
Living on the Edge: Efficient Handling of Large
Scale Sensor Data

Roman Karlstetter
Technical University of Munich

IfTA GmbH
Garching/Puchheim, Germany

roman.karlstetter@tum.de

Amir Raoofy
Technical University of Munich

Garching, Germany

amir.raoofy@tum.de

Martin Radev
Technical University of Munich

Garching, Germany

martin.radev@tum.de

Carsten Trinitis
Technical University of Munich

Garching, Germany

carsten.trinitis@tum.de

Jakob Hermann
IfTA GmbH

Puchheim, Germany

jakob.hermann@ifta.com

Martin Schulz
Technical University of Munich

Garching, Germany

martin.w.j.schulz@tum.de

Abstract—Real-time sensor monitoring is critical in many
industrial applications and is, e.g., used to model and predict
operating conditions to optimize operations as well as to prevent
damage in machinery and systems. In many cases, this data
is generated by a myriad of sensors and stored or transmitted
for post-processing by data analysts. Handling this data near
its origin—on the edge—imposes significant challenges for stor-
age and compression: it is necessary to store it in a format
that is suitable for large data analytics algorithms, which in
most cases means columnar storage. Furthermore, to provide
efficient storage and transmission of such sensor data, it must
be compressed efficiently. However, existing solutions do not
address these challenges sufficiently. In this work, we present
a holistic approach for fast streaming of large scale sensor data
directly into columnar storage and integrate it with a proven
compression scheme. Our approach uses a pipelined scheme for
streaming and transposing the data layout, combined with a byte-
level transformation of data representation and compression,
which we evaluate in comprehensive experiments. As a result,
our approach enables transformation of large scale sensor data
streams into an efficient, analytics-friendly format already at
the sensor site, i.e., on the edge, at data ingestion time. By
implementing our optimized approach in the open and widely
used columnar storage format Apache Parquet, which we already
partly upstreamed, we ensure its accessibility to the community.

Index Terms—sensor data streaming, edge computing,

I. INTRODUCTION

Industrial installations use an ever-growing number of sen-

sors to monitor machine health and operational state. The

petroleum industry [1], water supply and distribution net-

works [2], power generation, e.g., wind turbines [3] and gas-

fired power plants [4], HPC centers [5], and many more:

they all benefit from the data generated by an enormous

number of sensors in their monitoring systems, which they

analyze to optimize operations, detect potential problems, and

This work was supported by Bayerische Forschungsstiftung under the
research grant Optimierung von Gasturbinen mit Hilfe von Big Data (AZ-
1214-16), a collaboration project of TU München and IfTA Ingenieurbüro für
Thermoakustik GmbH.

prevent failures. In many cases, these sensors measure physical

phenomena or other derived values and deliver continuous

streams of sensor data. These streams often include data

sampled at a very high data rate, which is especially necessary

for monitoring and studying the underlying physical processes

that generate high-frequency oscillations. Further, for each

installation, monitoring systems measure and analyze the sig-

nals from many sensors simultaneously, leading to numerous

amounts of parallel and fast data streams (see Figure 1 2©).

These parallel streams are processed in real-time to adjust

machine parameters, prevent machine failures or to detect

potential problems (see Figure 1 3©). Additionally, many

scenarios require storing this data for later use, either on

site or—if network bandwidth allows it—in the cloud. For

example, the collected data is used to design new and more

expressive metrics to indicate the health of underlying machin-

ery and to improve the monitoring systems’ real-time failure

detection mechanisms. Moreover, in case of damage to the

machinery, the collected data is used for root cause analysis,

i.e., to understand failures and their reasons. Traditionally, such

analyses do not happen on site, but are rather moved to an

off-site data center, where data from many installations can

be combined (e.g., see Figure 1 6©).

Handling the large scale sensor data streams for such

analysis scenarios imposes two main challenges:

First, data streams are typically ingested and stored in a

row-oriented (time-ordered) layout (Figure 1 4©), which is

the straightforward approach for high-throughput data stream

storage, as the streams are directly written to permanent

storage without the need for any further layout processing
after ingestion. However, for most analysis algorithms, data

stored in a column-oriented (sensor-ordered) storage format

leads to more efficient analyses [6]. This underlines the need

for an automated layout processing step, i.e., conversion from

row-oriented to column-oriented layout. Ideally, this is done

before persisting the data to permanent storage, close to the

data origin, i.e., on the edge device. However, the processing

1

2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-7281-9586-5/21/$31.00 ©2021 IEEE
DOI 10.1109/CCGrid51090.2021.00010

...

...

... ...

...

...

...

Fig. 1: Deployment scenario for monitoring industrial assets, here at the example of a gas turbine for power generation 1©. A

limited time frame of data from several sensors 2© is combined and analyzed on an embedded digital signal processor without

any storage capabilities 3©. This happens in real-time to protect the machinery. In order to store the data for further offline

analysis, the row-oriented (time-ordered) data stream 4© is sent to an edge-system 5©, still on site. This edge-system stores the

sensor data and provides real-time analysis results. A subset of the data stored on site is sent to a central storage system 6©,

where data from other, similar installations is gathered as well. Our contributions address efficient handling of this sensor data

stream by efficiently transforming it to a column-oriented (sensor-ordered) format as well as optimizing compression.

resources at this stage of data processing, i.e., at the edge, are

scarce, rendering this a challenging task.

Second, yet perhaps even more important, these sensor data

streams generate huge volumes of data. Optimizing compres-

sion directly impacts the needed storage space and network

bandwidth for data transmission. It is thus essential to consider

data compression from the beginning and integrate it directly

into the ingestion system at the edge, near the machinery.

While there are systems handling these individual aspects,

there is no holistic approach that optimizes the entire data flow

from sensor to columnar storage; and there is also no study

to quantify the handling of fast sensor data in a practical real-

world scenario (see Figure 1).

In this paper, we present a novel end-to-end solution to

address these challenges. Our approach extends the pipeline

with two optimized, complementary components that enable

both efficient layout processing and sensor data compression

on the edge device. We demonstrate the feasibility of our

approach by implementing a fully working system that extends

the Apache Parquet [7] storage format. We upstreamed our

implementation as part of Apache Parquet so that the research

community can easily reproduce and apply our approach to

their data sets and use it in their projects.

Additionally, we comprehensively evaluate the handling of

fast and large scale sensor streams with our system. For these

evaluations, we rely on a real-world use case, exploit realistic

settings, and take the unique advantage of using data acquired

from a real-world industrial monitoring system to quantify the

performance and practical resource requirements on different

hardware platforms. Finally, using a case study, we show that

our system is also applicable to low-power edge systems,

which is an important usage scenario in industrial settings.

In summary, we make the following key contributions:

• We design, implement and optimize an end-to-end sys-

tem, from sensor to compressed columnar storage.

• We provide a comprehensive evaluation of the developed

system on multiple platforms.

• Using a real-world data set, we show that our approach

improves both compression ratio and sustained through-

put for floating-point sensor data compared to prior art.

• We integrate our approach into an industrial system and

demonstrate its functionality and efficiency in a real-

world setting.

The remainder of this paper is organized as follows: We

first give an overview of the context and define the problem

statement in Section II. In Section III, we describe our holistic

approach of streaming sensor data to columnar storage and

how to efficiently compress these sensor data streams, and

in Section IV we detail our implementation. We provide an

extensive evaluation of our system together with a discussion

in Section V. In Section VI we demonstrate the applicability of

our approach in a real-world use case, and we discuss related

work Section VII. Finally, Section VIII concludes our paper.

II. PROBLEM STATEMENT

Streams of sensor data are ubiquitous, representing the back-

bone of virtually every modern intelligent monitoring system,

as they are used in industrial (e.g., Industry 4.0 applications),

home/consumer (e.g., smart homes and vehicles) and research

(e.g., large scale experimental setups) environments alike. As

one concrete example, which is representative of many practi-

cal scenarios in scale and resource requirements, we describe a

combustion monitoring and protection system for heavy-duty

gas turbines used for power generation (see Figure 1). The

combustion process in current generations of gas turbines is

monitored using up to 32 high-frequency pressure oscillation

sensors, each of which generates a stream of single-precision

floating-point values at a rate of 25.6 kHz (see Figure 2).

Further, monitoring systems generate not only raw sensor data:

they also integrate operational information, derive extra infor-

mation such as frequency spectra of raw data as well as other

results of application-specific real-time analyses, which are

represented as additional data streams and can easily double

the amount of produced data. In total, a single turbine alone

2

generates more than 500 GBytes of uncompressed single-

precision floating-point data per day.
State-of-the-art systems handle this data by storing it in

a row-oriented format (in most cases, binary), as this is the

most natural and efficient way of streaming it to permanent

storage. As data analysis and visualization often requires

the processing of individual sensor streams, a columnar data

storage format speeds up analysis workloads considerably [4],

[6]. For example, pre-filtering or simple analysis of individual

signals, could already be performed on the edge, avoiding

unnecessary data transmission to cloud systems. In other

words, a column-oriented layout makes data analytics more

straightforward, since data is already in a suitable format for

analysis. Further, column-oriented layout enables compression

algorithms to work more efficiently, as alike data is implicitly

grouped together. Consequently, we need to be able to convert

the incoming data stream from the row-oriented layout—as the

sensor processing system generates it—to a column-oriented

format usable for analysis workloads directly already on the

edge device near the origin of data.

0 1 2

Se
ns

or
 1

0 1 2

Se
ns

or
 2

t0 t0 + 1 t0 + 2
Time [secs]

Se
ns

or
 n

Sensor value distribution

Fig. 2: Example of raw sensor data streams for three different

sensors, sampled synchronously. This two-seconds excerpt

shows more than 50 000 sensor readings in each plot. The right

part of the plot shows a histogram of the value distribution.

However, transferring and storing this data—even after such

transformations—puts a lot of pressure on network and storage

systems; it is thus necessary to compress it with a suitable

compression method, and do so as soon as possible in the

data pipeline. We show an example of sensor values for the

described use case in Figure 2. It can be clearly seen that

there is a lot of noise in the sensor signal, a combination of

measurement noise and physically existing process noise of

the monitored asset. On the other hand, there are limitations

on the range and resolution of possible sensor values, creating

opportunities for optimizing compression, specializing them

specifically for such sensor systems. Additionally, during

normal operation, there is only a low dynamic range in these

values (as indicated by the histogram on the right of Figure 2).

Consequently, in this paper we show that, by taking these data

properties into consideration in the design of our compression

stack, it is possible to substantially improve both compression

ratio and throughput, while taking the limited processing

capabilities on the edge into account.
Overall, we therefore propose an end-to-end system, which

1) transforms the data layout from the row-oriented input

stream into a column-oriented analytics format, 2) efficiently

handles compression, specifically targeted at sensor data and

3) show that all this can be done on a low-power edge device.

III. APPROACH

We start by describing the core ideas of our approach in

designing an end-to-end system: the two aspects of streaming

data to columnar storage and compressing floating-point data

more efficiently are discussed separately in the following two

subsections. Although the design criteria for these two aspects

in our end-to-end approach are conceptually orthogonal, the

resulting effects are intertwined, and both need to be con-

sidered together to reach an optimal sensor handling system

suitable for a large range of sensor streams, including the one

discussed in Section II. We start with explaining the core idea

of converting row-oriented data into column-oriented format.

A. Streaming to Columns

As shown in Figure 1, in a typical monitoring system for

industrial assets, sensor readings arrive in parallel for one

particular instant ti. The data for these sensor readings is sent

to an edge computer, which handles permanent storage. State-

of-the-art systems store the arriving data streams to permanent

storage as is, i.e., they continuously append the row-oriented

sensor values at instant ti to a file. This is typically followed

by encoding, compression and manual conversion steps.

As this layout is not helpful for most analytics operations,

we transpose the data stream and structure it into a columnar

layout. In the remainder of this paper, we will call this step

layout transformation. Since we do this layout transformation

on the fly and at the edge to avoid high transformation costs

needed when applied during post-processing, we need to take

the limited compute and memory resources on such edge

devices into account.

We employ a double-buffered and pipelined streaming

scheme for the layout transformation and apply it before the

encoding and compression step. As the length of the data

stream can be assumed to be infinite (systems are operating

24/7) and the memory resources of any computing device

are limited, the streaming scheme relies on assembling the

arriving streams into buffers with predefined capacities. As a

consequence, only a limited number of consecutive rows from

the row-oriented data stream are buffered in memory. We call

this set of consecutive rows buffered together a row group (see

dashed red rectangles in Figure 1).

We assume there is enough physical RAM to buffer two

of these row groups completely in memory. While buffering

on different persistent storage technologies (either explicitly

via memory mapped files or implicitly via system swap) is

potentially possible as well, it creates a variety of additional

challenges that are out of scope of this paper. We assume fur-

ther that the number of sensors does not change dynamically—

resulting in a rigid data schema—and that all sensors are

sampled synchronously by a signal acquisition system1 (cf.

Figure 1 3©). Such a system typically processes a window

1These are valid assumptions for many monitoring facilities, especially
those introduced in Section II.

3

of fixed (small) length and sends the raw sensor data (see

Figure 2) together with several analysis results.

Based on these assumptions, the actual approach for buffer-

ing a row group is the following: since we know the set of

columns (i.e., number and types of sensors data streams) and

the row group size (rgs: the number of rows in a row group,

can be configured based on the memory limitations on the

device), we can calculate the buffersize for one row group as

buffersize = rgs×
∑

c∈Columns

sizeof(type(c)).

For the pipelined layout transformation, we allocate two of

these buffers and use them in an alternating fashion for data

buffering. These buffers have a transposed layout in which

different columns are structured at different offsets. A row

that arrives at instant ti is cut up and scattered to the right

spots in the buffer.

Once a buffer is completely filled (or, to ensure timely

streaming, when a certain time interval has passed), it is

terminated, prepared for serialization and written to a file

or to the network. We execute this preparation and writing

phase using a background thread to decouple buffering from

data writing. This enables us to avoid disruption in data

ingestion, as we are dealing with a continuous stream of

values arriving from the sensors, and since preparing and

writing data can be time consuming (see Section V). Having

data in column-oriented format, we then also enable benefits

like improved compressibility due to the implicitly achieved

grouping, as subsequent values in the data storage come from

the same sensor. It also enables further optimizations, which

are discussed in Section V-F. After a predefined number of row

groups have been streamed to a file, this file is terminated and

new data goes into a new file.

To keep up with the incoming data stream, all parts of

the pipeline need to support the throughput of the arriving

data stream, including the two software components layout

transformation and preparing data for serialization.

B. Two-Step Floating-Point Compression

We base the compression component of our system on a

proven compression approach, consisting of 1) a fast reversible

reorganization step and 2) the usage of a proven general-

purpose compressor. This base scheme is thereby similar to

the Blosc library [8] or the shuffle filter in HDF5 [9].

The rationale behind our approach is to prepare the stream

of floating-point numbers so that the general-purpose com-

pressor is much more efficient on parts of the reorganized

data stream. For this, we take a window of fixed length of

the buffered stream of one sensor and reorganize the floating-

point binary representations of this single sensor stream, using

a specialized scheme we call byte stream split, into multiple,

more “similar” streams (see Figure 3). These intermediate

streams are then concatenated and compressed using a general-

purpose compressor (e.g., zstd).

For reconstruction, we just decompress the compressed

stream and combine the bytes from the resulting streams to

��������

�������	

�������

��� �
 �� � �� �
 �� ��

�� ��

�
 �

�� ��

� ��

��������

�����������������������

����������

Fig. 3: Example floating-point byte stream split. Here we

are transforming a simple stream of two floating-point values

2.3010745 = 0x401344CE and 2.3111875 = 0x4013EA7F into

four separate streams.

assemble values and reconstruct the original floating-point

stream. This reconstruction requires information about how

many values from the stream are split up in one pass; we call

this blocksize in later parts of this paper.

C. Combining Streaming and Compression

Although the streaming and compression components’ de-

sign and optimization are conceptually orthogonal, combining

them in a complete end-to-end system creates synergies, as

converting data streams first to a columnar layout is beneficial

for compression. Specifically, for compression, we are explic-

itly relying on the “similarity” of streams in column-oriented

layout after the on-the-fly layout transformation step, as such

similarity is less likely for streams in row-oriented layout.

Consequently, our approach enables efficient compression of

data streams by exploiting a layout transformation step, early

on, at the data ingestion point. Therefore, the combination

of streaming and compression steps makes deployment on an

edge system practical.

IV. IMPLEMENTATION IN APACHE PARQUET

To demonstrate the feasibility of our end-to-end approach,

we implement a fully working system based on Apache
Parquet, which is a widely used columnar storage format in the

data analytics community. We start with a short introduction to

Apache Parquet and argue why it is a suitable skeleton for our

system. Next, we discuss implementation details of streaming

sensor data to Apache Parquet and then present our efficient

two-step compression implementation. Finally, we sketch how

both ideas are combined into a fully working system.

A. Apache Parquet

Apache Parquet [7] is a column-oriented storage format

integrated into popular computing and data analytics frame-

works such as Apache Spark, Apache Arrow and Pandas,

and is suitable for efficient representation of tabular data. The

format splits all rows into smaller chunks called row groups; in

fact, we borrowed this term from the Apache Parquet format

specification in Section III-A. A serialized Apache Parquet

file consists of so-called pages, which contain the actual data

values (at least one page for each column in each row group)

and meta data information. A page also serves as the smallest

unit of compression.

Our implementation is based on the C++ implementation of

Apache Parquet, which is part of Apache Arrow [10].

4

Since its version 0.11.0, Apache Arrow offers two pos-

sible API-alternatives to write to a row group. In the first

approach, the developer calls AppendRowGroup() on a

ParquetFileWriter instance, providing data for one

row group in a column-by-column order. The other ap-

proach, AppendBufferedRowGroup(), internally buffers

the complete row group until it is terminated, so that data can

be appended in an out-of-order fashion to all the columns.

The Apache Parquet specification describes two possibilities

of compressing data pages. First, encodings provide a sort

of lightweight compression, which may already considerably

reduce data size. Second, encoded pages may be compressed

using one of several supported general-purpose compressors,

like zstd or Brotli [11], [12]. These two complementary steps

in the Apache Parquet specification match our two-step com-

pression approach: we insert our data reorganization scheme as

an additional encoding and combine it with a general-purpose

compressor available in Parquet.

B. Streaming to Apache Parquet

When using AppendBufferedRowGroup() for buffer-

ing, the Arrow implementation relies on the use of one

separate memory allocation per column and growing all these

allocations as data is ingested. This approach imposes no

memory consumption restriction early on, and the memory

consumption grows with ingesting more data, resulting in a

very flexible buffering scheme. However, it potentially requires

repeated memory reallocation calls, to serve the memory de-

mand on growing row groups. Consequently, operating system

overheads in managing all these buffers grow when streaming

to a large number of columns. Furthermore, for streaming one

row to Apache Parquet, only a single value is added to every

column, which amplifies any overhead the library calls entail.

This version of the API is thus not well suited for the layout

transformation step.

To avoid these performance problems, we allocate two large

chunks of memory, each with enough space for all rows and

columns in the row group, and use a logical column-wise

layout on top of each. Adding new values to this buffer as

they arrive from the stream one by one now only incurs the

cost of copying the data to the buffer with offsets that are

computed based on the logical column-wise layout.

Once all data for one row group is buffered, we swap buffers

and continue with layout transformation on the other buffer.

As described before, the buffer that has been fully filled

is now prepared for serialization in a background thread. To

do so, we call the Apache Arrow API AppendRowGroup()
to create a new row group and put the data into this newly

generated row group of the Apache Parquet file, with a single

call to the library for each column. This invokes several

data serialization steps. First, the data is grouped into data-

pages, which subsequently are encoded and compressed one-

by-one. Meta information describing the column is added last

in another data page.

It is important to note that the buffers for layout transforma-

tion are allocated only once, since allocating and deallocating

them repeatedly induces an unnecessary overhead.

C. Two-Step Compression

For the implementation of our two-step compression

scheme, we use the encoding and compression functionalities

of Apache Parquet implemented in Apache Arrow. With that,

we rely on the general-purpose compressors integrated into

Apache Arrow which simplifies our implementation.

We implement byte stream split as a new encoding in

Apache Parquet. In contrast to other encodings in Apache

Parquet, this encoding does not reduce the data size on its own,

but prepares the input for compression. The implementation

consists of an encoder and decoder for writing and reading2

respectively. Again, we use the existing infrastructure in

Apache Parquet that stores the size of blocks (in our case

the page size), which is necessary for decompression.

To ensure that the additional byte stream split step does

not slow down the compression stack, we evaluated three

alternative implementations: a simple implementation using

two nested loops and two manually vectorized implemen-

tations using SSE and AVX2 instruction sets. The simple

implementation loops over the input, splits a single element

and scatters the bytes to the corresponding streams. While

this simple implementation serves as a baseline which can be

used on any system, we determined that the compiler does not

efficiently auto-vectorize all code paths. The SSE and AVX2

implementations use a combination of shuffle, unpack
and permute instrinsics with different lane and stride sizes.

As an example, we describe the single-precision version uti-

lizing SSE-intrinsics (see Figure 4), using an optimal sequence

of dependent stages. This transformation sequence requires

four stages for the encode-transformations and two stages for

the decode-transformations. It processes 16 consecutive single-

precision values at the same time, split up in four 128-bit SSE

registers. After loading data into the registers, the encoder

applies a series of interleavings using unpack intrinsics to

distribute the bytes. The encoding transformation finishes after

four stages where each SSE register contains the bytes of

16 values for each corresponding output stream. Then, the

encoder stores the registers to the intermediate buffers. The

decoder works analogously, but only requires two stages.

Our performance comparison on the systems in Table I

shows a few important characteristics. First, all (automatically

or manually) vectorized code is bound by memory bandwidth.

This implies that smaller block sizes benefit from the CPUs

cache hierarchy and thus can yield higher throughput, similar

to how memcpy behaves. Next, the achievable throughput for

the handcrafted vectorized version is at least one order of

magnitude higher than what compressors like zstd can achieve.

2 The implementation of the decoder is not a part of streaming, but we are
including it as it is required for the use in a complete system that later also
reads the data, e.g., reading data in a data analytic application.

5

Fig. 4: Single-precision floating-point byte stream split
encoder-decoder transformation sequences using unpack in-

trinsics. This processes 16 single-precision floating-point val-

ues simultaneously. Note that the encoding and decoding are

independent operations. For simplicity and ease of explanation,

they are visualized back-to-back here. The grayed out arrows

represent the same operations in the respective stages, and the

annotations are left out for clarity.

V. EXPERIMENTAL EVALUATION

In this section, we provide an empirical evaluation of our

implementation. We start by proposing a number of evaluation

questions that help to characterize the various aspects of our

approach’s performance. Then we describe our experimental

setup and go over the evaluation aspects one by one. We finish

this section with a short discussion of our results and findings.

A. Evaluation Questions

As in the previous sections, we first analyze the streaming

and compression aspects of our approach individually. Then,

we look at the combination of the two aspects. Our experi-

ments are organized around the following question sets (QSx):

• QS1: What is the impact of the number of sensors and

row group size on layout transformation’s performance?

• QS2: How much can byte stream split improve compres-

sion ratio of general-purpose compressors? How much

does it speed up compression and decompression? Which

compression algorithms and settings work best?

• QS3: Since our approach is primarily targeting streaming

systems at the edge, we raise and answer these ques-

tions: What is the sustained throughput achieved by our

complete system for various realistic scenarios? What

impact do the storage medium options have on the overall

performance?

B. Experimental Setup

Since our approach is meant to apply to both high-end

server systems and low-power edge computers, i.e., close to

TABLE I: Configurations of the systems used for evaluations

Server System Edge System

CPU Intel® Xeon® Gold
6136 CPU @ 3.00GHz

Intel® Atom™ x5 Processor
E3940 @ 1.60GHz

RAM 4× 16 GiB DDR4
@ 2666 MT/s

2× 4 GiB DDR3
@ 1866 MT/s

TDP 150 W 9.5 W
ISA SSE & AVX SSE
Network 10 GBit Ethernet 1 GBit Ethernet

the machine or system producing the sensor data, we evaluate

performance on two types of systems: One is equipped with a

powerful server CPU, the other is a passively cooled low-

power edge system, as it is typically found in industrial

installations. The details of those two systems are in Table I.

Both systems run Ubuntu 20.04 and use the perfor-
mance CPU frequency scaling governor. For implementing our

streaming approach, we use C++, compile with g++ compiler

version 9.3.0 and use the options ‘-O3 -march=native’.

As our implementation of byte stream split is upstream in the

Apache Arrow and Parquet-MR libraries, we use the Conda

packages arrow-cpp and pyarrow version 0.17.1 and link

against this version of the library for the streaming experi-

ments. Unless specified otherwise, we use default parameter

values in the libraries for our experiments.

C. QS1: Layout Transformation Performance

In the first experiment, we assess the impact of the number

of sensors (columns) and row group size on the performance

of layout transformation. For our test, we create a small driver

program that runs the experiments. This driver program uses

pre-recorded floating-point sensor values and feeds them into

our layout transformation procedure. This procedure carries

out the layout transformation and fills a pre-allocated floating-

point buffer with the columnar layout: For each row, it iterates

over all sensor values in the row-oriented input stream and

appends one value to each column. To make the results easily

reproducible, and to avoid any influence of the underlying

storage system, we disable serialization to persistent storage

for these experiments.

With Apache Parquet for our implementation, it is essential

to also consider the performance impacts of Apache Parquet

serialization, which happens right after the layout transforma-

tion. For this reason, we conduct two experiments for every

combination of the number of columns and row group size

that we test: 1) we only conduct the layout transformation,

and 2) we additionally serialize to Apache Parquet.

Our evaluation in Figure 5 shows that the configurations

with a larger number of columns have lower throughput,

and those with a medium number of columns yield the best

throughput. This behavior directly stems from the performance

of the layout processing step and its efficiency in using in

the cache hierarchy of the system, as transforming the layout

of the arriving sensor values almost exclusively consists of

memcpy operations.

Another observation in the plots is that except for very small

row group sizes, serializing data into Apache Parquet (using

6

0

500
20000 rows

row group 160000 rows
row group 1280004 rows

row group 10240016 rows
row group

0

500
2 Columns 20 Columns 200 Columns 2000 Columns 20000 Columns

101 102 103
Columns

0

500

101 102 103
Columns

101 102 103
Columns

101 102 103
Columns

104 105 106
rows

row group

0

500

104 105 106
rows

row group
104 105 106

rows
row group

104 105 106
rows

row group
104 105 106

rows
row group

Th
ro

ug
hp

ut
 [M

iB
/s

]

A
to

m
X

eo
n

A
to

m
X

eo
n

Transform only
Transform & Parquet

Fig. 5: Layout transformation performance for varying rows per row group and number of columns.

the background thread) does not bring additional overhead.

This is also expected since we do not have compression

or encoding enabled for this experiment yet, so preparing

the Apache Parquet format is a matter of several memcpy
operations. For small row group sizes, the overhead of these

many small memcpy operations becomes noticeable, though.

For certain row group sizes, a cache eviction effect consid-

erably decreases the performance for layout transformation.

Such performance degradations happen when the number of

columns is greater than the number of cache sets, and the

addresses of “neighboring” elements in each row fall into the

same cache set in the transposed layout. In our experiments,

we mainly use row group sizes that avoid this problem, so this

effect can only be seen for number of columns above 200 and

large row group sizes in Figure 5. Additionally, this problem

can be avoided by padding the allocation of row groups, so

that we do not hit the same cache lines.

D. QS2: Compression Performance

In this section, we investigate the overall performance of

our two-step compression approach, which includes the study

of compression metrics. We use our raw sensor data stream

(see Figure 2) as benchmark data set.

The different encoding/compression configurations are

tested with the following approach: Using python as test driver,

we load 1 GB of data (250M single precision values) into

an Apache Arrow Table object, and call write_table()
from the pyarrow.parquet package with the respective

encoding and compression settings. This results in all data

being put into a single row group. Data is then written to

a file on a local SSD-drive. After that, we clear the Linux

page cache and read the file that has been just written to

measure read performance. The compression ratio is computed

as the number of bytes in the Apache Arrow table divided by

the size of the resulting Apache Parquet file. For throughput

measurements, we average our results across 10 runs.

The results of this compression performance evaluation

are visualized in Figure 6. They show that our approach

1.0

1.5
C

om
pr

.
R

at
io

0

100

W
rit

e

0

100R
ea

d

0

250

W
rit

e

N
on

e
D

ic
t

D
ic

t z
st

d
zs

td
 1

zs
td

 3
zs

td
 4

zs
td

 5
zs

td
 1

0
zs

td
 1

5
gz

ip
 5

gz
ip

 9
B

ro
tli

 1
B

ro
tli

 5
B

ro
tli

 1
0

LZ
4

Sn
ap

py

0

250

R
ea

d

 A

to
m

 M
B

/s

 X
eo

n
M

B
/s

baseline IEEE754 & compression byte stream split & compression

Fig. 6: Comparison of compression ratio, write and read

throughput for Atom and Xeon platforms across a set of

encoding/compression combinations. The first measurement

(None) is there for reference, providing a baseline of the I/O-

system’s speed. We are using dictionary encoding—a fast and

lightweight alternative encoding in Apache Parquet—as an

additional baseline.

improves the best state-of-the-art variants in all three metrics,

compression ratio, write and read throughput, and does so on

both hardware platforms under test. Further, it is apparent

that the performance of our approach does not depend on

any particular general-purpose compressor, as it improves

the compression ratio for all tested compression algorithms,

regardless of compression level, and improves write and read

throughput in almost all cases. On the other hand, our approach

7

enables significant improvements for compression algorithms

like Snappy and LZ4, which almost do not compress the

data streams at all without preprocessing. These now provide

significant gains in compression ratio, more than any other

unmodified state-of-the-art algorithms we tested. Yet, they still

provide highest compression and decompression speeds among

all examined alternatives. For those compression algorithms

that have a compression level setting (zstd, gzip, and Brotli

in Figure 6), using higher compression levels does not yield

significant compression ratio improvements when compared to

additional computational effort that has to be invested. Adding

the byte stream split reorganization step already improves the

compression ratio more than any compression level increase

could yield. This suggests that our method is especially well-

suited for simple, high-throughput compression algorithms.

The plot also shows that both tested systems benefit from

our two-step approach, for compression and decompression.

E. QS3: Sustained Throughput Performance

In the last experiment, we evaluate the overall performance

for streaming sensor data to Apache Parquet combining all

ideas presented in this paper. In this experiment, we take

a buffer in memory of row-oriented floating-point values

originating from multiple sensors as the input, using the data

from Section II. We take values from this row-oriented buffer

and feed them to our layout transformation step, as described

before. In the next step, we perform byte stream split in

combination with zstd on the columns with default compres-

sion level of 1. This is followed by persistent storage of the

result into an Apache Parquet file. Since we are interested

in sustained throughput, we set the Linux kernel parameter

vm.dirty_bytes [13] to a small value of 100 MB. This

ensures that our driver process blocks when it is waiting for

the data to be flushed to storage. To compensate for any OS-

buffering effects that might happen regardless, we write files

with a size of 20 GiB for these experiments. We run the

experiments for a realistic configuration of 200 sensors and a

row group size of 500 000. To illustrate the impact of the un-

derlying storage medium on throughput, we write into various

mediums: SSD, HDD, and a comparably powerful 10 GBit

NAS, as three typical mediums used for back-end storage.

Like before, we also include results when not persisting at all

as a ”best case”. As baseline, we examine what throughput

the Apache Arrow BufferedRowGroupWriter solution

can deliver. Additionally, we perform one large experiment

for 20 000 sensors and a row group size of 20 000.

We obtain various insights from the results in Figure 7,

and start by examining compression ratios. We achieve a

compression ratio of 1.34 with zstd, while compressing byte
stream split encoded streams with zstd results in the much

better compression ratio of 1.78. These ratios correspond to

the compression of 20 GiB raw sensor streams into an Apache

Parquet file of size 14.95 GiB and 11.24 GiB, respectively.

In addition to this considerable reduction in disk storage

utilization, the additional improvement in compression ratio

has another performance implication: As a result of this higher

0

100

200

Uncompressed zstd zstd &
 byte stream split

0
100
200
300
400
500
600 Xeon

 Atom

Su
st

ai
ne

d
th

ro
ug

hp
ut

 [M
iB

/s
ec

]

Parquet baseline HDD SSD NAS Memory Large

Fig. 7: Sustained end-to-end performance for a configuration

of 200 columns and a row group size of 500 000. Large shows

the results for a configuration of 20 000 columns and a row

group size of 20 000. Note that the y-axes have different scales

for the two test systems, annotated by Atom and Xeon. Error-

bars indicate min and max throughput of experiment runs.

compression ratio, less amount of data passes I/O, which can

be a potential bottleneck in many systems.

We next look at the results on the edge system. Since the 10

GBit NAS is only connected via the 1 GBit network interface

of the edge system, we hit the limit of this Ethernet interface

in the uncompressed setting. We also observe that compression

even reduces the overall throughput here, since the processor

cannot compress the columns fast enough (see Section V-F for

a potential solution to this problem). Even though the large

configuration delivers a throughput that is considerably lower,

it would still be fast enough for typical deployment scenarios.

For the Xeon system, we note that writing uncompressed

to local persistent storage is bound by write throughput

of the HDD and SSD, respectively. We highlight here that

compression improves the overall performance, and the higher

compression ratio that can be achieved by the byte stream split
approach has a positive influence on sustained performance for

local storage. In case of the NAS, adding compression slightly

reduces throughput, since the storage system is faster than zstd

throughput in this case. We discuss a potential improvement

to avoid this compression bottleneck in Section V-F.

In all cases, our approach clearly outperforms the Apache

Arrow baseline, which is bound by some implementation-

specific overhead.

F. Discussion

a) Streaming performance and memory consumption:
While Apache Arrow supports buffering data since version

0.11, our approach outperforms this implementation by one

order of magnitude (see Figure 7). However, we trade that

performance by having less flexibility in the final size of the

8

row-group. That being said, the fixed row group sizes is not

a huge limiting factor by itself for our use case: row group

sizes can be pre-configured based on the system’s memory

resources, which effectively compensate for the inflexibility.

b) Row group size: The maximum possible row group

size is tuned based on the amount of memory the system

can use for writing. In addition to performance aspects when

writing, the row group size also impacts read performance.

Larger row group sizes are generally preferred for data anal-

ysis, since decompression performance is higher on larger

buffers, while small row group sizes increase the share of meta

data information.

Another aspect that is affected by row group size is latency

of writing data to and reading it from permanent storage.

Larger row group sizes mean that data takes longer until it

can be serialized to the storage system. If latency is a concern,

however, the system needs to be augmented with an orthogonal

component capable of reading the row group buffers.

c) Compression performance: Our buffering approach

enables performing the compute-intensive tasks on all the

columns in parallel, on the available processing units in a

system. More specifically, as our experiments show, compres-

sion is the dominating component in preparing serialization

to disk on the edge system (see Section V-E). This opens up

exploiting parallel processing for an originally sequential data

stream. While we postpone this idea to future work, it gives

additional potential for optimization.

VI. END-TO-END CASE STUDY

In this section, we show how our system can be used in a

realistic end-to-end setting. We describe a typical setup for the

example scenario we introduced in Section II and prove the

feasibility of this scenario for the edge-system from Table I.

For the setup we evaluate in this section, we simulate

multiple row-oriented data streams (4© in Figure 1) on a ded-

icated machine. Each such data stream generates its own time

stamps and gets converted into a separate columnar layout.

We generate single-precision floating-point data samples at

a rate of 25 600 Hz from a real recording (see Figure 2),

which is important for reproducing compression behavior.

One stream simulates 32 such sensors, representing an edge-

case for state-of-the-art monitoring systems (typical setups in

this domain often still have fewer sensors). Together, each

simulated turbine thus produces a data stream with a raw data

rate (not considering time stamps and other meta data) of:

25 600
Samples

sec and Sensor
×4

Bytes

Sample
×32 Sensors ≈ 3.28

MByte

sec

A data generator sends these streams via TCP over a GBit Eth-

ernet connection to the edge device (Edge-System in Table I).

There, for each stream, we apply our complete stream handling

pipeline, consisting of layout transformation, encoding and

compression and store the resulting parquet files to an HDD3.

3HDDs still have a more competitive price point and their performance is
sufficient in current setups. To be as close to the real setup as possible, we
hence decided to evaluate the setup for HDDs.

We let this pipeline run long enough to ensure that for each

stream, eight row-groups are filled completely.

We keep increasing the number of simulated turbines con-

nected to the one system handling this data, up to the point

where it fails to handle all data streams. At this point, the gen-

erator is forced to pause data generation, resulting in a gap in

the data stream (backpressure via TCP). Choosing a row group

size of 800 000 rows, which results in a maximum required

buffer size of roughly 6 GBytes4 for layout transformation, is

a viable configuration for the Edge-System from Table I.

For analysis, we evaluate the maximum gap5 between con-

secutive samples for any of the simultaneous streams, induced

by a bottleneck in stream handling.

10 20 30
simulated turbines

(32 sensor streams @ 25600 Hz each)

0

20

M
ax

 g
ap

 [s
ec

s]

bs
s &

 z
st

d

bs
s &

 lz
4

zs
td

no
 c

om
pr

.

400

800

Fi
le

 si
ze

 [M
B

]

bss & zstd bss & lz4 zstd no compr.

Fig. 8: The maximum gap remains zero up to a certain number

of simulated turbines where some part of the pipeline cannot

handle the amount of data anymore.

Our results in Figure 8 show that our system can seamlessly

handle up to 23 simulated turbines, equivalent to the overall

throughput of ≈ 75 MByte/sec. Further analysis shows the

limit here is disk throughput, which underlines that both byte
stream split and compression are essential steps in the pipeline.

Otherwise, the system’s capacity in handling data streams will

be hit already for fewer simulated turbines, as indicated by

the curve for the uncompressed stream in Figure 8. We further

measured the resulting file size, which shows that the proposed

compression approach shrinks the required storage space con-

siderably compared to existing compression alternatives.

VII. RELATED WORK

a) Time series storage systems: There are several ex-

isting solutions that handle storage of time series streams.

InfluxDB provides a time series database which uses a custom

storage backend [14]. To tackle their problems with some

workloads, they work on a new database core called IOx,

which also uses Apache Parquet for persisting data [15].

TimescaleDB, an extension on PostgresQL, utilizes so called

Hypertables to manage one consistent view over multiple

chunks of data [16]. While this increases performance of typi-

cal workloads for time series data, it still employs row-oriented

storage. Building on top of HBase, OpenTSDB provides a

solution targeting distributed setups [17]. All of these solutions

4For 29 parallel data streams:
29× 2 Buffers × 800 000 Rows

Buffer
× 32 Sensors × 4 Bytes ≈ 6GByte.

5A forced pause in data generation since data handling cannot keep up with
the data rate.

9

require some kind of data serialization and parsing to and from

text to ingest data, which is prohibitive for edge systems where

processing resources are scarce.

b) Distributed and event stream storage systems: A lot

of research effort has been spent on distributed streaming

storage and processing systems. While some of the use cases

and problems discussed in such works [2], [18] are similar

or related to our use case, distributed stream processing is

not what we aim for with this paper. Furthermore, many

publications regarding distributed stream processing consider

event streams and the challenges that come with it [19]–[24].

This is fundamentally different from our usage scenario in both

data type and data rate or regularity. An event is usually much

more complex (it may arrive in the form of text or structured

text) than a single sensor reading (one 4-byte floating-point

value) and arrives with a much more irregular frequency.

c) Compression: While there is a huge amount of work

on data compression in industry and academia, we want to

highlight shuffle filters in HDF5 [9] and the blosc library [8].

These two approaches are use a similar approach for improv-

ing general purpose compression.

VIII. CONCLUSIONS

We presented a holistic approach for handling large and fast

sensor data in modern monitoring systems through efficient

streaming into a columnar data layout combined with an

effective data representation and compression scheme. Our

compression implementation is based on Apache Parquet and

has been upstreamed, making it possible for the broader

community to reuse. Our in-depth investigations show that our

approach is practicable on low-power edge devices, providing

data in an analytics-ready format directly at the data generation

site. By converting the data into a columnar format on the

edge, followed by efficient data reorganization and compres-

sion, our approach improves both efficiency and effectiveness

when compared to existing solutions, and it can be easily

generalized to other and even lossy compression schemes.

This opens up a set of new possibilities for analytic use-cases

in large scale industrial settings, providing new opportunities

such as effective predictive maintenance or dynamic opera-

tional optimizations based on the rich data streams available al-

ready today from such systems, but which often are left unused

due to the missing processing options. Our approach allows

future optimizations like parallelizing compression workloads,

further enhancing sensor monitoring and acquisition systems.

Thus, it brings significant improvements to systems for stream-

ing of sensor data and has a direct influence on real-time

monitoring systems across the industry.

REFERENCES

[1] A. Baaziz and L. Quoniam, “How to use big data technologies to opti-
mize operations in upstream petroleum industry,” International Journal
of Innovation, vol. 1, 12 2014.

[2] X. Ren, O. Curé, L. Ke, J. Lhez, B. Belabbess, T. Randriamalala,
Y. Zheng, and G. Kepeklian, “Strider: An adaptive, inference-enabled
distributed rdf stream processing engine,” Proc. VLDB Endow.,
vol. 10, no. 12, p. 1905–1908, Aug. 2017. [Online]. Available:
https://doi.org/10.14778/3137765.3137805

[3] A. Aguilera, R. Grunzke, D. Habich, J. Luong, D. Schollbach,
U. Markwardt, and J. Garcke, “Advancing a gateway infrastructure
for wind turbine data analysis,” J. Grid Comput., vol. 14, no. 4,
p. 499–514, Dec. 2016. [Online]. Available: https://doi.org/10.1007/
s10723-016-9376-9

[4] R. Karlstetter, R. Widhopf-Fenk, J. Hermann, D. Rouwenhorst,
A. Raoofy, C. Trinitis, and M. Schulz, “Turning Dynamic Sensor
Measurements From Gas Turbines Into Insights: A Big Data Approach,”
ser. Turbo Expo: Power for Land, Sea, and Air, vol. Volume 6: Ceramics;
Controls, Diagnostics, and Instrumentation; Education; Manufacturing
Materials and Metallurgy, 06 2019, v006T05A021.

[5] A. Netti, M. Müller, A. Auweter, C. Guillen, M. Ott, D. Tafani,
and M. Schulz, “From facility to application sensor data: Modular,
continuous and holistic monitoring with DCDB,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’19. New York, NY, USA: ACM, 2019,
pp. 64:1–64:27.

[6] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik, “C-store: A column-oriented dbms,” in Proceedings of
the 31st International Conference on Very Large Data Bases, ser. VLDB
’05. VLDB Endowment, 2005, p. 553–564.

[7] D. Vohra, Apache Parquet. Berkeley, CA: Apress, 2016, pp. 325–335.
[Online]. Available: https://doi.org/10.1007/978-1-4842-2199-0 8

[8] The Blosc Developers. (2020) What Is Blosc? Accessed December
2020. [Online]. Available: https://blosc.org/pages/blosc-in-depth/

[9] The HDF Group. (2020) HDF5 User’s Guide. Accessed December
2020. [Online]. Available: https://support.hdfgroup.org/HDF5/doc/UG/
HDF5 Users Guide.pdf

[10] The Apache Software Foundation. (2020) Apache Arrow. Accessed
April 2020. [Online]. Available: https://arrow.apache.org/

[11] Facebook. (2020) Zstandard. Accessed April 2020. [Online]. Available:
https://facebook.github.io/zstd/

[12] J. Alakuijala and Z. Szabadka, “Brotli Compressed Data Format,” RFC
7932, Jul. 2016. [Online]. Available: https://rfc-editor.org/rfc/rfc7932.txt

[13] van Riel, Rik and Peter W. Morreale. (2008) Linux Kernel
Documentation for /proc/sys/vm/*. Accessed September 2020. [Online].
Available: https://www.kernel.org/doc/Documentation/sysctl/vm.txt

[14] InfluxData Inc. (2020) InfluxDB. Accessed April 2020. [Online].
Available: https://docs.timescale.com/latest/main

[15] Paul Dix, InfluxData Inc. (2020) Announcing InfluxDB IOx - The
Future Core of InfluxDB Built with Rust and Arrow. Accessed
December 2020. [Online]. Available: https://www.influxdata.com/blog/
announcing-influxdb-iox/

[16] Timescale Inc. (2020) TimescaleDB. Accessed April 2020. [Online].
Available: https://docs.timescale.com/latest/main

[17] The OpenTSDB Authors. (2020) OpenTSDB. Accessed April 2020.
[Online]. Available: http://opentsdb.net/

[18] M. Zhang, T. Wo, T. Xie, X. Lin, and Y. Liu, “Carstream: an industrial
system of big data processing for internet-of-vehicles,” Proc. VLDB
Endow., vol. 10, pp. 1766–1777, 08 2017.

[19] M. Borkowski, C. Hochreiner, and S. Schulte, “Minimizing cost by
reducing scaling operations in distributed stream processing,” Proc.
VLDB Endow., vol. 12, no. 7, p. 724–737, Mar. 2019. [Online].
Available: https://doi.org/10.14778/3317315.3317316

[20] M. Hoffmann, A. Lattuada, and F. McSherry, “Megaphone: Latency-
conscious state migration for distributed streaming dataflows,” Proc.
VLDB Endow., vol. 12, no. 9, p. 1002–1015, May 2019. [Online].
Available: https://doi.org/10.14778/3329772.3329777

[21] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis, “A holistic
view of stream partitioning costs,” Proc. VLDB Endow., vol. 10, no. 11,
p. 1286–1297, Aug. 2017.

[22] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy,
“Dhalion: Self-regulating stream processing in heron,” Proc. VLDB
Endow., vol. 10, no. 12, p. 1825–1836, Aug. 2017.

[23] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: Stateful scalable stream pro-
cessing at linkedin,” Proc. VLDB Endow., vol. 10, no. 12, p. 1634–1645,
Aug. 2017.

[24] Q. Huang and P. P. C. Lee, “Toward high-performance distributed
stream processing via approximate fault tolerance,” Proc. VLDB
Endow., vol. 10, no. 3, p. 73–84, Nov. 2016. [Online]. Available:
https://doi.org/10.14778/3021924.3021925

10

