
sys-sage: A Fresh View on Dynamic Topologies & Attributes of
HPC Systems

Stepan Vanecek
stepan.vanecek@tum.de

Technical University of Munich, Garching, Germany
Garching bei München, Germany

Martin Schulz
schulzm@in.tum.de

Technical University of Munich, Garching, Germany
Garching bei München, Germany

ABSTRACT
HPC systems are getting ever more powerful, but this comes at the
price of increasing system complexity. In order to use HPC systems
efficiently, one has to be aware of their architectural details, in
particular details of their hardware topology, which is increasingly
affected by dynamic runtime settings.

sys-sage is a novel approach providing an infrastructure for stor-
age, correlation, and provision of HW-related system information.
It uses information from various well-known sources as well as use-
case-specific solutions, and correlates the particular pieces together
to provide a full view of a system. The novelty of our approach lies
in the ability to capture dynamic environments as well as systems’
complexities, and in enabling greater flexibility in its usage.

sys-sage is publicly available, and can be used by many appli-
cations. It integrates widely used approaches, such as hwloc or
dynamic counter information, and offers user-integration of all
other user-specific data sources.

CCS CONCEPTS
•Computer systems organization→Architectures; •Comput-
ingmethodologies→Modeling and simulation; Parallel computing
methodologies.

KEYWORDS
HPC System Topology, Hardware Architecture, Heterogeneous
Computing, Performance Optimizations.
ACM Reference Format:
Stepan Vanecek and Martin Schulz. 2018. sys-sage: A Fresh View on Dy-
namic Topologies & Attributes of HPC Systems . In Proceedings of SC Re-
search Poster (SC ’23). ACM, New York, NY, USA, 3 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 MOTIVATION
Modern High-Performance Computing (HPC) architectures have
evolved into clusters of complex and heterogenous multi-core pro-
cessing units. This design shift has led to increased architectural
complexity of both chip and node designs. The traditional static and
strictly hierarchical representation of such systems (as presented,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’23, November 14–16, 2023, Denver, CO
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

e.g., by hwloc [1]) does not provide sufficient information to fully
understand such systems anymore.

Due to this trend, being able to fully utilize the systems and hav-
ing an understanding of systems’ behavior has become a challenge.
Having a deep understanding of the architecture and properties of
the system, including its dynamic abilities as well as data transfer ca-
pabilities, is very important for efficient parallel application design,
performance tuning for a given system, performance management,
resource sharing, as well as scheduling and data allocation deci-
sions, to only name a few areas. As a consequence, there is a need
for a solution combining the strengths of the simple-to-interpret
hwloc data viewwith support of non-hierarchical and dynamic data.
This approach has to go beyond the static hwloc view, and extend
it with a more dynamic view representing the data flow capabilities
in the system as well as its dynamic configuration abilities.

2 TARGET USAGE
A wide range of applications and use-cases need some kind of
information regarding a system’s topology, its configuration, or its
capabilities. Current solutions only provide a specific subset of the
needed information, especially considering the challenges posed by
modern systems. Our goal is to provide the necessary infrastructure
for supporting any use-case dealing with HW-related data.

The use-cases we address with our library span across many
different disciplines and different areas of HPC. To list a few ex-
amples, we consider tasks regarding scheduling nodes based on
their mutual connectivity (bandwidth/latency), scheduling threads
based on proximity (to each other, to a special memory or to a
GPU), or scheduling on power-efficiency vs. performance cores.
We also address the needs for resource sharing tasks, i.e, how to
split a component (a node or a single CPU/GPU) and how to de-
cide which resources to offer to which application (e.g., allocate
an application on a socket close to a particular GPU). Addition-
ally, we also target heterogeneous and deep memory systems: in
order to decide on which memory type to allocate data, knowledge
of bandwidth/latency, size, or configuration for each option is re-
quired. Further, we need to consider power-management use-cases
that make decisions based on the cost (in terms of power) of data
transfers between particular components. Finally, we also support
advanced performance modelling tools that simulate how a system
would behave if it had different characteristics (more/fewer cores,
higher/lower bandwidth, ...).

Different applications have widely different requirements in
terms of what information such a library should provide, i.e., what
system-relevant information they need, and what is redundant. In
order to gain the flexibility for such a broad coverage, we create a

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


SC ’23, November 14–16, 2023, Denver, CO Vanecek et al.

modular approach that decouples the core tasks. For this, we split
the workflow into three stages:

(1) Collecting the relevant information (from any suitable source),
(2) Maintaining the information – different kinds of information

(static/dynamic, qualitative/quantitative, variable/constant,
...), collected from multiple data sources, regarding different
components of the system – so that all the data forms one
logical structure, and

(3) Providing the information to the user or application in a
unified fashion.

There are many sources of system- and hardware-relevant data
being in use today — provided by applications, the OS or drivers,
or by executing specially tailored benchmarks measuring system
properties, to name just a few examples. sys-sage does not aim at
replacing them, it rather uses the information they provide, and
simplifies and unifies the way the data from different sources is com-
bined, correlated, and offered to the user. Hence, our core capability
is to (2) maintain and (3) provide the information captured
by or via sys-sage, while its design allows to us to (1) import any
relevant information from any existing source. This design enables
sys-sage to drastically simplify the procedure of integrating and
providing HW-relevant data to target applications.

3 INTERNAL DESIGN
Each tool using sys-sage defines the information to be uploaded to
and to be managed by the library. The information is uploaded from
existing tools, which acquire the needed information. Once the data
is present, the user, which can be an application, a resourcemanager,
a runtime system, or any other program, can query the stored data.
In addition, the user can add or modify arbitrary attributes to reflect
changes in the system state, or new information as it becomes
available.

The properties of an HPC system are represented in sys-sage in
the form of Components and Data Paths, which are interlinked with
each other, providing a correlation of the different information.

Components have a hierarchical tree structure, providing a struc-
ture that is easy to understand for the user, and is easy to navigate
in. It forms the core of sys-sage and all additional information (static
and dynamic) is connected to and referenced from it.

Each Component is of a certain Component Type— classes derived
from different parts of computer systems so that their specific at-
tributes and functionalities can be represented. Example Component
Types are Node, Storage, Memory, Chip, Cache or Core.

A Data Path is a construct that carries information about the
relation of two arbitrary Components. Each Data Path has a source
and a target Component. Apart from that, no other rules apply –
any information can be stored by a Data Path. It is up to the user to
define how Data Paths are built and what information they carry.

3.1 Importing Data to sys-sage
The default method to import data into sys-sage is to utilize existing
solutions (so-called Data Sources, such as hwloc or benchmarks)
that provide the needed data. The so-called Input Parsers read the
Data Sources and transfer them to structures recognized by the
library’s Internal Representation. For the frequently-used Default
Data Sources, there are Default Input Parsers available, which can

be used out-of-the-box. For other Data Sources, the users can easily
write their Custom Input Parsers to upload them to sys-sage.

Anotherway of storing and/or altering data in sys-sage is through
its API. This way, the tool using sys-sage can add, update or delete
any piece information stored in the library. sys-sage therefore also
works as a hardware-related information data storage for the appli-
cation that uses it.

4 USE CASES
We integrate sys-sage into multiple scenarios to show its usability
as well as to improve the quality of said scenarios.

4.1 Cache-aware Algorithm vs. Dynamically
Changing Cache

Certain algorithms (such as stencil computations in our use-case)
can profit from ordering the operations in a way that single piece
of data gets repeatedly reused while it is in cache. That is achieved
by splitting the domain into smaller pieces that fit in the (L3) cache.

However, modern hardware features software options to dynam-
ically restrict access to a fraction of L3 cache for certain cores or
processes, to enable fair resource sharing. This dynamic informa-
tion renders the static L3 size useless; knowing the fraction itself is
also insufficient. Only connecting these two pieces of information
together can result in properly estimating the available L3 size.

sys-sage provides the correct value with minimal computational
and implementation overhead, and hence enables the application
to keep profiting from tiling even on systems with dynamically
changing L3 cache. Using our approach, we were able to achieve
a speedup of up to 2.05x when restricting to 2/11 of L3 over the
static tiling approach, adding only ca 10 lines of code.

4.2 Capturing Memory Access Data in sys-sage
PEBS memory access samples enable collection of detailed informa-
tion about sampled load operations, such as the load latency or the
cache level which served the particular request. This information is
collected by the Mitos [3] tool to be further analyzed and visualized
by the MemAxes [2] tool. The cache/memory information as well
as the issuing core information enables us to assign the samples to
the underlying hardware to allow analyses such as load imbalance.

Since modern hardware has gotten much more complex in the
last years, MemAxes needs to be adapted to reflex the architec-
tural specifics of the new hardware, which is now much more
diverse. This is now possible by integrating sys-sage as backend
for storage of the HW-related samples. This way, any hardware
configuration can be presented and properly displayed with the
respective samples. Moreover, after switching to sys-sage, we are
able to open MemAxes to other inputs, such as AMD’s IBS samples
or simulator-based traces. Hence, sys-sage enables larger flexibility
in the analyzed HW as well as the input data format, while taking
the data management burden off from end tools, like MemAxes.

REFERENCES
[1] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,

Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. 2010.
hwloc: A generic framework for managing hardware affinities in HPC applications.
In 2010 18th Euromicro Conference on Parallel, Distributed and Network-based
Processing. IEEE, 180–186.



sys-sage: A Fresh View on Dynamic Topologies & Attributes of HPC Systems SC ’23, November 14–16, 2023, Denver, CO

[2] Alfredo Giménez, Todd Gamblin, Ilir Jusufi, Abhinav Bhatele, Martin Schulz, Peer-
Timo Bremer, and Bernd Hamann. 2017. Memaxes: Visualization and analytics
for characterizing complex memory performance behaviors. IEEE transactions on
visualization and computer graphics 24, 7 (2017), 2180–2193.

[3] Alfredo Giménez, Benafsh Husain, David Böhme, Todd Gamblin, and Martin
Schulz. 2015. Mitos: A Simple Interface for Complex Hardware Sampling and
Attribution.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009


	Abstract
	1 Motivation
	2 Target Usage
	3 Internal Design
	3.1 Importing Data to sys-sage

	4 Use Cases
	4.1 Cache-aware Algorithm vs. Dynamically Changing Cache
	4.2 Capturing Memory Access Data in sys-sage

	References

