

BEAST Lab Preliminary Meeting

LRZ

Dr. Josef Weidendorfer, josef.weidendorfer@lrz.de

LMU

Sergej Breiter, sergej.breiter@nm.ifi.lmu.de

Minh Thanh Chung, minh.thanh.chung@ifi.lmu.de

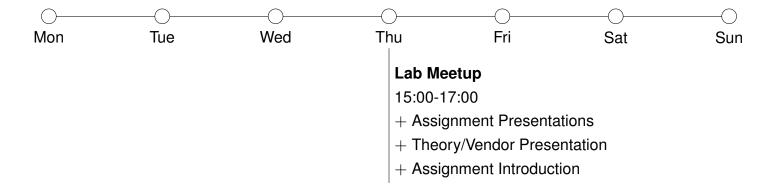
Dr. Karl Fürlinger, karl.fuerlinger@ifi.lmu.de

TUM

Bengisu Elis, bengisu.elis@tum.de

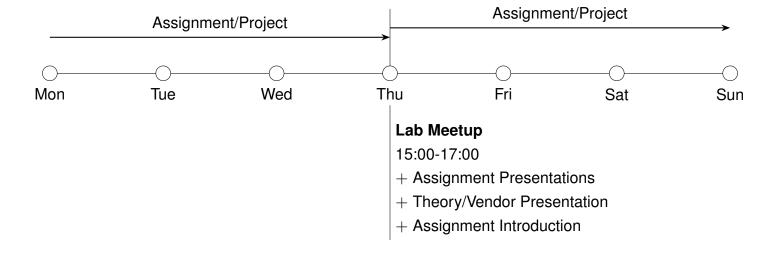
Table of Contents

Course Organization

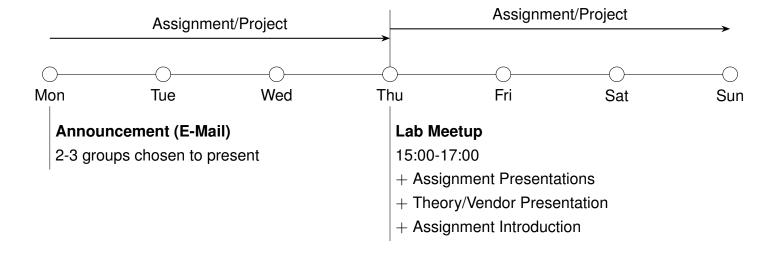

Introduction to BEAST

< **□** > < **□** > < **□**

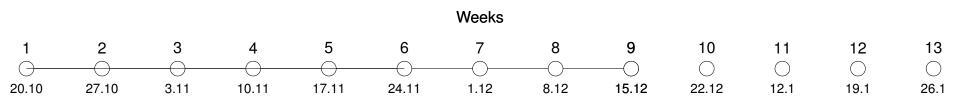
Weekly Schedule



Weekly Schedule



Weekly Schedule



Project

Tentative Semester Overview - Last Year

MM

GPU MM

Organization

Warm-Up

• Note: This is preliminary based off of last semester and is subject to improvements

GPU Triad Profiling

• 8 Assignments

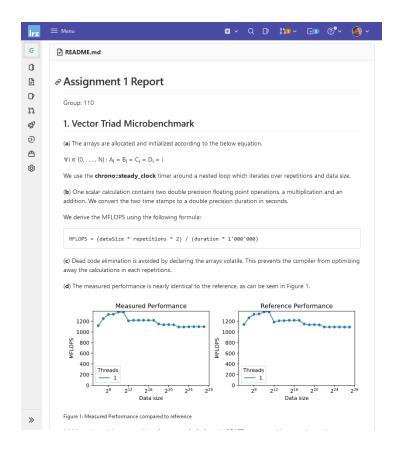
Triad

- Assignment 0 (of today) is not optional
 - 1 week each (except on holidays)
- Project
 - 2 weeks

Previous Vendor Talks

Memory Branching GPU Mem.

V. BootsudentegreupssoftJuMBachelor) or 2 (Master)


Deliverables/Grading

Git Repository

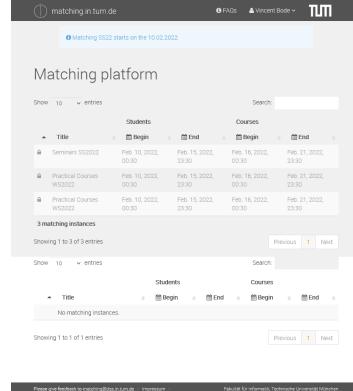
- Assignment/Project Report in Markdown
- Your Code
- CI Jobs (not graded)

Presentation

- No slides. Go through the report
- Talk about what you learned
- Get feedback from advisors

Next Steps

Register on Matching System


- We will prioritize you if you attended today
- Open until 14.02.2023
- Wait for announcement of matching results (23.02.2023)

Group Preferences

- Only after matching has ended
- Send us by e-mail (bengisu.elis@tum.de)
- No preferences submitted → we will match you

Attend Course Kickoff

- At university if everything goes according to plan
- We hope to see you there :)

Please give feedback to matching@dss.in.tum.de - Impressum

Up Next: Introduction to BEAST

V. Bode, D.Herr, B. Elis (TUM)

Collaboration among 3 institutions

LMU TUM LRZ

TUM – CAPS/Prof. Schulz (Bengisu Elis)

LRZ - Future Computing Group (Josef Weidendorfer)

Focus: Experimental Evaluation

We want you to learn about performance properties of modern architectures

- Be able to understand and explain performance effects seen from measurements
- Get a deeper understanding of current system designs (CPU / GPU)

Part 1: get started with small codes across systems

- We show key hardware design concepts + a parallel programming model (OpenMP)
- We give you typical small HPC code examples
- You run measurements of different scenarios across systems, compare / discuss results
- We all discuss results in the weekly meetings, from presentations of 2 groups

Structure:

Memory on CPU (Triad / Traversal) → Compute on CPU (MM) → ... on GPU → Tools

Focus: Experimental Evaluation

We want you to learn about performance properties of current architectures

- Be able to understand and explain performance effects seen from measurements
- Get a deeper understanding of current system designs (CPU / GPU)

Part 2: make use of gained knowledge

- We assign randomly one system to each group
- We give you some larger typical HPC code
- You tune the code to get best single-node performance (2 weeks time)
- We all discuss progress in weekly meeting

Evaluation of Single-Node Performance

Target Architectures for the Lab

CPUs

- Intel Icelake (ISA: x86-64 + AVX512)
- AMD Rome (ISA: x86-64 + AVX2)
- Marvell ThunderX2 (ISA: ARM AArch64 + Neon)
- Fujitsu A64FX (ISA: ARM AArch64 + SVE)

GPUs

- NVidia V100
- AMD MI-100

Organization

- Work in student groups
 - we expect you to split up the work equally
- Assignments
 - every week (Part 2: 2 weeks)
 - code / reports (MarkDown) via Gitlab repos, partially CI feedback in the beginning
- Weekly meetings (Thursday afternoon)
 - talks around assignment tasks (microarchitecture, parallel prog. models, ...)
 - student group presentations for every assignment (randomly selected)
 - discussions around results

Prerequisites

- Good knowledge of C (C++) on Linux
- Basic knowledge of computer architecture. You should know terms such as
 - Multi-core, L1/L2/L3 caches, TLB, pipelining, SIMD, SMT
- Interest in computer architecture, benchmarking, low-level code optimization