BEAST Lab Preliminary Meeting

LRZ
Dr. Josef Weidendorfer, josef.weidendorfer@lrz.de

LMU
Minh Thanh Chung, minh.thanh.chung@ifi.lmu.de
Dr. Karl Fürlinger, karl.fuerlinger@ifi.lmu.de

TUM
Vincent Bode, vincent.bode@tum.de,
Dennis-Florian Herr herrd@in.tum.de
Bengisu Elis, bengisu.elis@tum.de
Table of Contents

Course Organization

Introduction to BEAST
Weekly Schedule

Lab Meetup
15:00-18:00
+ Assignment Presentations
+ Theory/Vendor Presentation
+ Assignment Introduction
Weekly Schedule

Lab Meetup
15:00-18:00
+ Assignment Presentations
+ Theory/Vendor Presentation
+ Assignment Introduction
Weekly Schedule

Announcement (E-Mail)
2-3 groups chosen to present

Lab Meetup
15:00-18:00
+ Assignment Presentations
+ Theory/Vendor Presentation
+ Assignment Introduction
Tentative Semester Overview

Organization
- Note: This is preliminary based off of last semester and is subject to improvements
- 6 Assignments
 - 1 week each (except on holidays)
- 2 bigger Projects
 - 2 weeks each
- Student groups of 3 (Bachelor) or 2 (Master)

Previous Vendor Talks

V. Bode, D. Herr, B. Elis (TUM)
Deliverables/Grading

Git Repository

- **Assignment/Project Report** in Markdown
- Your Code
- CI Jobs (not graded)

Presentation

- No slides. Go through the report
- Talk about what you learned
- Get feedback from advisors

Assignment 1 Report

Group: 110

1. Vector Triad Microbenchmark

(a) The arrays are allocated and initialized according to the below equation.

\[A_i = B_i = C_i = D_i = 1 \]

We use the `chrono::steady_clock` timer around a nested loop which iterates over repetitions and data size.

(b) Each scalar calculation contains two double precision floating point operations: a multiplication and an addition. We convert the two time stamps to a double precision duration in seconds.

We derive the MFLOPS using the following formula:

\[\text{MFLOPS} = \frac{\text{dataSize} \times \text{repetitions} \times 2}{(\text{duration} \times 1\text{E}006)} \]

(c) Dead code elimination is avoided by declaring the arrays `volatile`. This prevents the compiler from optimizing away the calculations in each repetition.

(d) The measured performance is nearly identical to the reference, as can be seen in Figure 1.

Figure 1: Measured Performance compared to reference
Next Steps

Register on Matching System
- We will prioritize you if you attended today
- Open until 27.07.2022
- Wait for announcement of matching results (04.08.2022)

Group Preferences
- Only after matching has ended
- Send us by e-mail (bengisu.elis@tum.de)
- No preferences submitted → we will match you

Attend Course Kickoff
- At university if everything goes according to plan
- We hope to see you there :)

V. Bode, D.Herr, B. Elis (TUM)
Up Next: Introduction to BEAST
Collaboration among 3 institutions

LMU
TUM
LRZ

LMU – MNM/Prof. Kranzlmüller
(Karl Fürlinger, Minh Chung, Sergej Breiter)

TUM – CAPS/Prof. Schulz
(Bengisu Elis, Dennis-Florian Herr, Vincent Bode)

LRZ - Future Computing Group
(Josef Weidendorfer, Amir Raoofy)
Focus: Experimental Evaluation

We want you to learn about **performance properties of current architectures**
- Be able to understand and explain performance effects seen from measurements
- Get a deeper understanding of current system designs (CPU / GPU)

Part 1: get started with small codes across systems
- We show key hardware design concepts + a parallel programming model (OpenMP)
- We give you typical small HPC code examples
- You run measurements of different scenarios across systems, compare / discuss results
- We all discuss results in weekly meetings, starting with presentations of groups

Structure:
Memory on CPU (Triad / Traversal) ➔ Compute on CPU (MM) ➔ … on GPU ➔ Tools
Focus: Experimental Evaluation

We want you to learn about **performance properties of current architectures**
- Be able to understand and explain performance effects seen from measurements
- Get a deeper understanding of current system designs (CPU / GPU)

Part 2: make use of gained knowledge
- We assign randomly one system to each group
- We give you some larger typical HPC code examples
- You tune the code to get best single-node performance (3 week time)
- We discuss intermediate/final experiences/results in weekly meetings
Evaluation of Single-Node Performance

Target Architectures for the Lab

CPUs
- Intel Icelake (ISA: x86-64 + AVX512)
- AMD Rome (ISA: x86-64 + AVX2)
- Marvell ThunderX2 (ISA: ARM AArch64 + Neon)
- Fujitsu A64FX (ISA: ARM AArch64 + SVE)

GPUs
- NVidia V100
- AMD MI-100
SuperMUC-NG
Top500 (Nov 2018): #8
Lenovo Intel (2019)
311,040 cores
Intel Xeon Skylake
26.9 PetaFlops Peak
19.5 PetaFlops Linpack
719 TeraByte Main Memory
70 PetaByte Disk
The LRZ Future Computing Testbed

BEAST – Bavarian Energy Architecture and Software Testbed

Preliminary Meeting BEAST Lab WS22/23 | July 21, 2022
Testbed Objectives

• Help decide about next large system
• Get experience on benefits of various future architectures for LRZ codes
• Find best configuration: how much money to spend on compute / memory / network?
• Enable migration planning: educate own staff / port LRZ tools / prepare courses
• Support vendor collaboration

• Enable research studies on new technologies
• Forward looking: LRZ services around future platforms, novel usage models
 • more experimental: FPGAs, AI accelerators, integration of heterogeneity (QC)
• In partnership with selected researchers from Munich universities

Lot of work to do! Engage students for student work (BA, MA): This Lab!
The Testbed – Available Hardware

2 racks, each with 6 PDUs (for power measurements)
 • Max power consumption per rack: 35 kW

Top to bottom (picture from last year)
 • 3 switches (Infiniband 200Gb/s HDR), 2x 48port 1Gb/s Ethernet
 • Login 1U “testbed.cos.lrz.de”
 • 2x AMD Rome GPU server 2U: “rome1” / “rome2”
 • Storage 2U with homes
 • 2x Marvell ThunderX2 GPU server 2U: “thx1” / “thx2”

Not shown:
 • HPC CS500 Management 2U + 8 nodes A64FX “cs1” – “cs8”
 • 2x Intel IceLake GPU server 2U: “ice1” / “ice2”
Intel Skylake (available as fallback)

SuperMUC-NG
• Here: only Single-Node experiments
• Node
 • 2 sockets with Intel Skylake Xeon Platinum 8174
 • 2x 24 = 48 cores
 • 2x 512bit vector units per core (8 x DP FMA)
 • 2 threads per core (”Hyper-Threading”)
 • 2.3 GHz base (currently: 2.5 GHz), 14nm
 • 96 GB main memory

Links
• https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG
• https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
Intel Icelake

Two systems in BEAST
• 2 sockets Intel Xeon (Icelake) Platinum 8360Y
 • 2x 36 = 72 cores
 • 2x 512bit vector units per core (8 x DP FMA)
 • 2 threads per core (”Hyper-Threading”)
 • 2.4 GHz base, Intel 10nm
• 512 GB main memory, 1.5 TB Optane NVRam

Links
• https://en.wikichip.org/wiki/intel/microarchitectures/ice_lake_(server)
• https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove
AMD Rome

Two systems in BEAST
• 2 sockets with EPYC 7742
• 2x 64 = 128 cores (“Zen2”)
 • Chiplet design: IO-Die + 8x CCX-Dies (2x 4-core)
 • 2x 256-bit vector units per core (4 x DP FMA)
• 2 threads per core
• 2.25 GHz base, TSMC 7nm
• 512 GB main memory
• 2x AMD Radeon MI-100 GPUs
 • 7nm, 32GB HBM, PCIe4

Link
• https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
Marvell ThunderX2

Two systems in BEAST

- 2 sockets with ThunderX2 CN9980
- 2x 32 = 64 cores ("Vulcan")
 - 128-bit vector units (2 x DP FMA)
 - 4 threads per core
 - 2.2 GHz base, 16nm
- 512 GB main memory
- 2x Nvidia V-100
 - Volta, 32GB HBM, PCIe3

Link

Fujitsu A64FX

HPE CS500 in BEAST
• 8 nodes with one A64FX CPU (“NSP1”)
• 48 cores per CPU
 • 2x 512bit vector units per core
• 1.8 GHz, TSMC 7nm
• 4 NUMA domains
• 32 GB HBM2

Link
• https://en.wikipedia.org/wiki/Fujitsu_A64FX

[Fujitsu: The 1st SVE Enabled Arm Processor: A64FX and Building up ARM HPC Ecosystem, 2019]