

Sustainability in HPC: Vision and Opportunities

Mohak Chadha¹, **Eishi Arima**¹, Amir Raoofy², Michael Gerndt¹, Martin Schulz^{1,2}

¹ Technische Universität München (TUM)

² Leibniz-Rechenzentrum (LRZ)

Sustainable Supercomputing SC'23, Nov 12, 2023

Executive Summary

rz

SC'23, Nov 12, 2023

We will discuss potential solutions to reduce the carbon footprint of supercomputers from various perspectives (this is a position paper)

• Carbon Emission = Direct (Scope 1) + Indirect (Scope 2/3)

- Background
- Reducing Embodied Carbon (Scope 3)
- Reducing Operational Carbon (Scope 2)
- Conclusion & Acknowledgement

- Background
- Reducing Embodied Carbon (Scope 3)
- Reducing Operational Carbon (Scope 2)
- Conclusion & Acknowledgement

Needs for Carbon-awareness in Supercomputing

- Supercomputers indirectly account for a tremendous amount of carbon emissions
 - Mainly due to the scale: (1) consist of over 100K of components; (2) consume few 10s MW of power
- Need to limit their carbon emissions while following the GHG (Green House Gas) protocol

FRONTIER

Frontier

1.2Exa @23MW

Future Green Supercomputers (Image generated by deep AI)

Fugaku

0.44Exa @30MW

Aurora 2Exa? @60MW?

Sustainability in HPC: Vision and Opp

5

The GHG Protocol

Scope 1: Relevant if fossil fuels are burnt on site (usually not the case)

Scope 2: Electricity, heating, cooling, etc. for the site operation

Scope 3: The other indirect emissions, e.g., production, shipping, and disposal of system components

Our Focus

Sustainable Supercomputing SC'23, Nov 12, 2023

Source: https://ghgprotocol.org/sites/default/files/standards/Corporate-Value-Chain-Accounting-Reporing-Standard_041613_2.pdf

- Background
- Reducing Embodied Carbon (Scope 3)
- Reducing Operational Carbon (Scope 2)
- Conclusion & Acknowledgement

- Embodied carbon consists of production, transportation, & disposal
 - The production part (manufacturing + packaging) is dominant [U. Gupta+ ISCA'22]
 - The embodied carbon trend differs across different systems
 - The system architecture & procurement (incl. product choices for components) matter
- Promising Approaches for Embodied Carbon Reduction:
 - 1. Carbon-aware Component Design
 - 2. Carbon-aware System Architecture & Procurement
 - 3. System Lifetime Extension & Reuse/Recycling

Estimated Embodied Carbon Footprint Breakdowns Calculated based on a prior study [B. Li + SC'23]

Designing Carbon-efficient HPC Components

Conventional Chip Design:max Perf(W, d)s.t. Pow(W, d) \leq Pow_{Target}Cost(d) \leq Cost_{Target}d \in DIn: W, Out: d_{opt} (\in D)

W: Target workloads or proxy apps

D: A set of design points to explore

d (\in D): A set of design parameters

X_{Target}: Target value for metric X

Carbon-aware Chip Design:

 $\begin{array}{l} \max \operatorname{Perf}(W, d) \\ \text{s.t. } \operatorname{Pow}(W, d) \leq \operatorname{Pow}_{\operatorname{Target}} \\ \operatorname{Cost}(d) \leq \operatorname{Cost}_{\operatorname{Target}} \\ \operatorname{EmCrbn}(d) \leq \operatorname{EmCrbn}_{\operatorname{Target}} \\ \operatorname{OpCrbn}(W, d, CI) \leq \operatorname{OpCrbn}_{\operatorname{Target}} \\ d \in D \\ \operatorname{In: } W, \operatorname{CI, Out: } d_{\operatorname{opt}} (\in D) \end{array}$

Alternative design goals

[U. Gupta+ ISCA'22]:

Carbon-delay product

Carbon-delay² product

Hierarchical Optimization for 2.5D/3D Integrations:

Embodied Carbon in Production \simeq Manufacturing + Packaging

Both inter- and intra-chiplet optimizations matter!

* inter: manufacturing part, intra: packaging part

Sustainable Supercomputing SC'23, Nov 12, 2023

EmCrbn/OpCrbn: Embodied/operational carbon

CI: Typical carbon intensity of the target system

System Architecture and Procurement

System Optimization

Goal: Max SystemThroughput(Workloads) **Constraints:**

Embodied Carbon Constraint

 $EmbodiedCarbon_i \leq Target$

Pact in Darformance

The optimal system design will change by taking carbon into account!

The decision will be even harder due to the emerging architectures/devices!

System Lifetime, Reuse, and Recycling

System Lifetime: Typically 4-6 years

• Extending the lifetime will contribute to the embodied carbon reduction (right fig)

Reuse & Recycling: for reducing the carbon emissions in disposal & production

- Reuse: LRZ offers decommissioned machines to other public institutions for free
- **Recycling:** DRAM chips (DDR4=>DDR5), heat pipes, etc.

- Background
- Reducing Embodied Carbon (Scope 3)
- Reducing Operational Carbon (Scope 2)
- Conclusion & Acknowledgement

Reducing Operational Carbon (Scope 2)

- Operational Carbon Footprint = $\int CarbonIntensity * PowerConsumption dt$
- Carbon intensity depends on the location and can *change over time*
- **Promising Approaches:** Scaling or shifting the following properties in accordance the carbon intensity
 - 1. System Power Bound
 - 2. System Scale (# of nodes)
 - 3. Peak Load
 - * Existing energy/power reduction techniques generally ignore the carbon intensity

Carbon-aware Dynamic Power Budget Scaling

- A new use case of HPC PowerStack
- Scaling up/down the total system power bound based on the carbon intensity
 - Goal: to limit the operational carbon footprint within a given target

Carbon-aware Dynamic Resource Scaling

- Dynamically adapt the system scale in accordance with the carbon intensity
- Change the resource assignments to running jobs – known as malleability
 - Should cooperate with power budgeting

Carbon-aware Scheduling and Checkpointing

Concept: Adapt the system loads so as to have less jobs/loads when the carbon intensity is higher

Promising Solution: *Peak Load Shifting*

- Proactive: predict the duration of green (low carbon intensity) period and optimize the scheduling decisions (e.g., green period-aware backfilling)
- Reactive: suspending, checkpointing, and restarting (large) jobs

Making HPC Users Greener

• Users can also contribute to *peak shifting* & energy footprint reduction

Current HPC: Time is money and money is time Future HPC: Carbon is money and money is carbon

Your job accounted for the same amount of CO2 emissions as xxxxx, and as a result it consumed yy% of quota assigned to your project! You could save zz% of the quota consumption by simply following the steps below...

thux

stem

slurn

Green Q

Energy **Efficient**

Job

Examon

onitor

- Background
- Reducing Embodied Carbon (Scope 3)
- Reducing Operational Carbon (Scope 2)
- Conclusion & Acknowledgement

lrz

SC'23, Nov 12, 2023

Concluding Remarks

- Carbon-aware supercomputing ≠ power-/energy-aware supercomputing!
- <u>Embodied Carbon Reduction (Scope 3)</u>: Needs an end-to-end carbonaware optimization from chip to system, and even procurement
- <u>Operational Carbon Reduction (Scope 2)</u>: Needs (1) adaptive power, resource, & job management, and also (2) green users

Acknowledgement

This work has received funding under the European Commission's EuroHPC and Horizon 2020 programmes under grant agreements no. 956560 (REGALE), no. 955606 (DEEP-SEA), and no. 955701 (TIME-X).

TIME-X

Feel free to contact us!

DEEP-SEA

CAPS TUM

20

