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Preface

“And you have to realize that there are not very many things that have aged as well as the
scheduler. Which is just another proof that scheduling is easy."”

Linus Torvalds, 20011

In high performance computing (HPC), scheduling is a central aspect for efficient processing of applications
and user workloads. This seminar looks at traditional aspects of job or batch scheduling and analyizes
modern takes and solutions for this long standing (and seeminlgy solved) problem.
Aspects discussed in the seminar are:

• Traditional scheduling — FCFS, SJF, backfilling

• Job and batch schedulers in HPC

• Usage and scheduling of containers in HPC

• Workflow scheduling

• Additional resources: Energy as resource, quantum and other domain specific resources

• Simulators for schedulers

• Task and process scheduling

The students selected materials for the presentation, provided a report, and gave a presentation.

This proceeding represents the submitted seminar papers of the students.

1https://lkml.org/lkml/2001/12/15/32
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Metrics and Fundamentals of Scheduling
Ece Eroğlu

Bachelor’s Degree Program (Computer Science)
Technische Universität München

ge59gib@tum.de

Abstract—Scheduling is the action of distributing the available
computing resources that a system has to the tasks that require
them. There are different scheduling types like process-, I/O,
GPU-, and (parallel) job scheduling. This paper focuses on
parallel job scheduling. There are a lot of algorithms and
strategies available for parallel job scheduling, but depending
on what the main goal that is aimed to be achieved for the
scheduler is and what the conditions of the environment are,
there are different aspects and metrics that one should keep in
mind and base the decision-making on. This paper explains the
fundamentals of parallel job scheduling and the algorithms that
are available, different concepts for the scheduler as a goal, like
cost reduction (in this paper by means of time) and fairness,
and what kinds of metrics to consider when picking strategies
according to this goal. Other than that, different scheduling
strategies are compared to each other with the help of visual
graphs, so that one can see how they do in different aspects.

Index Terms—metrics, algorithms, time, fairness

I. INTRODUCTION

In standard computers (uniprocessor systems) the tasks are
performed one by one, so a task is processed when the
one before is done. However in high performance computing
(HPC), all the available compute nodes of the system are used
to process as many tasks as possible in one. It is mainly used
for the automation of large, non-interactive batch jobs. Today,
HPC made it possible running huge numbers of jobs with such
high speeds that was probably even hard to imagine just a few
decades ago. We can see how much development has been
made throughout the history of batch processing, from punch-
card programmed computers to the supercomputers of today.
Different strategies of parallel job scheduling can be used in
these systems while keeping in mind the different goals that
are prioritized.

The second section of this paper explains how parallel
job scheduling works. The third section at first introduces
cost metrics to consider while determining the costs of the
scheduling which helps to optimize the system by reducing
the time jobs require to be scheduled, then there is an example
of how to use these metrics in an example scenario, and then
some different metrics to determine the fairness of a scheduler.
In the fourth section one can see some algorithms that are
used in parallel job scheduling and how they compare to each
other time- and fairness-wise. In the 5th section the concept of
gang scheduling is elaborated on, which can be an alternative
for other parallel job scheduling strategies. After that there
is a discussion section where some concepts that have been
mentioned before are evaluated, and lastly one can find a

summary of the presented information and an outlook of the
paper.

II. PARALLEL JOB SCHEDULING

In parallel job scheduling, the system is made up of parti-
tions with various numbers of processors. Several queues of
jobs are created, each corresponding to a different combination
of job characteristics, and they can have different priorities. For
example, one queue might correspond to jobs that need around
32 processors, and are expected to run for a maximum of 15
minutes. Each partition gets associated with one or multiple
queues, and its processors serve as a pool for these queues
for the jobs to be executed on. When some processors in the
partition are free, the associated queues are searched in order
of priority for one that is not empty. The first job that is found
that fits in the available processors is given the resources and
it runs until it completes. Jobs are processed in first come first
serve order within each queue. [1]

III. METRICS

A. Cost Metrics

When making strategic decisions while scheduling it is
important to consider how much the whole process would cost.
Costs of a scheduler can normally be observed in different
categories like energy, money etc. but this paper will focus on
the time aspect and introduce cost metrics that aim to reduce
the time jobs require to be scheduled. There are some metrics
to help determine these costs. Before looking at the metrics
one should be familiar with these notations:

• ti = completion time of job i
• si = release time of job i
• wi = weight of job i
• di = deadline of job i
• τ = set of the scheduled jobs

The completion time is the time when the system completes
working on this job. The release time is the earliest time the
system can start working on job i. The weight of a job is a way
of giving jobs different levels of priorities, and the deadline
is the time in which a job should be done with its execution.
Now, keeping in mind the notations from before, the actual
cost metrics can be seen below:

• maxi∈τ ti = makespan (throughput)
• |i ∈ τ |ti > di| = deadline misses
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•
∑
i∈τ witi = weighted completion time

•
∑
i∈τ wi(ti − si) = weighted flow (response) time

•
∑
i∈τ wimax (0, (ti − di)) = weighted tardiness

To have a good scheduling strategy, using different metrics
for different times of the day might be necessary in most
systems as the conditions can differ. For example, in daytime
there are more jobs submitted by users and they mostly wait
for the completion of their jobs in the daytime, so aiming
to reduce the weighted completion/response time of the jobs
by prioritizing the shorter ones would be a fitting strategy so
that the user satisfaction is maximized and costs are reduced.
On the other hand at night, when the jobs being submitted are
less, considering makespan and processing longer jobs is better
for maximizing the utilization of the system and reducing the
response times of the jobs in total, as this way only a fewer
number of long jobs would be delayed instead of a bigger
number of small jobs. In real time systems where jobs have
certain deadlines it is necessary to pay attention to the deadline
misses and weighted tardiness. [1]

B. Example Using Cost Metrics

Fig. 1. Example of a processor space

Let us say a user submits a 3 hour long job at 9am. They
would normally expect the job to be done around lunchtime.
If it is completed later it could cause user dissatisfaction and
increase costs by means of tardiness scheduling. However it
is still better in the long run if the release time of their job is
postponed to the evening, because as it can be seen in figure
1, the user activity is much higher during the day compared
to the evening. That means it is a good strategy to prioritize
shorter jobs so that the shortest weighted response time is
achieved, and postpone the longer batch jobs, like which the
user submitted, to the night where user activity is less. Thus
the costs are reduced by getting as much jobs done as possible
with the best use of the time and the available processors. [1]

C. Fairness Metrics

When choosing a strategy in scheduling, reducing the costs
is the main goal most of the time. But only considering that can
be misleading in some cases due to selective job starvation. A
good scheduler should be efficient but also fair to the jobs.
The concept of fairness is about distributing the resources
of a system amongst the jobs as equally as possible. There
are different metrics to consider for fairness. First metric that
can be used is dispersion, which is higher when the scheduler
favors some jobs over the others. It can be measured with the
standard deviation, variance or the coefficient of variation of
the waiting time a job in the queue has to the average waiting
time. Another metric is the fair start time, which states a job
is not treated fairly if it is delayed by other jobs later in the
queue. For example, there is a job Ji in a queue. The actual
start time ti is the time Ji starts being processed. The fair
start time fi is the time Ji would start processing if it was
the only job in the queue. If ti > fi , then Ji is considered to
be treated unfairly. Another metric is the resource allocation
queuing fairness measure (RAQFM), in which all jobs are
allowed to have an equal part of the resources available. If
there are N(t) jobs available at a time t, then each job can
have 1

N(t) of these resources. [4]

IV. ALGORITHMS

There are various algorithms available in practice for paral-
lel job scheduling. First there is first come first serve (FCFS)
[2], which is about assigning resources to the jobs in the
order that they arrive in the queue. The jobs state the number
of processors they need and if there are enough processors
available to run the job at the beginning, the processors
are assigned to it and the job starts running. This is the
most naive approach and not as performant as some of the
other algorithms available. Another option is shortest job first
(SJF ) [3], which always assigns the resources to the job with
the shortest execution time in the queue. It is time-wise more
optimized than FCFS as it reduces the response and waiting
times of the jobs. But it could also cause longer jobs to starve,
hence it is not really a fair strategy. It can especially be found
in systems with time slicing or gang scheduling, but the details
of that can be found in the 5th section.

Another algorithm is backfilling, which is one of the most
commonly-used strategies in practice. Backfilling is an opti-
mization to the FCFS order. In FCFS if the system does not
have enough resources for the job at the head of the queue to
run, then it waits until some processors are freed and then the
first job starts running. But in backfilling, while the first job is
waiting, other jobs in the back of the queue can be scheduled
instead if they require less processors and there is currently
enough processors available for them to run, especially if the
first job in the queue is not delayed because of this action.
This way the processors that would normally remain idle are
used, which means it increases system utilization and reduces
the time spent in total. [2]
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A. Comparison

Fig. 2. FCFS and backfilling algorithms

Backfilling itself can also be divided into different types.
The first algorithm is conservative backfilling, which moves
the shorter jobs forward only if none of the jobs before it are
delayed because of this action. In the second visual of figure
2, one can see how conservative backfilling works compared
to pure FCFS. In FCFS, as there are not enough processors
available for the first job, the system just waits until there is
enough and then starts with the first job. But in conservative
backfilling, the third job in the queue is scheduled ahead of the
first one, as the system has enough processors for it and this
action does not affect the waiting times of the jobs in the queue
before the third one. Secondly, there is EASY Backfilling,
which allows shorter jobs to move forward if they do not delay
the first job of the queue, but the rest of the jobs may be
delayed, so it is more flexible than conservative. One can see
how it works in the third visual of figure 2. The third job
is scheduled first just like in conservative, but then after the
first job, the fourth job is scheduled ahead of the second one
even though it delays it. But the first job is not delayed and
that is the only requirement. Then there is fattened backfilling,
which is actually just a proposed algorithm believed to be more
efficient than the algorithms stated before. Its requirement is
not delaying the first job in line for more than the average
waiting time (AWT ) of the already finished jobs. AWT is
another possible cost metric which is the average amount of
time the jobs wait in the queue before they are assigned to
processors. In the last visual of figure 2, one can see that just
like the other algorithms, the third job is scheduled first again.
But now also the fourth job is scheduled before the first one, as
the delay is not a problem anymore as long as it is shorter than
the AWT. From the visuals these algorithms can be compared
by the amount of time they require as FCFS > Conservative >
EASY > Fattened. In other words, fattened backfilling is the
most cost-efficient one time-wise while FCFS is the least. [3]

Keeping the aforementioned fairness metrics in mind, com-
parison of different algorithms according to both the time the
jobs need and fairness is now possible, and one can see how
time and fairness relate to each other. In figures 3 and 4, an
experimental result of comparison between three algorithms,
FCFS, Fit Processors First Served (FPFS) and Greedy can
be seen. FPFS is an algorithm in which jobs are queued like
FCFS, but if the system does not have enough processors
for the job in the start of the queue, then the first job later
in the queue that does not require more than the available
ones is scheduled instead. But, so that the first job in the
queue does not starve, jobs later in the queue can jump over
the first job for only a limited number of maxJumps times.
Greedy is also similar to FPFS, but each job has a priority
indicator. When the first job cannot be processed, the highest
priority job from the first depth number of jobs in the queue
that does not require more than the available processors is
scheduled, and just like FPFS, there is a limited number of
maxJumps. These algorithms mentioned have been compared
by both the time jobs need and fairness and the results can
be seen in figures 3 and 4. For FPFS and Greedy there are
different versions with different parameters, FPFS(x) with
x = maxJumps, and Greedy(x, y) with with x = maxJumps
and y = depth. For time measurement, the average response
time (ART ) metric is used, which is like weighted response
time but the per job value instead of the sum. For fairness, the
dispersion metric with the parameters of standard deviation is
used in the second graph, and coefficient of variation in the
first one. In both graphs, it can be seen that Greedy and FPFS
are more efficient than FCFS as the jobs have shorter ARTs
there. But when it comes to fairness, the graphs have different
results for the different parameters of Greedy and FPFS for
standard deviation and coefficient of variation. Even with those
differences, we can see that FCFS is fairer compared to Greedy
and FPFS, which makes sense as in FCFS all jobs are handled
in the order they arrive but in Greedy and FPFS some jobs in
the back of the queue can delay the first job for a bit even if
not more than maxJumps times. [4]

Fig. 3. comparison with metric coefficient of variation
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Fig. 4. comparison with metric standard deviation

V. GANG SCHEDULING

Besides the algorithms mentioned above, different types of
scheduling algorithms based on time slicing and space slicing
have been proposed [1]. In space slicing, each partition in
the system is allocated to a single job, so the jobs share
the processor space available like the name suggests and in
time slicing, multiple jobs run on one partition with their own
time slices, so they share the CPU-time. Instead of these two,
in practice mostly a combination of these strategies, which
is gang scheduling, is used more often. Other than batch
processing strategies like backfilling, gang scheduling is the
main alternative. In gang scheduling, jobs are preempted and
rescheduled as a unit, so the conditions of a dedicated machine
are created, where the threads of a job are scheduled together
and they share the resources in a partition [2].

In time slicing and gang scheduling, preemption is used
often for reducing the waiting/response times by approaching
the SJF strategy [1]. It is helpful especially in cases where
runtimes are unknown [2] or there is high variability when
it comes to job lengths [1], so that short jobs do not have
to wait in the queue for longer jobs. Another reason for
using preemption is allowing computation and I/O to work
together [1]. In gang scheduling, if jobs that are CPU bound
and I/O bound are paired together in a partition, then while
some jobs perform I/O the rest can keep computing, thus
the resource utilization can be improved and processors that
would remain idle in I/O time are made use of [2]. Besides
that, preemption is also helpful for dividing the resources
amongst the competing jobs, and also can be used to reduce
fragmentation, as it is not always necessary anymore to gather
idle processors a long job needs all at once [1].

VI. DISCUSSION

So far the two aspects that can be the main goal of a
scheduler, cost reduction by means of time, and fairness were
explained. Even though fairness has been elaborated on here,
in practice the main goal is mostly concentrated on the costs.
That is the way the maximal efficiency can be achieved.
Besides that, cost metrics are more objective as they give more

certain results. On the contrary, in fairness the measures do not
always give consistent results and it is a more relative aspect.
Different ways of measurements can give counter-intuitive
results. The metrics can falsely express unfairness even when
there is no actual discrimination or starvation, and vice versa.
In the 4th section where algorithms were compared for both
the response time of the jobs and fairness of the algorithms, it
was seen that measuring fairness is actually harder than time
and can vary in different situations, just like how the metrics
of standard deviation and coefficient of variation gave different
results for dispersion. Also the two aspects are one can say
inversely correlated, so when an algorithm is fairer, then the
jobs would most likely need on average longer times before
completion. That is why aiming to reduce the time required is
paid attention to more in practice, as it is important to keep
the costs low and user satisfaction high. [4]

Besides that, out of the algorithms that were mentioned
in the paper, backfilling strategies are more commonly used
for batch processing. We have already seen that they perform
better compared to other algorithms. Gang scheduling is an
alternative to the batch processing strategies, but it is actually
used more in fast personal computers than in HPC. As gang
scheduling requires the context switches to be synchronized
across the nodes of the machine, the implementation of it on
large machines can be expensive. But recent developments
in experimental systems show that the overheads caused by
synchronization and coordination can be reduced. [2]

VII. CONCLUSION

In this paper, the current algorithms and strategies used in
practice for parallel job scheduling like FCFS, SJF, Backfill-
ing, Gang Scheduling etc. have been explained and they have
been evaluated when it comes to different aspects like time and
fairness with the metrics that were introduced. It was observed
how different algorithms do better in different scenarios and
how time optimization is a more focused on concept than
fairness in practice, as it is aimed to keep the costs low
and increase the efficiency as much as possible. Besides the
current popular strategies, some other proposed ideas have
been elaborated on, like for example fattened backfilling,
which shows that even though a lot of advancement has been
made in the parallel job scheduling area throughout history, it
is still actively researched as improvement in different aspects
is still possible.
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Sánchez, ”Fattened Backfilling”, J. Parallel Distrib. Comput. 97 (2016)
pp.69–71

[4] J. Ngubiri, M. van Vliet, ”Characteristics of Fairness Metrics and their
Effect on Perceived Scheduler Effectiveness”, International Journal of
Computers and Applications, 32:2, pp. 188–193

4



GPU Scheduling (Warps and Compute Units)
Hopperdietzel Stephan

Bachelor’s Degree Program (Computer Science)
Technische Universität München

ge25zot@mytum.de

Abstract—General Purpose GPU computing became more rele-
vant in recenent years due to superior multithreading capabilities
compared to CPUs. As they were not initialy designed for general
purpose applications there is a lot of optimization still left for this
use case. To make better use of the existing hardware pipeline
the scheduler can be improved.
This paper presents optimizations to the scheduler showing there
is a lot of performance still to be gained within GPUs for
scientific computing. There are 5 proposed solutions presented,
which deal with improving the utilization of existing hardware
and preventing stalls inside the pipeline. Simulations show that
the improvements have a performance gain between 8-41% on
average and can double for specific applications.

I. INTRODUCTION

Using the GPU as a general purpose accelerator has
become more popular in recent years. GPUs provide
increased performance, energie effienency and cost compared
to CPUs in certain tasks. [1]
This is due to the increased area dedicated to computation on
the chip compared to the area designated to control, as GPUs
are designed for Single Instruction Multiple Data/Thread use
in each core. x86 CPUs can do SIMD with some extensions
(e.g. AVX), but those are not prioritized in CPUs and still
have a much smaller SIMD width to GPUs resulting in less
data per instruction.
GPUs can execute many threads of the same program
concurrently. When a high number of threads execute the
same code a GPU is utilized best. This includes applications
such as fluid simulation, databases, climate prediction and
many more, which utilize APIs like OpenCL, CUDA or CTA
to execute C code on GPUs. [2]

II. BACKGROUND

A. Pipeline

GPUS were designed to compute and display the graphics
of a computers, which incldues computing shaders, a heavily
multithreaded workload. Therefore GPU architecture is vastly
different to CPUs. [2]
Instead of multiple cores like a CPU GPUs consists
of multipe Streamline Multiprocessors (SM/Compute Unit).
Each contains multiple ALUs that execute the same instruction
concurrently. To use this, threads of the same program are
grouped together and get executed in lockstep, meaning they
share a common program counter and go throught the same
fetch-decode-execute cycle but with their own data in diffrent
ALUs at the same time.

The fetch-decode-execute cycle is slow and can be parallized,
might leading to one instruction being loaded and others
being decoded, computed or waiting for memory all at the
same time. This is called a pipeline. “Fig. 1”
Starting at the top left is the warp list storing the warps
contained in the SM. A warp is the aformentioned group of
threads. The number of threads in each warps is identical
to the number of ALUs in a SM so that it can be executed
in one cycle. This is typically 32/64 threads inside a warp
depending on the model and manufacturer. The warp list
stores id, active mask and program counter for all warps in
the SM. The active mask describes which ALUs are currently
occupied in the warp, meaning if the nth bit is 0 the ALUN
is not used when the warp gets executed.
To begin a cycle the scheduler picks an available warp in a
round robin way, ensuring all warps have the same priority
and progress at the same rate. In the pipeline the instruction
of the warp is fetched and decoded next.
Following this the registers of the threads are loaded and put
into the lanes for execution. These are stored in a Register
File where each row corresponds to a warp and the cells are
all registers of a thread. In the lane they get processed by
ALUs. During the execution threads can access memory. This
can be main or private memory. Latter is further storage for
data associated with a specific thread.
After calculation registers are wrote back into the register
file, the program counter and active mask are updated in the
warp list and the warp can be scheduled again.

B. Branching

The concept of running multiple threads is very effective,
but does not take diverging control flow into account. At condi-
tional jumps threads inside a warp may choose different paths
in the control flow, resulting in mutliple different program
counters for the warp.
To solve this a divergence stack is used “Fig. 2”. When
reaching a junction in the control flow (in the example A) the
scheduler chooses one of the pathes to execute first (in this
case B) and creates two entries in the divergence stack. First a
Join Entry which represents where the pathes meet each other
again. In the example the control flow merges at D so it is put
as the Recovery Program Counter (Rec PC). Since all threads
started at A the active mask of the join entry is all 1 and the
program counter to execute again is D. The other entry to be
pushed onto the stack is the Divergence Entry. It represents

5
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the start of path that has not been taken in the control flow
(in this case C). As it merges at D the Rec PC is set to D, the
active mask is set to the threads which take the path and the
programm counter is C as it is the start of the path.
After pushing the entries execution on the chosen branch start
(state 2).
When reaching D the scheduler sees that it has entries on the
divergence stack that meet there, so it pops the divergence
entry of the stack and starts executing it(state 3).
After all diverging paths are taken the join entry is popped of
the stack and execution continues (state 4).
If additional branching occurs inside a branch the mechanism
is the same and the stack grows, with the exception that the
join entry might not consist of all 1s as an active mask. As
seen in the example braching leaves many lanes doing nothing.

III. IMPROVEMENTS

In this section varying improvements to the baseline GPU
scheduler are presented. They can be sperated by the problem
they solve. Large Warps, Simultaneous Branch Interweaving
(SBI) and Simultaneous Warp Interweaving (SWI) try to
make the most use of the existing lanes in the hardware.
Two-Level Scheduling and Memory Divergence Correction
(MeDiC) try to minimize the effects of stalls in the pipeline.

A. Large Warps
When the flow of a programm splits up, the active mask gets

less populated, which means that some lanes of our SM are

not used. To reduce the impact of branching the researchers
propese the large warp microarchitecture. The large warp
replaces the existing warps in the pipeline. They are composed
k×n threads where n is the number of lanes in the SM. The
amount of threads is kept the same in each SM meaning that
each SM has fewer, but larger warps now.
These large warps can no longer be executed in a single step
in a pipeline, since they have more threads than the SM has
lanes. So the execution of a large warps takes multiple cylces
and only after all threads, that are marked for execution in
the active mask, are executed the programm counter and other
control structures are updated and the warp is considered for
scheduling again.
To make efficient use of the hardware the active mask is
organized as matrix size with k rows and n columns. Latter
represent the existing lanes of the hardware.
When choosing which threads to execute in each cycle the
scheduler takes the first not already executed thread in each
column, meaning the threads to be executed in the pipeline in
a step can come from different rows. The register file has to
be extended allowing registers from different rows to load at
the same time.
Overall the lanes are now used more often and instead of
executing the fixed amount of k warps potentialy less cycles
were needed to execute the large warp with the same amount
of threads. An example for this can be seen in “Fig. 3”, where
each color represent threads executed at the same time. The
normal warps take 8 cycles, while large warps only takes 5.
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Warp 1 1 0 1 0
Warp 2 0 1 0 1
Warp 3 1 0 0 0
Warp 4 0 1 0 1
Warp 5 0 0 0 1
Warp 6 1 1 1 1
Warp 7 1 0 0 1
Warp 8 0 0 1 0

Large 1 0 1 0
Warp 0 1 0 1

1 0 0 0
0 1 0 1
0 0 0 1
1 1 1 1
1 0 0 1
0 0 1 0

Fig. 3. normal/large warp

[3]

B. Simultaneous Branch Interweaving

SBI tries to get around the same problem of low ALU uti-
lization due to branching by introducing a second instruction
loader.
When a program encouters a point of divergence the threads
inside it chooses one path to execute first. If it is not a simple
if-then, but a if-then-else two or more program counters are
now available for the warp to advance. As explained in II-B
branching the baseline would now pick one path and execute
it until reaching the join entry before exectung the other one.
SBI on the other hand executes can two branches at once. It
introduceds a second scheduler that loads an instruction from
a different branch of the same warp than the first scheduler.
The active mask of this second instruction is not allowed to
interfere with the active mask of the first instruction. The
ALUs now need a multiplexer that decide if it is active and if
so which of the two instructions it has to execute.
Finding a second instruction to load is fairly trivial, as threads
inside a warp are mutualy exclusive in one branch, resulting
in active masks of different concurrent branches that do not
overlap. Due to being at two points in the program, a simple
divergence stack can not be used anymore. Instead a heap is
used to keep track of when threads have to join and which
two branches can be executed.
SBI decreases the times a lane is inactive and can reduce the
number of cycles needed. It works best when the concurrent
branches in the control flow have similar execution time. [4]

C. Simultaneous Warp Interweaving

SWI is similar to the idea of SBI, but instead of improving
when threads have balanced workloads in different paths it
improves throughput when the workloads are unblanced.
As with SBI there is a second scheduler that picks a instruction
with a non overlapping active mask to the first instruction. The
second instruction can be any current instruction from another
warp inside the same SM.
There is now a need to load the register files from two warps
in each step and decide on which register has to be put into
each lane. This again is done by introducing a multiplexer. The
same multiplexer as in SBI for deciding which ALU executes
which instruction is also required.
As the scheduler takes longer to look for a second instruction
it trade scheduler latency for better ALU utilization increasing
performance overall. [4]

D. Two-Level Warp Scheduling

Inside a SM warps are executed using Round Robin. Sub-
sequently warps tend to progress at the same rate through a
given program. This is great for locality meaning caches are
used effectivly. But in the same way they tend to reach long
latency operations at the same time, resulting in no threads
being available for scheduling.
To avoid this the warps are combined into mutliple groups.
The warps inside them are still scheduled using round robin.
Groups get different priority, where as long as the highest
priority one has warps to schedule they get executed. Once all
warps in a group stall, the groups themselves get reprioritized
in a roub robin way. This is the second level of scheduling.
As a result the groups progress at different rates, so they do
not reach long latency operations at the same time. When
the last group reaches a long latency operation the first is
likely to be finished already meaning there are always warps
to be executed at any given moment. The cache locality is still
maintained as inside a group the threads progress at the same
speed.
[3]

E. Memory Divergence Correction

If a instruction inside a warp accesses memory it needs
to wait until memory requests of all threads finished loading
before continuing to execute. This means if a single thread
inside the warp has a cache miss all other threads have to
wait, even if all other request were cache hits.
Research has made two observations on this problem. First
not all warps behave the same. Some of them have most of
their request taken care of by cache (mostly-hit Warp), while
others do not utilize the cache well and have most of their
request miss cache (mostly-miss Warp). Second a warp tends
to keep its cache Hit/Miss ratio over long periods. Combined
these two observations can be exploited to improve overall
performance.
The goal is to convert mostly-hit warps into all-hit warps and
mostly-miss warps into all-miss warps.
This speeds up the exectution as threads inside mostly-hit
warps then do not have to wait for long memory accesses
and can progress faster while the cache hits inside the mostly-
miss do not increase performance of its execution as it needed
to wait for memory anyway.
To identify the warp type the cache hit ratio is sampled for
each warp. After sampling the type of the warp, its number
of cache misses and number of cache access are stored. This
is done periodically to account for long term drifts.
To reach the goal of converting mostly-hit into all-hit warps
modifications to the cache and memory scheduler are pro-
posed.
As all-miss warps do not benefit from cache accesses they can
bypass the cache entirely. This frees up space inside the cache
which can be filled with data for mostly/all-hit warps which
benefit from it. Addionaly due to decreased number of cache
request the queuing delays are shorter, decreasing latency of
the cache.
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For a second measure keeping data from all/mostly-hit warps
in the cache is more efficient than keeping data from balanced
or mostly-miss warps. Therefore the insertion policy of the
cache is changed. Cache blocks get associated with the type
of warp that requested it. By inserting cache blocks in diffrent
positions in the least recently used queue, when evicting cache
blocks from all/mostly-hit warps are kept longer and others are
evicted earlier.
Having more cache space available and keeping the data longer
in it increases the chances of mostly-hit warps becoming all-
hit warps, but does not guarantee it. For the case a mostly-hit
warps still has a cache miss the memory scheduler is modified.
Memory request are tagged with a bit that indicated if it comes
from an mostly-hit warp. If it does so it gets higher priority
in the request queue of the memory controller and therefore
returns faster.
[5]

IV. DISCUSSION

A. Hardware Cost & Performance Improvements

All of the improvements explained need additional or mod-
ified hardware to work. Since producing actual hardware is
expensive and complex performance results are simulated and
the hardware costs estimated.
Large Warps hardware cost is mostly the modified register file
which is estimated to grow 11-18% in size. This corresponds
to 2.5% of overall GPU size. Large warps excell in branch-
intensive applications, increasing the performance by up to
50% in bucket sort. Over a mixed set of benchmarks large
warps increase performance by 7.9%. [3]
SBI primary hardware cost comes from the second scheduler
and the divergence heap, corresponding to a 3% increase in
GPU size. SBI works best on irregular applications . These
applications access memory locations and choose their path
inside the control flow based on their data. [1] Performance
for these programs is increase by 41% while the average
performance increase is only 15% on regular applications. [4]
SWI has similar requirements in hardware changes as SBI. It
needs a slightly modified second scheduler and the possiblity
to load from a two rows in the register file, but does not
need the divergence heap. This results in a 2.9% increase in
size of the GPU. SBI benefits the most in irregular programs
increasing performance by around 33% in these workoads. On
regular apllications the performance increase is simulated at
around 25% over baseline. [4]
Two-Level warp scheduling hardware cost is insignificant,
only requiring minor modifcations to the scheduler. In bench-
marks that suffer from long latency operations and associated
stall Two Level scheduling works best. It can increase perfor-
mance for example by around 50% in matrix multiplication.
Overall the increase is more modest with 9.9% over a broad
variety of benchmarks. [3]
Hardware cost of MeDiC is relativly low. It only needs
space to store the metadata for each warp and some bits
to store the warptype for each cache line. This is less than
1% of the size of the cache. In benchmarks MeDiC provides

siginificant performance improvements over nearly all types of
applications. In Breath-First-Search it more than doubles the
performance. Overall it is up by around 41.5% over baseline.
[5]

B. Combining Improvements

While the improvements work alone, some of them can be
combined together to get even better results.
As improvements that tackle stalls do not interfere with ones
improving overall utilization of GPU lanes, they can be com-
bined trivialy. For example combining two-level scheduling
with large warps preserve indivual improvements and therefore
yield a 19.1% performance increase over baseline. [3]
SBI and SWI require very similar hardware, meaning they can
be combined together without much overhead (3.7% increase
in GPUS size). Since they both try optimizing the same
hardware component they do not scale as well toghether as the
previous example, but as they have there highest performance
gains in different types of applications it is still worth to
combine them. [4].

V. CONCLUSION

The baseline Round Robin Scheduler does not utilize the
hardware well for general purpose computing on a gpu.
The two main problems of the base scheduler can be solved in
different ways. Underutilizing lanes due to branching requires
a lot of changes to the hardware. Optimizations for this
yield fastly different performance gains based on the type of
program. Stalls in the pipeline due to long latency operations
or cache misses can be solved without large changes in
hardware and optimize different kind of programs.
Modern GPUs are a lot more complex than shown here as
baseline. They have multiple execution units of different types
inside one SM. This means that the scheduler has to be more
complex by design. Furthermore it is likely, that some of the
optimizations presented are implemented in recent GPUs, but
as manufactures closly guard the internal workings of their
GPU this can not be verified.
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Abstract—Operating System schedulers have steadily improved
over the past years from moderately effective scheduler with
simple heuristics to nowadays strong, general purpose schedulers
with variable features and extensibility. However, most of them
cannot handle the architectural diversity without sacrificing at
least some performance. This review aims to provide an overview
of process scheduling in operating systems and recent research
and improvements for task and architecture specific scheduling
challenges. OS-scheduler extensions and the methods they use
for dealing with a specific issue will be presented, particularly
regarding optimization of memory usage and latency.

I. INTRODUCTION

Although computers have been shrinking in size constantly,
their complexity has been steadily growing. When computer
sciences were at their start, there was effectively no real
scheduling; a machine would work through it’s instructions in
a non-preemptive first come first served manner. This approach
worked just fine on simple old machines designed to process
one request at a time from start to finish, one after another;
and it still does work perfectly for systems that function in
a similar way or want to maximize throughput or minimize
scheduling overhead from memory operation and CPU-idling.
Today, with the diversification of computer architecture and
use cases and scenarios, an operating systems scheduler has
to adapt accordingly to avoid both inefficient performance in
terms of time and resource utilization as well as missing the
expectations of the systems (meeting deadline, avoiding starva-
tion, etc.). And since the CPU scheduler executes an enormous
amount of times in even a single second, its performance is a
very relevant part of the system in general[6][7].
One prominent CPU scheduler is the current Linux Scheduler,
it has experienced frequent updates and changes up until
the year 2007/Kernel version 2.6 when the Completely Fair
Scheduler (CFS) got introduced as the vanilla scheduler. From
that point onwards, the CFS scheduler has remained the
baseline scheduler in the Kernel. It offers multiple default
scheduling policies and classes, trough which the behavior
could be tweaked towards a better suitability for specific tasks.
Additionally, the implementation supports the possibility of
further extending the scheduler if needed, for example for
architecture specific scheduling[7]. The research that will be
presented in this document is extending the Linux Scheduler
or using it as a frequent reference.
The classic scheduling heuristics and algorithms (such as
Shortest Job First, Round Robin scheduling etc.) are well
known, and the issue of (fairly) assigning the processes and
thread in a run queue is seemingly solved. In contrast, cache

and memory efficiency and varying hardware architectures
are some of the new modern problems which OS-schedulers
have to face. These have been the topic of a lot of recent
research. This review will present the core problems addressed
in selected relevant papers regarding OS scheduling with
respect to hardware structure and the effects on and memory
and CPU performance. Section II introduces relevant metrics
and problems. Section III and IV will highlight some key
heuristics and algorithms used to make decisive decisions
and to optimize the behavior of the new schedulers will be
highlighted. Finally, Section V evaluates and discusses the
measured results.

II. CHALLENGES

Optimizing an OS scheduler in a general manner is a hard
task to do, especially with the aforementioned challenges.
Instead, a few key criteria are selected which are then further
examined in order to create a smaller extension which is able
to better handle problems in that domain.

Core assignment and speedup factor: some processes and
execution threads will receive a higher speedup on a certain
core compared to other threads[1]. Scheduling threads with
respect to their speedup can yield improvements, but factors
such as priority, critical and blocking threads, and potential
memory migration need to be taken into account in order to
maximize efficiency[1][4].

Memory access: scheduling processes for execution re-
quires their data to be loaded from memory, and upon pausing,
their state to be written back to memory. This can create
overhead due to additional memory operations[5]. Addition-
ally, during execution, processes and their threads will most
likely access other memory locations. This can result in
the processes competing for memory and cache, and with
oblivious scheduling, leads to avoidable cache misses and
memory accesses which waste time and energy. If a process
were to be migrated or rescheduled as a result of some policy,
that migration might end up very costly, which is why memory
in particular has to be handled carefully[2].

Hardware structure: different cores or interconnects be-
tween CPU units require consideration. While the Linux
Scheduler already takes into account core size and interconnect
distance, it’s usually oblivious to any other detail for these
issues[1][3]. Therefore placement of the process or thread
matters, and a heuristic for searching out threads worth moving
is needed for such systems. Additionally, the overhead from
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a possible memory migration to another node impacts the
decisionmaking here as well[3].

Extension overhead: naturally, an extension it will incur
overhead, as the it also needs to execute constantly. Even if the
scheduling algorithm itself proves to be negligible[1], the data
collection for these algorithms, as well as memory operations
done due to scheduling decisions by the extension may not be.
Acquiring and organizing data, which is needed for making
adequate scheduling decisions, during runtime can in fact be
quite demanding. These need to be kept low enough for the
extension to have significant merit[2][3].

Combining all of these and possibly more problems in one
effective generalist solution should prove quite difficult, which
is why research mostly extends schedulers by only one module
or use case. In the context of OS and process scheduling,
selecting the process or thread to run is not the only relevant
decision, as memory usage is highly intertwined with the
resulting performance. It can be generally said however, that
the current core objectives of research when it comes to
process scheduling are scheduling the processes better against
hardware and it’s resources.

III. CACHE EFFICIENT SCHEDULING

As a process is running, relevant data that might be reused
will be loaded into the cache. As the cache is very limited
in size, if the process pauses execution or gets swapped out
other processes might overwrite it’s data in the cache. If a
scheduler was aware of the cache-use behavior of a process,
it could perform scheduling in a way that reduces interference
and unnecessary cache waste. The scheduler needs to know
when exactly the process will behave in a cache intensive
way with data reuse. One approach for modeling the cache
use is to use two values, working set size and reuse factor.
The working set size describes how much total memory the
process consumes during one period, while the latter indicates
how much this memory will be reused. To keep track of the
demands and changes, a user level-interface is implemented.
Figure 1 shows a visualization of such an interface. It monitors

Fig. 1. Workflow of a Progress Period [2]

the current demands and provides predicates for scheduling
decisions. When a program hast sections or periods with
intensive cache use (referred to as Progress Period), it reports
those period’s entry and exit point to the Progress Monitor by
means of a simple function call in the program’s code, with
parameters being the working set size in MB and data reuse
as a relative variable in the context of the other processes.
By actively declaring these periods, the process will only be
scheduled by the cache aware scheduler when it actually needs
to. When executing outside of a progress period, the process
will be scheduled by the default policy. Separating these exe-
cution periods avoids scheduling processes using unnecessarily
complex method when no benefit is expected to be gained. The
Progress Monitor then communicates the resource demand
to the Resource Monitor, which tracks the load of the Last
Level Cache (LLC) and the resource demands of the Progress
Periods. Finally, a Scheduling Predicate decides whether a
thread will be run or paused. For that, hardware capacity,
current hardware load/usage and the demand of the new
Progress Period are evaluated. Figure 2 shows the described
algorithm; the policy is an alterable degree of strictness where
a compromise policy would optimize for cache with a degree
of care for maintaining concurrency, while a strict policy seeks
to only maximize cache efficiency[2].

Fig. 2. Example algorithm for the scheduling predicate [2]

IV. CORE AND MEMORY MIGRATION

With the large variety of system architectures present, spe-
cific scheduling extensions need to be created for optimization.
Just like the previous example scheduler, this one is also
extends the Linux Kernel Scheduler in form of a user level
process. Aside from that, the methodology is radically different
originating from the aim to better schedule on NUMA (Non-
Uniform Memory-Access) systems with respect to the varying
internconnects between the different CPU and memory nodes.
Linux for example tries to schedule threads onto the so
called ”home node” of the process. This policy can produce
suboptimal results if the threads to place exceed the number
of cores in a node, as depending on the architecture, ”closer
node” is not always equivalent to ”better node”. The challenges
for scheduling optimally in this setting are again the difficulty
of collecting and measuring communication during runtime
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and the high cost of migrating the memory if the need arises.
What the extension tries to accomplish is reallocating the
threads so that on the new placement, the communication
for the thread, process and system as a whole is more
effective, all while minimizing costly memory migrations from
rescheduling. The AsymSched algorithm has three components.
The measurement component steadily measures CPU access
to a given node, or ideally a given CPU. This is preferably
done through a service provided by the CPU manufacturer,
although these are not necessarily provided with every detail
so workarounds might be needed (measuring node acceses
instead of CPU accesses in this case). The decision component
calculates a variety of possible placement, filtering subopti-
mal ones below a specified interconnect-bandwidth out. As
has been said, memory is a crucial factor when scheduling.
Thus from the remaining, the one with me least memory
migrations necessary is chosen. If that migration would incur
too much overhead, it is dropped, otherwise the migration
will be performed. The migration component migrates the

Fig. 3. Relevant definitions for the algorithm in Fig. 4 [3]

thread or process to another node though provided syscalls
from the kernel. Full process migrations with migrating their
its pages are being avoided, instead only a smaller subset of
pages the application uses is moved to another node at first.
If the memory accesses on the old node of that application
are above a certain threshold where the subset-migration is
deemed insufficient (here: 90 percent), the scheduler will opt
for a full migration of the process and it’s pages. The the Linux
syscall migrate pages proved inefficient for larger working
sets which is why for the purpose of extending the scheduler
in this way, a new memory systemcall had to be designed[3].

Fig. 4. Detailed AsySched algorithm [3]

V. EVALUATION

Table 1 shows the benchmarks for a selected policy of the
Resource and Demand Aware Scheduler (RDA) in comparison
to the default Linux Scheduler’s results. The results show that
the new scheduler can achieve greatly increased performance
while also making better use of the cache memory, which can
be seen in the large reductions of energy consumed by DRAM.
For jobs with lesser amount of memory reuse however, the
scheduler does not produce a better outcome, as seen in cases
water sp and BLAS-1. Little room for optimization leads to
no better cache use, as the DRAM energy consumed is nearly
identical in both cases, while the overall energy consumption
and performance have worsened[2]. A similar trend can be
observed for other research as well. The extended scheduler
would attain significantly better results for more specific or
extreme cases, but it would show reduced performance com-
pared to the default Linux Scheduler for worst case scenarios
or simpler jobs[1][2][3][4]. In the case of RDA, this is due
to a loss in concurrency while trying to optimize for cache
use. Using a compromise policy instead of the strict policy
would improve average performance for on average worse
cache management; compromise performs worse than strict
on cache intensive tasks, and better on the simpler tasks. But
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TABLE I
PERFORMANCE ON SELECTED WORKLOADS FOR LINUX SCHEDULER AND

(STRICT) RDA[1]

Operation Scheduler Energy consumed (kilojoule) CPU perf.
CPU+memory only DRAM (GFLOPs)

Raytracea Linux 3.80 0.30 20
RDA 2.00 0.03 38

Volrendb Linux 1.90 0.05 14
RDA 1.30 0.02 17.5

BLAS-1c Linux 5.00 0.40 1
RDA 8.00 0.39 0.5

BLAS-3d Linux 30.25 1.45 36
RDA 29.00 0.67 38

Water spe Linux 0.25 0.50 47
RDA 0.30 0.50 31

aWorking Set Size: 5.1MB, 5.2MB; Reuse: high
bWorking Set Size: 1.8MB, 1.7MB; Reuse: high
cWorking Set Size: 0.6MB; Reuse: low
dWorking Set Size: 1.6MB, 2.4MB, 2.4MB, 3.2MB; Reuse: high
eWorking Set Size: 1.6MB, 1.3MB, 1.3MB, 1.6MB; Reuse: low

the worse performances don’t scale in the same way and the
relative decreases are drastically lower than the gains by using
the extended scheduler for more complex jobs, warranting
their use in the end. This approach might directly involve the
developer, as they need to identify the Progress Periods and
be aware of the data used in order to call to the extension.
But automating the process of determining Progress Periods
has at least been shown to be possible by creating predictions
based on the first few inputs of a Progress Period[2].

Examining the select few results in the following Fig. 5
and Fig. 6, a similar trend can be identified as with the
RDA Scheduler. For a smaller subset of seemingly simpler
jobs the scheduler can achieve no real improvement over the
average static case, seen in bt.B or mg.C. In contrast, for larger
jobs the improvement in memory latency and performance
seems to scale with size, as seen with streamcluster or pcs,
outperforming the best static placement. Looking at lu.B and
is.D, a large discrepancy between the good results regarding
memory latency compared to the respectively below average
and moderate performance result is visible. This can be traced
back to memory migration; in is.D’s case, the improved
memory latency is mitigated by the large amount of migration
operations performed during execution, showing less perfor-
mance gain. In lu.B’s case, the issue stems from a memory
intense behavior at start with barely any memory accesses
afterwards. As system size increases and process scheduling
is deeply intertwined with memory management in an OS, the
issue of memory migration and latency will stay prevalent. In
AsymSched, the majority of overhead generated is due to the
memory migration, up to a huge 50% overhead using the Linux
syscall (only 1.5% with the newly implemented syscall)[3]. As
opposed to RDA which needs developers to declare critical
sections, AsymSched relies solely the CPU’s measurements.

Other research focusing on core assignment and portability
instead used a machine learning and offline training approach
in order to delegate some of the data collection for making

Fig. 5. Performance [3]

Fig. 6. Memory latency [3]

scheduling decision away from runtime[1]. Finally, both ex-
tensions show great improvement for their domain, albeit with
some very minor trade-offs.

VI. CONCLUSION

Creating an efficient multi-purpose scheduler is an im-
mensely difficult task, which is why the Linux Scheduler has
been in use in so many systems ever since it’s introduction.
Specific optimization for certain architectures and problem
statements can be made quite well. Major challenges are
collecting relevant data for making the scheduling decisions
and scheduling in a way that minimizes migrating processes
and their memory around. This is done by introducing exten-
sions which greatly decrease power consumption and optimize
memory access behavior, but in doing so often can add
additional overhead from collecting data and migrating a lot
of data, or perform slightly worse at simple tasks. Nonetheless
they achieve an overall considerable improvement in their use-
case, laying the groundwork for future research to build upon
to create broader or more efficient scheduling applications.
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Abstract—Scheduling many heterogeneous tasks with varying
resource needs is usually accomplished with job scheduling. High-
Performance Computing (HPC) centers often use centralized
resource and job management software (RJMS) like SLURM.

However, this approach has limitations regarding large num-
bers of jobs and so-called ensembles of jobs. The latter have very
dynamic and often unpredictable behavior concerning resource
needs. Current RJMS gets challenged by these Workloads.

In this paper, we analyze these challenges and introduce the
Flux framework. It utilizes a hierarchical, tree-like structure of
nested scheduler instances to divide and conquer these problems.
We also show how Flux can increase the system performance
while obeying given constraints.

This is done by reviewing already written papers on this topic
and condensing them into a beginner-friendly introduction to the
subject.

Index Terms—batch scheduling, flux, job scheduling, hpc,
scheduling

I. INTRODUCTION

A. HPC Center structure

”High Performance Computing (HPC) is used to solve
a number of complex questions in computational and data-
intensive sciences. These questions include the simulation and
modeling of physical phenomena, such as climate change,
energy production, drug design, global security, and materials
design; the analysis of large data sets, such as those in genome
sequencing, astronomical observation, and cybersecurity; and
the intricate design of engineered products, such as airplanes.”
[4] The most common architecture in modern HPC Centers are
cluster-based systems with many off-the-shelf CPUs structured
into compute nodes. [4] These nodes are then connected and
often accelerated with additional hardware like GPUs which
provide another type of resource that has to be managed.
[4] Modern HPC Centers are very fragmented and contain
a large number of different resources which is why there is a
need for efficient communication between nodes and resource
management. Since there is almost no need for interactive
programs or regular user inputs, the main paradigm for HPC
is batch scheduling.

B. Job scheduling

The user interacts with the HPC center by relying on a
dedicated Job Scheduling framework. ”For the execution of
applications on HPC systems, a so-called job is created and
submitted to a queue. A job describes the application, needed
resources, and requested wall time. An HPC Job Scheduler
manages the queue and orders the jobs for efficient use of

the resources.” [5] Currently, this System works by running a
Resource and Job Management Software (RJMS) Instance on
every node which is responsible for the local Scheduling and
Management. An example of such software would be SLURM.
The whole HPC Center also uses grid software like MOAB,
PBS Pro, and LSF to combine these local RJMS instances.
[1] The architecture of this approach uses a static and flat
hierarchy for managing the Center. [1]

C. Technology Trends

There are however problems with this approach: First of all
the ever-increasing size of the systems in combination with
growing resource diversity makes these common strategies
less effective. [1] Modern scientific applications often rely
on having access to many different resource types and fast
communication between these. [1] Another Problem with
current solutions is the difficulty to enforce global constraints
on resource usage. [1] ”Finally, the workloads themselves
are becoming diverse, dynamic, and large, and are moving
away from individual monolithic jobs. Instead, ensembles of
jobs, [...] are becoming increasingly commonplace.” [1] These
ensembles are defined by the large number of small jobs that
are involved and by their dynamic nature. Such workloads
can unpredictably spawn many jobs that terminate quickly
and send the results back to their origin. [2] Spikes in job
creation can be a real problem for traditional approaches
since the centralized grid management software represents
such a bottleneck for the whole system. The steadily growing
HPC centers around the world demand a novel approach
to deal with challenges like these. Without such a solution
the performance gains of the upcoming exascale of large
Computation centers will be eaten up by an ineffective, static,
and overhead burdened scheduling infrastructure.

II. FLUX

A. Exploration of the Challenges

1) Throughput Challenge: The emergence of large ensem-
bles of jobs as visualized in Fig. 1, lies at the core of
the throughput challenge. Current centralized Schedulers are
unable to support the creation and management of thousands to
millions of small jobs. A currently active workaround is the
system-wide cap on the number of jobs that can be created
at once. This however limits the needed job throughput of
applications and throttles the overall performance of the HPC
center. [2]
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Fig. 1. Ensembles of Jobs vs. Traditional Monolithic Jobs

2) Co-Scheduling Challenge: It is often important for dif-
ferent parts of an application to be tightly coupled. The amount
of information that has to be transferred between various jobs
is also increasing because of diverse resource types being used.
This is where co-scheduling comes into play: It is effective to
deploy other jobs alongside a primary job on a single compute
node. These can then analyze the behavior of said primary job
and relay information to other jobs. [2]

3) Job Coordination and Communication Challenge: The
need for reliable and efficient data transfer between different
components of a large-scale application is ever-growing. If,
for example, an unusual scenario is recognized, additional
computational effort is often needed to analyze it further. This
is mostly done by different components that need to coordinate
and communicate efficiently. Since current scheduler architec-
tures don’t support this fully, a workaround through the file
system is regularly employed. But since the file system is slow
and lots of empty files and unnecessary metadata is a burden
on the whole system, this approach is ineffective. [2]

4) Portability Challenge: The effort to deploy a new work-
flow to a wide range of RJMS can often be overwhelming,
since they may not support needed features and require
workarounds. This process of rewriting scripts and tweaking
the workflow can lead to several bugs that have to be ironed
out before execution. All of this reduces productivity and
wastes computational resources. It is, therefore, necessary to
provide platform-independent APIs to save time and ease the
deployment of new Applications to varying HPC centers. [2]

5) Multidimensional Scaling Challenge: It is difficult to
adhere to center-wide or local resource bounds like power
while maximizing resource utilization and efficiently schedul-
ing workloads on different levels. The System must be scalable
and handle great amounts of nodes, jobs, and generated data.
This multidimensionality poses a big challenge. [1]

6) Diverse and Dynamic Workloads Challenge: Since dif-
ferent applications need different types of resources, it is
important, that those resource types are represented in modern
RJMS. Such a system must be able to allocate these diverse
resources to jobs while tailoring said allocation to their limit-
ing factors. This however must adhere to strict global bounds.
[1] If a job suddenly requires more resources, its allocation

should be able to grow or shrink dynamically. This so-called
elasticity is important for applications that go through different
phases that have differing needs. Since each resource has a
unique level of elasticity (”e.g., power is a much more elastic
resource than compute nodes” [1]) the implementation of such
a system can be complex. [1]

7) Productivity Challenge: Since the development of mod-
ern scientific applications for HPC centers is getting more and
more difficult, a modern RJMS framework should provide a
set of tools for efficient diagnostics and analysis. This can help
developers and system administrators simultaneously. [1]

B. Introduction of Flux

A proposed solution to these challenges is the relatively new
open-source RJMS framework called Flux. It is supposed to
be ”scalable, easy-to-use, portable, and cost-effective” [2]. Its
conceptual design will be presented in the coming subsections:

Fig. 2. Flux vs. traditional RJMS node allocation

1) Job Hierarchy model: ”At the core of Flux lies its ability
to be seamlessly nested within allocations created by other
resource managers or itself, along with allowing for user-level
customization of policies and parameters.” [2] As depicted in
Fig. 2 Flux employs the ”divide-and-conquer” [1] strategy
to ease the burden of the root level Scheduler and leave
the fine-grained details of scheduling jobs to a hierarchy of
Flux instances. [2] Flux utilizes the described hierarchical job
management by ”organizing itself in a tree-based hierarchy
of Flux jobs.” [1] Three principles decide which instance
has control over and responsibility for resources: [1] ”Parent
bounding rule: the parent job grants and confines the resource
allocation of all of its children. [. . . ] Child empowerment rule:
within the bounds set by the parent, the child job is delegated
the ownership of the allocation and becomes solely responsible
for most efficient uses of the resources. [. . . ] Parental consent
rule: the child job asks its parent when it wants to grow or
shrink the resource allocation, and it is up to the parent to grant
the request.” [1] These rules govern the processes of resource
allocation, job scheduling, and elastic allocation resizing. This
allows a Flux instance to only focus on managing its children
jobs. ”As sibling jobs run simultaneously, their independent
Flux instances will perform concurrent management services.”
[1] This enables scheduling parallelism. [1]
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2) Unified job model and generalized resource model: In
Flux, a job is an independent Flux instance that can run a
single Application or a full job management service. This
recursive nature allows for the utilization of specialized service
plugins that alter the behavior of the Flux job. Custom plugins
can be useful for defining unique scheduling strategies or
resource constraints. [1] This advanced feature is useful for
researchers because it enables them to test new scheduling
policies by just writing a simple plugin. Flux also extends
the notion of a resource beyond nodes and ”introduces a
generalized resource model that is extensible and covers any
kind of resource and its relationships. This enables scheduling
decisions based on many types of resources.” [1] These
resource allocations can then dynamically grow or shrink by
traversing the job hierarchy tree until all resource constraints
are guaranteed to be met. The three rules come into play when
it comes to this elasticity.

Fig. 3. Tree hierarchy of Flux jobs and their communication links (color =
job)

3) Common scalable Communication infrastructure model:
”Flux provides a common scalable communication framework
within each job.” [1] All allocated nodes are connected by
this framework to enable efficient communication within
the application. When communicating across jobs, the
communication session can only interact with its parent and
children (as can be seen in Fig. 3). This limits communication
between jobs, ”addressing the multidimensional scale as well
as security issues.” [1]

4) Common universal APIs: Flux also provides a set of
APIs for: ”job submission, job-status and -control, messaging,
as well as input and output streaming” [2]. These can be
leveraged by user Applications to solve the communication
and coordination challenges as well as the development- and
debugging challenges. [1] [2] Since the APIs are consistent re-
gardless of the used platform, the portability of Flux is greatly
increased. [2] ”Each level also allows customizable scheduling
policies and parameters, addressing both the throughput and
co-scheduling challenges.” [2] This customizability is essential
for implementing advanced features that promise to improve
efficiency. [1]

III. EXPERIMENTAL RESULTS

Researchers at LLNL conducted experiments to verify, that
Flux increases the job throughput when dealing with a large
number of jobs. [2] They measured the ”average number
of jobs ingested, scheduled, and launched per second (the
higher, the better).” [2] and compared three different depth
hierarchies. The depth-1 hierarchy corresponds to a flat and
static centralized scheduler, while the higher depths ”dis-
tributed the jobs equally among the lowest level of schedulers”
[2]. The researchers also compared a real-world Uncertainty
Quantification ensemble workflow with a stress-test ensemble
where the jobs instantly exited after being launched. [2]

Fig. 4. Job throughput (in jobs/sec, on a logarithmic scale) for the depth-1,
depth-2, and depth-3 scheduler hierarchies for fixed-size clusters and differing
numbers of total jobs (on a logarithmic scale) [2]

Figure 4 demonstrates the depth-1 scheduler can only
handle up to 10 jobs/sec. This wastes computational
Resources since new jobs have to wait to be launched and
nodes idle. The higher depths increase the number of jobs/sec
by a full order of magnitude and dramatically cut back on
the scheduling overhead by employing scheduler parallelism.
[2] When the Flux framework is no longer limited by the
computational resources of the HPC center, or when the job
runtime is negligible like in this test, the depth-3 scheduler
can improve upon this and reach a peak throughput of
760 jobs/sec. This is a 48-fold improvement over the flat
hierarchy. [2]

Another group at LLNL tested the scalability of the com-
munication infrastructure of Flux. This includes the Comms
Message Broker (CMB) which relays information as well
as the integrated Key-Value Store (KVS), which is used for
storage and data access. They used the KVS Access Pattern
(KAP) Method, which uses many producers which write data
to the KVS and several consumers which read said data. This
test walks through 4 phases: setup, producer, synchronization,
and consumer phases. First, the agents are distributed across
the hierarchy, then the producers put the correct number of
items into the KVS. Afterward, synchronization happens and
the consumers read the items and verify data consistency in
the KVS. [1]
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Fig. 5. Max latency of different KAP phases [1]

Figure 5 (a) demonstrates, that writing data to the KVS
scales very well. Even if the number of processes increases
dramatically, the latency of putting the item into storage is still
small. Bigger items naturally have higher latency. [1]

Figure 5 (b) shows, that the latency does increase as the
number of processes synchronizing grows. When redundant
(red-) values in the KVS are used, the scalability greatly
increases. [1]

Finally Fig. 5 c and d point out, that the latency of
KVS data access also scales linearly. The more objects are
retrieved at once (access-1 vs. access-4), the longer it takes.
When using multiple KVS directories to store the data, the
scalability is also greatly increased (mdirs-acc). [1]

Fig. 6. Average pairwise hops for the Aug-2x logs on Cab. [3]

Finally, the third group of researchers used Flux’s capabili-
ties to be customized to implement topology-aware scheduling.
The idea of this approach is to allocate nodes in a way, that
minimizes the number of hops across network switches and
eliminates network interference between jobs (e.g. two jobs
should not use the same communication link). The experiments
assumed, that the network infrastructure of the center was a
fat-tree, which can be characterized as a tree topology, where
the higher-level branches have a higher capacity. [3]

When comparing this new approach with the status quo
using historical scheduling logs from the Cab cluster, Fig. 6
demonstrates, that the number of hops is greatly decreased
and comes very close to the theoretical minimum. Their
paper also demonstrates, that this new approach has no big
drawbacks, when it comes to throughput, utilization, or wait
times. [3] Flux’s ability to be customized by inserting a custom
scheduling policy into the job scheduler is very advantageous
for researchers who want to try out novel approaches.

These Experiments clearly show that Flux can increase
the throughput of Large HPC centers by a lot. Flux itself
can scale very well and doesn’t buckle under the load of
many processes. Its great customizability is also very practical
and can lead to further performance gains. The classical
”divide-and-conquer” principle still applies to this day and can
leverage the upcoming hardware performance increases.

However, the higher complexity of Flux compared to a
centralized approach is only worth it, if a very large number
of jobs (e.g. ensembles of jobs) are involved.

IV. CONCLUSION

We have analyzed the challenges that modern centralized
RJMS frameworks face. The biggest among them is the emer-
gence of large ensembles of jobs. To solve these challenges,
we examined Flux, which utilizes a hierarchical layout and
employs the ”divide-and-conquer” strategy to enable scheduler
parallelism. Flux also provides a modern unified resource
model and can handle elastic resource allocation as well as co-
scheduling and efficient intra- and inter-job communication.
We finally presented experimental proof of some of these
characteristics. However, its use-case should be limited to large
HPC centers handling ensembles of jobs to justify the higher
complexity.
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Abstract—Google’s Borg system is one of the largest Cluster
management systems in the world. To manage multiple tens
of thousands of requests a second, it uses a mix of ordinary
scheduling techniques like a classical round-robin and priority
based approach, mixed with more unique systems. The main key
to working at such a scale is the communication between each
part of the system. Borg gives good exmamples of a hierachical
structure which is in place to prevent conflicts. Aditionally Borg
is a prime example of how many saftey/documentation layers
are needed for a system of that scale. I present a summary of
Borgs general functions, its architecture, some of the intricacies
that are relevant to the scheduling aspects of Borg and lastly I
take a look at some of the numbers behind Borg to allow a more
detailed view of the sheer scale of this system.

Index Terms—Borg, Scheduling

I. INTRODUCTION

The scheduling of normal user systems has barley changed
over the last decades. The same cannot be said for the systems
that handle the ginormous workloads that modern day tech
giants such as Google incure. The Borg system is one of the
premier Large scale cluster management systems, it manages
multiple tens of thousands of requests each second. Thus
making it a very capable example to understand the metrics
and techniques used in these immense structures. It can show
off many unique challenges that only exist when taking a
closer look at a system of that size. Aditionally it gives an
insight into some of the peculiarities that come with working
on such a scale and the small details that can’t simply be
ignored like they would be on a smaller system. By looking
at the development of Borg over the last decade, we can also
see the way such systems adapt. Aditionally it has given us
the possibility to look at the numbers behind such a system.
With systems like this one where a single percentage point of
the throughput can be due to multiple thousands of machines,
the cost of resources can mean that any small performance
decrease can lead to massive lost revenue. This in practice
means it is paramount to closely inspect each of the systems
aspects to make sure that no resources go to waste.

II. THE PHYSICAL ARCHITECTURE OF BORG

To allow for the quickest response time Borg is made up of a
multitude of clusters spread around the globe. A single cluster
usually consists of about 10000 machines.[2] The machines
itself vary widely in terms of the hardware that is used.
Each machine is capable of running multiple tasks at once.
This setup allows Borg to adapt to many different outside
influences, such as the varying usage of the system throughout

Fig. 1. A small fraction of the high-level architecture of Borg!

the day. Two machines compute completely independent from
the each other and only communicate with their assigned
superior. Inside the cluster Borg consists of a multitude of
independent cells. Each cells operations are handeled by the
so called ”BorgMaster”. The BorgMaster’s job consists of
both scheduling the tasks and handling different requests,
like starting a new task or changing some of the parameters
for one of the current jobs[1]. Under the Borgmaster, and
present on every single one of the cells machines, is a Borglet.
This Borglet handles all operations on its machine, and is
responsible for reporting back to the Borgmaster. Every few
seconds the Borgmaster requests an update on the current
state from the Borglet and gives it any new requests. The
Borgmaster then saves this information in a local storage in
case the Borglet becomes unresponsive. This backup data can
then later be used for debugging or simply to start up another
machine to replace the failed one. In case Borglet becomes
unresponsive for multiple polling cycles, the Borgmaster de-
cides to reschedule the tasks on another machine to ensure that
they are completed on time.[1] Should the original Borglet
come online the Borgmaster sends it the signal to kill all
tasks that were rescheduled to prevent duplication. This can
lead to some wastefulness, but is still the most reliable and
quickest way to deal with such a machine failure. To ensure
that the Borgmaster stays available at all times, it is always
replicated five times. The currently active Borgmaster writes
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all its data into local memory. Should the Borgmasters now
cease execution for whatever reason, one of the others would
simply take over since it can replicate all the information it
needs from the locally saved storage.

III. CHALLENGES OF LARGE SCALE SCHEDULING

Many of the goals and with them the requirements of
Scheduling are directly ported over from normal User Ma-
chines to the Large Scale Clusters. However with the larger
and more diverse workload comes an increased need to be
able to handle each different task adequately. For that purpose
Borg cells are essentially split into two different parts. One for
services that are end-user-facing, the other is for larger Jobs.
Not all cells are split equally into end-user and Batch part, this
allows Borg to better adabt to the change on user requests,
since the normal userbehavior dictates that the number of user
requests fluctuates based on the time of day [1].

IV. HOW DOES BORG SCHEDULE DIFFERENT TASKS

Borg assigns different Priorities to each task. These can be
structured into five categories.[2] The first and highest priority
category is refered to as the ”Monitoring Tier”. This class is
reserved for jobs that are essential to keep the infrastructure
working as is, an example would be jobs that are responsible
for detecting whether jobs have failed and the handling of such
errors. Right behind these jobs is a category of scheduling that
gets classified as ”Production Tier”. These jobs are mainly
end-user oriented and thus are very timesensetive. The three
remaining categories can all be classified as batch jobs with
different priorities, so we don’t need to further subdivide them.
These large scale and slow Batch jobs that can take anywhere
from a couple of minutes to multiple months to complete.
Once a job has been selected for scheduling, the sheduler
goes through two processes. Firstly it needs to check every
machine to find the ones on which the task could possibly
be executed on. After that it needs to pick out one of those
to actually let the job run on it. In determening which of
the machines is best to have the task be running on the
scheduler takes into account what number of tasks would be
preempted, their priorities, but also what machine already has
the required packages. Aditionally the scheduler is concerned
with trying to minimise the damage a potential shutdown
could cause by allocating different tasks belonging to the same
job on different powergrids.[2] Lastly it is important for the
scheduler to try and keep some headroom incase of a sudden
increase of requests. The current system for allocating the
tasks is especially concerned with stranded resources, which
are resources that can’t be used since some other resource
on the machine is fully occupied. The resulting system is
reportedly about 3-5 percent better at packing the machines
than the simple approach of best fit.[2] After all of that the
only problem the scheduler still has to deal with is the problem
of starvation. To solve this last problem Borg determines jobs
that can fit the same niche and have similar priorities and uses
a round robin system to allow each job to progress calculation.

A. Scheduling of high Priority jobs

Since most of the High Priority jobs are extremely time
sensetive, the system doesn’t have the time to assert the
resource requirements for most of these jobs, so they just
get everything they request. But since these jobs rarely stay
in the system for longer than a second, this means that
fixing these small inaccuracies is simply not worth the extra
time investement of trying to more accurately assess the job.
Otherwise the high priority job essentially just gets the slot
it needs to allow it to best calculate efficiently. There is few
consideration for other jobs when a high Priority job needs a
spot so evictions of batch tier jobs are very commonplace.

B. Scheduling of low Priority jobs

With low Priority jobs come new challanges. One of them
is that a lot of these batch jobs typically request less resources
to allow them to better run on unused processor space. This
means that despite their immense size they often use up a
lot less than a single CPU core, leading to them taking often
months at a time to complete.[2] These jobs also often come
with a lot of baggage in the form of packages, that can take
over 30s to install. This is especially problematic since these
jobs only ever run on leftover CPU space meaning, that they
have no guarantee to even run for that long at a time. The
scheduler tries to minimise this through careful consideration
of which machine is best suited for running a certain task,
based on thich of the machines has the necessary packages
already installed.

V. DIFFERENT KINDS OF USAGES FOR BORG

With Borg being used for all kinds of Computations, there
are a lot of different types of usages to keep track of.

A. Allocs

One of the more important things for Borg to keep track of
are Allocs. An alloc refers to a set number of resources that
can be reserved on a machine. This allows certain tasks to be
executed faster than others since they already have a reserved
spot on the machine and don’t need to go through the normal
scheduing process. Inside the alloc the system works just like
the one used on a single machine. Even though the number
of allocs compared to normal jobs is miniscule, they are often
used for more calculation intensive tasks. They are despite
their small number still responsible for about 20 percent of
the total CPU allocation and 18 percent of the RAM.

B. Particularities of the end-user side of Borg

One of the types of requests Borg has to deal with are
small, but time sensetive requests, that directely impact end-
users. Here, the requirements for Scheduling dont’t change all
that much from platform to platform, be it a normal Home
Computer or the massive infrastructure, that makes up Borg.
These requests usually only take up to a few hundred ms to
complete, most of them are however a lot faster.[1] Hence a
single job isn’t all that hard to handle and problems only really
arise when it comes to handling hundreds of thousands of jobs

18



a second. As is in the nature of user-facing services, the first
and foremost concern is reliability, so for these jobs it is vital
to be able to reroute them should a machine fail. The second
most important thing these jobs need is speed. This is achieved
by not routing them to Clusters that are geographically far
away, but rather handling them locally. These requirements
lead to these jobs typically having a very high priority, so that
they are immideatly processed on arrival.

C. Specific problems with scheduling of batch jobs

On the other hand we have the batch jobs. These are large
jobs that can in some cases take months to complete. This
obviously means that small delays are a lot less impactful, so
that these jobs can be assigned a lower priority. The biggest
problem coming with jobs of this immense size, is allocating
enough space to allow the calculation. For that reason these
jobs are often split into many smaller tasks. However most
batch jobs can still evict an even lower priority job, this can in
some cases lead to cascading evictions, since this is still a very
unlikely scenario Borg has no special protocolls to prevent
this[1]. This set of circumstances leads to a lot of batch jobs
using only small amounts of the CPU to allow them to better
run in the background while a higher priority job is taking up
most of the actual capacity. Otherwise batch jobs are waiting
for a window when there’s not a lot of high priority jobs
around to use the CPU for their purposes until another task
comes in, that evicts them again

VI. MONITORING

Due to the sheer size of the Borg infrastructure, it is to
be expected that there are some machine failures. This means
that it is essential to keep a close eye on each machine. Borg
achieves this by having the BorgMaster communicate with the
Borglet on each machine under it every few seconds. Through
this communication the Borgmaster collects information on the
current state of the Borglet and its assigned tasks. To allow
users to access this information it’s in most cases also stored
on a HTTP server together with extensive logs of the machine
to allow for debugging in case of an unexpected failure. This
information includes the state of the job and the state of its
cell [1]. With this information it is then possible for the user
to examine the resource usage of single tasks. Additionally
all the execution logs are also stored here for a time. Due
to the size of these logs it is impossible for Google to store
them for longer periods of time without eventually running
out of space to store new ones. They are however kept long
for a while even after finishing the task to assist the user in
debugging.

VII. SCALABILITY

In 2019 the each Borg cell received 3360 jobs per hour
on average. This marks an immense increase when compared
to 2011 where only 964 jobs would be expected in the same
timeframe. This scale means that even a single Borgmaster
may need up to 50GiB of RAM and more than 10 CPU
cores all to himself. To allow operations on this scale to

go smoothly Borg employs some techniequs to simplify the
processes. These are:

a) The ordering of tasks into different Equivalence classes,
based on their requirements. This removes the require-
ment of checking wether each individual task can fit into
a given Slot since now only one task per equivalence
class has to be checked [1].

b) The principle of relaxed randomization has the same
effect, wherein not all possible tasks are considered,
but simply an arbitrary number of randomly selected
possible candidates. From this smaller samplesize the
Scheduler can then pick out the best candidate, reducing
the overall time since not all tasks have to be assessed
[1].

Currently the absolute limits of Borg’s Scalability are not yet
known since even though the workload is ever increasing Borg
has not yet hit a point where clear shortcomings could be
noticed

VIII. AUTOPILOT

One of the biggest problems facing Borg is the waste of
resources. To ensure tasks don’t run forever and also don’t
start leaking, users have to define a set boundry of CPU and
memory capacity their task is not allowed to exceed. This
leads to most of the users entering information that would
greatly exceed the tasks needed maximum resources, to make
sure it doesn’t accidentally get shut down should it require
more of the CPU than previosly thought [3]. In turn a lot of
space on the machine gets wasted, without any real reason. To
combat this Google now employs Autopilot. A program that
amongst other things, tries to tune the limits set by the user to
more accurately reflect the actual needs of the program. This
means that Autopilot needs to accurately assess the needs of
each job so that it doesn’t end up causing an Out of Memory
event, resulting in that job getting killed.[3] For this purpose
autopilot takes into consideration a number of factors inherent
to the task. Amongst other things, these factors mainly concern
the resilience of the task as well as the importance of a quick
execution. For latency sensetive tasks, the autopilot has to
make extra sure, it doesn’t reduce the tasks resources so far
that it would fail. This is less important for tasks that can
simply be restarted without problem. Autopilot is however
still somewhat of an opt-in experience since the user has the
option of setting a boundary of how far the pilot can reduce
or increase the tasks resources.

IX. DEVELOPMENTS

To better assess Borg we can use some of the Data Google
has given us. May 2011 aswell as May 2019 they monitored
parts of the system, allowing us to take note of some changes
that occured in this timeframe and also get a better feel for
the scale of operations. One obvious development is that, as
mentioned previously, since 2011 the workload has grown
by a factor of about 3.7. Despite this the median time it
takes the scheduler to get a task up and running has actually
decreased.[2] This could simply be a result of more lower
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effort tasks being scheduled, since the data shows that the
scheduling delay for bigger low effort jobs has increased.
Aditionally it is visible that the free tier of prioritiy seems
to have fallen out of favor. Instead they are scheduled as Best
Effort Batch tier, allowing them to take advantage of the batch
scheduler. This batch scheduler is also something new in the
2019 trace, it is a new type of scheduler that queues all the
available batch jobs and waits until they can be handeled to
hand them over to the regular scheduler. Another thing we
can take from the trace is that on average the utilization has
gone up. This means that less resources are idle at a time, thus
marking an increase in efficiency. Whilst in 2011 the surveilled
cell only averaged around about thirty percent of total CPU
capacity, in 2019 the cell shot up to a usage of over 50 percent
of the total CPU capacity. Similar things can be observed with
the Memory usage, where a comparable increase from 30 to
60 percent of the total capacity is present.

X. CONCLUSION

Through closer examination of Borgs systems we can assess
that whilst many of the core principles that were already
applied when trying to schedule a lower workload. Many
things that were trivial or simply didn’t make a difference now
have to be taken into consideration. The biggest difference is
the wide variety of tasks the system has to deal with. On a
network of a normal scale there’s not enough of a discrepancy
to warrant the extra effort, but for something the size of Borg,
with calculations that can run up to months at a time, these
small performance increases add up. Another thing that leads
to rather interesting differences to a normal scheduling system,
is the way the Borg clusters are spread across the world. To
cope with this amount of variance Borg has needed to be very
adaptable. It has achieves this using wildly different machines
and a great deal of careful consideration.
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Abstract—Heterogenous systems are being increasingly de-
ployed in high performance computing systems, growing the need
for schedulers which consider this heterogenous architecture and
use it effectively. Scheduling only for CPUs must be differently
considered than scheduling for CPUs, GPUs and hardware
accelerators. This paper presents different approaches and goals
when scheduling for a heterogeneous system. The paper reviews
literature on scheduling for CPU-GPU systems and considers
the impact and importance of custom scheduling for diverse
computing systems. Accounting for the rise in heterogeneous
HPC, we conclude scheduling strategies will only increase in
importance.

Index Terms—heterogeneous system, scheduling, HPC, GPU

I. INTRODUCTION

In recent years, the use of specialised hardware beyond the
CPU has increased, revolutionising the architecture of high
performance computing systems. This is illustrated by the
TOP500 list, ranking the fastest high-performance computers
in the world: Whereas in November of 2018 [2] five of
the top ten systems used GPU accelerators, in 2021 [3]
this number increased to seven. Overall accelerator usage
increased from 104 in 2015 [1] to 138 in 2018 and 151
in 2021. This trend reflects the changing requirements for
HPC workloads, increasingly benefitting from highlyparallel
compute devices. First, we define what a heterogeneous system
is and the differences to a traditional HPC system. Then we
review the approaches proposed and challenges to scheduling
for heterogeneous systems. Lastly, we discuss the presented
methods and possible future developments.

II. BACKGROUND

A heterogeneous system is comprised of the traditional
CPU architecture with additional accelerator hardware, often
in the form of graphical processing units (GPU). Because these
GPUs excel in parallel execution, leveraging many processing
units, they multiply performance on some tasks like matrix
and linear algebra calculations compared to only using CPUs.
These improvements especially benefit machine learning tasks,
such as training artificial neural networks.
With the non-uniformity of the system’s computing devices,
traditional scheduling strategies will be unable to fully utilise
the components. To maximise the usage of the available
computing resources, different approaches are needed.

III. SCHEDULING FOR HETEROGENEOUS SYSTEMS

To effectively make use of a heterogeneous system, the
scheduling strategy needs to consider the differences of the

installed computing devices. Assume we have a scheduling
problem, consisting of K jobs, with N CPUs and M GPUs.
As the jobs are diverse in their resource requirements, let job ki
have requirements nrki

and mrki
for CPUs and GPUs respec-

tively. If we were to use a conventional scheduling strategy, we
would either completely ignore the GPUs, just using the CPUs
of the available resources, or consider CPUs and GPUs to be
the same, limiting the performance of both CPUs and GPUs to
have them comply with a common performance target. These
options are obviously not satisfactory.
Ideally we need to consider that jobs require x CPU and y GPU
resources, the different scaling behaviours of specific jobs on
CPUs and GPUs. Say we want to train an artificial neural
network. Although this job can run on either CPUs or GPUs,
training on a CPU will take significantly more time than on
a GPU. Using more CPUs will scale differently compared to
when using more GPUs.

A. Unrelated-machines scheduling problem

Scheduling on heterogenous systems can be abstractly
viewed as unrelated-machines scheduling. We need to schedule
n jobs J on k different machines M . Job j is processed by
machine m in tm,j time.

zm,j =

{
s s ∈ N , m is processing j s times
0 otherwise

denotes if machine m is processing job j. We constrain us to
one machine working on one job at a time.
Supposing all n jobs arrive in the beginning and all jobs are
independent of each other and can be run in parallel on an
arbitrary number machines, let cj be the cost of processing job
j and vm,j ∈ [1, cj ] be the value of machine m processing job
j. Here, cost cj would be the longest completion time when a
baseline machine processes job j, vm,j being a factor of that
cj proportional to the amount machine m is faster compared
to that baseline. For example: job A takes CPU E 25 time
units, which means cA = 25. But GPU F only takes 5 time
units, making F 5 times faster than E on job A, i.e. vE,A = 1
and vF,A = 5.

tm,j = max{0,min{vm,j , cj −
∑

x∈M\{m}
zx,j · tx,j}}

We want to minimise max{zm,j · tm,j} in order to minimise
the maximum completion time.
Now taking into account that jobs do not all arrive at the same
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time, adding more and more compute devices does not scale
linearly and other complex and importing factors, it becomes
apparent, that scheduling on heterogeneous scheduling is more
complex than homogeneous scheduling. All this is to say,
unrelated-machines scheduling is NP-hard, i.e. finding an
optimal solution in polynomial-time is not possible. [4]

B. Genetic algorithm to approximate an optimal solution

Genetic algorithms (GA) are often used when an
approximate solution is acceptable and a measure of
optimality, fitness, is easily available. A GA is kind of like
a guided, randomised algorithm, employing the concept of
darwinian evolution [5]. It is best employed in the exploration
of vast search spaces which do not allow for methods such
as gradient descent. The main components of a GA are a
fitness function, selection, crossover and mutation. Important
is also the encoding of a solution, called chromosome, the
pool of solutions, called population, and the iteration of the
GA, called generation.
In the case of scheduling, fitness can be denoted by the
completion time of a scheduling plan. The selection process
is where the most fit chromosomes are selected to be carried
over to the next generation. Crossover recombines two
chromosomes genes into a new chromosome, incorporating
parts of both ”parent” chromosomes. Mutation is the random
change of a gene in the chromosome, which is supposed to
keep the population diverse.
Ayari et al. [6] propose an improved genetic algorithm for
scheduling on heterogeneous multi-core systems. Their model
is composed of a pool of n preemptive tasks to be executed
on m processing elements. A task is defined as the tuple
ti = <Ti, Ci, Di,Πi> with Ti being the period of task ti, Ci

is the worst case execution time vector of task ti on all PEs,
Di is the deadline of task ti and Πi its priority. Vector Ci

considers the heterogeneity of the system. Integer coding is
used, an array of size n being a chromosome, each position
i holding the number of the PE assigned to execute task ti,
see Table I and Fig. 1.

i 0 1 2 3 4 5 6 7 8 9
PE 0 0 2 0 1 2 1 1 3 3

TABLE I: A scheduling solution encoded as a chromosome

An initial population is generated using a climbing hill
repairing strategy on a random initial generation. Meaning, the
|P | solutions in P are each evaluated for if a small change
in their genes can produce a fitter solution. Potential mating
(crossover) candidates are randomly chosen to compete in 1-
versus-1 tournaments, the fitter of the two being selected for
the mating pool. The fittest resulting children will be in the
new population, while the best chromosomes of the current
generation are also carried over. Ayari et al. [6] introduce
a guided crossover operator, which gives a PE with low
utilisation a higher chance of being inherited by the child.
This will lead to a more distributed load on the system. For
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Fig. 1: The resulting scheduling representation of Table I

mutation, a circular permutation is used, in which all genes
are shifted by one step to the right. The assigned tasks of the
lightest and heaviest processing element are also swapped. To
further avoid early convergence, new, random chromosomes
are injected into the population when convergence is detected.
The presented approach is able to improve upon conven-
tional genetic algorithms, yielding higher quality solutions and
slower convergence towards a near-optimal solution. It also
was able to achieve a higher ratio of schedulable tasks ac-
cording to the schedulability test by Liu et al. [7] which states
that a schedule is feasible, if the total processor utilisation
remains below a certain upper bound: Task-set τj containing
k tasks of processor j is schedulable, if

Uj =

k∑

i=1

cij
Ti

T ≤ k · (2 1
k − 1)

holds.

C. Assignment of optimal number of GPUs in deep learning

Part of the reason GPU usage has increased in HPC systems
is the popularity of machine learning (ML). ML benefits
greatly from GPUs, as they are well suited to handle large
amounts of data in a parallel fashion. In particular, deep
learning (DL), a subset of ML, depends on a high number of
multi-dimensional calculations. Often, multiple GPUs are used
to improve DL training throughput. Counterintuitively, just
adding more GPUs to the system is not an effective solution,
as DL training does not scale linearly. Additionally, it is often
not possible to change the allocation of GPU resources during
training.
To improve utilisation of GPU resources in this setting, Han
et al. [8] propose a multi-GPU scalability-aware job scheduler
called MARBLE. It uses a suspend and resume method to
dynamically assign GPU resources and runs multiple DL jobs
on a single node. It also incorporates the scalability of a
specific job to assign the optimal number of GPUs, which
increases DL training throughput.
The goal is to minimise total training time T =

∑
∀i

ti.

MARBLE uses a FIFO-based scheduling policy to preserve
task order. A primary job is defined as a job which has the
optimal number of GPUs assigned to it, a secondary job is a
job which does not have the optimal number of GPUs available
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and shares GPUs with other secondary jobs. MARBLE starts
with the first jobs in the queue as primary jobs until not enough
GPUs are available anymore.

Fig. 2: Initial job assignment [8]

If some GPUs remain available, the next job in the queue
is marked as a secondary job, using a sub-optimal number
of GPUs to execute, see figure 2. As jobs complete, GPUs
become available to be newly allocated to secondary running
jobs, promoting them to primary jobs. The secondary job is
suspended in training and resumes as a primary job, see figure
3. This ensures a high throughput of jobs, as all jobs run
optimally or will run optimally at some point. Only when no
secondary jobs are left, an entirely new job can be assigned.
Historical execution data is used to deduce the optimal number
of GPUs for a job beforehand. This reduces the runtime and
overhead of the actual scheduler.
MARBLE is able to improve performance by up to 48.3% and
GPU utilisation by up to 86% compared to the widely used
LSF scheduler. [8]

D. Accounting for reliability

As GPUs are being increasingly used in high performance
computers, their reliability and longevity in these harsh con-
ditions is coming into question. The Oak Ridge Leadership
Computing Facility OLCF has faced the issue of leadership
jobs, which use 20% or more of the compute nodes, having a
higher failure rate due to ageing GPUs. In a system of the
OLCFs size, 18 688 GPUs, the higher than expected rate
of failures of the GPUs lead to the replacement of about
8 500 GPUs overall. It was discovered that stability was
correlated to the number of past failures, age and physical
location of the device. The physical location significantly
dictates the operating temperature as cooling potential can vary
substantially. Higher temperatures lead to faster degradation of
compute devices increasing their failure risk.
To mitigate the impact on the user, OLCF developed a schedul-
ing strategy which takes the GPUs stability into account. GPUs
deemed stable are placed higher in the resource allocation
list, making them more likely to be allocated to leadership
jobs. Jobs needing less stability, for example small jobs with
a short execution time and also CPU-only jobs, are assigned

Fig. 3: Suspend/resume during training [8]

to suitable resources, meaning even unstable GPUs can still
be utilised and contention for stable GPUs is reduced. This
approach managed to achieve an additional 100 000 stable
hours per week on large GPU jobs and a reduction of failures
in leadership jobs from 65% to 46%. [9]

IV. CHALLENGES

As mentioned before, the inherent challenge of scheduling
for heterogeneous systems lies in the differences the compute
devices have. Not accounting for these differences is simply
not an option, as this negates the benefits of heterogeneity.
Ideally, a scheduling strategy is able to incorporate the diverse
resources of a system and use them to their fullest extend. But,
this adds even more complexity to an already highly complex
system. As illustrated in section III-A, devising an optimal
scheduling plan is not possible in polynomial time.
One could rely on the user of a system to efficiently use the
available hardware. But this will lead to under-utilisation of
the system and end in a free-for-all of who gets hardware time
and over-allocation by users.

V. DISCUSSION

With section III-A illustrating the complexity of finding
an optimal scheduling plan for a heterogeneous system, it
is clear that approximating algorithms are the best way of
squeezing every last bit of performance out of the system.
Here the balance between overhead and potential optimality
comes into question, for when does a scheduling plan become
not worth it anymore considering its overhead on the system.
But this approach is quickly turned ad absurdum, as the search
space of even small scheduling problems grow dramatically
when accounting for more and more complexities, making
finding an optimal solution unthinkable. Alternatively, general
approaches to approximating a scheduling solution like the
genetic algorithm discussed in section III-B can provide a
great balance between near-optimality, while still remaining
within a set timeframe. The number of iterations can be
adjusted to suit deadlines, making use of the available time
for scheduling, providing a proportionally approximated near-
optimal solution.
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Customising the GA for the specific purpose of scheduling on
heterogeneous system can yield even better results. Consid-
ering the ability of a task/job being executed on either CPU
or GPU as in [10] could further improve the yield of usable
solutions, for example a probability parameter for each task
and processing device pairing. This makes favouring pairings
based upon a myriad of factors possible when incorporated
into the fitness function. It is also possible to seek near-
optimal solutions according to alternative scheduling metrics
like throughput, turnaround and so on. This only requires a
simple change in the fitness function.
With heterogenous HPC systems becoming more common and
workloads often relying on GPUs to execute in acceptable
times, scheduling for heterogeneous systems is becoming in-
creasingly more important. Machine Learning and specifically
deep learning requires heterogeneous hardware environments
to work effectively, using CPUs to handle pre- and post-
processing and GPUs doing the highly parallel training of
artificial neural networks. As reviewed in section III-C, appli-
cation specific scheduling strategies can have a considerable
impact on performance and utilisation metrics when compared
to other scheduling strategies. This approach of optimising
a scheduler for one specific purpose is promising, although
reliant on the enduring usefulness and relevance of said
purpose. Developing such a specialised scheduler is probably
not feasible in most cases.
Considering the benefits of heterogenous scheduling beyond
CPU-GPU systems, section III-D demonstrates a model which
can be applied on scheduling for a different kind of hetero-
geneous system. One can consider any homogeneous system,
say a HPC system with 10 000 CPUs, as a heterogeneous sys-
tem, because of silicon quality differences and their physical
locations in the system. Differing operating temperatures may
lead to different rates of degradation of seemingly identical
processors. Although these differences are minimal, a system
may benefit from accounting for degradation of processors to
ensure a uniform degradation of the hardware of the overall
system. This may also lead to less unexpected stability issues
and compensate for poorer silicon quality.
Looking at the future hardware being incorporated into het-
erogeneous system, scheduling strategies will remain impor-
tant to actually leverage these new diversified computing
environments. Cardwell et al. [11] describe the promise of
integrating analog and digital neuromorphic computing to
implement large-scale calculations with a low power-footprint.
In reference to section III-C, instead of repurposing graph-
ics processing units for training artificial neural networks,
Google’s tensor processing units (TPU) [12] are especially
designed to accelerate the inference phase of neural networks.
Custom application specific integrated circuits (ASIC) or field-
programmable gate arrays (FPGA) should also provide perfor-
mance gains in the specific application.

VI. CONCLUSION

We illustrated the increasing importance of heterogeneous
systems and the necessary specific scheduling strategies for

them. An abstract look at the unrelated-machine scheduling
problem showed the unfeasibility of finding an optimal
scheduling solution in our scenario. We reviewed state-of-
the art methods for scheduling on heterogeneous systems
with different approaches and goals, including bottleneck
avoidance, deep learning specific and stability-aware
scheduling. Lastly, we discussed the potential of the reviewed
approaches and the future of heterogeneous systems and the
scheduling strategies used by them.
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Abstract—The workloads of today’s High Performance Com-
puting (HPC) systems are strongly impacted by scientific work-
flows. They may be very significant, performing out a lot of
activities and computations, managing a massive quantity of
data, and finally appearing as thousands of concurrent pro-
cess instances. Nevertheless, aside from the ability to express
dependencies between their activities, HPC schedulers do not
have workflow-specific features. They are commonly job-centric
and therefore can not deal with the complexities of workflows
which increases both the response time and the likelihood of
missing workflow deadlines. Workflows are thus executed as
tasks with dependencies or as a single job that contains the
complete workflow. While workflows as chained jobs cause long
intermediate wait times and, as a result, large workflow response
times, single job workflows might waste resources despite their
shorter turnaround times. For the optimization of turnaround
times without reducing the efficiency of HPC systems, workflow
fragmentation and scheduling have been widely studied in the
past.We analyzed in this paper newly introduced approaches and
discussed their benefits and challenges. We brought in this paper
three of these important progresses for optimization of workflow
scheduling together. These are a workflow-aware scheduling
(WoAS) system optimizing the detection of workflows’ resource
needs and constructing an improved system with reduced respond
times; and a strategy called GLUME dividing a workflow into
batch jobs to optimize execution time of workflows on batch-
scheduler managed platforms; and finally an adaptable, fault
tolerant and flexible framework called Melissa proposing global
sensitivity analysis together.

Index Terms—scientific workflows, batch scheduling, execution
time, optimization

I. INTRODUCTION

A. Background and Motivation

Workflows are a sequence of tasks and the interdependence
of these tasks, which are categorized as either scientific
workflows or business workflows [16]. As the database com-
munity recognized well [5], [6], scientific data management
differs from more traditional business data management [5],
[6]. Hence, workflows are called ”business workflows” [5]
when used in business process modeling for executing a
task containing human elements. In that case the dependency
within their tasks is control-driven, i.e. the next task can be
executed only once the preceding task has been completed [9-
15]. Scientific workflows’ dependencies among their tasks are
instead data-driven that the preceding task’s output data is used
in the following task. The database community’s early work

on scientific workflows adopted a database-centring approach,
establishing data models and query languages. The ZOO
experiment management system based on an object- oriented
database [7], the FOX query language, and the MOOSE data
model are a couple of examples introduced between 1980 -
1990 highlighting the role of workflow concepts in scientific
data management.

B. Scientific Workflows and Scheduling

A scientific workflow describes a strategy for achieving
a scientific goal using tasks and dependencies. Scientific
workflow tasks are usually simulation or data analysis compu-
tations [5]. They include data collecting, integration, reduction,
visualization, and publication [5]. Scientific workflows’ jobs
are ordered at design time according to data-flow and other
requirements indicated by the designer [5]. Visual block di-
agrams or domain-specific languages can be used to create
scientific workflows [5].

For the execution of workflows, scheduling systems are
critical. So far, numerous scheduling frameworks have been
developed. However, proposed scheduling systems include
limiting constraints. These systems differ from each other
based on their fragmentation method, run time, response time,
execution of the fragment, the use of resources, run time con-
ditions, throughput improvement and bandwidth costs. CTC,
FPD, SLV, and QDA could be counted as some scheduling
frameworks proposing some improvements on workflow frag-
mentation and execution costs. There are major problems with
these frameworks such as mapping tasks to resources without
considering all the necessary limiting factors. An important
major problem is that the above mentioned frameworks gener-
ate a large number of fragments and communication messages
among those fragments increase bandwidth usage. Increased
delay time because of the number of communication messages
and increased response time are also critical problems to be
considered.

C. Historical Background

Examining the place of scientific workflow systems in
history in more detail, we see that they have already been
appeared in problem-solving environments in the 1990s. An
instance that the computational sciences community came up
with is a set of straightforward tools to fix an intended series of
problems for scientific computing [4]. Laboratory information
management systems (LIMS) [9] are another example. Such
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systems can be thought of as special scientific workflow
systems which are used in laboratories as it’s name states
to manage samples, take measurements with instruments,
analyze data, and automate workflow. Furthermore, the rise
of e-Science has had quite an impact on scientific workflow
research and development as well and they have gotten a big
boost. In addition, computational techniques and technologies
from the computational sciences, high-performance comput-
ing, databases, data analysis, visualization etc. have been
combined by e-Science. Numerous innovative open source
and proprietary scientific workflow systems, such as Kepler,
Taverna, and Triana, are already available at the moment and
developed actively.

II. SCIENTIFIC FUNDAMENTALS AND
SYSTEMATIC OVERVIEW

When it comes to science, it is a process of discovery
that incorporates cycles of observation, hypothesis generation,
and experimentation. Nowadays, more and more scientific
knowledge is found through data analysis and computational
techniques. This is because there is an increasing num-
ber of useful observation tools and commodity clusters for
high-performance scientific computing and simulations in the
computational sciences. Consequently, the use of scientific
workflows increases in different phases of science processes,
such as modeling automated computational experiments or
data management and analysis [5]. This evolves more and
more need for optimization of workflow scheduling in HPC
systems. Because workflow sequences could also give new
information and analytic, which can be used to confirm,
modify, or disprove a given hypothesis or experiment result
[5].

Scientific workflow systems with extra functionalities might
optimize, support, automate, monitor, and control the execu-
tion of scientific workflows. These may also play an important
role in the workflows’ design and management, making them
more error-tolerant, efficient, and quick. Focusing on data-flow
and concurrency data is critical to optimize the parallel exe-
cution of workflows, which is another crucial issue. This type
of additional functionality differentiates scientific workflow
systems from typical solutions that are script-based and lack
equivalent functionality [5]. To provide these functions, many
types of information, such as workflow history information,
is necessary. This information, for instance may be utilized to
enhance interpretation, debugging, and consistency of scien-
tific works [5]. The utilization of different information leads
generating different functionalities for scientific workflows.

A. Classification of Scientific Workflows

The workflows can either be submitted as a chained job,
which minimizes the consumption of workflow provenance
or as a pilot job, which focuses more on optimization of
turnaround time. If a job can not start before its predecessors
are completed, i.e. one batch job is submitted for each job in
the execution plan, it is called chained job. In this approach,
each job receives the precise resource set required to run, and

assigned resources are not purposefully left idle. However, the
workflow’s overall run time will be increased further more by
each jobs’ critical waiting time.

On the other hand , workflows can also be submitted as a
single pilot job. There is no intermediate waiting time, which
consequently leads limiting job’s time with the estimated
critical waiting time. This approach assumes the maximum
resource demand of any process during the execution refers
the resource demand of the pilot job. Thus, the overall run
time of the workflow is reduced. However this method may
raise it presents the possibility that some of allocated resources
will be unused.

In general, pilot job approach has an advantage in terms
of run time but disadvantage in terms of provenance cost.
When interpreting the facts regarding both approaches, it can
be concluded that it depends on characteristics of the workflow
when distinguishing one over the other.

Another classification of workflows is made based on
whether they are dynamic or static workflows. Static work-
flows are used when prior information of the workflow ar-
chitecture is required. Dynamic means that the structure of
workflows is defined at run time.

B. Modelling of Scientific Workflows

Scientific workflows are represented visually as directed
graphs as shown in “Fig. 1” and they are made up of
different parts, which are called ”sub-workflows” [5]. They are
frequently coarser-grained and include connecting pre-existing
components and specialized algorithms [5]. Figure 1 depicts
a workflow in Taverna using various services [5].

Fig. 1. Workflow in the Taverna workflow system [5]

It can not be said that there is a specific standard lan-
guage for scientific workflows, and related standards such as
BPEL4WS have not been widely embraced [5]. Commonly,
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Fig. 2. Petrinets used to describe scientific workflow execution semantics [5]

directed acyclic graphs (DAGs) are used to depict job-based
grid workflows. These models execute each task after each
workflow execution. The job scheduling process involves
computing a topological sort for the DAG’s partial order [5].

There are also systems representing workflows in a more
formal way by focusing on scientific workflow execution
semantics such as Petrinets as shown in the Fig. 2. However,
there are standard computation models used when there are
specific issues or requirements, for example data-flow systems
giving too much importance on token order. In such case
the standard computation model called Kahn Process Network
model would be used. Another special model of computation
is linear workflows, for which an example appears on Fig. 3.
This is the structurally simple linear Kepler workflow created
by the COMAD (Collection-Oriented Modeling And Design)
director [5], which is special for workflows consisting from
continuous data stream components which can be computed
only on tagged data-sets [5]. Moreover, the derived linear
workflows are simple to interpret and adapt over time, which
is a significant benefit over script-based solutions [5].

III. RELATED WORK

This conference paper contains the summary and highlights
of papers chosen by Dr. rer. nat. Matthias Maiterth, Prof. Dr.
rer. nat. Martin Schulz, Eishi Arima, Dr. rer. nat. Isaı̀as A.
Comprès for the Seminar: Scheduling – Modern Problems in a
Seemingly Solved Discipline. Submitted papers went through
a complete review process, with the full version being read
and evaluated. This part of the seminar focuses on the current
state of art of workflow management systems and scheduling
methods needed to perform and optimize scientific workflows.

The authors present frameworks and studies to optimize
workflow scheduling that will help future research. The first
comprehensive paper by Rodrigo et al. proposes a workflow-
aware scheduling (WoAS) system that exploits without mod-
ifying fine-grained information about the provenance needs
and structure of a workflow[1].The paper analyzes the HPC
batch scheduler Slurm, which WoAS is now integrated into,
using a simulator with real and synthetic workflows and a
synthetic baseline workload that captures task patterns from
NERSC’s supercomputer Edison [1]. Finally , the paper studies
the impact of the WoAS on workflow turnaround times and
system utilization without interrupting regular workloads [1].

Terraz et al. represent a sensitivity analysis using workflows
and offer a file-free, adaptive, fault- tolerant, and elastic
framework called Melissa [2]. This paper distinguishes be-
tween different workflow management systems focusing on
combination of iterative statistics and in-transit processing
[2]. The represented framework allows high resolution global
sensitivity analysis at large scale [2].

The third article describes GLUME, a workflow execution
time-saving solution. This system separates the workflow
into sub-workflows with the objective of achieving the least
run-time and predicted waiting period combination, hence
achieving the most optimized completion time [3]. Based on
this study, Hataishi et al. compare GLUME to other strategies
exploit that as each task is finished, the remaining workflow
becomes simpler and estimates become more accurate, thus
the completion time gets shorter.
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Fig. 3. Example scientific workflow in the Kepler system. The part (a) describes the user interface for creating, editing, and executing scientific workflows.
The part (b)is a visual representation of the data product computed by a workflow run. The part (c) is a viewer for navigating the data provenance captured
in an execution trace. Local and remote (web) services are combined to create multiple sequence alignment on input DNA sequences. [5]

IV. OVERVIEW AND DISCUSSION

This section describes the state-of-art and current challenges
in scientific workflow management, and discusses related
work.

The Workflow-Aware Scheduling technique (WoAS) pre-
sented by Rodrigo et al., which is a new model for a batch
queue scheduler [1] implemented within common HPC work-
load manager called Slurm [1], can be seen as one of the most
beneficial approaches in comparison with current scheduling
approaches and workflow life-cycles. After performing WoAS
for the chain and pilot(single) job techniques, it can be said
that for workflow-dominated workloads and for workloads
with moderate workflow contents, WoAS achieves the shortest
workflow turnaround times, high system usage values without
idle provenance. In other words, it appears to work much
better than the current workflow scheduling methods used in
HPC systems and has no major drawbacks [1]. The findings
show however that performance enhancements achieved during
the construction of the back-filling method have a negative
impact on the scheduling of very large workflows. Because
they consider job priority values and dependencies during
scheduling, which harm work priority computations on current

HPC schedulers. As a result, even if a dependent job is part of
a workflow that was submitted much earlier, the submission
time given to it is the moment when its prerequisite job
completes [1].

The slowdown of regular jobs was greater than when using
chained job scheduling for LongWide workflow scenarios.
To keep the system as highly utilized as possible FCFS or
back-filling algorithms can be used. These algorithms keep
turnaround times as short as possible by submitting workflows
as single jobs. They can decrease that time even more than
chain jobs can do. It can be expected from future studies
to focus on performance optimization for workloads with
more diverse workflows using WoAS [1]. As discussed in
previous sections, optimizing intermediate storage throughout
a workflow run is also important. Using repeated simulation
runs, the Melissa approach can calculate ubiquitous Sobol
indices, and it has been presented since it keeps statistics up
to date without the use of an intermediate storage [2]. By
doing so, this helps relieve the I/O bottleneck and provides
for much larger scale sensitivity analysis [2]. Iterative statistics
may be used in conjunction with the suggested client/server
architecture to produce a fault-tolerant and flexible executable
process [2].
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Fig. 4. Wins/losses of GLUME against competitors [3]

While the Workflow-Aware Scheduling strategy fails to
tackle the the delay of the execution of multi-run simulations
with large data-sets, the use of Melissa approach could help to
solve this challenge. After analysing both approaches, one may
propose to combine both techniques to optimize the turnaround
time for scheduling of very large workflows, on which the
back-filling method showed a negative impact.

To deal with statistics computation from big data sets stored
on drives, iterative statistics and Melissa’s fault toleration
may be coupled. This combination results in a small memory
footprint and optimization for interruptions and restarts, even
on a high-performance computing platforms.

Because all of these advantages have previously been
evaluated on simulation groups that vary just in their input
parameters, it has been authorized that the framework might
begin simulation groups with various amounts of resources
or even alternative simulation codes. The challenge then is
for Melissa Server to appropriately combine the various data
for updating the statistics. Further focus could be on the loop-
back control, since all the strategies such as adaptive sampling
strategies are adapted to dynamical control [2]. Because it has
been seen that such strategies could be needed in future for
the cases of time-consuming large-scale numerical simulations
to build accurate surrogate models to be used for uncertainty
and sensitivity analysis. It is still challenging to do in-transit
analysis in such an adverse environment [2].

The framework presented for Melissa launcher is asyn-
chronous and the scheduling of the simulation groups used
for the tests depending on the supercomputer load lead also
the parameter sets to be created randomly [2]. To conclude,
the current contribution of Melissa to the large scale global
sensitivity analysis are its’ optimization by reducing the I/O
time of imitation of processes [2]. It also provides a better
visual environment for pervasive index maps of Sobol for
large scale [2]. Currently, Melissa is a trustful approach which
has been approved on many use cases and offers unreplicable
workloads for specific sensitivity inquiries.

Another challenge for scientific workflows is their need
for batch scheduler platforms when medium to high complex
computations demanded. For this computations, High Perfor-
mance Computing platforms for workflows involve adaptabil-
ity issues with batch scheduling. Additionally, there are not
enough approaches proposed for batch-scheduled platforms.

Resource and Job Management Software (RJMS) performing
batch scheduling face adoption challenges while application-
level solutions are impeded by constraints imposed on batch
jobs. GLUME (Group Levels Using Makespan Estimates)
strategy helps to suit these applications to batch schedulers by
dividing them into batch jobs. Thus, the workflow execution
time on batch-scheduled platforms is optimized and it has
been approved that it’s more effective than currently used
methodologies based on the experiments/simulations.

The current two partition approaches are one- job-per-
task approach and the one-workflow-as-a- single-job approach.
Both approaches yield to long execution times because of
waiting times on work- flows with long/many tasks and
job expiration when they overlap. The application-level ap-
proach, GLUME, can be used to solve this issues even with
non-workflow-aware, standard RJMS-level solutions. So, they
make it feasible to determine how to combine sequential levels
fairly. This is made by relying on wait time estimates as
provided by production batch schedulers instead of predic-
tions. The previously used algorithms such as Zhang leading
to overlap run/wait times and unsatisfied task dependencies
also cause the job to idle before being able to execute its tasks
and fail to complete within the job’s requested run time [3].
Fig. 4 shows wins and losses of GLUME against competitors
and helps to observe how it results in workflows with different
sizes.

GLUME and Zhang are both techniques that are used
continuously during workflow execution to choose the next
group of sequential workflow levels to submit as a single
task [3]. The difference is that Zhang optimizes the wait
time/run time ratio of the next task to be submitted using
a greedy approximation algorithm, while GLUME seeks to
lower the make-span directly. Furthermore, GLUME’s default
is not the one-job-per-task method, and it only enables two
active workflow jobs in the system at the same time, avoiding
the influence of per-user limits on the number of running jobs
[3].

GLUME beats its competitors for batch workloads provided
workflow computational demands are high enough. Its another
advantage is that it provides accurate wait time estimations,
which can not be provided by other batch schedulers currently.
Glume divides workflow levels into jobs more efficient than
Zhang as well. The only challenging situation for GLUME
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is when it is applied to short workflows. Because other
algorithms benefit from back-filling and suffer from fractional
wait times. This issue has been overcame by setting One-job-
per-task as default making it effective for short workflows as
well [3]. However, current trends make it clear that longer
workflows are more broadly relevant to current practice in
most scientific application domains [5].

After handling all challenges and benefits of algorithms
and approaches, it can be discussed that GLUME could be
optimized by assigning each work-flow job minimum number
of nodes and user- provided resource. Another challenging
optimization to prevent long waiting times on single but large
workflows could be to make horizontal as well as vertical
partition of workflows possible, i.e. dividing each level into
multiple jobs [3]. The best earning from GLUME would
be making its usage wider on all standard batch scheduler
managed tools.

V. CONCLUSION
After getting used with the characteristics of workflows

and workflow scheduling methods, we interpreted current
methodologies and experimental results that we received from
research papers. All approaches proposed to optimize the
execution time of workflow scheduling and each has a dif-
ferent contribution for future improvement. WoAS (workflow-
aware scheduling) uses fine-grained in- formation about the
provenance demands and structure of a workflow [1] without
altering that information. The research proposing Melissa, a
file-free, adaptive, fault-tolerant, and elastic framework for
sensitivity analysis, discriminates between various workflow
management systems by combining iterative statistics with in-
transit processing [2] . It has been shown with this research
that high-resolution global sensitivity analysis at large scales
are made possible using this framework [2]. Finally the last
research focuses on the challenge for scientific workflows’
need for batch scheduler platforms in terms of computation.
Against that challenge, GLUME, a time-saving solution for
process execution, which is the subject of the third article
has the goal of obtaining the least possible run-time and
expected waiting time combination. This system breaks down
the workflow into sub-workflows [3]. The research paper
on GLUME examines how it stacks up against alternative
approaches based on the observation that when tasks are
completed, workflows simplify and estimations become more
accurate, ultimately resulting in reduced completion times.
In conclusion, it can be said that the combination of these
approaches and the problems, which could not have been
covered with these approaches are building the focus for the
future studies on workflow scheduling.
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Abstract—Recent developments, like CPU-GPU architectures,
Last Level Cache (LLC) partitioning, and memory bandwidth
partitioning, opened new opportunities to improve co-scheduling.
This paper gives an overview about co-scheduling: what it is, why
we need it, and what factors can be considered (performance,
minimizing co-run interference, partitioning of power, placement
on CPU or GPU, LLC partitioning, and memory bandwidth
partitioning). After an introduction to the topic, three algorithms
for solving modern problems in co-scheduling will be explained,
evaluated, and compared. The main contribution of this paper is
to give an overview of modern problems and possible solutions
for co-scheduling.

Index Terms—Co-scheduling, Co-run theorem, CPU-GPU ar-
chitectures, LLC partitioning, Memory bandwidth partitioning

I. INTRODUCTION

A. History

In the early days of computer science, most scheduling
techniques assumed that concurrent processes are independent.
However, with the introduction of Multiprocessor Systems,
it started that a collection of cooperating processes uses
multiple processors concurrently to solve a problem. The
previously used scheduling techniques were very inefficient
for this case. John K. Ousterhout noticed this problem in 1982
and introduced the term co-scheduling. ”Parallel Programs
have a process working set that must be co-scheduled [...]
simultaneously for the parallel program to make progress.”
[4]

B. Modern problems

Even if co-scheduling itself has been a known problem for
years, new technologies offer more opportunities to enhance
co-scheduling further. For example, the trend toward integrated
CPU-GPU architectures reduces the communication latency
between processes, but intensifies the co-run interference.
[1] Furthermore, supercomputers have so many cores (i.e.,
2048 cores of the PEZY-SC2) that we can only deploy a
few applications on the whole platform. So co-scheduling of
multiple applications is needed for not wasting resources. [2]
Additionally, Intel introduced the Cache Allocation Technol-
ogy (CAT) that allows to reserve Last Level Cache (LLC)
subsections for an application. [2] On the latest commodity
server CPUs, a Memory Bandwidth Allocation (MBA) feature
was introduced to throttle the traffic from the private level
2 cache to the LLC. [3] These new technologies open new

possibilities for enhancing co-scheduling, which requires new
algorithms.

C. NP-completeness

It has been shown that generally co-scheduling is an NP-
complete problem. However, there are exceptions with less
complexity, like when having only two cores. From this
follows that there is in general no efficient way to find
optimal solutions to co-scheduling. So most algorithms have
to approximate optimal co-scheduling. [5]

D. Outline

This paper gives an overview of some recent problems for
co-scheduling and algorithms to solve them. In section II,
we look at the co-run theorem to see where co-scheduling
is beneficial. Then, we introduce three algorithms:

• Section III-A: An algorithm to ”co-schedule independent
jobs on integrated CPU-GPU systems with power-caps
considered” [1].

• Section III-B: A dynamic programming algorithm with
cache partitioning using the Intel Cache allocation tech-
nology (CAT) for iterative applications. [2]

• Section III-C: HyPart as a ”hybrid technique for practical
memory bandwidth partitioning on commodity servers”
[3].

Afterward, in section IV, we will discuss the introduced
algorithms. Finally, in section V, the main results will be
highlighted.

II. CO-RUN THEOREM

The co-run theorem describes when it makes sense to co-
schedule a job and when the job should run with exclusive
access to the resources. The jobs J1 and J2 have a standalone
length l1, l2, and a co-run degradation d1 and d2. The co-run
lengths are l1+ l1 ·d1 ≥ l2+ l2 ·d2. The co-run produces only
higher throughput when l1 · d1 < l2. A visualization of a co-
schedule, degrading the execution time, can be found in Fig. 1.
This shows that sometimes, it can be better not to co-schedule
jobs due to the co-run degradation. [1]

III. ALGORITHMS FOR CO-SCHEDULING

A. Algorithm for CPU-GPU Systems with power cap

We can observe a trend towards chips with integrated
CPU-GPU architectures that share the Last Level Cache
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Fig. 1. Visualization of the co-run theorem.

(LLC) and the main memory. This architecture helps to
shorten the latency of communication. However, the co-run
interference between GPU and CPU Programs becomes more
complex. This section presents an algorithm that considers
job placement (CPU or GPU), power caps, and memory
contention. The algorithm’s output is a sequence of processes
for the CPU and GPU. A schematic representation can be
found in Fig. 2. [1]

1) Collecting metrics: In the first step, we have to collect
some metrics of the jobs. The co-run performance of two jobs
is obtained by measuring the standalone performance of each
job and then calculating the co-run performance of each pair
by staged interpolation. Second, we run a micro-benchmark
on the CPU and GPU with eleven evenly distributed
parameters of memory bandwidth for approximating the
co-run degradation and the space memory contention. Third,
offline profiling obtains power consumption at each frequency
level. [1]

2) Creating sets: With this data, we can start with the
scheduling algorithm. The input is a set of jobs and the
collected metrics. These jobs are partitioned into two disjoint
sets Sco and Sseq where Sco contains all jobs where a co-run
exists that can profit from co-scheduling. We determine
this by using the co-run theorem. The jobs in Sco are
further partitioned into three sets: CPU − preferred,
GPU − preferred, and non − preferred, using the
comparison of the performance on the CPU and GPU. [1]

3) Greedy scheduling: We use greedy scheduling to create
a sequence of jobs for the GPU and CPU: First, the algorithm
picks the longest GPU − preferred job for the GPU and
then the job for the CPU, which is CPU − preferred and
has the lowest co-run interference. When a job is finished, we
always try to pick a job from the preferred set with the lowest
co-run interference. If this is not possible, we pick from the
non− preferred set and then from the un− preferred set.
When all three sets are empty, the jobs in Sseq are scheduled
sequentially. For considering the power cap, the algorithm has
to traverse all possible frequencies for a co-run to assure that
the power consumption stays under the power cap. [1]

B. Algorithm for LLC partitioning

Dynamic Programming with Cache Partitioning optimizes
for the problem to execute m iterative applications on P

identical cores. The applications share the cache of size C
that can be partitioned into a fixed number X of fractions. An
application gets p cores and x fractions of cache. The idea is
to approximate the time T (p, x) taken for one iteration of the
application.

T (p, x) = t(p)(1 + h(x))

We do this by approximating the computation cost t(p) and
the slowdown h(x) created by LLC cache misses. [2]

1) Obtaining the computation cost and slowdown: We
approximate t(p) with Amdahl’s law, which considers which
fraction s of the code can be executed sequentially. Tseq
describes the sequential execution time with the complete
cache:

t(p) = sTseq + (1− s)Tseq
p

It was observed that the slowdown h(x) can be described with
the power-law (also known as the

√
2 rule). The power-law

describes the cache miss ratio r = r0(
C0

Cact
)α, with the baseline

cache C0 (what the application needs), r0 as the baseline cache
miss ratio, and the available cache of size Cact. The parameter
α ranges from 0.3 to 0.7. By generalizing the formula with
α := 0.5 we find the slowdown:

h(x) = a+
r0

√
C0X
C√
x

where a is a constant to avoid side effects. [2]

2) Time taken per iteration: Different applications may be
required at different rates, like every iteration or every n-th
iteration. So we introduce a weight β. Where β = 1

s means
that s − 1 steps are skipped (i.e., 1

4 means three steps are
skipped). We can now describe the time taken per iteration as
the weighted throughput:

1

βT (p, x)

[2]

3) Dynamic Programming: The objective is to minimize
the time taken by the slowest application by maximizing
its throughput. A solution can be found with the Dynamic
Programming Approach (Division in partial problems and sav-
ing intermediate results [7]). T̂i(p, x) describes the maximum
weighted throughput for the first i Applications A1, ..., Ai
using p ∈ N cores and x ∈ N fractions of cache. We start
with the first application (i = 1) and add in each iteration step
one more application until we arrive for all m applications at
T̂m(P,X):

T̂i(p, x) =





maxp1≤p,x1≤x
1

β1T1(p1,x1)
if i = 1,

maxpi≤p,xi≤x {min{
T̂i−1(p− pi, x− xi),

1
βiTi(pi,xi)

}} otherwise.
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Fig. 2. Algorithm for CPU-GPU Systems with power cap. [1]

Fig. 3. Example for Dynamic Programming.

In this way, an optimal solution under the assumption of the
approximated metrics is found step by step. It can be shown
that the algorithm has for m applications a complexity of
O(mP 2X2). [2]
An example of dynamic programming can be found in Fig. 3:
For m = 2 applications, P = 4 cores and X = 4 fractions
of cache, the solution (maximum of the min column) to
T̂2(P,X) is to use for application A2 one core and one fraction
of cache. Application A1 has three cores and three fractions
of cache available but uses only one core to maximize its
throughput. If a third application would be considered it would
use the just calculated table for T̂2 as intermediate result.

C. Algorithm for bandwith partitioning

The technique HyPart can be used to partition the
bandwidth of commodity servers. It composes three memory
bandwidth partitioning techniques with specific advantages
and disadvantages to dynamically perform optimizations.
The three techniques for bandwidth partitioning can be
characterized in dynamic range (range from minimum
to maximum bandwidth), granularity (average memory
bandwidth difference between levels), and efficiency (number
of execution cycles per time). [3] First, the sole use of the
three techniques is described, which are then combined in
HyPart:

1) Thread packing: ”Thread packing specifies how many
threads should run on how many cores, and is used for
packing multithreaded workloads onto a variable number
of active cores” [6]. By varying the number of cores, the

bandwidth can be controlled. However, this can not be applied
to single-threaded applications. Performance anomalies can
be observed when the allocated core count is not a divisor of
the thread count. Some benchmarks are more tolerant against
performance anomalies. This is the case, when the threads
need little or no synchronization. [3]

2) Clock modulation: Clock Modulation skips a defined
number of duty cycles, thereby reducing bandwidth. The
disadvantage is that also non-memory-related instructions
will be delayed. So the number of execution cycles needed is
linearly increased. [3]

3) Hardware memory bandwidth allocation: Hardware-
based bandwidth partitioning is possible threw a new
technique from Intel called Memory Bandwith Allocation
(MBA). MBA throttles outgoing traffic from the L2 cache to
the LLC using a delay. As a result, mainly the bandwidth is
affected without significant performance degradation, but a
small dynamic range reduces its effectiveness. [3]

4) HyPart: The goal of HyPart is to configure the state
(settings for thread packing, clock modulation, and MBA) to
maximize the overall throughput. It is assumed that there are
more or equal cores than the number of applications. The algo-
rithm can be divided into 5 phases that work towards finding
a good state out of the system state space (all combinations
of settings). A schematic representation of the algorithm can
be found in Fig. 4.

• Elimination of sub-optimal states: The observation that
the fewest clock modulation and the lowest MBA setting
tend to achieve the best performance helps to determine
the sub-optimal states, which are removed from the state
space.

• Analysis of thread packing tolerance: This can be done
by setting the core count not to a divisor of the thread
count for a short time. Then we count the idle cycles.
Applications exceeding a threshold of idle cycles are non-
tolerable to performance anomalies.

• Elimination of thread packing anomalies: Here, the
states are eliminated where an application intolerable to
thread packing would get a core count, which is not a
divisor of the thread count.

• State-space exploration: With the tabu search (consider
last results and information of the exploration process
[8]), the state space is explored to find the most efficient
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Fig. 4. Algorithm for bandwith partitioning. [3]

state. At each adoption period, a new state is explored. It
replaces the current state when it is more efficient than the
current state. This is repeated until n-times a less efficient
state was explored, where n is a predefined threshold. In
this case, the idle phase will start.

• Idle phase: The applications will be monitored for
changes like the termination of an application or changes
in the memory bandwidth budget. When a change occurs,
the procedure will be restarted.

[3]

IV. DISCUSSION

A. Discussion of the algorithms themselves

1) Co-scheduling on CPU-GPU systems with power cap:
The described algorithm is the first co-scheduling algorithm
for CPU-GPU systems. It predicts the performance (≤ 20%
error for 70% of co-runs) and power consumption (≤ 8%
for all co-runs) of the co-runs very accurately. The algorithm
shows 41% (37%) improvement over Random scheduling
for 8 (16) program instances where the default scheduler
performance is 32% (−9%) compared to Random scheduling.
The algorithm scales reasonably well for more program
instances compared to the default scheduler. The drawbacks
are that this algorithm relies on micro-benchmarks and offline
profiling. However, offline profiling could be replaced by
existing, more lightweight methods. [1]

2) Co-scheduling with Cache partitioning: For this
algorithm, no benchmarks are needed. The power-law
struggles with memory-intensive applications. The prediction
of the execution time loses accuracy when using small
cache fractions. The model even though provides relatively
good accuracy for the purpose of scheduling. The best
results are achieved in co-scheduling memory-intensive
with computation-intensive applications. Furthermore, the
algorithm is considered fair. The algorithm can increase
performance up to 100% compared to no cache partitioning.
However, the benefit decreases with scheduling more
applications or when applications of the same behavior
(memory-/computation-intensive) are scheduled. [2]

3) Co-scheduling with memory bandwidth partitioning:
HyPart combines three techniques for memory bandwidth par-
titioning. Thereby a robust performance can be seen across all
settings. HyPart achieves a higher dynamic range, granularity,
and performance than the three techniques themselves. It also

performs optimizations depending on the characteristics of the
target applications. However, application profiling is needed in
the beginning. [3]

B. Discussion of the algorithms compared

The CPU-GPU scheduling algorithm is the only one con-
sidering a power cap which is a critical metric ignored by
the other algorithms. It is also the only algorithm that uses
the co-run theorem to avoid co-schedules that are degrading
execution time. The cache partitioning algorithm approximates
the computation cost and the slowdown by cache misses
with formulas, whereas the other algorithms need profiling
and micro-benchmarks from the applications. HyPart is the
only algorithm that monitors the applications at run time and
dynamically reacts to changes.

V. CONCLUSION

In this work, we presented three algorithms using new
technologies to improve co-scheduling. It will be interesting
to see if it is possible to combine these ideas to create new
algorithms that use the benefits of CPU-GPU architectures,
cache partitioning, and bandwidth partitioning to create an
even better algorithm. We can conclude that for co-scheduling
current research makes good progress in further enhancing
scheduling and that there likely will be more such advance-
ments in the future.
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Abstract—Scheduling has been undergoing significant changes
in the last few years. With the more and more data intensive
applications, I/O Interference has become crucial to avoid.
Therefore, the scheduler has to take the bandwith (BW) of
the Burst Buffers (BBs) and the Paralel File System (PFS)
into consideration. In this paper, we will analyze, compare and
review two different papers that provided solutions for schedulers
dealing with I/O heavy applications. While the first solution
creates an I/O model and makes the scheduler I/O-Aware, the
second paper introduces the idea of having a Multi-resource
scheduler called BBsched, which considers necessary resources
and provides solutions for different objectives. Both solutions
show that by considering I/O resources while scheduling, the
overall performance of a High Performance Computing (HPC)
system can be increased at the cost of scheduling decision time.

Index Terms—Burst Buffers (BBs), High Performance Com-
puting (HPC), Parallel File System (PFS), Multi-resource
scheduling, Multi-objective Optimization (MOO), I/O Interfer-
ence

I. INTRODUCTION

Over the last few years, there has been a growing demand in
cluster computing systems at universities all over the globe in
order to stream the different lectures reliably. While the HPC
systems have been evolving at an exponential rate, the storage
infrastructure performance is enhancing at a significantly lower
rate [4]. This has led to a common issue, which HPC systems
have been facing over the last few years: the I/O bottleneck.
Since HPC systems are nowadays also used to run data inten-
sive I/O applications, the Parallel File System (PFS) will not
be able to provide the I/O performance required by those data-
intensive I/O applications [7]. There are multiple solutions
on how to deal with this problem. This paper will cover
two solutions making use of Burst Buffers (BBs). BBs are a
small size, intermediate storage layer between the computing
nodes and the Parallel File Systems [8]. Since the applications
in HPC systems are running parallel, the I/O phases of the
different applications often occure at the same time leading to
high I/O peaks [3]. Previous work by the authors of [3] show
that BBs can absorb those I/O heavy bursts enabling the use of
underprovisioned PFS. According to Herbein et al. [5] in HPC
systems with Burst Buffers, an I/O-Aware Scheduler becomes
necessary to reduce I/O Interference, which can be defined
as a ”performance degradation observed by an application in
contention with other for the access to a shared resource” [2].
Another solution using BBs is the Multi-resource scheduling
introduced by Fan et al. [8] which schedules the user jobs
not only on their CPU usage but also on the BB usage to
avoid I/O Interference. The goal of this paper is to present

a systematic-review of the two presented solutions, which
came up with different solutions on how to include the BB
usage during scheduling. The paper is structured as follows:
In section 2, the necessary background information about the
storage infrastructure is given. In Section 3, the two different
solutions are being introduced and analyzed, while the pros
and cons of those concepts are compared in Section 4. In
Section 5, the conclusion is presented.

II. BACKGROUND INFORMATION ABOUT BURST BUFFERS

Fig. 1. Overview of the storage infrastructure.

Figure 1 shows a common setup of the storage infrastructure
used in the papers [1], [3] and [9]. The compute nodes (CNs)
are running concurrently and can have I/O heavy phases.
If multiple CNs have I/O heavy phases simultaneously, I/O
peaks occur which may overload the PFS. Since BBs have
significantly higher bandwith (BW) than the PFS, because
they are built from SSDs [8], they can absorb those I/O peaks
coming from the CNs and turn them into a constant I/O stream.
The BBs can be either attached to the CNs as a local resource
or be stored in I/O Nodes, which are shared across different
CNs as shown in Fig. 1. The constant I/O stream is then being
passed from the I/O Nodes to the storage servers, which are
equipped with a PFS. A PFS is a file system, which spreads the
data on different storage targets and is designed to provide the
necessary data through simultaneous, coordinated input/output
operations with the storage targets, which consist of multiple
HDDs [10]. The PFS is provisioned to handle the constant I/O
stream from the BBs and provide the CNs with the necessary
resources. [5]

III. INTEGRATION OF BURST BUFFERS INTO SCHEDULING

In this section, the two main approaches, I/O-Aware Job
scheduling as introduced in [5] and Multi-resource Scheduling
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introduced in [8], are presented and discussed.

A. I/O-Aware Job Scheduling

A scheduler is defined as I/O-Aware if I/O BW is being
taken into account while scheduling jobs. In order to provide
the scheduler with the necessary information about the I/O
BW, Flux [6], a center-wide resource and job manager for
next-generation centers, is used alongside BBs. The goal of
this scheduling idea is to avoid I/O Interference even if the
PFS is underprovisioned (the BW of the PFS is lower than
the BW of the constant I/O stream coming from the BBs). [5]
The idea is to model the I/O resource hierarchy using Flux as
shown in Fig. 2, providing the scheduler with the information
about the jobs needed BW, the BB BW as well as the PFS BW
and the BW between BBs and PFS [5]. With this information
the scheduler can make informed decisions to maximize the
BB usage and minimize I/O Interference. As an example in
Fig. 2 Job0 gets scheduled, because the BB of its CN can
return a constant I/O stream up to 192MB/s and Job0 only
needs 64MB/s. The switch as well as the PFS also have enough
BW therefore no I/O Interference occurs. Next up, Job1 is
being scheduled in parallel since its CN, the switch and the
PFS have more than the needed 128MB/s BW left over. The
same applies for Job2. But now there is not enough BW to
schedule Job3, while Job0-2 are still running, because the
local switch would need to provide 192MB/s to each Job2
and Job3, but can only has 256MB/s available. Therefore, if
the scheduler is not taking I/O into consideration, from now
on called I/O ignorant, I/O Interference occurs, while in an
I/O-Aware environment no I/O Interference arises. However,
the I/O-Aware scheduler will only schedule Job3 after Job2
finishes.

Fig. 2. Overview of an example I/O-model.

The next step is to compare I/O ignorant EASY backfilling
with an extended version of EASY backfilling, which also
takes the I/O-model into account, considering different critical
questions. EASY backfilling is similar to FCFS, but if the next
job cannot be scheduled due to a lack of resources another job
will get scheduled, but only if it will not delay the original
next job. [5]
The model in the comparison was built after the Commod-
ity Technology System 1 (CTS-1), which consists of 3,888

(a) I/O ignorant (b) I/O-Aware

Fig. 3. Percentage of total time spent by the entire CTS-1 cluster in
computation and blocking on I/O [5].

(a) I/O ignorant (b) I/O-Aware

Fig. 4. Variability of individual jobs’ time spent in computation [5].

CNs, 216GB/s per edge IB switch, 70GB/s PFS with perfect
provisioning and a 432 GB/s core switch pool [5].

1) Impact on Total Performance: In Fig. 3 the time in
computation (blue) and the time blocking on I/O (red) is
visualized for the I/O ignorant and the I/O-Aware scheduler
considering four different levels of underprovisioning. For a
perfect provisioned PFS, no job is blocking on I/0, but if the
PFS is increasingly underprovisioned up to a total of 30%,
the time blocking on I/O is increasing up to 20% with an
I/O ignorant scheduler, while the I/O-Aware scheduler is not
scheduling jobs which causes I/O Interference resulting in
100% compute time and therefore better performance.

2) Impact on Individual Job Performance: The impact on
individual job performance yields similar results to the impact
on total performance. Figure 4 shows a box plot, where the
red square represents the arithmetic mean, the red line the
median, the bottom line of the blue box the 75th percentile
(this means, that 75% of the data lies below the line and
the corresponding 25% above the line), the top of the box
the 95th percentile and the huskers on the bottom and on
the top visualize the 5th (bottom) and 95th (top) percentile
[5]. While in Fig. 4(b) each job is never blocking on I/O, in
Fig. 4(a) the time each job is blocking on I/O is increasing
with the levels of underprovisioning and is on average 20%
with an underprovisioning of 30%, because of the missing
I/O-Awareness.

3) Impact on Scheduling Decision Time: In the box plot in
Fig. 5(a) it is visualized that the level of underprovisioning
is almost irrelevant, because 75% of the decision times lie
below 0.07 seconds and 95% of the decision times lie below
1.43 seconds [5]. As for the I/O-Aware scheduling in Fig.
5(b) the decision time lies for 75% of the jobs under 0.12
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(a) I/O ignorant (b) I/O-Aware

Fig. 5. Scheduler decision time distributions [5].

seconds and for under 95% of jobs in the range of 1.97s
and 6.64s [5]. While the median in Fig. 5(b) is almost 0
for every provisioning level, the arithmetic mean is increasing
for the underprovisioned PFS and takes on average 1 second
compared to about 0.1 seconds for the I/O ignorant scheduler.
The reason is that the I/O-Aware scheduler has to additionally
check the I/O model every time, which can lead to increasing
variability, especially if either data or I/O heavy jobs are
followed by many smaller jobs [5].

4) System Efficiency: This paper showed that for I/O-Aware
scheduler the system performance can be increased up to 29%
at the cost of an up to 52% longer time between the job
submission and the job completion in the worst case [5].

B. Multi-resource Scheduling

In this section, we will analyize and review the contents of
[8], where the scheduler BBsched is introduced, which takes
multiple resources into account similar to I/O-Aware schedul-
ing. BBsched is developed as a plug-in into the base scheduler
of HPC systems to comply to the systems policies. Therefore,
BBsched will consider the original policy of the system as well
as specified resources, e.g. BBs. With schedulers returning
solutions for different single-objective optimizations such as
CPU usage or BB usage, BBsched will return a pareto set
1 for Multi-objective optimization (MOO). This means that
our plug-in BBsched will return the most efficient solutions
for different optimizations like CPU/BB usage and the system
manager can afterwards decide which solution fits the system
the best. BBsched can be split into two parts: a window-based
scheduling and the MOO solver. [8]

Fig. 6. The overview of BBsched [8].

1) window-based scheduling: The idea of window-based
scheduling as shown in Fig. 6 is that the first w jobs in the

1A Pareto set is a set of optimal solutions, where no objective can be
improved without worsening another objective [8].

job waiting queue get copied into the window. This allows our
BBsched to consider the systems policies and keep the order
of the base scheduler as similar as possible. [8]

Fig. 7. The MOO solver algorithm [8].

2) MOO solver: Figure 7 shows a genetic, iterative al-
gorithm to approximate the real pareto set in much shorter
time. BBsched is randomly initialized with P=4 chromosomes.
Each chromosome represents a scheduling decision, where
the genes represent if a job is being scheduled or not. In
the crossover phase, random chromosomes will be picked to
perform a crossover at a random position visualized by the red
line. Afterwards, the chromosomes genes from the crossover
will mutate with a low probability pm in order to introduce
diversity. The selection phase will split up the new and old
chromosomes in a pareto set called set1 and the rest will go
to set2. A solution will go into the pareto set, if by improving
one objective, other objectives would worsen. For the next
generation, all chromosomes in set1 will be chosen and if
necessary the remaining spots will be filled up with the newest
chromosomes in set2. This process will be repeated G times.
While pm is normally set below 0.1%, the selection of the
number of generations G and population size P is a trade-off
between performance/accuracy and scheduling time with the
best trade-off for G=500 and P=20 [8].

3) Evaluation: The evaluation is done with real workload
traces collected from Cori at National Energy Research Sci-
entific Computing Center (NERSC) using Slurm as scheduler
with 12.076 CNs and 1,8PB BBs. In addition four workloads
S1-S4 will be selected from the real one, where in S1 and S3
50% of the jobs request BBs and in S2 and S4 75% request
BBs, while in S1 and S2 the BB request is greater than 5TB
and in S3 and S4 greater than 20 TB. [8]
The workloads are evaluated using different schedulers,
like EASY backfilling as baseline scheduler, BBsched, con-
strained BB and constrained CPU, where the only objective
is to maximize BB/CPU usage and weighted methods, where
node/BB usage gets weighted 50%/50% or 80%/20% in the
weighted CPU and weighted BB variations. [8]
As shown in Fig. 8 with increasing BB BW and usage,
BBsched improves the BB usage, because it can provide a
pareto solution for multiple objectives like BB/CPU usage
and still yields desirable results for other objectives, while
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other schedulers can only provide one solution. Therefore,
BBsched is more likely to find a better solution. Since BB
and node usage are correlated, most of the used scheduler
only optimize one objective at the risk of worsening the other.
However, BBsched is able to yield desirable results for both
objectives. The comparison of average job wait time in Fig. 9
is also in favor of BBsched especially for higher BB requests,
because our Multi-resource scheduling algorithm is avoiding
I/O Interference resulting in no time blocking on I/O resources,
while the BB/node usage for other schedulers is not as high
resulting in longer wait times. Therefore, BBsched improves
the reduction of average wait time compared to the baseline
scheduler by up to 33.4% in Cori S3. Such increasing wait
times can not be prevented, because the hardware is not able
to cope with such enormous I/O demands more efficiently.
However, BBsched is able to lower the average job wait time
significant compared to other schedulers. All in all, BBsched
outperforms the other scheduler in every metric and enhances
the system performance up to 41% for the baseline and 20%
for the weighted scheduler. [8]

Fig. 8. BB usage on Cori

Fig. 9. Average job wait time on Cori

IV. DISCUSSION

While paper [5] from Herbein et al. mostly focuses on
creating a model for schedulers to be I/O-Aware, the authors
of [8] present a Multi-resource scheduler, ultimately leading to
longer job wait times, but far better system performances in
HPC centers. The I/O model introduced in [5] is a simple,
cost efficient solution that improves the performance well,
but it forces the system to use Flux and is therefore limited
in its use. BBsched on the other hand is more complex
with multiple use cases. Since it functions as plug-in that
complies with the systems policies, its only requisite are
BBs, which are becoming more popular in HPC systems.
Especially future related, BBsched is a great scheduler, since
it is easily extensible for more resources that need to be taken

into account. However, to maximize efficiency on a system,
the necessary parameter for BBsched need to be tuned for
every use case. Additionally, a solution has to be chosen from
the returned pareto set for which a system manager has to be
implemented to decide which solution fits the HPC systems
policy the best. However, evaluation itself is not prove enough
that these concepts will yield desirable results on HPC systems
with different workloads.

V. CONCLUSION

Since HPC systems have to cope with I/O heavy applica-
tions, the underprovisioned PFS may result in I/O Interference
and therefore wasted CPU time. In this paper two different
approaches that based their work on BBs, which help avoid
those I/O Interferences, were analyzed, reviewed and com-
pared. Both schedulers considered the I/O BW leading to
longer job wait times, but better overall system performance.
This shows that I/O-Aware scheduling in HPC systems is
crucial to improve performance especially with even heavier
I/O applications being used in the future.
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Abstract—Job scheduling on High Performance Computing
(HPC) systems is becoming more complex as these systems
increase in complexity and size. Assigning nodes statically and
exclusively to jobs is common in HPC, but can lead to under-
utilization of the system’s overall computational capabilities.
Malleable jobs are flexible in their resource allocations, providing
the resource and management system (RJMS) with new options
to maximize utilization of a systems capabilities. This work
gives an introduction to the topic of malleability in the context
of job scheduling, by reviewing three different papers that
each explore different aspects of malleability; exploring how
development of malleable applications can be realized using a
proposed MPI extension, how malleability can be exploited by
the scheduler to improve average slowdown and response time
and how malleability can be exploited to reduce I/O contention
for applications with periodic I/O phases.

Index Terms—scheduling, malleability, HPC, MPI, job schedul-
ing, batch scheduling, I/O contention

I. INTRODUCTION

With the increasing demand for computational resources,
whether for public research or for commercial applications,
HPC systems are becoming more important and powerful.
Clusters, systems made up of hundreds of individual com-
puters, so called nodes, are commonplace nowadays. Job
scheduling on these systems is usually space-sharing and
static; jobs are assigned to a set of nodes once scheduled, and
do not change in the amount of assigned nodes. This however
may leave nodes free or underused when a job cannot utilize
all the computational resources it is given. Presumably that
is why recently, malleability is receiving more attention in
the HPC space. Malleability refers to the ability of a process
to adapt to a changing number of resources (usually nodes)
while it is running [1]. Another important term is moldability,
describing a jobs ability to adapt to an assigned amount of
resources only at initialization [4]. The next section will cover
how development of malleable applications can be realized
[1]. Section III covers how malleable and moldable jobs can
be exploited to improve average response time and slowdown,
while still supporting non-malleable and non-moldable jobs
[2]. Section IV will examine how I/O conflicts can be avoided
by leveraging malleability for applications with periodic I/O
phases [3].

II. REALIZING MALLEABLE APPLICATIONS

A. Motivation

Message Passing Interface (MPI) is a commonly used
API for developing HPC applications. A typical HPC MPI

application consist of multiple processes of the same binary,
running on different nodes and communicating via an abstract
communicator object by passing messages between processes.
Since version 2.0 MPI allows applications to spawn new
processes at runtime. This however is not commonly used,
since spawning new processes blocks the calling process(-es),
until the new process(-es) are spawned, which can take several
seconds. Additionally processes created this way usually run
within the same resource allocation, so no expansion of
resources will occur. To realize malleability an API without
these issues is needed. [1]

B. Proposed alternative

To facilitate development of malleable applications, [1]
proposes an extension to the MPI API consisting of four new
operations. Instead of the application requesting changes in
resources, the scheduler will assign resources to the applica-
tion. These new instructions allow the RJMS to spawn new
processes before notifying the applications, thus hiding the
latency of process creation and not blocking the application.
[1]

f u n c t i o n r e c o n f i g u r e :
MPI PROBE(& adap t , &s t a t u s )
i f a d a p t :

# Resource manager wants a r e c o n f i g u r a t i o n
MPI COMM ADAPT BEGIN(&comm , &new world comm )
s w i t c h s t a t u s :

# communicate wi th t h e o t h e r p r o c e s s e s
c a s e JOINING : . . .
c a s e STAYING : . . .
c a s e LEAVING : . . .

MPI COMM ADAPT COMMIT( )
f u n c t i o n main :

MPI INIT ADAPT(& s t a t u s )
i f s t a t u s == JOINING :

# we a r e spawned by t h e r e s o u r c e manager
r e c o n f i g u r e ( )

w h i l e n o t f i n i s h e d :
r e c o n f i g u r e ( )
. . . # Do some c o m p u t a t i o n s

MPI FINALIZE ( )

Listing 1. Pseudocode example of an MPI application utilizing the proposed
operations.

The new operations are MPI INIT ADAPT,
MPI PROBE ADAPT, MPI COMM ADAPT BEGIN and
MPI COMM ADAPT COMMIT [1].

Listing 1 shows the skeleton of an MPI application utilizing
these. MPI INIT ADAPT initializes the MPI environment,
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and returns whether this process, was created when the ap-
plication was started or due to a reconfiguration initiated
by the resource manager. During execution, all processes of
the application regularly call MPI PROBE ADAPT to probe
whether the resource manager is reconfiguring this applica-
tions resource allocation, in which case adapt will be set to
true and status will contain whether this process is joining,
staying or leaving. After a process is notified of a pending
reconfiguration (or when it is joining) it enters an adap-
tation window delimited by MPI COMM ADAPT BEGIN
and MPI COMM ADAPT COMMIT. During this window two
communicators are provided; comm connecting all pre-existing
with all newly spawned processes, while new world comm
excludes leaving processes. After the window closes the global
communicator will be set to new world comm. [1]

To hide the latency of spawning processes so as to not block
the already running processes for the time it takes to spawn
new processes, processes are created without waiting for the
existing processes to call MPI COMM ADAPT BEGIN; the
joining processes simply wait on the existing processes to
enter the communication window during which they will
communicate to coordinate the adaptation. [1]

In comparison to the the Master-Worker Pattern, where the
Master process spawns Worker processes and delegates work
to them, this avoids the communication and I/O bottlenecks
that arise through the dependence on a singular master process
for communication and coordination. Furthermore the Master
process limits the complexity and size of a computation or
simulation, since it needs to keep the whole state, being limited
by the memory available to the Master process. Furthermore
computation cannot continue when the Master process fails,
thus hurting fault-tolerance. Applications utilizing this the
proposed MPI Extension do not have to resort to the Master-
Worker Pattern to realize malleability, thus avoiding these
issues. [1]

Benchmarking the introduced operations on the SuperMUC
HPC system confirms the success of the latency hiding ap-
proach, with the probe operation exhibiting latencies under
12ms and the adapt begin operation operation exhibiting
latencies under 0.5 seconds with 512 processes. [1]

III. EXPLOITING MALLEABILITY IN SCHEDULING

In [2] a slowdown-driven scheduling policy (SD-Policy)
leveraging malleability is presented, which is able to handle
both static and malleable jobs. It refers to a broader definition
of malleability, split into two levels. The first level being
malleability in terms of processors/threads assigned to a job
on a single node, and the second being malleability in terms
of the number of nodes assigned to a job. The presented
scheduling policy only concerns itself with the former, which
can also be considered a form of co-scheduling. Here jobs’
node allocations do not change by whole nodes, instead nodes
get shared by different jobs, thus applications do not have to
be able to handle getting whole nodes taken away from them
or new nodes assigned to them by the resource manager. [2]

Fig. 1. Simplified example showing the scheduling of a new job J with static
backfilling and the SD-Policy’s malleable approach. Each rectangle represents
a job, its height representing the job’s requested amount of nodes and its width
corresponding to the job’s expected runtime.

This policy is implemented on top of the DROM inter-
face, which integrates with the SLURM job scheduler and
the OpenMPI implementation of the MPI API to efficiently
partition a nodes resources between multiple jobs running
on that node [6]. The SD-Policy presented in [2] is based
on backfill scheduling. It first tries to schedule a new job
statically, that is only on free nodes. If not enough nodes are
free however, and the new job is malleable, then estimates for
the end time were the process to be scheduled statically, and
the end time were the process to be scheduled with malleability
are calculated. If the latter is closer to the present than the
former, the job mate selection algorithm gets invoked. This
algorithm is tasked with finding the best job mates, which
will share the nodes they are running on with the new job.
Because this problem is NP-complete, heuristics are used to
find a reasonably good selection of job mates. The algorithm
tries to find the job mates that would experience a minimum
cumulative slowdown, where slowdown of a single job is
defined as:

(wait time+ increase+ req runtime)/req runtime (1)

Where increase is the estimated increase in runtime the job
mate would experience due to sharing its node with the new
job. req runtime is the requested runtime of the job mate. [2]

The effect of normalizing the wait time and runtime increase
by the requested runtime for the slowdown penalty is best
illustrated with an example: A job with a requested runtime
of a week, will have the same slowdown penalty if delayed
by one day, as a different job with a requested runtime of 7
hours if delayed by one hour. The underlying assumption is
that both delays are equally acceptable to the users submitting
the respective job. Additionally the authors propose three
constraints. The first one limits the maximum slowdown per
job to a dynamic or a static value MAX SLOWDOWN. The
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second constraint is defined as:
n∑

i=0

wi = W (2)

Where wi is the number of currently allocated nodes for
each selected mate and W is the number of nodes the new
job requests. Our example schedule in n Fig. 1 fulfills this
constraint, as the sum of allocated nodes of our selected
mate(s) {A} is 3, the same amount of nodes as our new job J
requested. This constraint simply ensures that job mates share
all their nodes with the new job. This is to ensure the jobs
run balanced even when they are not able to balance load
dynamically, which is a common case for HPC applications.
The third constraint is that a new job finish before its selected
job mates, since if that is not the case, the new job would
delay jobs scheduled after the mates. This also avoids creating
unbalance in case the new job cannot balance load dynamically
[4]. [2]

Evaluating this technique in simulated workloads and on a
real HPC-System workload, for different MAX SLOWDOWN
values including a dynamically determined average of system
slowdown, results show a response time reduction of up to
50% and a slowdown reduction of 70% and an improvement
of makespan and energy reduction of 7% and 6% respectively
in the real workload test. [2]

IV. EXPLOITING MALLEABILITY TO AVOID I/O
CONTENTION

[3] focuses on exploiting malleability to avoid I/O con-
tention, for Single-Program-Multiple-Data (SPMD) applica-
tions with periodic I/O phases. The main idea is to predict I/O
phases and then use malleability to affect their timing in order
to prevent two or more I/O phases occuring at the same time.
This is accomplished via two strategies; phase shifting and
period coupling. The former uses malleability to speedup a job
temporarily by allocating more resources to the job, in order
to shift the I/O phase. The latter uses malleability to speedup
a job permanently, such that its I/O phase is period coupled
with another job, meaning their periods are equal in length.
If two or more jobs are ”period coupled” and sufficiently out-
of-phase (phase shifted) their I/O phases will never interfere
with each other. [3]

In order to predict I/O phases MPI’s I/O operations are
wrapped and monitored to gather metrics on the applications
I/O behavior, specifically it’s I/O period and phase. In order
to predict how a change in allocated resources will affect the
performance of the application and thus its I/O phase timing,
samples for different resource configurations of the application
need to be gathered. This can be done off- or on-line. Off-line
it is gathered by benchmarking and analyzing the application
under various different configurations. On-line it is gathered
by applying multiple different configurations to the application
after it has started and measuring their effects on application
performance. Only a few configurations are tested in both the
off- and on-line method and then interpolated to build the
performance model of the application. [3]

Fig. 2. Two applications which are predicted to encounter I/O contention in
their next I/O phase(s). Bars represent I/O phases, the predicted I/O contention
is marked red.

Depending on the application more or less samples are
needed in order for the model to be sufficiently accurate. This
model can now be used to predict I/O phases of applications
with periodic I/O phases and thus to predict whether two
applications’ I/O phases will interfere with each other, by
checking if the predicted I/O phases overlap. In Fig. 2 the
I/O phases of Application 1 and Application 2 are predicted
to interfere on the next phase. [3]

A. Phase shifting strategy

The predicted I/O interference depicted in Fig. 2 can be
avoided by making use of the phase shifting strategy. This
strategy increases the amount of processes allocated to the ap-
plication temporarily, increasing the applications performance
and thereby reducing the time left until its next I/O phase, in
order to shift this I/O phase closer to the present time.

Which application will be phase shifted depends on its I/O
period. If the I/O periods are not very different, but not equal
either, the application with the shorter period will be chosen
for phase shifting because after the phase shifting its I/O phase
will occur almost immediately before the other application’s
I/O phase, thus if the phase shifted application has the smaller
I/O period it will take longer for another I/O interference to
occur. If the I/O periods are very different or equal however,
the one whose I/O phase occurs next will be chosen, so as to
minimize the required shift ∆t. [3]

The overhead of the reconfiguration in the phase shift
operation is also considered in the calculation of the actual
shift, in addition to a user configurable uncertainty parameter.
For the sake of simplicity, this actual shift will be treated as
similar to the required shift ∆t here.

In order to shift the I/O phase by ∆t, the application needs
to be sped up by the required speedup S:

S =
Torig

Torig −∆t
(3)

where Torig refers to the original predicted time of the next
I/O phase of the respective application. Using the calculated
performance model, we can calculate the number of new
processes ∆P required to realize the speedup S. How this
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Fig. 3. Example demonstrating the phase shift strategy. Green bars represent
the affected I/O phases.

is done depends on the specific performance model. If the
amount of new processes ∆P is not available or the speedup
S cannot be realized no matter the amount of new processes,
the reconfiguration is simply canceled. Otherwise the recon-
figuration will occur, and after certain time, at minimum the
time until the end of the next I/O phase of the reconfigured
application, the application will be reconfigured again, this
time back to the previous configuration, so as to not affect the
I/O period permanently, but only perform a phase shift. [3]

B. Period coupling strategy

In order to prevent I/O contention long term, the period
coupling strategy can be used which permanently reconfigures
applications to make their periods more similar, or in the ideal
case equal. This way the need to repeatedly phase-shift, can
be eliminated for some cases. [3]

If needed to prevent I/O interference when the I/O periods
and the I/O phases are equal the phase shifting strategy is used
to diversify the I/O phases. Two applications with very similar
or equal I/O periods and different I/O phases will have little or
no I/O interference with each other. Thus by using this strategy
combined with the phase shifting strategy we can avoid I/O
contention while minimizing reconfigurations. [3]

In order to change the I/O period P an application to a
new shorter I/O period Pnew similar to the period of another
application we calculate the required speedup as P/Pnew and
use this together with the performance model to calculate the
number of new processes required, similar to the last step of
the phase shift strategy. If the speedup is not achievable due
to insufficient amount of available processes or because no
amount of new processes could realize the required speedup,
the reconfiguration is canceled, similar to the phase shift
strategy. [3]

A similar technique would be possible even for non-
malleable jobs, but it would require artificially slowing down
the job, since that can be achieved by reducing the perfor-
mance of each process the job is composed of, without having
to change the number of processes itself. This has the obvious
downside of reducing the affected job’s performance. The
phase shifting and period coupling techniques covered here

Fig. 4. Example demonstrating the period coupling strategy. Green bars
represent the affected I/O phases.

will only ever attempt to increase the performance of a job,
never reduce it, except for when reverting to the previous
configuration after a phase shift. [3]

Evaluating these techniques, with a scientific application,
solving systems of linear equations iteratively, with periodic
I/O phases on an HPC cluster yields promising results, re-
ducing application I/O times up to 49%, compared to a
39% reduction using a blocking I/O interference prevention
technique, which does not leverage malleability [5]. [3]

V. CONCLUSION

This work gave an introduction into malleability, ranging
from the efficient realization on the application development
side, to utilizing sub-node level malleability and moldability
in job scheduling to improve slowdown and average response
time dramatically. Last but not least a more specific exploita-
tion of malleability with the goal of eliding I/O conflicts was
covered. [1]–[3] The presented techniques each cover very
different aspects of malleability and all provide promising
results. Integrating these different techniques in a holistic
manner might be interesting for future work.
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Abstract—Both HPC hardware and software have become
increasingly complex over the years, which caused job scheduling
to become even more difficult. Since good scheduling is essential
for efficiently executing jobs, a lot of work has been put into
improving schedulers. Machine learning in particular has played
a large role in the development of new HPC schedulers, as it
offers new and often times more efficient ways to approach
the problem. This is especially true considering recent advances
in machine learning techniques. In this paper we will give an
overview over machine learning tools and techniques that have
been developed to improve job scheduling. We will introduce their
basic functionality and compare them to traditional approaches,
both in terms of complexity and performance. At the end of
this paper we will also provide a small overview over possible
future advancements in this area, and evaluate the usefulness of
machine learning for different aspects of job scheduling.

I. INTRODUCTION

With hardware and software getting more complex over
the years, efficient scheduling has become increasingly dif-
ficult. This is especially true for large scale high performance
computing (HPC) systems, which have to deal with a large
number of jobs with different characteristics. Since the quality
of scheduling has a strong impact on the performance of
the system, many different types of schedulers have been
developed, trying to maximize performance. Each of these
schedulers evaluate multiple metrics of the jobs that need to be
scheduled and try to find the optimal allocation of resources.
Depending on the implementation of the scheduler, different
goals like lowering latency might be achieved, which can also
be used to compare the performance of schedulers for certain
types of jobs [1].

However most traditional HPC job schedulers have a com-
mon problem, which is that they do not react well to changes
in the characteristics of jobs, like their expected runtime or
resource requirements [2]. The reason for this is that they
usually work in a static way, and require manual configuration
changes in case a shift of job characteristics happens. The size
of modern HPC systems in combination with the large number
of jobs that need to be scheduled, often times make performing
these manual changes unfeasible for system administrators
[2]. Therefore an automated solution for this type of problem
is required, since it would not only decrease the workload
for system administrators, but could also improve overall
scheduling performance.

A possible solution for this was found in machine learning
based scheduling algorithms. Machine learning with its various
sub-types like supervised-, unsupervised- or reinforcement

learning [3] has become a powerful tool for many different
types of applications. Often times machine learning makes
it possible to find adaptive solutions for problems, which
might not always be possible with traditional methods. This
is also the case for modern scheduling problems. Machine
learning based scheduling algorithms exist in multiple forms.
One of those forms consists of algorithms which use machine
learning to schedule jobs based on traditional input parameters
as described in [2] [4] [5]. Another form is based around
algorithms that use machine learning to increase the quality of
input parameters in order to improve scheduling results. Some
examples for this can be found in [6] [7] [8].

Machine learning based parameter tuning is interesting for
traditional scheduling algorithms as well, since the improved
input parameters can also help those algorithms perform better.
Although some solutions for this have been found [9], it is
generally desirable to have more accurate input parameters,
since they give schedulers more accurate information about
the workload.

In this paper we will present some machine learning tech-
niques that have been developed to deal with the previously
mentioned problems. We will compare them to traditional
approaches and give some insight into possible future devel-
opments.

The rest of the paper will be structured as follows. Chapter
2 gives an introduction to machine learning basics, including
supervised and unsupervised learning, as well as neural net-
works. In chapter 3 we will present some machine learning
based scheduling and parameter tuning algorithms. Chapter 4
compares these machine learning based algorithms to tradi-
tional ones, both in terms of performance and complexity. In
chapter 5 we give an outlook on a few possible future devel-
opments in this area. Finally chapter 6 Provides a conclusion
to the content of this paper.

II. MACHINE LEARNING BASICS

Machine learnig with its various sub-types is a much studied
field, which has applications in many areas of research. Be-
cause of that, a lot of different approaches to machine learning
have been developed over the years. In order to understand the
following contents of this paper, it is necessary to have some
basic knowledge of some of the most widely used machine
learning techniques. We therefore introduce the basics of these
techniques to give a short overview over the field, and to
make it easier to understand its use cases for modern HPC
scheduling.
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A. Supervised Machine Learning

The first approach that needs to be discussed is supervised
machine learning. This technique is often used for classifi-
cation problems, and requires a labeled training data set, for
which the required classification outcomes are already known
[10]. Based on this labeled data set, the machine learning
algorithm can be trained to classify data of equal or similar
structure, for which the required labels are yet unknown.

In the first step of the training process, the algorithm is given
the training data without its labels as input [10]. Based on
the initial state of the algorithm, labels are calculated for this
input. The aforementioned initial state of the algorithm usually
consists of randomly chosen starting parameters, which causes
the initial labeling not to be accurate in most cases [3]. In
the second step the calculated labels are then compared to the
known labels. Depending on the size of the classification error
changes are made to the internal parameters of the algorithm,
in order to improve the labeling of future runs [3]. This process
can be repeated multiple times, until the quality of the labeling
produced by the algorithm converges to a certain quality level,
which depends on the quality of the algorithm and the training
data set [3].

Supervised machine learning can once again be split up into
multiple categories. These include decision trees, which can be
used for classification problems based on a tree like structure,
linear regression, which aims to find connections between
different variables of a data set, or bayesian classifications
[10]. These techniques will not be discussed in detail here,
however interested readers can find some more examples in
[11].

B. Unsupervised Machine Learning

Another widely used machine learning approach is unsuper-
vised learning. Contrary to supervised learning, this technique
does not require a labeled training data set. Instead the
properties of the input data are used to identify clusters of
similar data points, which can be useful for different types of
applications [3]. In many cases not requiring a labeled training
data set can be a deciding advantage of unsupervised machine
learning over its counterpart, since these kinds of data sets
might not always be available for certain types of problems
and applications.

The training process of unsupervised machine learning
algorithms also consists of two steps. In the first step unlabeled
data is given to the algorithm as input. The algorithm then
groups the datapoints into clusters, based on their properties
[3]. In order to do this the distance between the values of
datapoint properties has to be calculated, which can be done
in different ways, depending on the implementation [12]. The
initial number as well as the properties of cluster centers
often times is randomly initialized, and is then adapted over
multiple runs. The goal of this is to maximize the similarity
of datapoints within clusters, while at the same time not
creating too many clusters, as this would limit the usefulness
of the found clusters. This once again can be calculated using
different metrics [3].

Unsupervised learning can further be split up into categories
like clustering and hierarchical learning [12]. Since detailed
understanding of them is not required for the presented papers,
these will not discussed here.

C. Neural Networks

Neural networks are another popular machine learning tech-
nique. As the name suggests, neural networks try to replicate
the structure of a human brain. This is achieved with multiple
layers of nodes that are connected to each other. These layers
modify the input data using activation functions. The result of
the computation is stored in the final layer of the network [3].
This structure makes neural networks a useful tool for multiple
types of applications.

input layer hidden layer(s)

...

output layer

Fig. 1. Graphical representation of a neural network

Neural networks work by inserting the input data into the
first layer of neurons, the so called input layer. The input layer
is connected to the first of potentially many so called hidden
layers, along which the data is passed. At each of these layers,
an activation function is applied to the data, transforming
it at each step through the network [13]. Depending on
the structure of the neural network and its use case, these
activation functions can differ from network to network. This
process repeats until the final layer, the so called output layer,
is reached. Here the result of the computation can be obtained
from [13]. Fig. 1 provides a simple graphical representation
of a neural network, showing the input-, hidden- and output
layer as well as the connections between them along which
the activation functions are applied.

Depending on the use case, neural networks require different
structures and activation functions. A good example for this
are classification applications, which typically contain as many
nodes in the output layer as there are classes. Neural networks
can also be differentiated by their number of hidden layers,
with deep neural networks usually containing at least a double
digit amount of them [13]. Certain neural network structures
allow for useful applications like autoencoders, which can be
used for dimensionality reduction, a form of input parameter
tuning [12].

III. MACHINE LEARNING BASED HPC SCHEDULING
APPROACHES

In this chapter we specifically focus on machine learning
applications for HPC scheduling. These applications can be

44



split into two major groups. First there are algorithms that
directly use machine learning for the scheduling process.
The second major type of applications are machine learning
algorithms that are used for parameter tuning. These take
traditional scheduling criteria as input and transform them into
more accurate and useful inputs with machine learning. In the
following we are going to show some examples of both types
of algorithms.

A. Machine Learning Based Scheduling

The RLScheduler described in [2] utilizes two neural net-
works for its reinforcement learning approach. First, there
is the policy network, which is a 3 layered kernel network
responsible for scheduling the waiting jobs. This network takes
the current state of the system, including the waiting jobs and
their characteristics, as input, and calculates a score for each
of these jobs. According to this calculated score a scheduling
decision can then be made [2]. Their second network is called
the value network, which is a 3 layered network. This network
is trained alongside the policy network and takes the reward,
representing the quality of the previously made scheduling
decisions, as input. With this input the network is trained to
predict the rewards of future job sequences, which is then
used to improve scheduling. Depending on the needs of the
system, different reward functions can be chosen by the system
administrators to allow for optimal results. The scheduling
quality is also further improved by filtering out certain outlier
schedules during training, since these could negatively impact
overall performance [2].

In order to evaluate their approach they trained their network
with multiple traces and compared the scheduling results to the
ones of traditional approaches. First, they determined that their
neural networks converge relatively fast, meaning that good
scheduling results can be obtained after few training epochs.
This was achieved mostly due to eliminating outlier traces
as mentioned before, since without this technique they mea-
sured much longer convergence times, which already shows
some possible problems with machine learning scheduling
approaches [2].

Additionally the performance of RLScheduler was evaluated
for different traces and scheduling goals, including resource
utilization, average job slowdown and waiting time. They
conclude that for most traces and scheduling goals RLSched-
uler converges fast and provides better scheduling results than
most traditional schedulers. This could even be achieved with
relatively little computational overhead, making it feasible to
use in real world scenarios [2].

The deep reinforcement agent for scheduling (DRAS) de-
scribed in [4] follows a similar approach. For their scheduling
algorithm they also use two neural networks. However, in
this case both networks are of the same 5 layered structure,
and have slightly different purposes compared to the ones of
RLScheduler. The first network receives the current system
state, including waiting jobs and their characteristics, as input
and is responsible for assigning jobs to resources for imme-
diate execution. The first job that does not fit into currently

available resources is also marked as reserved, and will be
executed as soon as possible. For this first step jobs that have
waited for a long time are given a increased priority in order
to avoid starvation, which they found to be a huge problem
for many traditional scheduling algorithms [4].

In the second step the other neural network is tasked with
backfilling, which is a strategy to assign additional jobs to
resources without hindering the previously scheduled jobs.
With backfilling hardware utilization and overall performance
can be improved. After making these scheduling decisions the
networks receive a reward depending on the quality of schedul-
ing, which can once again be defined by system administrators.
This reward is used to adjust the networks for future steps
in order to further improve scheduling results. For additional
insights and potentially better results they implemented two
versions of DRAS, namely DRAS-PG and DRAS-DQL, using
different forms of reinforcement learning for the adjustment
of the neural networks. PG standing for policy gradient, while
DQL is short for deep Q-learning, both of which are popular
techniques [4].

For their evaluation they trained both versions of DRAS
with different job traces, each time starting with easier job
patterns and introducing more complicated ones later on in
order to improve training results. They then compared the
scheduling results of DRAS to different traditional approaches
for performance evaluation. In their evaluation they show,
that convergence time greatly benefits from their approach of
starting with easier schedules and later transitioning to harder
ones [4]. This shows that a lot of thought has to be put into
machine learning based scheduling algorithms, not only during
their design, but also for their training.

In their performance evaluation it is shown that both
versions of DRAS outperform many traditional approaches
in multiple metrics, including job wait time, response time,
slowdown and resource utilization. Additionally it was noted
that job starvation was relatively low with maximum job wait
times of 16 and 20 days, compared to 170 days for some other
approaches. This is especially useful for large jobs, since they
usually suffer most from job starvation [4].

Most of their performance gain over traditional methods
comes from the intelligent assignment and reservation of
resources, which minimizes overall job wait time. They also
show that the performance increase stays present during shifts
in the type and intensity of scheduling tasks, thereby solving
an important scheduling problem. Similar to RLScheduler this
could be achieved with little computational overhead, making
it useful for real world scenarios [4].

Another interesting approach to machine learning based
scheduling comes in the form of RLSchert as described in [14].
Here, a reinforcement learning based scheduler is combined
with a remaining runtime predictor, which allows the scheduler
to have more information about the current state of the system
and make changes if necessary [14]. Additionally it makes
the scheduler less dependent on potentially inaccurate runtime
estimations, which can hurt overall scheduling performance if
they are not dealt with correctly.
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The scheduler of this approach works similar to the ones
described above. It takes the current system state as input
and allocates the currently available resources to jobs, which
also includes backfilling. In order to make the scheduling
problem less complex, only a certain number of waiting jobs is
considered for each scheduling step, despite the total number
of waiting jobs potentially being higher [14]. In parallel the
dynamic remaining runtime predictor uses real time system
data to predict the remaining runtime of currently running jobs.
In case large discrepancies between the original and the current
prediction of a jobs remaining runtime are found, the scheduler
can kill this job and replace it with another one. This usually
happens if the newly predicted remaining runtime is much
larger than originally thought, and the job has not already run
for a long time. If this is done correctly, the average slowdown
of all processed jobs decreases significantly [14].

Their evaluation of RLSchert shows, that this approach can
achieve good results in both convergence time and overall
scheduling quality, especially when measuring average job
slowdown. For this metric, the positive effect of their kill
policy was visible very well [14].

The final machine learning based scheduling approach we
are going to present here is described in [5], and utilizes an
entirely different technique. Instead of using a reinforcement
learning based scheduler, they aimed to create scheduling
policies with nonlinear functions. In order to obtain these
functions a simulation procedure in combination with nonlin-
ear regression is used. The simulation procedure receives two
distinct sets of jobs. At the beginning of the simulation the
jobs of the first set are executed in an arbitrary order, which
simulates a random initial state [5]. After that, each of the jobs
in the second set is assigned a score based on its impact on the
slowdown of the rest of the jobs. From these scores nonlinear
functions are computed, which can be used for scheduling as
described in [5].

For their evaluation they compared the scheduling results
using these nonlinear functions to traditional approaches, with
a focus on average job slowdown time. It was noticed, that
the function strongly prioritized jobs with earlier arrival time,
a shorter expected execution time, and low resource require-
ments, which is quite intuitive. For both real and user estimated
job runtimes the nonlinear functions outperformed traditional
methods. It was additionally noted, that they benefited less
from aggressive backfilling, since the original scheduling
already had superior performance. With these results it can
be concluded that this method works well for real world
workloads [5].

B. Machine Learning Based Parameter Tuning

Another way to utilize machine learning for scheduling
is parameter tuning. The reason for this is that almost
all scheduling approaches require accurate input parameters,
which usually consist of information about the current system
state and the waiting jobs. Although some algorithms have
been developed to reduce the negative impact of inaccurate
parameters [9], it is therefore desirable to increase the quality

of input parameters. In the following we are going to describe
some machine learning applications that try to reach this goal.

The first parameter tuning algorithm we are going to discuss
here is described in [8]. That paper describes the combined
utilization of supervised and unsupervised learning to more
accurately predict job runtimes. In the first step, a shortest
edit distance matrix is calculated from a combination of the
user name and the job name. This matrix measures the distance
between the combined strings, and is used as a basis for the
following clustering algorithm [8]. For this next step the k-
means++ algorithm is used, which groups the datapoints into
k clusters. This needs to be done multiple times for different
values of k and starting cluster centers to obtain the best result.
Based on these clusters, for each of the jobs the k-nearest
neighbor algorithm is used to obtain similar jobs, with the
criterias being CPU requirements and submit time. This data
is then used in unsupervised machine learning to predict job
times [8].

In order to evaluate their approach they implemented the
running time predictor using 3 different machine learning
algorithms, namely linear regression, random forest regression
and SVR. Additionally the prediction quality with and without
previous clustering was compared in order to further analyze
the usefulness of those steps. This evaluation was done with
a real world data set from CARDC [8]. As their evaluation
criteria mean absolute error (MAE), average prediction accu-
racy (ACA) and underestimate rate (UR) were chosen. The
evaluation showed, that previous clustering reduced the MAE
by an average of 74 percent, with SVR producing the best
results. Similarly good results were achieved for ACA and
UR, with SVR producing the best results in all cases. Since
SVR not only performs well but also converges quickly, this
makes it the best candidate out of the tested algorithms for
this application [8].

The effect of their application on scheduling quality was
also tested. Here they came to the conclusion, that with the
help of their framework, the average waiting time (AWT)
of jobs could be reduced by around 29 percent. This shows
that the improvement of running time predictions, which are
usually relatively inaccurate, can help improve scheduling
performance and resource utilization [8].

Just like runtime predictions, the prediction of required re-
sources for a job tends to be quite difficult. In many cases users
overestimate the amount of resources required for their job,
which can be detremental for overall scheduling, and therefore
also system performance. The approach described in [6] tries
to improve resource requirement predictions using supervised
machine learning. The overall work flow of their approach
looks as follows. In the first step, the user must submit
their job including their own resource requirement predictions.
These predictions are then updated using supervised machine
learning, and given to the scheduler for resource allocation
[6]. For the training of the algorithm, a dataset consisting of
14 million datapoints was used. For each of those datapoints
8 out of originally 45 attrbutes defining resource requirements
were considered [6].

46



Similar to the previously described approach, multiple ma-
chine learning algorithms were considered for the evaluation.
These included linear regression (LR), lasso lars ic regression
(LLIC), elastic net CV regression (ENCV), ridge regression
(RG) and decision tree regression (DTR). The final evaluation
was done on the slurm simulator using DTR, since it was the
most fitting for the data. To gain further insights, jobs were ad-
ditionally split up into large and small jobs, making the effect
of the approach to different job sizes better understandable [6].
For the larger jobs, consisting of jobs requiring at least 4GB
of memory, a huge improvement in total required execution
time was observed. While a total running time of 5 days
was simulated using the originally requested resources, the
simulated running time using the machine learning predicted
resources only was around 10 hours, which is similar to the
results obtained from using the actual resource requirements.
These results show, that their application is able to accurately
determine required resources, and improve overall system
performance by better utilizing system resources. While not
being as impressive as for the larger jobs, the application was
also able to achieve considerable improvements for the smaller
jobs. As expected this approach not only had a positive effect
on total runtime, but also on average waiting times of single
jobs [6].

In summary it can be noted, that many different approaches
to utilize machine learning for scheduling exist. In the follow-
ing we are going to show the advantages and disadvantages
of these methods compared to traditional approaches.

IV. COMPARISON TO TRADITIONAL APPROACHES

The previous chapter showed, that machine learning can be
a powerful tool for HPC scheduling. Although the results of
the approaches we described were mostly positive, there are
some drawbacks to them as well. In the following chapter we
are going to discuss both the advantages and drawbacks of
machine learning based approaches.

A. Advantages

One of the most noticeable advantages of machine learning
over traditional approaches is the potential performance in-
crease. This is relatively easy to see, since all the approaches
described above showed considerable performance benefits in
almost all metrics used for evaluation, including total process-
ing time, average job wait time, resource utilization and more.
Not only does this increase the speed at which researchers
can obtain their desired results, but it also helps to better
utilize HPC systems. These systems have become very large in
scale and therefore expensive, both in hardware and electricity
costs, which is why such performance increases generally are a
desirable goal for both researchers and administrators of HPC
systems.

Another advantage that was specifically mentioned by some
of the presented papers, is the ability of machine learning
based tools to react to changes in the size and type of
workload [2] [4]. Overall they proofed to be more flexible
regarding the input data, and therefore less dependent on

manual intervention by system administrators. Because of the
size of HPC systems and the large number of jobs that need
to be processed, this property is an essential characteristic of
most modern scheduling solutions.

Furthermore, machine learning based scheduling approaches
can be made less dependent on the quality of their input
parameters, which includes predictions for job runtimes and
resource requirements. This can be observed especially well
for the parameter tuning based techniques. The main goals of
these applications usually specifically include the reduction of
such dependencies, and according to their evaluations, these
goals were achieved. Improving input parameters is helpful,
since they are the basis of the resource allocation done by both
traditional and machine learning based schedulers. Because of
the size and complexity of both HPC systems and the jobs
that need to be processed, runtimes and resource requirements
can be hard to predict by humans. This can lead to incorrect
predictions, and therefore decreased scheduling quality for
traditional approaches.

B. Disadvantages

Since machine learning is such a large field, it can often
times be difficult to find the best algorithm for the problem
that needs to be solved. This is also the case for scheduling
algorithms, which is why most of the presented applications
compared the results of multiple machine learning techniques
in order to obtain the best results. However the additional
implementation and testing that is required to do this also
results in a lot of additional work, while it still can not be
guaranteed that the absolute best technique has been chosen.
This becomes even more obvious when compared to the
relatively simple implementation of certain heuristics used
by some traditional schedulers. However, it must also be
said, that for most of the presented applications all tested
machine learning techniques performed better than traditional
approaches. Therefore not finding the very best technique for
the problem most of the time might not be required to achieve
performance improvements. Nevertheless some performance
might be lost by not testing enough techniques.

An additional problem of supervised machine learning algo-
rithms is that they require a labeled data set for their training
[10]. This can potentially be a problem, since such a dataset
is not always available. Even if one exists, it must be tested
if the data actually is suitable for the problem that needs to
be solved, since discrepancies in value ranges between the
training data set and the data that actually needs to be classified
can lead to insufficient results.

During the training phase of machine learning algorithms
the problem of overfitting also needs to be considered. As
already shortly described above, when a machine learning
algorithm is overfitted, this means that the algorithm is overly
specialized to solving a problem specifically for the training
data set [3]. This in turn makes the algorithm less useful
for solving the general problem with arbitrary data, which
reduces some of the benefits gained from machine learning.
Overfitting usually happens if not enough training data is
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available, resulting in too many training rounds with the same
limited data set. Although the risk of this happening can be
reduced with techniques like splitting up the data set into a
training and a validation part as shortly mentioned in [7], it is
still a problem that needs to be dealt with.

Despite these disadvantages, the papers we presented clearly
managed to get good scheduling results from their machine
learning based approaches. It can therefore be determined, that
if the difficulties machine learning introduces to the problem
of scheduling are known in advance and dealt with correctly,
improved results compared to traditional approaches can still
be achieved.

V. FUTURE OF MACHINE LEARNING IN HPC SCHEDULING

Predicting future research developments is always difficult,
especially in such complex fields as machine learning and
scheduling. However some trends can be noticed, such as
the fast paced development of HPC scheduling and parameter
tuning tools based on machine learning. This can be seen by
the relatively large number of papers published in the past few
years, some of which were presented here.

Due to the current general popularity of machine learning,
as well as the constant advances in machine learning tech-
niques, it can therefore be assumed that more HPC scheduling
algorithms will be developed and improved upon in the future.
Some proposals for this have already been made in existing
papers.

The next large step machine learning based approaches
will likely take is their implementation in more real world
HPC management and scheduling systems. Among others the
authors of [2] [5] have mentioned similar plans in their papers.
This step is important, since quite a lot of the applications that
have been described in papers have not yet been implemented
in real world HPC systems.

With more applications making it into real world schedulers,
additional attention to the topic could be generated, resulting
in new or improved upon implementations. This could also
include testing the effectiveness of new machine learning
techniques for this problem field. Such improvements to their
existing implementations were also mentioned by the authors
of [6].

Overall the future of machine learning in scheduling there-
fore seems to be heading towards a more widespread use and
additional developments. These could also help other research
fields, since the improvement of HPC scheduling and system
utilization benefits researchers of all fields that require HPC
resources in some way.

VI. CONCLUSION

This paper gives an overview over machine learning based
HPC scheduling approaches, which can be split up into
machine learning based scheduling and parameter tuning. It
discusses the major strengths and weaknesses of these ap-
proaches compared to traditional techniques, and shows their
applicability in real world scenarios. Additionally potential

future work in this area is discussed, which could further in-
crease the capabilities of the already existing approaches. It is
shown that machine learning based approaches can have large
performance benefits in almost all metrics that are commonly
used for the evaluation of scheduling algorithms. Similarly
their capability to handle inaccurate parameters is shown.
Additionally it is pointed out that changes in job characteristics
are handled well by machine learning based algorithms. Major
drawbacks that are shown in this paper include the necessity
for training data as well as the general complexity of choosing
the right algorithm. Overall it is concluded that machine
learning is a promising method that can be used to solve many
major scheduling problems, especially when enough time is
invested into properly designing the algorithm and dealing
with the problems.
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