Layer 1-Informed Internet Topology Measurement

Presenter: Markus Ansorge Technical University of Munich Munich, 1. June 2017

Autors: Ramakrishnan Durairajan (University of Winsconsin-Madison) Joel Sommers (Colgate University) Paul Barford (University of Winsconsin Madison)

Outline

- 1. Introduction
- 2. Datasets
- 3. Data Analysis
 - 3.1. Mapping IP-Addresses to Physical Locations
 - 3.2. Comparison between Physical- and Network-Layer Map
- 4. Routing's Source and Destination Selection Effects
- 5. POPsicle
 - 5.1. Algorithm
 - 5.2. Evaluation
- 6. Conclusion

Introduction

State of the art

- Brute-Force IP Search
- Layer 3 TTL-limited probing (= traceroute)

Goal: Improving completeness using layer 1 data

Motivation: Possibility for improved

- Performance
- Security
- Robustness
- Etc.

Datasets

- Setting
 - Time period: September 2011 to March 2013
 - Geo-location: North America
- Dataset: Internet Atlas
 - Map of the physical-layer internet
 - Based on published ISP information
- Dataset: CAIDA's Archipelago (Ark)
 - Map of the network-layer internet
 - Based on large-scale tracerouting

Mapping IP-Addresses to Physical Locations

- Basic Idea: Utilizing location hints in DNS
- Algorithm:
 - Get DNS from IP-address
 - Extract location code using regular expression patterns
 - Retrieve physical location via mapping codes
 - (Classify location into different AS via mapping service)

Mapping IP-Addresses to Physical Locations

• Result:

· ·	
Total traceroutes processed	$2,\!674,\!959,\!041$
Number of unique interface IP addresses	$14,\!593,\!457$
Number of unique ASes	$31,\!055$
Valid DNS entries found	$6,\!936,\!146$
No associated DNS name found	$7,\!657,\!311$
DNS entries with location hints	$704,\!935$
Number of ASes with at least one geo-	$4,\!135$
graphically identifiable interface address	

• Problems:

- Multiple POPs per city
- No location hints
- No AS mapping entry

Comparison between Physical- and Network-Layer Map

• Scale of data: 50 networks

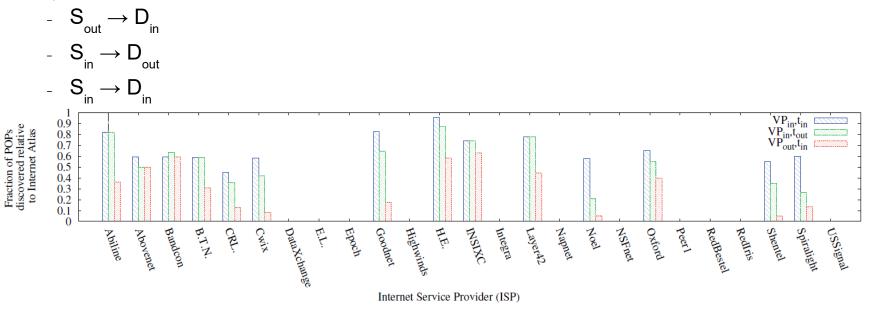
• Findings:

Physical		Network-layer		Nodes		Links					
ISP	Nodes	Links	Nodes	Links	Intersection	Only	Only	Intersection	Only	Only	N_{Index}
						in P	in N		in P	in N	
AT&T	25	57	39	72	25	0	14	51	6	21	100
Cogent	186	245	122	172	122	64	0	171	74	1	63
NTT	47	216	65	229	47	0	18	189	27	40	57
Tinet	122	132	64	79	57	65	7	79	53	0	37
Sprint	63	102	67	108	63	0	4	98	4	10	54
Level3	240	336	129	237	129	111	0	237	99	0	63
Tata	69	111	0	0	0	69	0	0	111	0	40
Abiline	11	14	8	13	8	3	0	13	1	0	100
Ans	18	25	0	0	0	18	0	0	25	0	94
ATMnet	21	22	0	0	0	21	0	0	22	0	100
Bandcon	22	28	14	22	14	8	0	22	6	0	100
BBNPlanet	27	28	0	0	0	27	0	0	28	0	100
BellCanada	48	65	22	0	22	26	0	0	65	0	56
BellSouth	50	66	0	0	0	50	0	0	66	0	76
BTNorthAmerica	33	76	0	0	0	33	0	0	76	0	85
CompuServe	11	17	0	0	0	11	0	0	17	0	100
DarkStrand	28	31	0	0	0	28	0	0	31	0	96
DataXchange	6	11	0	0	0	6	0	0	11	0	100

Markus Ansorge (TUM) | Seminar – Internet Measurement | 1. June 2017

Comparison between Physical- and Network-Layer Map

Reason for missing data:

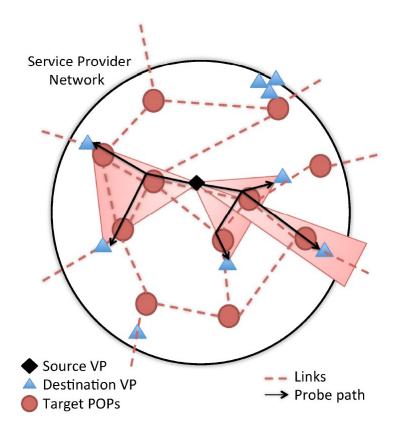

- No location hints
- Blocking traceroute
- Tunneling protocols
- Interface configured with third party IP-addresses

=> Only 13 network comparable

Routing's Source and Destination Selection Effects

Study

- Based on ISP assignment
- Types:


=> Intradomain routing preferable

POPsicle

- Layer 3 probing system
- Purpose-built system
 - Utilizes layer 1 knowledge
 - Deployment: Extension of generalized systems

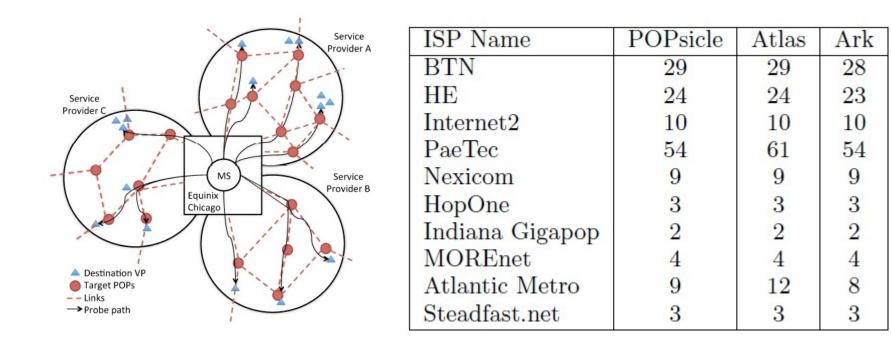
POPsicle Algorithm

- Input
 - Source VPs
 - Target POPs
- 1.Traceroute between geographically close VPs2.Route contains POP ?
 - Finished
 - Go to Step 1

POPsicle Evaluation

- Originally 30 ISP networks planed
- Only 13 suitable

	POPsicle	Atlas	Ark	Rocketfuel
Abovenet	13	22	13	13
BellCanada	34	48	30	29
Centauri	7	14	3	
Cyberverse	2	2	2	
Data102	2	2	2	
HopOne	4	4	4	
HE	23	24	23	8
Inerail	3	25	3	
Internet2	10	10	10	10
Interserver.net	2	2	1	
Steadfast.net	3	3	3	
Towardex	7	8	6	
XO	42	80	42	39


POPsicle Evaluation

Results from mapping infrastructural nodes

	POPs (for 13 ISPs)	Datacenters	DNS Servers	NTP Servers	IXPs	Total locations
POPsicle	149	487	9	627	37	1309
Ark	143	315	1	55	25	539
Atlas	244	641	13	827	65	1790
POPsicle compared to Atlas	61.07%	75.98%	69.23%	75.82%	56.92%	73.13%
Ark compared to Atlas	54.60%	49.14%	7.69%	6.65%	38.46%	30.11%
Improvement	1.04x	1.54x	9x	11.40x	1.48x	2.42x

POPsicle Evaluation

Special case: Deployment at Equinix Chicago IXP

Conclusion

- Physical maps typically reveal more nodes/links
- IXPs are great VPs
- POPsicle probing
 - Better results
 - High demands