

# InterTubes: A Study of the US Long-haul Fiber-optic Infrastructure

By Ramakrishnan Durairajan, Paul Barford, Joel Sommers and Walter Willinger

Presenter: Franz Schneider



### **Outline**

- Definition
- Building a Map
- Risks
- Mitigating risks
- Discussion
- Future Work

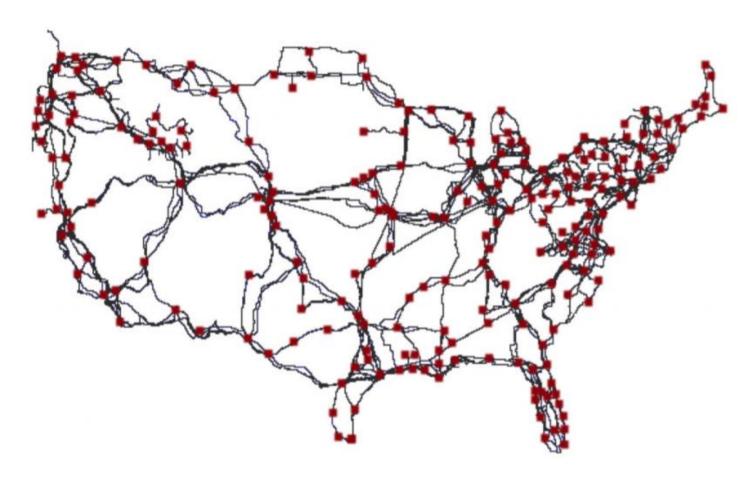


### **Definitions**

Long-haul link

Link that spans at least 30 miles, or that connects population centers of at least 100,000 people, or that is shared by at least 2 providers.




### **Building a US Long-haul Fiber Map**

Methodology

- 1. Build an Initial Map using Internet Atlas Project
- 2. Checking the Initial Map for conduit sharing
- 3. Build an Augmented Map with no explicit geocoding
- 4. Validate the Augmented Map conduit sharing



### **US Long-haul Fiber Map**





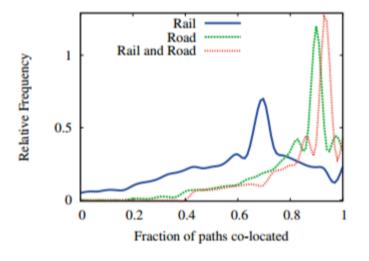

### Infrastructure and Correlation with physical links



Figure 2: NationalAtlas roadway infrastructure locations.

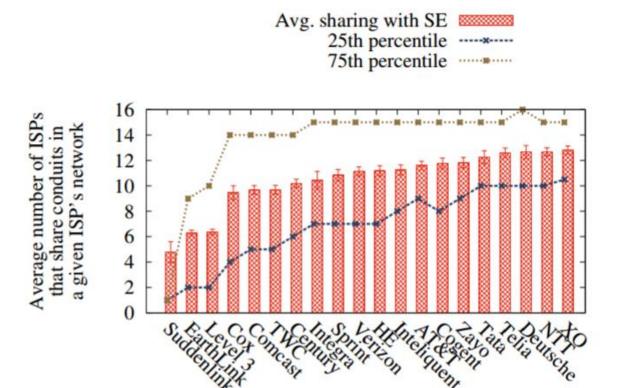
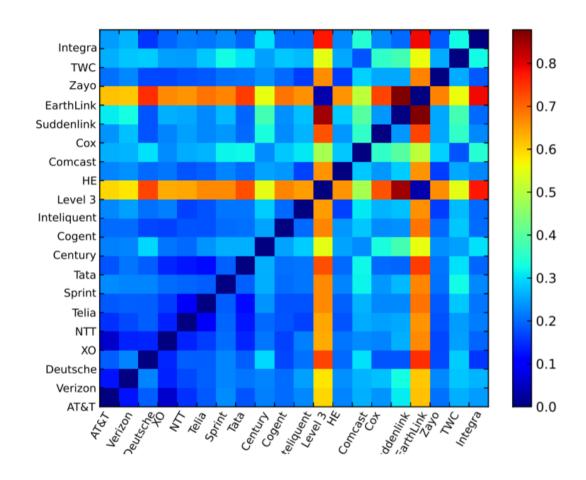



Figure 3: NationalAtlas railway infrastructure locations.






### Raw Number of shared conduits by ISPs





### Similarity of risk profiles of ISPs

fiber deployment, level of infrastructure sharing





### **Traffic**

### Edgescope Project data - 4,908,223 Traceroute from diverse locations

4,908,223 Traceroute from diverse locations

| Location            | Location            | # Probes |
|---------------------|---------------------|----------|
| West Palm Beach, FL | Boca Raton, FL      | 155774   |
| Lynchburg, VA       | Charlottesville, VA | 155079   |
| Sedona, AZ          | Camp Verde, AZ      | 54067    |
| Bozeman, MT         | Billings, MT        | 50879    |
| Billings, MT        | Casper, WY          | 50818    |
| Casper, WY          | Cheyenne, WY        | 50817    |
| White Plains, NY    | Stamford, CT        | 25784    |
| Amarillo, TX        | Wichita Falls, TX   | 16354    |
| Eugene, OR          | Chico, CA           | 12234    |
| Phoenix, AZ         | Dallas, TX          | 9725     |
| Salt Lake City, UT  | Provo, UT           | 9433     |
| Salt Lake City, UT  | Los Angeles, CA     | 8921     |
| Dallas, TX          | Oklahoma City, OK   | 8242     |
| Wichita Falls, TX   | Dallas, TX          | 8150     |
| Seattle, WA         | Portland, OR        | 8094     |
| Eau Claire, WI      | Madison, WI         | 7476     |
| Salt Lake City, UT  | Cheyenne, WY        | 7380     |
| Bakersfield, CA     | Los Angeles, CA     | 6874     |
| Seattle, WA         | Hillsboro, OR       | 6854     |
| Santa Barbara, CA   | Los Angeles, CA     | 6641     |

| Location            | Location           | # Probes |
|---------------------|--------------------|----------|
| Trenton, NJ         | Edison, NJ         | 78402    |
| Kalamazoo, MI       | Battle Creek, MI   | 78384    |
| Dallas, TX          | Fort Worth, TX     | 56233    |
| Baltimore, MD       | Towson, MD         | 46336    |
| Baton Rouge, LA     | New Orleans, LA    | 46328    |
| Livonia, MI         | Southfield, MI     | 46287    |
| Topeka, KS          | Lincoln, NE        | 46275    |
| Spokane, WA         | Boise, ID          | 44461    |
| Dallas, TX          | Atlanta, GA        | 41008    |
| Dallas, TX          | Bryan, TX          | 39232    |
| Shreveport, LA      | Dallas, TX         | 39210    |
| Wichita Falls, TX   | Dallas, TX         | 39180    |
| San Luis Obispo, CA | Lompoc, CA         | 32381    |
| San Francisco, CA   | Las Vegas, NV      | 22986    |
| Wichita, KS         | Las Vegas, NV      | 22169    |
| Las Vegas, NV       | Salt Lake City, UT | 22094    |
| Battle Creek, MI    | Lansing, MI        | 15027    |
| South Bend, IN      | Battle Creek, MI   | 14795    |
| Philadelphia, PA    | Allentown, PA      | 12905    |
| Philadelphia, PA    | Edison, NJ         | 12901    |

East-origin to west-bound

West-origin to east-bound

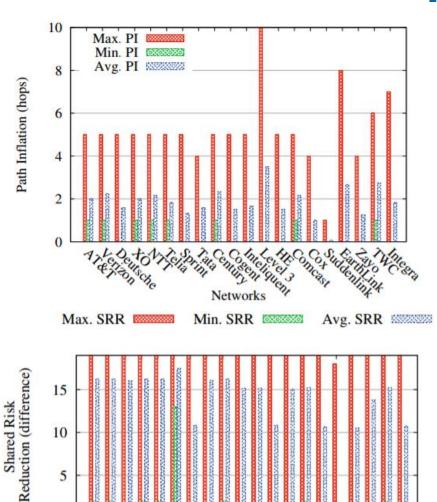


### Top 10 ISPs in terms of number of conduits carrying probe traffic

### Findings:

- Level3 is most widely used infrastructure
- XO also considered tier-1 ISP carries only 25% of the volume

| ISP         | # conduits |
|-------------|------------|
| Level 3     | 62         |
| Comcast     | 48         |
| AT&T        | 41         |
| Cogent      | 37         |
| SoftLayer   | 30         |
| MFN         | 21         |
| Verizon     | 21         |
| Cox         | 18         |
| CenturyLink | 16         |
| XO          | 15         |




Robustness suggestion infrastructure for 12 heavylinks

- Utilizing existing conduits
- Carefully choose
  ISPs to peer

### Metrics:

- Path Inflation
- Shared Risk Reduction





Increasing Network Robustness (I) – peering suggestions

Table 5: Top 3 best peering suggested by the optimization framework for optimizing the twelve shared links.

| ISP         | Suggested Peering             |
|-------------|-------------------------------|
| AT&T        | Level 3   Century   Verizon   |
| Verizon     | Level 3   Century   AT&T      |
| Deutsche    | Level 3   AT&T   Century      |
| XO          | Level 3   AT&T   Century      |
| NTT         | Level 3   AT&T   Century      |
| Telia       | Level 3   Century   AT&T      |
| Sprint      | Level 3   AT&T   Century      |
| Tata        | Level 3   AT&T   Century      |
| Century     | Level 3   AT&T   Verizon      |
| Cogent      | Level 3   AT&T   CenturyLink  |
| Inteliquent | Level 3   Century   AT&T      |
| Level 3     | Century   Integra   EarthLink |
| HE          | Level 3   AT&T   Century      |
| Comcast     | Level 3   AT&T   Verizon      |
| Cox         | AT&T   Level 3   Century      |
| Suddenlink  | Level 3   AT&T   Sprint       |
| EarthLink   | Tata   Integra   AT&T         |
| Zayo        | Level 3   AT&T   Century      |
| TWC         | Level 3   AT&T   Verizon      |
| Integra     | Level 3   Sprint   Century    |



Increasing Network Robustness (II) – adding links to lower shared risk

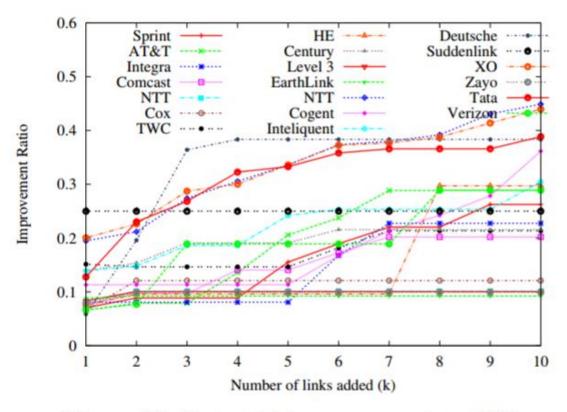



Figure 11: Potential improvements to ISP



Reducing Propagation Delay between individual city pairs

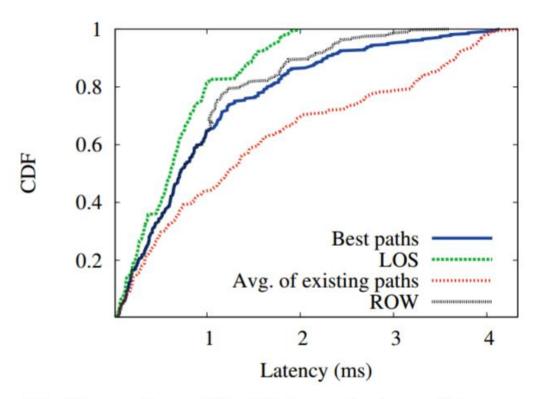



Figure 12: Comparison of best links against avg. latencies of links, ROW links and LOS links.



### **Discussion**

- Map gives very quick and easy to understand overview
- Concern for FCCs Title II classification
- Based on the map future improvements to the network are easy to see



### **Future work**

- Further improve coverage of the long-haul map
- Add Data from Metro networks
- Continue link validation process
- Focus on traffic an propagation delay



## Thank you for listening Question?