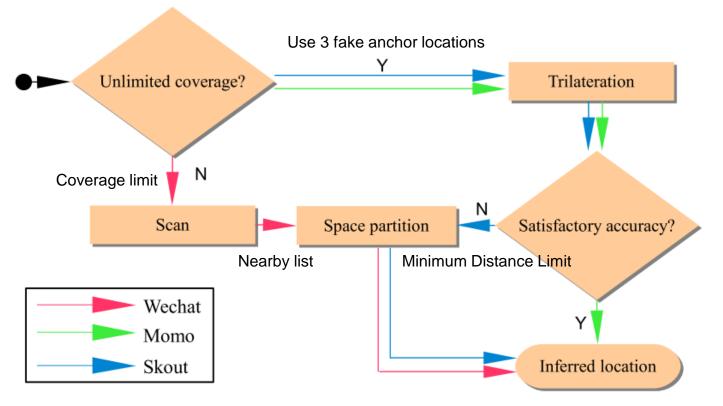
Attack Methodology

Realtime experiment:

- With an automated user location tracking system for mobile social networks that tracks Wechat, Skout, and Momo users without any awareness.
- Attack towards 30 volunteers in a three-week from United States, China and Japan.

Accuracy:

 \rightarrow Top 5 locations of one user


Attack Methodology

Realtime experiment:

- With publicly available information provided by the LBSN app
- No hacking of internal operations
- User location is based on the relative distance information
- Exploiting the returned information of relative distance by using virtual Anchor Points
 - \rightarrow Launch localization algorithms and geo-locate the victim
 - \rightarrow Break the accuracy limit

Benedikt Simon Beyer | Politics and Technology | TUM School of Governance

Overview

Figure 2: The Attack Flow

Breaking Minimum Distance Limit

- Dividing a space into two or more nonoverlapping regions
- Locating any point in the space to exactly one of the regions

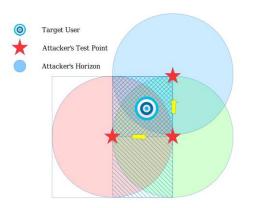


Figure 3: Illustration of Space Partition Attack

Breaking Localization Coverage Bound

- Social Popularity Index (Zipf's law)
- Higher priority to places with higher user population
 - \rightarrow Speed up location process

Implementation

Involves two key modules:

- Location Spoofing
- Location Reading
- System is implemented in Clojure (Programming Language)
 - \rightarrow Cope with MonkeyRunner
 - \rightarrow Control Android Virtual Machines
 - → Send commands
- LocationFaker app to set the location in Android

Implementation Spoofing Location

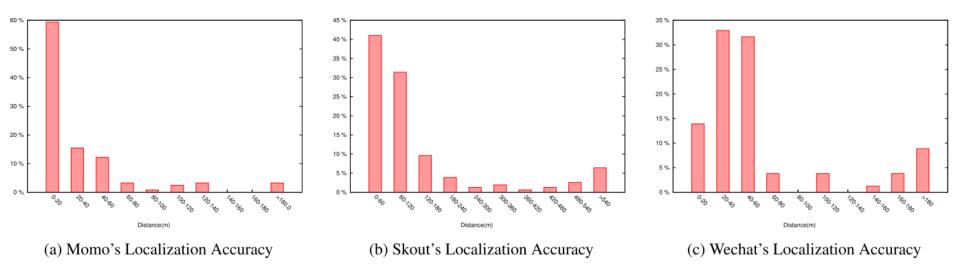
Add location providers in Android:

- Allow mock location
 - → Name to "gps"
 - \rightarrow Feed fake location information
- Location faking components need to satisfy a certain accuracy to be not rejected
 - \rightarrow if inaccurate, apps may return error messages (WeChat)
 - → Change the Android framework with ApkTool
- Accepting the fake location as the real location

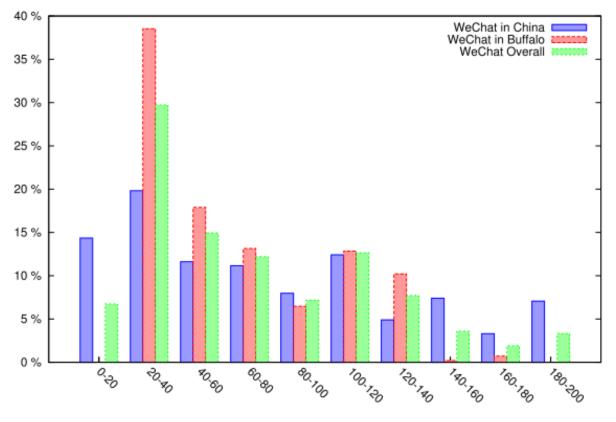
Implementation Fetching Location

Distance Reading based on fake locations:

- Simulate user input
 - \rightarrow Perform tests on apps
 - → Integrating API
 - \rightarrow Mimic user behavior
 - \rightarrow Trigger a location information update
 - \rightarrow Read out all items
- Read distance from the apps
 - \rightarrow Filter log level to matching regular expression patterns


30 volunteers for the 3 LBSN apps WeChat, Skout, and Momo:

- Localization Accuracy
 - \rightarrow Compare distance between real and inferred Locations
 - \rightarrow Measure latency of launched attacks for different apps
 - \rightarrow Localization Efficiency
- How many top locations could be recovered by using 3-week track?
 - \rightarrow Filter log level to matching regular expression patterns


350 reports and attacks from 30 volunteers in comparison:

→ Localization differs in Accuracy

WeChat Accuracy Comparison

Distance(m)

Benedikt Simon Beyer | Politics and Technology | TUM School of Governance

Most Visited Places: N=5

top location	one week			two weeks			three weeks		
	Momo	Wechat	Skout	Momo	Wechat	Skout	Momo	Wechat	Skout
1	92.3%	50.0%	20.0%	100.0%	57.1%	60.0%	100.0%	71.4%	60.0%
2	46.1%	21.4%	0.0%	46.1%	21.4%	40.0%	69.2%	21.4%	40.0%
3	30.7%	21.4%	20.0%	46.1%	28.5%	60.0%	38.4%	28.5%	80.0%
4	23.0%	35.7%	20.0%	30.7%	35.7%	40.0%	38.4%	35.7%	40.0%
5	23.0%	21.4%	0.0%	15.3%	21.4%	40.0%	15.3%	14.2%	40.0%

of 30 volunteers

of 30 volunteers

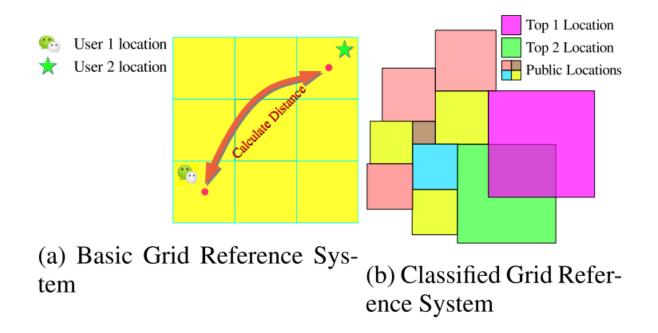
of 30 volunteers

Results

- 1) An attacker could perform a range-free, involuntary user localization attack with high localization accuracy;
- 2) Furthermore, it can successfully establish very accurate user location profile

Attacker can easily identify top 5 locations

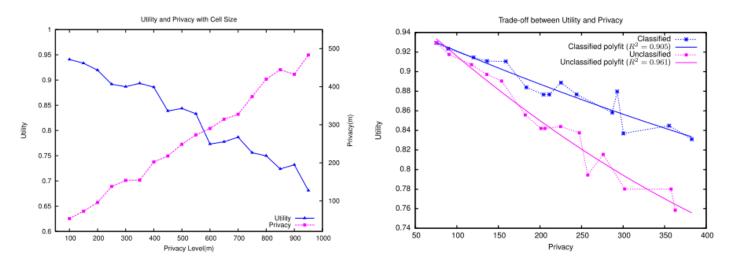
Limiting attacker's capability:


- Identifying potential anomalous users
 → Too fast changes of location
- Slowing down tracking process
 - \rightarrow But tracker can use multiple accounts
- Manual remove location access to the public
- Reducing accuracy
 - \rightarrow Adding more noise to the location management
 - \rightarrow Better privacy at the cost of users' utility

Benedikt Simon Beyer | Politics and Technology | TUM School of Governance

Introducing a Grid Reference System:

- Distance Obfuscation
 - \rightarrow prevent the attacker from using LBSN



Privacy vs. Utility

- Any obfuscation technique will reduce the users' utility.

→ Trade-off

(a) Relationship of Utility/Privacy (b) Comparison of Utility/Privacy with Cell Size Trade-offs

Privacy vs. Utility – Possible Solution

- Let the user decide
 - \rightarrow different location privacy protection preferences
 - \rightarrow Classify locations into different categories
- Give the most frequent visited locations a higher privacy protection
- Use non-uniform grid reference system

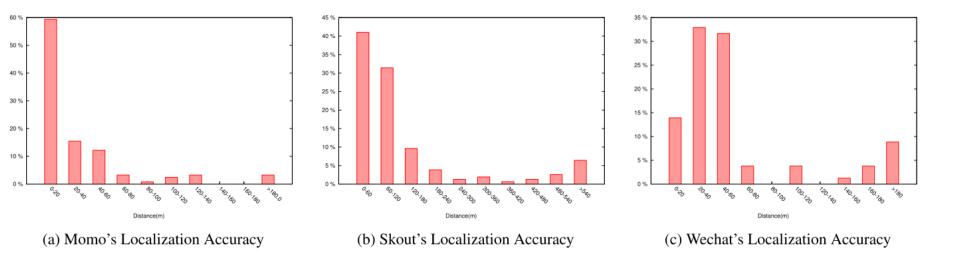
Critique

- Possible trade-off solutions may be weak

 \rightarrow Use it or leave it

- Simultaneous use of metric and imperial system
- Was the identification success of the users really that high as the authors claim?

and Implications


- One location leakage of an LBSN-User is not a threat but the combination with other identifications measures can evolve to a serious threat.
- Users will not necessarily protect their own privacy if they need to trade-off utility.

Critique - Real-World Experiment

350 reports and attacks from 30 volunteers in comparison:

→ Localization differs in Accuracy

