Chair of Connected Mobility TUM Department of Informatics

Resilience of Deployed TCP to Blink Attack

Paper written by

Matthew Luckie University of Waikato <u>mjl@wand.net.nz</u> Robert Beverly Naval Postgraduate School <u>rbeverly@nps.edu</u> Tiange Wu CAIDA / UC San Diego <u>tiangewu@caida.org</u>

Mark Allman ICSI <u>mallman@icir.org</u> Kc Claffy CAIDA / UC San Diego <u>kc@caida.org</u>

Presented by: Victor Aguboshim 03679101

Content

Motivation

Methodology

- Active Measured Methods
- Vantage Points

Conducted TestsResult of Tests

Conclusions

Motivation

- To determine how a TCP connection will react to an attack from a unrevealed false IP address such that the attacker does not intend to receive traffic from the attack.
 - Does this attack cause a TCP connection reset?
 - Is it accepted, Challenged or just ignored?
- Understand what TCP features enhance its resistance to Blind attacks

Methodology

- Active Measured Methods
 - Blind Reset and SYN Test

Blind Data Test

Fingerprinting Test

Methodology

Vantage Points of Measurement:

cld-us, hosted by CAIDA (San Diego, USA)

hlz-nz, hosted by the University of Waikato (Waikato, New zealand)

Hosted by Massachusetts Institute of Technology (MIT), Cambridge.

Conducted Tests and Results

Webserver Vulnerability

Result	Blind reset		Blind	SYN	Blind data	
	in	out	in	out	behind	ahead
Accepted	3.4%	0.4%	-	-	29.6%	5.4%
Reset (ack-blind)	-	-	17.1%	0.0%	0.6%	0.6%
Reset (dup-ack)	18.8%	0.6%	5.3%	1.2%	0.1%	0.2%
Vulnerable	22.2%	1.0%	22.4%	1.2%	30.3%	6.2%
Challenge ACK	71.4%	1.1%	37.7%	57.0%	37.1%	8.1%
Ignored	5.1%	91.8%	35.9%	38.3%	29.3%	81.3%
Not Vulnerable	76.5%	93.0%	73.6%	95.3%	66.4%	89.4%
Parallel TCP	-	-	1.1%	1.1%	-	-
Early FIN	0.3%	3.3%	1.5%	1.6%	3.2%	3.7%
No Result	1.0%	2.7%	1.3%	0.9%	0.1%	0.7%
Other	1.3%	6.0%	4.0%	3.6%	3.3%	4.4%

Fig1: Overview of Results from the cld-us VP

	cld-us	MIT	hlz-nz		
Blind reset (in):					
Vulnerable	22.2%	22.1%	21.9%		
Not Vulnerable	76.5%	76.0%	76.5%		
Other	1.3%	1.9%	1.6%		
Blind SYN (in):					
Vulnerable	22.4%	22.2%	0.3%		
Not Vulnerable	73.6%	73.2%	94.2%		
Other	4.0%	4.6%	5.5%		
Blind data (behind):					
Vulnerable	30.3%	30.3%	30.3%		
Not Vulnerable	66.4%	66.5%	66.2%		
Other	3.3%	3.3%	4.5%		

Fig 2: Overview of the Results based on VPs

Conducted Tests and Results

Infrastructure Vulnerability

Device	OS	Blind reset		Blind SYN		Blind data		Port
	date	in	out	in	out	behind	ahead	range
Cisco 2610 $12.1(13)$	2002-01	\times (A)	✓ (I)	\times (R)	✓ (C)	\times (A)	✓ (C)	seq.
Cisco 2610 $12.2(7)$	2002-01	\times (A)	✓ (I)	\times (R)	✓ (C)	\times (A)	✓ (C)	seq.
Cisco $2650 \ 12.3(15b)$	2005-08	✓ (C)	✓ (I)	✓ (C)	✓ (C)	\times (A)	✓ (C)	40785
Cisco 7206 12.4(20)	2008-07	✓ (C)	✓ (I)	✓ (C)	✓ (C)	\times (A)	✓ (C)	54167
Cisco $2811 \ 15.0(1)$	2010-10	✓ (C)	✓ (I)	✓ (C)	✓ (C)	\times (A)	✓ (C)	46166
Cisco 2911 $15.1(4)$	2012-03	✓ (C)	✓ (I)	✓ (C)	✓ (C)	\times (A)	✓ (C)	39422
Juniper M7i 8.2R1.7	2007-01	\times (A)	✓ (I)	\times (R)	✓ (I)	\times (A)	✓ (C)	181
Juniper EX9208 14.1R1.10	2014-06	✓ (C)	✓ (I)	✓ (C)	✓ (I)	\times (A)	✓ (C)	13769
Juniper MX960 13.3	2015-05	✓ (I)	✓ (I)	✓ (C)	✓ (I)	\times (A)	✓ (C)	13033
Juniper J2350 12.1X46-D35.1	2015-05	✓ (I)	✓ (I)	✓ (C)	✓ (I)	\times (A)	✓ (C)	12481
HP 2920 WB.15.16.0006	2015-01	✓ (C)	✓ (C)	✓ (C)	✓ (C)	✓ (I)	✓ (I)	14273
HP e3500 K.15.16.0007	2015-06	\times (A)	✓ (I)	\times (R)	✓ (C)	✓ (I)	✓ (I)	15611
Brocade MLX-4 $5.7.0bT177$	2014-10	✓ (I)	✓ (I)	✓ (C)	✓ (C)	✓ (C)	✓ (C)	const.
Pica8 Pronto3290 v2.6	2015-05	\times (A)	✓ (I)	\times (R)	✓ (C)	\times (A)	\times (A)	HBPS

Fig 4: Overview of Response Laboratory testing of blind TCP attacks against BGP-speaking router and OpenFlow-speaking switches

Conducted Tests and Results

Ports Selection Predictability

Fig 5: Overview of the predictability of the observed ports

Conclusion

- TCP is an important protocol with huge traffic and so the need for constant security and performance improvements.
- > 22% of connections are vulnerable to SYN and rest packets
- > 30% vulnerable to in-window data packets
- 38.4% vulnerable to at least one of the three tested in-window attacks tested

References

- Alexa. Top 1,000,000 sites. <u>http://www.alexa.com/topsites</u>.
- Cisco. TCP Vulnerabilities in Multiple IOS-Based Cisco Products,2004.<u>http://tools.cisco.com/security/center/content/CiscoSecurityAdvisory</u> /<u>cisco-sa-20040420-tcp-ios</u>.
- M. Zalewski. p0f v3 (version3.08b).http://lcamtuf.coredump.cx/p0f3/.
- M. Luckie. Scamper: a scalable and extensible packet prober for active measurement of the Internet. In IMC, pages 239–245, Nov. 2010.

Chair of Connected Mobility TUM Department of Informatics

Thank you for your time

Questions?