TuTl

Managing Heterogeneous Topologies and Understanding
Their Impact on Performance

Doctoral Showcase

Stepan Vanecek

stepan.vanecek@tum.de s
= —L.
pAL T
Chair of Computer Architecture and Parallel Systems - @ N ;@;‘ o
Technical University of Munich M H e
1 :u l | ~

Doctoral Showcase Poster SC'25, 20th November 2025 B T ‘ u_ o -f) =

mailto:stepan.vanecek@tum.de

Motivation

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

Motivation TUum

G Topologies are increasingly complex

* Heterogeneous
- Dynamic, configurable

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 2

Motivation

G Topologies are increasingly complex

* Heterogeneous
- Dynamic, configurable

a Memories play a crucial role

* More parallelism in compute

= Higher demand for data
» More complex memory hierarchies

= More difficult to understand and tune performance
» More heterogeneous systems, chips, memories

= Portability issues

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

Toolchain Overview

Topology

sys-sage

Performance
Analysis and
Modelling

Heterogeneous
Chip and
Memory

Architectures

MT4G

GPUscout

CXL data transfer
modelling

Mitos-MemAXxes
toolchain

= core focus ; &3 = related topic

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

1. sys-sage

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

1. sys-sage TLTI

Q Current landscape of topological information

» Multiple tools (such as hwloc) provide static topological snapshot

* Increased need for dynamic/runtime data (interfaces also exist)

* Need to integrate multiple static and dynamic contexts = manual integration

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 4

1. sys-sage TLTI

Q Current landscape of topological information

» Multiple tools (such as hwloc) provide static topological snapshot

* Increased need for dynamic/runtime data (interfaces also exist)

* Need to integrate multiple static and dynamic contexts = manual integration

Traditional approach

Application

(also manages the integration)

/’I VW7 77/, / / // /

g
system bandW|dth gurrent CPU
hwloc frequency

configuration latency
\ J J y and power

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 4

1. sys-sage TLTI

Q Current landscape of topological information

» Multiple tools (such as hwloc) provide static topological snapshot

* Increased need for dynamic/runtime data (interfaces also exist)

* Need to integrate multiple static and dynamic contexts = manual integration

Traditional approach sys-sage approach
Application Application
(also manages the integration)

/’ﬁ/////;//la'//////‘ -
<
i,

Y7 77 2/ /A

O

(
o | , V4
G W v i A A
é N\ [N\) (N\ [N\)
system bandwidth, gurrent CPU system bandwidth, gurrent CPU
hwioc configuration latency frequency hwioc configuration latency frequency
. J\ PN) /_and power .)L)L)/ and power

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 4

1. sys-sage

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

1. sys-sage

Internal Data Representation

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

1. sys-sage TLTI

Node
Internal Data Representation |
CPU socket GPU QPU
3 g pon
NUMA | | NUMA Memory Atom sites
1. Components VT AN b
 Hierarchical representation (hwloc-like) o oo
- Simple to understand, Mandatory
- Examples: Static CPU/GPU/QPU HW topologies Component Tree

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 3

1. sys-sage

Internal Data Representation

1. Components
» Hierarchical representation (hwloc-like)

» Simple to understand, Mandatory
« Examples: Static CPU/GPU/QPU HW topologies

2. Relations
Any Relation of 1 or more Components

Orthogonal to the Component Tree
More dynamic, complex information
Examples: data exchange rates between

components, dynamic settings, HW counter readings

TuTl

/Nolde\
C‘Fgg,o\cket GPU QPU
NUMA | [NUMA | [Memory ﬁhmom sites
[\ [\

Caches

Cores

QComponent Tree

Relations

SM

Qubits

Caches

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

latency

Quantum

E Gate

Coupling
Map

»

5

1. sys-sage

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

1. sys-sage TLTI

Quantum Extension
» Quantum Processing Units (QPUs) begin to accompany CPUs and GPUs in HPC systems

» sys-sage was extended to support QPUs alongside CPUs/GPUs

» Possible to retrieve information from existing APls, such as QDMI or Qiskit runtime

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 6

1. sys-sage TLTI

Quantum Extension
» Quantum Processing Units (QPUs) begin to accompany CPUs and GPUs in HPC systems

» sys-sage was extended to support QPUs alongside CPUs/GPUs

» Possible to retrieve information from existing APls, such as QDMI or Qiskit runtime

Node
| CPUsocket | | GPU | | QPU | ™ latency
/\ | ﬁh Quantum
NUMA | | NUMA Memory Atom sites — Gate
[L\ [\ AT

Caches SM Qubits COUP””Q
I T e e e Map
Cores Caches

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 6

1. sys-sage TLTI

Quantum Extension
» Quantum Processing Units (QPUs) begin to accompany CPUs and GPUs in HPC systems

» sys-sage was extended to support QPUs alongside CPUs/GPUs

» Possible to retrieve information from existing APls, such as QDMI or Qiskit runtime

5 BW &

| CPUsocket | | GPU | [| QPU | | latency
/\ I i Quantum
NUMA | | NUMA Memory Atom sites Gate
[\ [\
Caches S Qubits

Cores

FHE

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 6

2. MT4G — Motivation

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

2. MT4G — Motivation

CPUs

Complete, cross-vendor

LIKWID

PR 4

P 4
"'Attributes
+ ,Additional
I Information

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

2. MT4G — Motivation TUm

CPUs GPUs

Complete, cross-vendor Incomplete, scattered, vendor-specific

o

o - ~
o "' A' - el
,? Attributes R Aggﬁ%‘ﬁ; & e -
—l

.~ 'Additional

i :
I Information Information

AP| B, AMD-only

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

2. MT4G — Reverse Engineering GPU Topologies

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

2. MT4G — Reverse Engineering GPU Topologies TUTI

What does MT4G provide?

Report on GPU building blocks and their attributes and capabilities

* NVIDIA (Pascal and newer)
* AMD (CDNA)

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 38

2. MT4G — Reverse Engineering GPU Topologies

What does MT4G provide?

Report on GPU building blocks and their attributes and capabilities

* NVIDIA (Pascal and newer)
* AMD (CDNA)

Target Memory Elements
NVIDIA AMD

« L1 cache * L1 cache

« L2 cache * L1s cache
« Texture & Readonly e L2 cache

cache « L3 cache (partially)
 Constant L1, L1.5 cache « Local Data Share

* Shared memory :
. * Device memory
* Device memory

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

2. MT4G — Reverse Engineering GPU Topologies

What does MT4G provide?

Report on GPU building blocks and their attributes and capabilities

* NVIDIA (Pascal and newer)
* AMD (CDNA)

Target Memory Elements Queried properties
NVIDIA AMD Size

. L1 cache 5 L] e Cache Line Size ($-only)
+ L2 cache . L1s cache Fetch Granularity ($-only)
* Texture & Readonly L2 cache Physical Layout

cache « L3 cache (partially) Load Latency

+ Constant L1, L1.5 cache - Local Data Share Read & Write Bandwidth (L2 cache and above)

« Shared memory * Device memory

* Device memory + Compute Resource Topological Information

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

2. MT4G — Coverage TUTI

= Available via microbenchmark; = Available via APl; %« = Bandwidth only for higher-level elements; X = not available

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

2. MT4G — Coverage TUTI

Physical
Memory Element hardware
sharing

Vendor
(v) L1 cache

sL1 cache

L2 cache

L3 cache

Texture cache

Readonly cache

Constant L1 cache

Constant L1.5 cache
Shared Mem. / LDS

Device Memory

= Available via microbenchmark: = Available via APl; s = Bandwidth only for higher-level elements; X = not available

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

3. GPUscout — Locating memory bottlenecks on GPUs

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

10

3. GPUscout — Locating memory bottlenecks on GPUs

e Understanding and optimizing data
movements on GPUs is important

« Complex memory subsystem

Massive parallelism
= potential stalls on many cores
Less transparent scheduling

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

10

3. GPUscout — Locating memory bottlenecks on GPUs

e Understanding and optimizing data
movements on GPUs is important

« Complex memory subsystem
Massive parallelism
= potential stalls on many cores
Less transparent scheduling

Q GPUscout combines three views on
the data

1. Static assembly analysis

2. Sampling warp stalls
3. Collecting performance metrics

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

10

3. GPUscout — Locating memory bottlenecks on GPUs TUm

a Understanding and optimizing data

movements on GPUs is important
« Complex memory subsystem
» Massive parallelism

Nsight
Compute
CLI

- potential stalls on many cores CUDA Blnary CUPTI PCSampllng Meirics
° LeSS transparent SChedUhng SASS Warp Metric
Analysis Stalls Analysis
Q GPUscout combines three views on I‘l’ Sk l . ‘[’
, Instructions ! . : , Data flow i
the data , toblame !): Stal reasonsi . in kernel E
DISPLAY

Detected SASS instructions, stall reasons,

source code line numbers and recommendations

1. Static assembly analysis £ i
2. Sampling warp stalls |

3. Collecting performance metrics

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 10

3. GPUscout — GUI

GPUscout-GUI

Current kernel:

Relevant Kernel Metrics @ Show
cuSZp_decompres... v

The following metrics are relevant for the current analysis.

Register Spilling Analysis for Kernel cuSZp_decompress_kernel_plain_f64

View Complete Memory Graph

Relevant analyses: Performance impact of local memory Global & Local Loads «" Warp stall analysis e
Dalatrs Conlerains Registers are spilled to local memory, which can degrade performance. High values in any of the following categories indicate optimization potential Clobal Loads 6.132.859 Inst. Stalls o
Occupancy (® | Local load L1 cache hits LMEM Bandwidth impact

Register Spilling

47%

LMEM Instruction impact

Warp Divergence Ty
1.032.192 Inst. (0,2%)

Code Comparison
Compare the source code with intermediary PTX or SASS representations.

— — I

int base_block_start_idx, base_block_end_idx;
int block_idx;

int absQuant[32];

int currQuant, lorenQuant, prevQuant;

int sign_ofs;

int fixed_rate[block_num];

unsigned int thread_ofs = 0;

uchar4 tmp_char;

double4 dec_buffer;

for(int j=0; j<block_num; j++)

{

block_idx = warp * dec_chunk + j * 32 + lane;

thread_ofs += (fixed_rate[j]) ? (4+fixed_rate[j]*4) : O;

Local Loads 507.904 Inst. Long Scoreboard
13.694.849.580
Stalls
GMEM to L1 1,71GB
LG Throttle Stalls 6.126.643.233
Local load to L1 62MB
GMEM L1to L2 1,37GB

Local load L1to L2 61,38MB

L2 to DRAM 512,86MB

4.191.525 Inst. (0,9%)

SHFL.UP PT, R19, R25, 0x4, RZ ;
P2R R17, PR, RZ, Ox1;
ISETP.GE.U32.AND PO, PT, R36, Ox4, PT ;
P2R R17, PR, RZ, Ox1;

SEL R19, R19, RZ, PO ;

IMAD.IADD R17, R25, Ox1, R19 ;

SHFL.UP PT, R19, R17, 0x8, RZ ;
ISETP.GE.U32.AND PO, PT, R36, 0x8, PT ;
STL [R1+0x4], R15 ;

STL [R1+0x8], R13 ;

STL [R1+0x10], R11;

STL [R1+0x14], R9 ;

STL [R1+0x18], R7 ;

STL [R1+0x20], R52 ;

STL
STL [R1+0x28], R46 ;

Total Samples
12.436 / 77.014.447 (0%)

STL [R1+0x2c], R44 ;

__syncthreads();

} STL [R1+0x30], R42 ;

STL [R1+0x34], R40 ;

STL [R1+0x38], R38 ;

#pragma unroll 5
STL [R1+0x3c], R34 ;

for(int i=1; i<32; i<<=1) STL [R1+0x40], R32 ;

{ STL [R1+0x44], R30 ;

int tmp = __shfl_up_sync(0xffffffff, thread_ofs, i); STL [R1+0x48], R28
+0x48], ;

if(lane >=i) thread_ofs +=tmp; STL [R1+0xdc], R26
+0x4c], :

S lect It } syncthreads(), STL [R1+0X50], R24 A
Qe .(:C Ll - ' STL [R1+0x54], R20 :
. MmN STL [R1+0X58], R18 A

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

e)

Register R48 spilled in the current line in STORE
operation.The previous compute instruction this
register was used in was IMAD.WIDE in line 49f0.
At the moment of spilling, 43 registers were in use.
The previous SASS instruction did not increase the
register pressure.

11

3. GPUscout — GUI

GPUscout-GUI

Current kernel:
cuSZp_decompres... v

Relevant analyses:

Datatype Conversion
Register Spilling

Warp Divergence

Static Code Analysis«im

Select new result
Quit

Register Spilling Analysis for Kernel cuSZp_decompress_kernel_plain_f64

Relevant Kernel Metrics @ Show
The following metrics are relevant for the current analysis.

Performance impact of local memory
Registers are spilled to local memory, which can degrade performance. High values in any of the following categories indicate optimization potential

() [Local load L1 cache hits LMEM Bandwidth impact

Occupancy

47% 4.191.525 Inst. (0,9%)

LMEM Instruction impact

1.032.192 Inst. (0,2%)

Code Comparison
Compare the source code with intermediary PTX or SASS representations.

SHFL.UP PT, R19, R25, 0x4, RZ ;
P2R R17, PR, RZ, Ox1;

int base_block_start_idx, base_block_end_idx; ISETP.GE.U32.AND PO, PT, R36, 0x4, PT :

::: :'bos Cokl::);[s o P2RR17, PR, RZ, 01 ;

int currQuant Ior:anQuant revQuant: SRR

e : 15 : IMAD.IADD R17, R25, Ox1, R19 ;
int sign_ofs;

SHFL.UP PT, R19, R17, 0x8, RZ ;

int fixed_ rate[block_numi:
int fixed_rate[block_num]; ISETP.GE.U32.AND PO, PT, R36, 0x8, PT ;

View Complete Memory Graph

A
[4

Global & Local Loads o
Global Loads 6.132.859 Inst.

Warp stall analysis
Stalls

36.039.077.840

Local Loads 507.904 Inst. Long Scoreboard

Stalls

13.694.849.580

GMEM to L1 1,71GB

LG Throttle Stalls 6.126.643.233

Local load to L1 62MB

GMEM L1to L2 1,37GB
Local load L1to L2 61,38MB

LZ to DRAM 512,86MB

Total Samples
12.436 | 77.014.447 (0%)

unsigned int thread_ofs = 0;

STL [R1+0x4], R15;

uchar4 tmp_char;

STL [R1+0x8], R13 ;

double4 dec_buffer;
STL [R1+0x10], R11 ;

STL [R1+0x14], R9 ;

for(int j=0; j<block_num; j++) STL [R1+0x18]. R7 :

{

block_idx = warp * dec_chunk + j * 32 + lane;

STL [R1+0x20], R52 ;
ST
STL [R1+0x28], R46 ;

STL [R1+0x2c], R44 ;

au_o.- ~fi) 2 (4+fixed_rate[j]*4) : O;
__syncthreads();

STL [R1+0x30], R42 ;

Register R48 spilled in the current line in STORE

operation.The previous compute instruction this

STL [R1+0x38],
STL [R14+0x3c], R34 ;

#pragma unroll 5

register was used in was IMAD.WIDE in line 49f0.
At the moment of spilling, 43 registers were in use.

for(int i=1; i<32; i<<=1) STL [R1+0x40], R32;

The previous SASS instruction did not increase the

{

STL [R1+0x44], R30 ;

register pressure.

int tmp = __shfl_up_sync(0xffffffff, thread_ofs, i); STL [R1+0x48], R28
+0x48], ;

if(lane >=i) thread_ofs +=tmp;

STL [R1+0x4c], R26 ;

}

STL [R1+0x50], R24 ;

__syncthreads();

STL [R1+0x54], R20 ;

STL [R1+0x58], R18 ;

Ul __ N

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

11

3. GPUscout — GUI

Kernel Metrics

Static Code Analysis«im

GPUscout-GUI

Current kernel:
cuSZp_decompres...

Relevant analyses:

Natatvna Cr ~iQ|

Register Sp gy

Warp Divergence

Select new result
Quit

Relevant Kernel Metrics @ Show
The following metrics are relevant for the current analysis.

Performance impact of local memory
Registers are spilled to local memory, which can degrade performance. High values in any of the following categories indicate optimization potential

Occupancy (® | Local load L1 cache hits

47%

LMEM Instruction impact

1.032.192 Inst. (0,2%)

Code Comparison

Compare the source code with intermediary PTX or SASS representations.

int base_block_start_idx, base_block_end_idx;
int block_idx;

int absQuant[32];

int currQuant, lorenQuant, prevQuant;

int sign_ofs;

int fixed_rate[block_num];

unsigned int thread_ofs = 0;

uchar4 tmp_char;

double4 dec_buffer;

for(int j=0; j<block_num; j++)

{

block_idx = warp * dec_chunk + j * 32 + lane;

threau_. ~[i 2 (4+fixed_rate[j]*4) : O;
__syncthreads();

}

#pragma unroll 5
for(int i=1; i<32; i<<=1)

{

int tmp = __shfl_up_sync(Oxffffffff, thread_ofs, i);
if(lane >=i) thread_ofs +=tmp;

}

__syncthreads();

Ul __ N

Register Spilling Analysis for Kernel cuSZp_decompress_kernel_plain_f64

5

View Complete Memory Graph

Global & Local Loads «” Warp stall analysis v

Global Loads

LMEM Bandwidth impact
‘ Local Loads

4.191.525 Inst. (0,9%) GMEM to L1
(0}
Local load to L1

GMEM L1to L2

Local load L1to L2

LZ to DRAM

SHFL.UP PT, R19, R25, 0x4, RZ ;

P2R R17, PR, RZ, Ox1;
ISETP.GE.U32.AND PO, PT, R36, Ox4, PT ;
P2R R17, PR, RZ, Ox1;

SEL R19, R19, RZ, PO ;

IMAD.IADD R17, R25, Ox1, R19 ;

SHFL.UP PT, R19, R17, 0x8, RZ ;
ISETP.GE.U32.AND PO, PT, R36, 0x8, PT ;

STL [R1+0x4], R15;

STL [R1+0x8], R13 ;

STL [R1+0x10], R11;

STL [R1+0x14], R9 ;

STL [R1+0x18], R7 ;

STL [R1+0x20], R52;

STL
STL [R1+0x28], R46 ;

STL [R1+0x2c], R44 ;

STL [R1+0x30], R42 ;

STL [R1+0x38], R38 ;

STL [R1+0x3c], R34 ;

STL [R1+0x40], R32 ;

STL [R1+0x44], R30 ;

STL [R1+0x48], R28 ;

STL [R1+0x4c], R26 ;

STL [R1+0x50], R24 ;

STL [R1+0x54], R20 ;

STL [R1+0x58], R18 ;

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

6.132.859 Inst. Stalls 36.039.077.840

507.904 Inst. Long Scoreboard
Stalls

13.694.849.580
1,71GB
LG Throttle Stalls 6.126.643.233
62MB
1,37GB
61,38MB

512.86MB

Total Samples
12.436 / 77.014.447 (0%)

Register R48 spilled in the current line in STORE
operation.The previous compute instruction this
register was used in was IMAD.WIDE in line 49f0.
At the moment of spilling, 43 registers were in use.
The previous SASS instruction did not increase the
register pressure.

11

3. GPUscout — GUI

GPUscout-GUI

Current kernel:
cuSZp_decompres...

Relevant analyses:

Natatvna Cr ~iQ|

Register Sp gy

Kernel Metrics

Warp Divergence

Warp Stalls

Static Code Analysis«im

Select new result
Quit

Register Spilling Analysis for Kernel cuSZp_decompress_kernel_plain_f64

Relevant Kernel Metrics @ Show
The following metrics are relevant for the current analysis.

Performance impact of local memory

Registers are spilled to local memory, which can degrade performance. High values in any of the following categories indicate optimization potential

Occupancy

(® | Local load L1 cache hits

47%

LMEM Instruction impact

1.032.192 Inst. (0,2%)

Code Comparison
Compare the source code with intermediary PTX or SASS representations.

int base_block_start_idx, base_block_end_idx;

int absQuant[32];

int currQuant, lorenQuant, prevQuant;
int sign_ofs;

int fixed_rate[block_num];

unsigned int thread_ofs = 0;

uchar4 tmp_char;

double4 dec_buffer;

for(int j=0; j<block_num; j++)

{

block_idx = warp * dec_chunk + j * 32 + lane;

threau_. ~[i 2 (4+fixed_rate[j]*4) : O;
__syncthreads();

}
#pragma unroll 5
for(int i=1; i<32; i<<=1)

{

int tmp = __shfl_up_sync(Oxffffffff, thread_ofs, i);
if(lane >=i) thread_ofs +=tmp;

}

__syncthreads();

Ul __ N

Global & Local Loads e

Global Loads
LMEM Bandwidth impact
‘ Local Loads

4.191.525 Inst. (0,9%) GMEM to L1

Local load to L1
GMEM L1to L2
Local load L1to L2

LZ to DRAM

SHFL.UP PT, R19, R25, 0x4, RZ ;
P2R R17, PR, RZ, Ox1 ;
ISETP.GE.U32.AND PO, PT, R36, 0x4, PT ;

I

SHFL.UP PT, R19, R17, 0x8, RZ ;
ISETP.GE.U32.AND PO, PT, R36, 0x8, PT ;

STL [R1+0x4], R15;

STL [R1+0x8], R13 ;

STL [R1+0x10], R11;

STL [R1+0x14], R9 ;

STL [R1+0x18], R7 ;

STL [R1+0x20], R52;

STL
STL [R1+0x28], R46 ;

STL [R1+0x2c], R44 ;

STL [R1+0x30], R42 ;

STL [R1+0x38], R38 ;

STL [R1+0x3c], R34 ;

STL [R1+0x40], R32 ;

STL [R1+0x44], R30 ;

STL [R1+0x48], R28 ;

STL [R1+0x4c], R26 ;

STL [R1+0x50], R24 ;

STL [R1+0x54], R20 ;

STL [R1+0x58], R18 ;

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

5

View Complete Memory Graph

Warp stall analysis ¢
6.132.859 Inst. Stalls 36.039.077.840

507.904 Inst. Long Scoreboard

Stalls

13.694.849.580
1,71GB

LG Throttle Stalls 6.126.643.233

62MB
1,37GB
61,38MB

512.86MB

Total Samples
12.436 / 77.014.447 (0%)

Register R48 spilled in the current line in STORE
operation.The previous compute instruction this
register was used in was IMAD.WIDE in line 49f0.
At the moment of spilling, 43 registers were in use.
The previous SASS instruction did not increase the
register pressure.

11

4. Modeling Cross-node Communication via CXL.mem

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

12

4. Modeling Cross-node Communication via CXL.mem

@ CXL.mem 3.0+ : Multi-node shared memory pools
? Which MPI buffers should be replaced by CXL.mem?

? What is the priority and what is the expected performance gain?
? What system attributes are needed to efficiently replace MPI with CXL?

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

12

4. Modeling Cross-node Communication via CXL.mem

@ CXL.mem 3.0+ : Multi-node shared memory pools
? Which MPI buffers should be replaced by CXL.mem?

? What is the priority and what is the expected performance gain?
? What system attributes are needed to efficiently replace MPI with CXL?

Model performance of MPI vs. CXL.mem communication

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

12

4. Modeling Cross-node Communication via CXL.mem TUum

@ CXL.mem 3.0+ : Multi-node shared memory pools
? Which MPI buffers should be replaced by CXL.mem?

? What is the priority and what is the expected performance gain?
? What system attributes are needed to efficiently replace MPI with CXL?

Model performance of MPI vs. CXL.mem communication

—

1. Impact on cross-node communication

CXL.mem device

lock |w | r
shared buffer
A

Node 1 Node 2
r N (ST LD N

Local memor y Local memor y
(DDR4) (DDR4)

MPI

send buffer Sond »| recv buffer

recv

STT // N ¢LD
MPI rank 1 ‘MPI rank 2

G J G J

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 12

4. Modeling Cross-node Communication via CXL.mem TUum

@ CXL.mem 3.0+ : Multi-node shared memory pools

? Which MPI buffers should be replaced by CXL.mem?
? What is the priority and what is the expected performance gain?
? What system attributes are needed to efficiently replace MPI with CXL?

Model performance of MPI vs. CXL.mem communication

—

1. Impact on cross-node communication 2. Impact on data access patterns

CXL.mem device

lock [w | r A i o
] @ @ CXL ! Befo

[shared bufter issuing
A @ @ : : load
DDR — ! TLatency

Node 1 Node 2 @ . ©
r N ST LD) : : oy program
13 - = | e = L3 by program

Local memor y Local memor y
(DDR4) (DDR4) L2 ®: _____ o ®. - 4
send buffer Sl\gﬁé »{ recv buffer L - ' @ Cache hit
1 - liy l y LA ® LFB-cache

recv
(@) LFB-memory

L~ \ LD -
STI e v L6ad [CORE CORE
VP Latency (@) Cache miss

MPI rank 1 | rank 2

. J . J
Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

Managing Heterogeneous Topologies and Understanding TUum
Their Impact on Performance

external °
tools ¢ CXL mem

e o ete o’ communication
' modelling

@ Toolchain for understanding system
topologies and impact of data transfers

on system performance

4 Main Efforts/Tools:

MTAG (GPU topology discovery)

.

Mitos—MemAXxes
external ° to0lchai
tools ° oolchain

SYS-SAa(e (system topology information management)
Stepan Vanecek SEANEREES
stepan.vanecek@tum.de PLASMA

PEPSC
HDEEP-SEA

SPONSORED BY

GPUscout (GPU memory-related bottleneck analysis)

Doctoral Showcase #141

CXL.mem communication modelling
(Modelling cross-node data transfer over CXL)

Technical University of Munich

Federal Ministry
of Education
and Research

Chair of Computer Architecture and
Parallel Systems (CAPS) R ‘

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance 13

mailto:stepan.vanecek@tum.de

Abstract

To solve increasingly complex problems more efficiently, modern HPC systems feature highly heterogeneous components: CPUs,
GPUs, and recently QPUs (Quantum Processing Units), each with a unique, complex compute topology. The massive parallelism of
GPUs, combined with emerging memory technologies on CPUs and GPUs, makes the memory topologies increasingly
heterogeneous, complex, and dynamically configurable. Understanding these topological details, especially regarding available
memory and its usage, is essential to operating the systems and applications efficiently.

This thesis presents a framework targeting several fundamental gaps in the currently available research and tooling: sys-sage,
MT4G, GPUscout, and Mitos modeling. At the core, the sys-sage library offers a unified approach to maintaining static and
dynamic topological information from different sources and APIs. Its universal architecture handles CPUs, GPUs, and QPUs alike.

MT4G provides an otherwise unavailable, vendor-agnostic, and complete report on GPU memory topologies, integrable with sys-
sage. GPUs' massive parallelism amplifies the potential performance penalties of improper cache and memory usage. Therefore,

GPUscout identifies root causes of frequently-occurring memory-related bottlenecks, helping users efficiently utilize the complex
memory subsystem of GPUs.

Finally, to address emerging memory technologies, such as CXL.mem, this thesis presents a novel data access modeling workflow
as an extension of Mitos. The model predicts the performance impact of CXL.mem-based cross-node shared-buffer data
exchange as an alternative to point-to-point MPl communication.

Altogether, these tools capture topologies of HPC systems and provide missing insights into application data transfer behavior.

Stepan Vanecek; SC'25 Doctoral Showcase; Managing Heterogeneous Topologies and Understanding Their Impact on Performance

14

