

Seminar Efficient Programming of HPC Systems – Frameworks and Algorithms – Kick-off

Erwin Laure

Max Planck Computing and Data Facility & Chair of Computer Architecture and Parallel Systems Faculty of Informatics Technical University of Munich

with Material from Alexis Engelke, David Hildenbrand, Michael Petter, and Josef Weidendorfer

18.04.2023

Organization

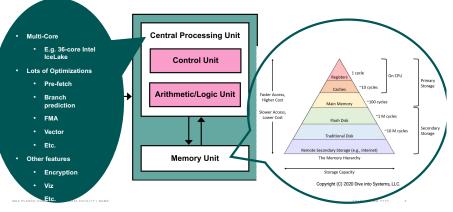
- Kick-off meeting (today)
- Literature research + derive article structure
- Discuss structure with advisor
- Write draft paper deadline 2023-06-01

Organization

- Kick-off meeting (today)
- Literature research + derive article structure
- Discuss structure with advisor
- Write draft paper deadline 2023-06-01
- Peer-review two other papers deadline 2023-06-16

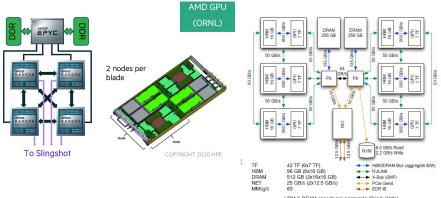
Organization

- Kick-off meeting (today)
- Literature research + derive article structure
- Discuss structure with advisor
- Write draft paper deadline 2023-06-01
- Peer-review two other papers deadline 2023-06-16
- Incorporate feedback from peers and advisor
- ► Final submission + presentation July 5, 2023



Background

FROM SIMPLE VON NEUMANN ARCHITECTURES TO MODERN HPC SYSTEMS



AND THEN WE ALSO ADD ACCELERATORS (GPUS)

HBM & DRAM speeds are aggregate (Read+Write). All other speeds (X-Bus, NVLink, PCIe, IB) are bi-directional.

Background

AND USE MANY, REALLY MANY OF THESE NODES

- Frontier Supercomputer @ ORNL:
 - 9.472 nodes
 - 1,1 EF performance
 - · 21 MW power consumption
 - · in total over 9 M cores (mostly GPU)

TITLE | DD.MM.YYYY 4

Background

(SOME) CHALLENGES IN PROGRAMMING THESE SYSTEMS

- Level of parallelism
 - O(10⁹) FPUs
- Hardware heterogeneity
 - · CPUs, GPUs, other
 - · HBM, SSD, object store
- Programming/Performance Portability
- Novel numerical/methodological approaches

FITLE | DD.MM.YYYY 5



THE GOOD OLD TIMES

- Programms written in Fortran (or C/C++)
- · MPI (Message Passing Interface) for moving data across distributed memory
- · OpenMP for expressing parallelism on shared memory

MAX PLANCK COMPUTING AND DATA FACILITY | NAME

TITLE | DD.MM.YYYY 6

Goals & Topics

- Investigate techniques, frameworks, algorithms to efficiently program such systems
 - Focus on heterogeneous architectures (GPUs, shared/distributed memory)
- Topics
 - High-level frameworks (Kokkos, Alpaka, Cabana, PETSc, etc.)
 - Numerical libraries (SLATE, Ginkgo, heFFTe, etc.)
 - Data Formats (Mixed-precision, non-IEEE data formats, data compression)
 - Data Structures and Layouts (AoS-SoA-AoSoA)
 - Adaptive Mesh Refinement (AMReX, p4est, etc.)
 - Adaptive (task) Parallelism (HPX, StarPU, Charm++, OpenMP, etc.)
 - In-Situ Approaches (ADIOS, etc.)
 - Frameworks for AI (pytorch, tensorflow, etc.)

Goals & Topics

- Investigate techniques, frameworks, algorithms to efficiently program such systems
 - Focus on heterogeneous architectures (GPUs, shared/distributed memory)
- Topics
 - High-level frameworks (Kokkos, Alpaka, Cabana, PETSc, etc.)
 - Numerical libraries (SLATE, Ginkgo, heFFTe, etc.)
 - Data Formats (Mixed-precision, non-IEEE data formats, data compression)
 - Data Structures and Layouts (AoS-SoA-AoSoA)
 - Adaptive Mesh Refinement (AMReX, p4est, etc.)
 - Adaptive (task) Parallelism (HPX, StarPU, Charm++, OpenMP, etc.)
 - In-Situ Approaches (ADIOS, etc.)
 - Frameworks for AI (pytorch, tensorflow, etc.)
 - Bring your own topic

- ► Find 3-4 suitable publications & suitable websites
- Describe briefly how the mentioned approach works and helps with achieving efficiency
- Does the mentioned approach enable a code to be portable across architectures?
- Discuss advantages and drawbacks

Literature and sources

- Finding literature and citable sources/references
- Writing a seminar paper
 - Structure, style, citing
- Presentation techniques
 - Structure, slide design, presentation style

Citable Literature

ТШ

Good to use

- Books, book chapters
- Papers (conf./journal)
- Published articles
- Manuals

Citable Literature

ТШ

Good to use

- Books, book chapters
- Papers (conf./journal)
- Published articles
- Manuals
- Websites with identifiable author

(cite with URL+access date)

Citable Literature

Good to use

- Books, book chapters
- Papers (conf./journal)
- Published articles
- Manuals
- Websites with identifiable author

(cite with URL+access date)

Try to avoid

- Wikipedia
- Facebook, etc.
- Advertisements
- Lecture slides
- Source code
- ChatGPT

- Starting points: IEEExplore, ACM DL, Google Scholar, arxiv.org, ChatGPT, ...
 - Select appropriate keywords
 - Many papers/books accessible freely via the library

- Starting points: IEEExplore, ACM DL, Google Scholar, arxiv.org, ChatGPT, ...
 - Select appropriate keywords
 - Many papers/books accessible freely via the library
- Other starting point: your advisor

- Starting points: IEEExplore, ACM DL, Google Scholar, arxiv.org, ChatGPT, ...
 - Select appropriate keywords
 - Many papers/books accessible freely via the library
- Other starting point: your advisor
- Graph algorithms
 - Publications of the same author(s)
 - Publications at the same venue
 - Cites . . . (listed references)
 - Cited by ...

- Abstract: Brief summary of area, problem, approach, result
- Introduction: introduce area, problem, key results, contributions, outline
- Background: if needed, describe prerequisites

- Abstract: Brief summary of area, problem, approach, result
- Introduction: introduce area, problem, key results, contributions, outline
- Background: if needed, describe prerequisites
- Main part (approach, evaluation, discussion, etc.)

- Abstract: Brief summary of area, problem, approach, result
- Introduction: introduce area, problem, key results, contributions, outline
- Background: if needed, describe prerequisites
- Main part (approach, evaluation, discussion, etc.)
- (In a paper: Related Work)
- Summary & outlook

Writing style

Writing style

► Factual, precise, focused

- Stay on topic, no story telling, ...
- Limit to important and necessary topics
- Don't omit necessary prerequisites

► Factual, precise, focused

- Stay on topic, no story telling, ...
- Limit to important and necessary topics
- Don't omit necessary prerequisites
- Avoid forward references
- Avoid I, prefer we (or passive voice)
- We only describes the authors, not the reader

All work that is not yours must be cited

- Clearly describe source
- But: no wrong/inaccurate attributions
- Citing styles:
 - Literal (direct) quote
 - indirect quote (rephrase)

 $\leftarrow \mathsf{strongly} \ \mathsf{preferred}$

 Exception: foundations can be assumed (generally first few Bachelor semesters)

The x86 architecture defines the register CR2 [1].

The x86 architecture defines the register CR2 c (intel2019man).

The x86 architecture defines the register CR2 [1].

The x86 architecture defines the register CR2. It can be used with the instruction MOV. [1] The x86 architecture defines the register CR2 c (intel2019man).

The x86 architecture defines the register CR2. It can be used with the instruction MOV.~\cite{intel2019man} (Absatz)

The x86 architecture defines the register CR2 [1].

The x86 architecture defines the register CR2. It can be used with the instruction MOV. [1]

Valgrind [1] is a tool for run-time instrumentation.

The x86 architecture defines the register CR2 c (intel2019man).

The x86 architecture defines the register CR2. It can be used with the instruction MOV.~\cite{intel2019man} (Absatz)

 $\label{eq:valgrind} $$ valgrind \cite{nethercote2007} is a tool for run-time instrumentation. $$$

The x86 architecture defines the register CR2 [1].

The x86 architecture defines the register CR2. It can be used with the instruction MOV. [1]

Valgrind [1] is a tool for run-time instrumentation.

Other approaches [1,2,3] ...

The x86 architecture defines the register CR2 c (intel2019man).

The x86 architecture defines the register CR2. It can be used with the instruction MOV.~\cite{intel2019man} (Absatz)

Valgrind~\cite{nethercote2007} is a tool for run-time instrumentation.

Presentation: Content Selection

Presentation: Content Selection

Presentation for the audience!

Presentation: Content Selection

Presentation for the audience!

- What do you want the audience to take away? (Not: what can I talk about!)
- What are the key points?
- How much content fits into the time slot?

Motivation

- Why is the topic relevant?
- Background
 - Consider referencing information from previous talks
- Concept
- Evaluation
 - How good is the described concept?
- Conclusions and outlook

- Important: topics build upon each other! (avoid forward references)
- Only give important details
- Use good/helpful examples
- Critical discussion of the topic

ТШ

- Slides (Beamer)
 - For use during the talk
 - Good to prepare
 - Backup-Folien as preparation for questions
- Whiteboard, blackboard
 - Permanently needed information
 - Answering questions
- Hardware, demonstrators, etc.
- Check possibilities in advance

Before the Talk

- Prepare slides, etc.
- Do a dry-run
 - Always recommended
 - Helps with uncertainity and time estimation
- Prepare on-site
 - Laptop, Beamer, laser pointer, clock, etc.

Talking Style

- Speak freely
- Don't go too fast/slow
- Stay in contact with the audience
 - Eye contact, position, etc.
- Usually at least 1 minute per slide
- Stay in time limit
 - Optional slides can fill time
 - Regularly consult a watch

Stay calm

- One topic per slide
- Avoid text
 - \leq 8 lines
- Prefer graphics/illustrations

- One topic per slide
- Avoid text
 - \leq 8 lines
- Prefer graphics/illustrations
- No unused points
 - Cover everything on the slides in your talk

Title page

▶ Title, name, institution, date, location

Title page

▶ Title, name, institution, date, location

On every other slide: number and title

ТШ

Title page

► Title, name, institution, date, location

- On every other slide: number and title
- Conclusion
 - Alle important points on one slide

Slides: Colors

Black on white

Literature

Slides: Colors

- Black on white
- Black on white

Slides: Colors

- Black on white
- Black on white
- Sufficient contrast
- Use colors sparingly, but systematically
- Be careful with gradients
- No annoying backgrounds (wave textures, etc.)
- Animations only with sufficiently added value

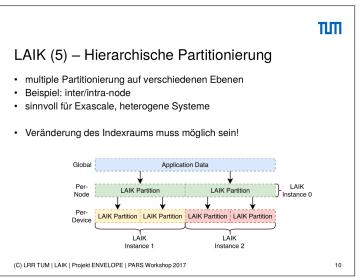
- Double-check text for typos, etc.
- Use a readable, sans-serif font
- Prefer vector graphics (or images with a high resolution)
- Avoid screenshots/scans
- Important: citations
- Listings only with a sufficiently large value

Negative Example

Alignments in brief	
>1bB, A molpotein length:97 Polassium Channel Polein ALHWEAAGAATVIJAVIVIJAGSYLAVIAREGAPGAQL/T YPRAIAWWSVEZATYVGYGDIAYWYLAVGRCVAVVVMVA GITSFGL/TAALATWFVGREQ	s Iong, C. molgrotein length:223 Potassium Channel IGDY:MEIPPL/YELGY/SYAALLSVIVVYVY/ECTMQLSGEYL// RLY/WDLLIWILIAMDYAYRAY/SSGDPAGY/VKRTL/YEL PAL/PASGLALAEGHLACHGLPEL/NLLFR/LRLLINEG SKEFJ/SALADAADKIRY/IIL/PGAYML/TG/AEALVIV/EY IGDA/MIL/TG/SAL/TLL/GTY/SNAFPQKIL// IGDA/MIL/TG/SAL/TLL/GTY/SNAFPQKIL//
Query= 1bl8_A mol:protein length:97 Potassium Channel Protein (97 letters)	
 >lorq_C mol:protein length:223 Potassium Channel Length = 223 Score = 58.5 bits (140), Expect = 4e-14 Identities = 26/72 (36%), Positives = 43/72 (59%) 	Scoring matrix Algorithm to optimize score
Query: 21 GSYIAVLAERGAPGACLITYPRALWWSVETATTVGYGDLYPVTLWGRCVAVVVMVAGITS 80 G++	
Query: 81 FGLVTAALATWF 92 L+ ++ F Sbjct: 207 LTLLIGTVSNMF 218	

Negative Example

Negative Example



\begin{frame}
\frametitle{Die Anti-Folie}
\frametitle{Die Anti-Folie}
\centering
\includegraphics[width=0.95\textwidth]{pictures/antifolie.jpg}
\caption{Werbe-Folie. Foto von Flickr-Benutzer niallkennedy
(https://www.flickr.com/photos/niallkennedy/58697220/sizes/l/)}
\label{fig:gliederung}
\end{figure}
\end{frame}

Abbildung: Screenshot of code with insufficient resultion

End of Presentation

Summary slide with main take-away points

End of Presentation

- Summary slide with main take-away points
- NO Questions slide!

- Bring your point to the audience written or spoken
- Good literature as starting point
- Logical structure for paper and presentation
- Presentation: good preparation is important

- Bring your point to the audience written or spoken
- Good literature as starting point
- Logical structure for paper and presentation
- Presentation: good preparation is important
- Chance to learn ご

- Paper 6-8 pages
- Presentation about 15 Minutes plus questions (5 minutes)

- Paper 6-8 pages
- Presentation about 15 Minutes plus questions (5 minutes)
- Grading
 - ► 40% paper
 - 40% presentation
 - 20% review
 - all needs to be positive
- start literature search now and get in contact with your tutor

Questions

Questions

Summary

- Paper 6-8 pages
- Presentation about 15 Minutes plus questions (5 minutes)
- Grading
 - 40% paper
 - 40% presentation
 - 20% review
 - all needs to be positive
- communicate three (3) topics until April 23
- final topics and tutor will be assigned next week
- start literature search now and get in contact with your tutor