
Chair of Computer Architecture and Parallel Systems
School of Computation, Information and Technology
Technical University of Munich

Accelerating CNNs
using Programmable Logic
Preliminary Meeting

Dirk Stober

Chair of Computer Architecture and Parallel Systems
School of Computation, Information and Technology
Technical University of Munich

08.02.2023



Domain-Specific Architectures (DSA)

2



Apple M1

1

1https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

3

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested


FPGA

FPGA
■ Reconfigurable Hardware with lower clock speed

■ Flexible accelerator, good for small volume

■ Can be used to prototype ASIC design

4



Artix-7 Overview

2

2https://xilinx.eetrend.com/files-eetrend-xilinx/forum/201509/9204-20390-7_
series_architecture_overview.pdf

5

https://xilinx.eetrend.com/files-eetrend-xilinx/forum/201509/9204-20390-7_series_architecture_overview.pdf
https://xilinx.eetrend.com/files-eetrend-xilinx/forum/201509/9204-20390-7_series_architecture_overview.pdf


Register Transfer Level (RTL)

module bit_reverse
#(

parameter addr_width = 10
)
(

input [addr_width - 1 : 0] addr_in,
output [addr_width - 1 : 0] addr_out

);
generate

genvar i;
for(i = 0; i < addr_width;i = i + 1) begin

assign addr_out[i] = addr_in[addr_width - 1 - i];
end

endgenerate
endmodule

6



High-Level Synthesis (HLS)

; 3

3Crockett et al., The Zynq Book

7



High-Level Synthesis (HLS)
void dut(int in[N], int out[N], int n)
{
hls_thread_local hls::split::round_robin<int, NP> split1;
hls_thread_local hls::merge::round_robin<int, NP> merge1;
#pragma HLS dataflow
read_in(in, n, split1.in);
// Task-Channels
hls_thread_local hls::task t[NP];
for (int i = 0; i < NP; i++) {
#pragma HLS unroll

t[i](worker, split1.out[i], merge1.in[i]);
}
write_out(merge1.out, out, n);

}

8



Inference

Trained
CNN

Layer
Config

Weights

Setup
Probabilities:
Giraffe (0.7)
Dog (0.1)
Fish (0.002)

■ Focus inference of CNNs

■ Learn required kernels and implement them in C++ and analyse algorithm

■ Higher Latency and Energy requirements than training (e.g. Smartphone)

■ Reduce Latency and/or increase throughput using HLS + FPGA

9



Project

Analysis of SW

Existing Architectures

Student
Synthesis

HLS Design

10



Integration

HLS Design Vivado BD

Export IP

CPU FPGA

Flash bitstream

DRAM
AXI_HP

AXI-Lite

11



Structure (1/2)
1. Domain Specific Architectures

• Why do we need Domain Specific Architectures?
• Existing DSAs and design approaches

2. FPGAs & Digital Design Basics (Verilog)

• Components of FPGAs (BRAM,LUTs,DSPs and more)
• Recap on Sequential, Combinational Logic, FSMs and Pipelining

3. High-Level Synthesis

• Different Pragmas (Optimizations)
• Compilation workflow and Debugging

4. Use Case: CNN-Inference & C/C++ recap

• Kernels of CNNs (Conv,ReLU, Linear, etc.)
• Implementation in C++ and performance analysis of different layers
• Write a short report per group about the SW implementation

12



Structure (1/2)
1. Domain Specific Architectures

• Why do we need Domain Specific Architectures?
• Existing DSAs and design approaches

2. FPGAs & Digital Design Basics (Verilog)
• Components of FPGAs (BRAM,LUTs,DSPs and more)
• Recap on Sequential, Combinational Logic, FSMs and Pipelining

3. High-Level Synthesis

• Different Pragmas (Optimizations)
• Compilation workflow and Debugging

4. Use Case: CNN-Inference & C/C++ recap

• Kernels of CNNs (Conv,ReLU, Linear, etc.)
• Implementation in C++ and performance analysis of different layers
• Write a short report per group about the SW implementation

12



Structure (1/2)
1. Domain Specific Architectures

• Why do we need Domain Specific Architectures?
• Existing DSAs and design approaches

2. FPGAs & Digital Design Basics (Verilog)
• Components of FPGAs (BRAM,LUTs,DSPs and more)
• Recap on Sequential, Combinational Logic, FSMs and Pipelining

3. High-Level Synthesis
• Different Pragmas (Optimizations)
• Compilation workflow and Debugging

4. Use Case: CNN-Inference & C/C++ recap

• Kernels of CNNs (Conv,ReLU, Linear, etc.)
• Implementation in C++ and performance analysis of different layers
• Write a short report per group about the SW implementation

12



Structure (1/2)
1. Domain Specific Architectures

• Why do we need Domain Specific Architectures?
• Existing DSAs and design approaches

2. FPGAs & Digital Design Basics (Verilog)
• Components of FPGAs (BRAM,LUTs,DSPs and more)
• Recap on Sequential, Combinational Logic, FSMs and Pipelining

3. High-Level Synthesis
• Different Pragmas (Optimizations)
• Compilation workflow and Debugging

4. Use Case: CNN-Inference & C/C++ recap
• Kernels of CNNs (Conv,ReLU, Linear, etc.)
• Implementation in C++ and performance analysis of different layers
• Write a short report per group about the SW implementation

12



Structure (2/2)
5. Paper Presentation

• Per group presentation of an AI-Accelerator

6. High-Level Synthesis Project

• Accelerate the CNN-Inference using the PYNQ-Z2 board
• Lectures will deal with more advanced HLS topics

7. Grading

• Final Report and Implementation (50%)
• Presentation (10%)
• Individual Project Discussion (40%)

8. Groups:

• Up to 3 students per group
• Less students are possible
• 8 boards available so 8 groups max

13



Structure (2/2)
5. Paper Presentation

• Per group presentation of an AI-Accelerator

6. High-Level Synthesis Project
• Accelerate the CNN-Inference using the PYNQ-Z2 board
• Lectures will deal with more advanced HLS topics

7. Grading

• Final Report and Implementation (50%)
• Presentation (10%)
• Individual Project Discussion (40%)

8. Groups:

• Up to 3 students per group
• Less students are possible
• 8 boards available so 8 groups max

13



Structure (2/2)
5. Paper Presentation

• Per group presentation of an AI-Accelerator

6. High-Level Synthesis Project
• Accelerate the CNN-Inference using the PYNQ-Z2 board
• Lectures will deal with more advanced HLS topics

7. Grading
• Final Report and Implementation (50%)
• Presentation (10%)
• Individual Project Discussion (40%)

8. Groups:

• Up to 3 students per group
• Less students are possible
• 8 boards available so 8 groups max

13



Structure (2/2)
5. Paper Presentation

• Per group presentation of an AI-Accelerator

6. High-Level Synthesis Project
• Accelerate the CNN-Inference using the PYNQ-Z2 board
• Lectures will deal with more advanced HLS topics

7. Grading
• Final Report and Implementation (50%)
• Presentation (10%)
• Individual Project Discussion (40%)

8. Groups:
• Up to 3 students per group
• Less students are possible
• 8 boards available so 8 groups max

13



Course Structure
■ Contact: dirk.stober@tum.de
■ Lecture session Tuesday (10:00 - 12:00)

• In room 01.06.020

■ Lab session Friday (14:00 - 16:00)
• In room 01.06.020
• Will have some Lectures/Presentations on Friday as well!

■ Additional Pre-recorded Videos

14



Equipment & Software
■ Lab exercises will be designed for Linux machines

■ Windows and Apple (x86) will also work

■ Apple ARM laptops (M1-M3) will have to use a server for Vivado & Vitis
(Limited Supply)

■ Python interpreter + Pytorch , C++ compiler

■ Vivado & Vitis (Free Student License)

■ Board: Pynq Z2 accessible through a server

15



Summary Deliverables
■ Verilog and HLS labs
■ SW-Implementation (Mandatory)

• C++ Implementation
• SW Report

■ Paper Presentation (Mandatory)
■ Graded Project: HLS implementation of an CNN accelerator

• Presentation (20 min)
• Report
• Discussion (Week of presentation or week afterwards)

Use this course in the machting System:

Practical: Accelerating Convolutional Neural Networks using Programmable
Logic (IN0012) (IN2106, IN4345)

16


