Computational Science and Engineering

Final Exam in Computer Architecture and Networks

Winter Term 2011/2012 February 6, 2012

Total score:	120 points
Time:	90 minutes
Instructions:	
	wers onto these sheets – no other answers will be counted! You will get atch paper to work out your solutions, however, this will not be collected and not
	a closed book exam- i.e. no books, notes, or similar aids and also no electronic any kind are permitted!
Please do not	use red or green pens.
	eed to leave the room, you need to deposit your test sheet. Only one person is ve the room at one time.
There will be	an announcement 10 minutes before the end of the test time.
After the test,	please remain seated until all tests have been collected and counted.
Name:	
Matr. Numbe	er:
Signature:	

Question 1, Numbering Systems (10 points):

In the following table, each row represents the same (positive) number represented in a different numbering system. The numbering system is denoted in the upper row. Complete the table by filling in the missing number representations!

Binary	Octal	Decimal	Hexadecimal
11001101			
	777		
		20	
			BAAB

Question 2, PC Hardware (30 points):

Outline the basic structure of a superscalar microprocessor with typical units:

Give two examples of state of the art x86 superscalar processors! What are their main conceptual differences?						
Question 3, Execution Models:						
Explain the stack principle and give some examples where it is being used!						
Explain the stack principle and give some examples where it is being used!						
Explain the stack principle and give some examples where it is being used!						
Explain the stack principle and give some examples where it is being used!						
Explain the stack principle and give some examples where it is being used! What is its major drawback?						

How is
C = A + B
translated into machine code on an ARM architecture? Which execution model is this?
How is
C = A + B
translated into machine code on a VAX architecture? Which execution model is this?
Question 4, Pipelining (12 points):
Question 4, Pipelining (12 points): Explain the difference between a standard pipeline, a superscalar pipeline and a VLIW pipeline by drawing an illustration for each case:
Explain the difference between a standard pipeline, a superscalar pipeline and a VLIW
Explain the difference between a standard pipeline, a superscalar pipeline and a VLIW pipeline by drawing an illustration for each case:
Explain the difference between a standard pipeline, a superscalar pipeline and a VLIW pipeline by drawing an illustration for each case:
Explain the difference between a standard pipeline, a superscalar pipeline and a VLIW pipeline by drawing an illustration for each case:
Explain the difference between a standard pipeline, a superscalar pipeline and a VLIW pipeline by drawing an illustration for each case:
Explain the difference between a standard pipeline, a superscalar pipeline and a VLIW pipeline by drawing an illustration for each case:
Explain the difference between a standard pipeline, a superscalar pipeline and a VLIW pipeline by drawing an illustration for each case:
Explain the difference between a standard pipeline, a superscalar pipeline and a VLIW pipeline by drawing an illustration for each case:

b) Superscalar Pipeline

`	T 7T	ιIW	ъ.	1	•	
~ 1	\ / I	1 \ \ \ /	Dit	ากเ	ın	^
	vı	. I V V	ги	,,,		_

Question 5, Cache (30 points):

Why are modern processors using caches? What are their advantages and disadvantages?

What is an n-way set associative mapping?

Page 7/8

Question 5, Processor/Architecture Development (15 points):

Moore's law states that the number of transistors on a chip doubles every 1 ½ years. While this led to an increase of clock frequencies without much need to rewrite you programs in order to obtain better performance, why was this trend stoppd a few years ago? What did vendors do with the increasing number of transistors?

Outline the ISO/OSI seven layer model being used as a generic model for computer networks:

Are all 7 layers used in the TCP/IP protocol suite?