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Domain-Specific Architectures (DSA)
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Apple M1
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1https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
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FPGA

FPGA
■ Reconfigurable Hardware with lower clock speed

■ Flexible accelerator, good for small volume

■ Can be used to prototype ASIC design
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Artix-7 Overview
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2https://xilinx.eetrend.com/files-eetrend-xilinx/forum/201509/9204-20390-7_
series_architecture_overview.pdf
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Register Transfer Level (RTL)

module bit_reverse
#(

parameter addr_width = 10
)
(

input [addr_width - 1 : 0] addr_in,
output [addr_width - 1 : 0] addr_out

);
generate

genvar i;
for(i = 0; i < addr_width;i = i + 1) begin

assign addr_out[i] = addr_in[addr_width - 1 - i];
end

endgenerate
endmodule
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High-Level Synthesis (HLS)

; 3

3Crockett et al., The Zynq Book
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High-Level Synthesis (HLS)
void dut(int in[N], int out[N], int n)
{
hls_thread_local hls::split::round_robin<int, NP> split1;
hls_thread_local hls::merge::round_robin<int, NP> merge1;
#pragma HLS dataflow
read_in(in, n, split1.in);
// Task-Channels
hls_thread_local hls::task t[NP];
for (int i = 0; i < NP; i++) {
#pragma HLS unroll

t[i](worker, split1.out[i], merge1.in[i]);
}
write_out(merge1.out, out, n);

}
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Inference

Trained
CNN

Layer
Config

Weights

Setup
Probabilities:
Giraffe (0.7)
Dog (0.1)
Fish (0.002)

■ Focus inference of CNNs

■ Learn required kernels and implement them in C++ and analyse algorithm

■ Higher Latency and Energy requirements than training (e.g. Smartphone)

■ Reduce Latency and/or increase throughput using HLS + FPGA
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Project

Analysis of SW

Existing Architectures

Student
Synthesis

HLS Design
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Integration

HLS Design Vivado BD

Export IP

CPU FPGA

Flash bitstream

DRAM
AXI_HP

AXI-Lite
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Structure (1/2)
1. Domain Specific Architectures

• Why do we need Domain Specific Architectures?
• Existing DSAs and design approaches

2. FPGAs & Digital Design Basics (Verilog)

• Components of FPGAs (BRAM,LUTs,DSPs and more)
• Recap on Sequential, Combinational Logic, FSMs and Pipelining

3. High-Level Synthesis

• Different Pragmas (Optimizations)
• Compilation workflow and Debugging

4. Use Case: CNN-Inference & C/C++ recap

• Kernels of CNNs (Conv,ReLU, Linear, etc.)
• Implementation in C++ and performance analysis of different layers
• Write a short report per group about the SW implementation
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Structure (2/2)
5. Paper Presentation

• Per group presentation of an AI-Accelerator

6. High-Level Synthesis Project

• Accelerate the CNN-Inference using the PYNQ-Z2 board
• Lectures will deal with more advanced HLS topics

7. Grading

• Final Report and Implementation (50%)
• Presentation (10%)
• Individual Project Discussion (40%)

8. Groups:

• Up to 3 students per group
• Less students are possible
• 8 boards available so 8 groups max
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Course Structure
■ Contact: dirk.stober@tum.de
■ Lecture session Tuesday (10:00 - 12:00)

• In room 01.06.020

■ Lab session Friday (14:00 - 16:00)
• In room 01.06.020
• Will have some Lectures/Presentations on Friday as well!

■ Additional Pre-recorded Videos
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Equipment & Software
■ Lab exercises will be designed for Linux machines

■ Windows and Apple (x86) will also work

■ Apple ARM laptops (M1-M3) will have to use a server for Vivado & Vitis
(Limited Supply)

■ Python interpreter + Pytorch , C++ compiler

■ Vivado & Vitis (Free Student License)

■ Board: Pynq Z2 accessible through a server

15



Summary Deliverables
■ Verilog and HLS labs
■ SW-Implementation (Mandatory)

• C++ Implementation
• SW Report

■ Paper Presentation (Mandatory)
■ Graded Project: HLS implementation of an CNN accelerator

• Presentation (20 min)
• Report
• Discussion (Week of presentation or week afterwards)

Use this course in the machting System:

Practical: Accelerating Convolutional Neural Networks using Programmable
Logic (IN0012) (IN2106, IN4345)
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