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Abstract—GPU-based heterogeneous architectures are now
commonly used in HPC clusters. Due to their architectural
simplicity specialized for data-level parallelism, GPUs can offer
much higher computational throughput and memory bandwidth
than CPUs in the same generation do. However, as the available
resources in GPUs have increased exponentially over the past
decades, it has become increasingly difficult for a single program
to fully utilize them. As a consequence, the industry has started
supporting several resource partitioning features in order to im-
prove the resource utilization by co-scheduling multiple programs
on the same GPU die at the same time.

Driven by the technological trend, this paper focuses on hierar-
chical resource partitioning on modern GPUs, and as an example,
we utilize a combination of two different features available on
recent NVIDIA GPUs in a hierarchical manner: MPS (Multi-
Process Service), a finer-grained logical partitioning; and MIG
(Multi-Instance GPU), a coarse-grained physical partitioning. We
propose a method for comprehensively co-optimizing the setup
of hierarchical partitioning and the selection of co-scheduling
groups from a given set of jobs, based on reinforcement learning
using their profiles. Our thorough experimental results demon-
strate that our approach can successfully set up job concurrency,
partitioning, and co-scheduling group selections simultaneously.
This results in a maximum throughput improvement by a factor
of 1.87 compared to the time-sharing scheduling.

Index Terms—GPUs, Scheduling, Resource Management, Re-
inforcement Learning

I. INTRODUCTION

HPC clusters and supercomputers are becoming increas-
ingly heterogeneous, and as a consequence, 172 out of 500
top-class supercomputers are now GPU-equipped systems (as
of Nov 2022) [1]. This trend has started ever since Dennard
scaling ceased over a decade ago [2], [3]. As single-thread per-
formance improvements were sustained by Dennard scaling,
the industry had to shift towards multi-/many-core processors
and heterogeneous architectures focusing on thread-/data-level
parallelisms. GPUs are specialized hardware to exploit data-
level parallelism of applications by spending more transistors
on compute resources and simplifying the control logic con-
siderably compared with those of CPUs. By taking advantage
of this simplicity, GPUs can offer much higher computational
throughput and memory bandwidth than CPUs in the same
VLSI technology generation (typically several times higher).

However, as the available resources in GPUs have increased
exponentially over the past decades, it has become increasingly
difficult for a single program to fully utilize them. The first
reason for this is that not all GPU programs have sufficient
parallelism to convert the available compute resources inside

a GPU into speedup, which is governed by the well-known
Amdahl’s law [4]. The second reason is the throughput of
memory intensive applications is limited by the available
memory bandwidth, and thus increasing the compute resources
does not contribute to the speedup for them, which is known as
the memory-wall problem [5]. The third reason is the compute
resources inside a GPU are also becoming heterogeneous with
different types of units (e.g., matrix engines, regular FP64
units, integer units, etc.), and depending on their usages, power
can also be under utilized and wasted [6].

As a consequence, the industry has started supporting
several resource partitioning features that enable multiple
programs to be co-scheduled on the same GPU at the same
time with variable resource allocations. One example is MPS
(Multi-Process Service) that allows multiple programs to share
computational resources logically, which is supported in recent
NVIDIA GPUs [7]. The MPS feature is a software-based
mechanism with several architectural supports that decides
the process to SM (Streaming Processor) assignments with
arbitrary rates (e.g., 70%). Another example is MIG (Multi-
Instance GPU) that physically partitions computational and
bandwidth resources in a hierarchical manner at the granularity
of GPC (Graphics Processing Cluster), which is supported
in recent high-end NVIDIA GPUs from the Ampere gener-
ation [8]. It first partitions a GPU into one or more GIs (GPU
Instances), each of which is completely isolated, and then
partitions each GI into one or more CIs (Compute Instances)
that share the memory resources within the GI but utilize the
compute resources mutually exclusively at the granularity of
GPC. These different partitioning features can be applied at the
same time in a hierarchical manner, i.e., the MPS is applicable
inside a CI created by the MIG.

This paper explicitly targets hierarchical resource partition-
ing on modern GPUs, e.g., the hierarchical combination of
MIG (coarse-grained physical partitioning) and MPS (fine-
grained logical resource allocations), and orchestrates the
multi-level partitioning setup and co-scheduling decision mak-
ing for a given set of jobs. To this end, we first analyze the
impact of partitioning setup on performance using different
workloads and demonstrate the potential benefit of the hierar-
chical partitioning. Driven by the observations, we propose
our resource management method based on reinforcement
learning using job profiles. More specifically, we regard the
optimization as a classification problem and choose an optimal
set of partitioning and co-scheduling groups for a given set of
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jobs. We train the classifier composed of a deep Q network
using reinforcement learning at offline and apply the optimized
agent to the online optimization.

Specifically, this paper makes the following major contribu-
tions:

• As far as we know, this work is the first to apply
reinforcement learning to simultaneously optimizing job
co-scheduling and hierarchical resource partitioning on
platforms with multiple different partitioning features
(MPS and MIG) available on recent commercial GPUs.

• We quantitatively analyze the impact of the resource
partitioning setup on GPUs throughput, while comparing
different partitioning setups.

• We then define the co-scheduling and resource partition-
ing process as an optimization problem in a concrete
mathematical form, which enables us to regard the op-
timization as a classification problem and introduce a
reinforcement learning-based solution.

• We demonstrate that our approach can successfully set
up the partitioning and co-scheduling group selections
simultaneously through our thorough evaluations, and
discuss how it is extensible to the entire cluster scale.

II. RELATED WORK

Since multi-/many-core architectures and CPU-GPU hetero-
geneous architectures became common in servers and HPC
clusters, a variety of co-scheduling and resource partitioning
techniques have been proposed. However, as far as we know,
this is the first work to apply a reinforcement learning ap-
proach to co-optimize the hierarchical resource partitioning
and co-scheduling job selections for modern GPUs.
Literature of Co-scheduling and Resource Partitioning:
Since multi-core processors appeared on the market, several
researchers have proposed co-scheduling mechanisms while
focusing on multi-programmed but single-threaded workloads.
Y. Jiang et al. studied the theoretical aspects of co-scheduling
and provided an optimal solution [9]. Then, K. Tai et al.
extended this theoretical work to take the execution time
lengths into account [10]. S. Zhuravlev et al. focused on
the shared resource contention in a processor and proposed
an interference-aware co-scheduling method [11]. J. Feliu et
al. proposed a scheduling policy that explicitly considers the
contentions on the underlying shared cache hierarchy [12]. M.
Banikazemi et al. designed and implemented a user-level meta
co-scheduler and demonstrated the effectiveness [13].

Other researchers extended the ideas and proposed sev-
eral co-scheduling techniques for multi-threaded programs.
M. Bhadauria et al. explored the feasibility of space-shared
scheduling using a greedy-based co-run job selection and
resource allocation policy [14]. Then, H. Sasaki et al. pro-
posed a scalability-based resource allocation approach for a
given multi-programmed and multi-threaded workload [15].
J. Breitbart et al. created a resource monitoring tool use-
ful for co-scheduling HPC applications [16] and provided
a memory-intensity-aware co-scheduling policy [17]. Since
the industry started supporting several QoS control features,

some researchers combined the above concepts with cache
partitioning [18], [19], bandwidth partitioning [20], [21] or
the combination of them [22], [23]. Q. Zhu et al. rather
targeted CPU-GPU heterogeneous processors and proposed a
co-scheduling approach suitable for them [24].
Applying Co-scheduling and Resource Partitioning to
GPUs: S. Pai et al. first pointed out the waste of resources
within a GPU when running a CUDA kernel and explored
the feasibility of GPU multi-processing using their elastic
kernel implementation [25]. I. Tanasic et al. proposed a
microarchitectural mechanism to enable multi-processing on
GPUs, which does not require any kernel modifications [26].
Following these seminal studies, the MPS feature has been
already supported in commercial Nvidia GPUs [7].

Several studies focused on software mechanisms to improve
the efficiency of multi-processing on GPUs. T. Allen et al.
proposed a framework called Slate that optimizes the com-
bination of co-located processes and dynamically adjusts the
scales of them [27]. smCompactor is a similar framework to
Slate, which aims at maximizing the resource utilization [28].
C. Reano et al. proposed a safe co-scheduling mechanism
that takes memory footprints into account when processes
are co-scheduled in a time sharing manner [29]. Other stud-
ies rather focused on hardware mechanisms to improve the
efficiency of the concurrency controlling features [30], [31],
[32]. Since the industry has started supporting the physical
resource partitioning called MIG [8], few studies targeted
the MIG-based partitioning and proposed several optimization
mechanisms [33], [6], [34]. The closest work to ours is [34],
which covers co-scheduling decision making and resource
partitioning, however it does not manage the hierarchical
partitioning and works only when co-locating two programs.
System Optimizations with Reinforcement Learning: Since
reinforcement learning is a powerful tool to optimize software
or hardware knobs, it has been widely used also for a variety of
system optimizations. Although these techniques are promis-
ing or already widely used, they target fundamentally different
problems from ours. E. Ipek et al. proposed a reinforcement
learning-based memory controller design that optimizes the
scheduling policy on the fly [23]. Following this seminal work,
there have been a variety of software/hardware optimizations
using reinforcement learning. Yoo et al. applied reinforcement
learning to determine several parameters in a QLC SSD such
as the SLC cache size and the hot/cold separation thresh-
old [35]. D. Zhang et al. invented RLScheduler that automati-
cally configures the priority function used for batch scheduling
in HPC systems based on reinforcement learning [36]. R.
Chen et al. utilized reinforcement learning to co-optimize the
cache and bandwidth allocations for multi-programmed server
workloads [37]. Y. Wang et al. proposed a power management
technique for multi-core processors based on reinforcement
learning [38]. P. Zhang et al. applied an reinforcement learning
approach to an ensemble controller that dynamically selects
the best prefetch policy from multiple different prefetch-
ers [39]. G. Singh et al. targeted hybrid storage systems and
proposed an adaptive and extensible data placement using their
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Fig. 1: A modern GPU architecture and a hierarchical parti-
tioning on it

online reinforcement learning approach [40].

III. OBSERVATIONS

In this section, we observe the effectiveness and perfor-
mance impact of hierarchical partitioning using the combina-
tion of MIG and MPS features as an example. In Section III-A,
we introduce the summary of these two partitioning features
and how they are configured in a hierarchical fashion. In Sec-
tion III-B, we demonstrate the impact of the partitioning setup
on performance and analyze it based on the characteristics of
co-located applications.

A. Hierarchical Partitioning on Modern GPUs

Figure 1 illustrates a modern GPU architecture and our
target hierarchical partitioning, e.g., NVIDIA Ampere archi-
tecture [41] and the combination of MIG [8] and MPS [7]
features. In order to enable massive parallelism, modern
GPUs are structured in a hierarchical manner. In the NVIDIA
Ampere architecture, as an example, one GPU consists of
multiple GPCs (Graphics Processing Clusters), and each GPC
is composed of multiple SMs (Streaming Processors). On
one hand, one SM has its own private resources including
a local instruction/data cache, a warp scheduler, a dispatcher,
a register file, and many functional units (e.g., FPUs, ALUs,
LSUs, a matrix engine, etc.). On the other hand, there are
shared resources such as LLCs (Last Level Caches) and device
memory blocks (HBM stacks) reachable by any GPCs by
default.

A GPU can be partitioned in the following way. First, with
the MIG feature, a GPU is divided into one or more GIs (GPU
Instances) at the granularity of GPC, and then one or more CIs
(Compute Instances) are launched on each GI while occupying
GPCs within the GI in a mutually exclusive manner. Then, the
user selects one of the CIs and run a program on it. One GI
owns the same number of LLC/HBM blocks as that of GPCs,
and they become private and isolated resources accessible only
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Fig. 2: Partitioning variations with MIG and MPS

by the CIs launched on the GI. As the MIG feature is a coarse-
grained physical resource partitioning, it is not flexible, and
there are several restrictions: (1) one GPC needs to be disabled
when turning on the feature; (2) it is configurable only when
no program is running; and (3) the partitioning choices are
limited only to 19 variants in the current implementation —
for instance, dividing 7GPCs into (a) 2GPCs and 5GPCs or
(b) 1GPCs and 6GPCs are not supported [8].

Second, each CI (or the entire GPU if the MIG is not
applied) can be partitioned further at the granularity of SM
with the MPS feature. On one hand, the MPS partitioning is
more flexible and finer-grained than that of the MIG feature
including both the GI- and CI-level partitioning. On the other
hand, it does not offer any knobs to control the quality of
service (e.g., shared resource partitioning). Therefore, the MIG
feature should be used for setting up the shared memory
resource partitioning/isolation to mitigate the interference
impact, however the MPS is useful to flexibly assign the
compute resources to balance the performance of all the co-
located programs (better than the CI-level partitioning).

The combination of these two features can offer multiple
different partitioning variations, as shown in Figure 2. The
first two options do not partition the memory resources, but
share memory across all co-located applications. These options
are useful when the co-located applications require comple-
mentary resources, i.e., one is a compute-bound application
that does not fully utilize the available memory bandwidth, and
the other one is rather memory bound, for which only a small
subset of the available compute resources is enough. The MPS-
only option has more advantages than the MIG-only shared



Fig. 3: Co-scheduling Throughput as a Function of Compute Resource Allocations (MPS Partitioning)

Fig. 4: Performance Benefit of Bandwidth Partitioning

memory option: (1) the MPS can set the compute resource
allocations in a more flexible and fine-grained manner; and (2)
the MIG needs to turn off 1 out of 8 GPCs, while the MPS
can utilize all available 8 GPCs (for an A100 GPUs [41]).

The third option in the figure is useful to mitigate
shared resource conflicts among co-located applications. This
interference-free option is effective in particular for not well
scalable applications, as the option limits both the compute
and bandwidth resources on the GPU at the same time. As
Amdahl’s law suggests [4], the scalability is limited by the
program’s parallelism (or the overhead of parallelization),
which is also the case for GPU applications limited by
issues such as synchronization overhead or problem size. This
scalability limit inside a GPU will be even more serious when
the compute/bandwidth resources become richer due to further
scaling of VLSI technology in the future.

Finally, the last option is the mixture of MIG and MPS as a
general form and an intermediate case of all the above options.
This approach is promising, especially when we execute more
programs concurrently on the GPU, and it is suitable for a
variety of program mixes. We regard the first three options
as extreme setups of this hierarchical partitioning approach.
When we co-locate more than two programs inside a GI, we
increase the concurrency in the MPS, while setting the number
of CIs to 1, as this allows us to use the full flexibility of the
MPS feature.

B. Observational Analysis

Figure 3 demonstrates GPU throughput as a function of
compute resource allocation to two co-located HPC bench-

Fig. 5: Performance Comparison for Different Partitioning
Variants Introduced in Section III-A

mark programs across different program mixes. In this eval-
uation, we utilize the MPS-based partitioning as illustrated
in the first option of Fig. 2. The X-axis represents the ratios
of compute resource allocation to the co-scheduled programs
shown at the legend, while the Y-axis indicates the relative
throughput normalized to that of a time-sharing scheduling,
i.e., executing these two programs one by one without shar-
ing the resources but with fully allocating the entire GPU
resources. As illustrated in Fig. 3, the optimal allocation of
compute resources to the co-located programs depend highly
on the given programs and their characteristics. As we can
observe in the third case, a balanced allocation achieves the
best performance, while for the others, a skewed allocation
has advantage over a balanced one with a unique optimal
allocation point. With such varying optimal allocations for
different program mixes, we conclude that compute resource
partitioning features need to be fine-grained and flexible so
that one can fine-tune the allocation setup, and MPS is more
preferable for this purpose.

Figure 4 presents the impact of memory bandwidth re-
source partitioning while using the two different MIG options
(shared or private) introduced in Figure 2. The X-axis lists
two different job mixes with two different compute resource
allocation rates as well as two different memory options
(shared or partitioned), while the Y-axis shows the relative
throughput normalized to that of the time-sharing scheduling
as mentioned above. To assess the impact of memory par-
titioning on performance, we setup exact the same compute
resource allocation for the shared and partitioned options.



One GPC is disabled in this evaluation, and thus the total
of the compute resource allocation percentages is 87.5% in
each case. For these job mixes, we observe considerable
speedup by partitioning/isolating memory bandwidth resources
by mitigating the interference impact among the co-located
programs. Therefore, depending on the given job mix, it is
preferable to partition/isolate the shared memory resources in
order to mitigate the interference impact, and only the MIG
feature is useful for this purpose.

Finally, Figure 5 compares multiple different partitioning
options illustrated in Figure 2. The horizontal axis lists all the
options introduced in Figure 2, while the vertical axis indicates
the relative throughput normalized to that of the time-sharing
scheduling mentioned above. The job mix shown in the legend
of the figure lists 4 programs to be co-scheduled, and the pairs
are selected optimally for each partitioning option. The best
compute resource allocation [%] is selected to given two co-
located programs for the MPS Only option. For the MIG Only
options, each co-located application is assigned to one of the
4GPC or 3GPC CIs, which is selected optimally so that the
throughput is maximized. The MIG+MPS Hierarchical is a
mixture of these options. We co-locate all four programs at
the same time on the GPU. We first partition it into 4GPCs
and 3GPCs with the MIG feature, and then each of the co-
located programs is assigned to one of them with optimal
compute resource allocations [%] designated by the MPS
feature. Note that we search the optimal setups as well as the
job pair selections in an exhaustive manner for all the above
options. As shown in the figure, by combining the two different
partitioning features in a hierarchical manner, we observe even
more throughput improvement.

IV. OUR APPROACH

As demonstrated in the previous section, hierarchical re-
source partitioning, using a combination of MIG and MPS
features, is effective to improve the throughput of GPUs.
However, the partitioning setup needs to be chosen carefully
as the best choice highly depends on the characteristics of
co-located programs. At the same time, the selection of jobs
to co-schedule from a given job queue also significantly
affects system performance. In this paper, we target both
the co-scheduling and resource partitioning decisions and co-
optimize them simultaneously. To this end, we first formulate
the decision making as an optimization problem. Second,
we design a reinforcement learning-based co-scheduling and
resource management system to solve the problem, which
consists of offline profiling/training and online optimization.

A. Problem Definition
Figure 6 illustrates the optimization problem we solve in

this paper. We target the first W jobs in the job queue
(Q = {J1, J2, · · · , JW}) for the co-scheduling and resource
partitioning decision making. We then choose a set of jobs to
co-schedule (JS1 = {J1, J3, J4, J7}) and decide the resource
partitioning and allocations (denoted as R1). Here, the number
of co-located jobs or concurrency (C1) is constrained by

Hierarchical Resource
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Co-Scheduling:
JS1 = 

{J1, J3, J4, J7}

GPU

R1

Q: Job Queue

W

J1J2J3J4J5
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Scheduling Attribute = {W, Cmax}

J7J8 J6

Next: 
JS2 = {J2, J5, J6, J8}, R2

Fig. 6: Co-Scheduling and Resource Partitioning Problem

a parameter Cmax. After this optimization procedure, we
eventually obtain sets of decisions: (1) a set of co-scheduling
sets denoted as LJS = {JS1, JS2, · · ·}; and (2) a set of corre-
sponding resource allocations denoted as LR = {R1, R2, · · ·}.

This optimization procedure is formulated as follows:

given W, Cmax, Q = {J1, J2, ..., JW}

min

|LJS|X

i=1

CoRunTime(JSi, Ri)

s.t. CoRunTime(JSi, Ri)  SoloRunTime(JSi)

1  Ci(= |JSi|)  Cmax

8i 2 [1, |LJS|], |LJS| = |LR|
JS1 [ ... [ JS|LJS| = Q

|JS1|+ ...+ |JS|LJS|| = W

output LJS = {JS1, JS2, ...}, LR = {R1, R2, ...}

We solve this throughput-oriented optimization problem
where we minimize the overall co-run execution time (CoRun-
Time) for the sets of selected jobs (LJS) and correspond-
ing hardware configurations (LR). The scheduling attributes
({W,Cmax}) and the queuing jobs (Q) are given. The goal is
to find the optimal set of co-scheduling job-sets (LJS) as well
as their associated resource allocations (LR), and thus they
are the outputs. In this context, optimal set of co-scheduling
job-sets refers to the selection of compatible job-sets from
the given job window, which maximize the overall co-run

TABLE I: Definitions of Parameters/Functions
Parameter or Function Remarks

Q
Queuing jobs within the window:

Q = {J1, J2, · · · , JW}
Ji ith job in the queuing jobs
W The number of jobs within the window on the queue

Cmax The maximum number of concurrently executed jobs

LJS
A list of job sets to be co-scheduled:

LJS = {JS1, JS2, · · ·}
JSi ith set of jobs in LJS to be co-scheduled

LR
A list of resource partitioning/allocation setups

associated with the job sets: LR = {R1, R2, · · ·}
Ri The resource partitioning/allocations for JSi

Ci (= |JSi|) The concurrency of ith co-scheduled job set
CoRunTime(JSi, Ri) The total execution time when co-locating JSi w/ Ri

SoloRunTime(JSi) The total time when executing JSi w/ time sharing



Fig. 7: Proposed System Architecture

throughput. The first constraint represents that co-scheduling
ith set of jobs in LJS must improve performance compared
with the time-shared scheduling, i.e., running the jobs one
by one with using the entire GPU resources exclusively. The
second constraint restricts the co-scheduling concurrency, i.e.,
the concurrency (Ci) must be less than or equal to the given
upper limit (Cmax). These two constraints stand for any i
(1  i  |LJS|). The last two constraints restrict the job
set selections, i.e., they are selected from the queue (Q) in
a mutually exclusive and collectively exhaustive manner. The
parameters and functions used in this optimization procedure
are listed in Table I.

B. System Design

Fig. 7 illustrates the entire system architecture of our
solution. As shown in the figure, the overall solution consists
of three parts: (1) the offline profiling to collect application
profiles; (2) the offline training to setup the coefficients of
our agent; and (3) the online optimization to apply the trained
agent to the decision making.

For the application profiling, we collect hardware perfor-
mance counters to characterize the running jobs on the target
system. The exact counter selections are listed on Table III in
Section V-A. The profiles need to be collected beforehand for
any co-scheduling targets in both the offline and online phases.
In the offline training phase, we collect the solo-run profiles
for all the benchmark programs before the model training. In
the online optimization phase, if no profile is available for
a queuing job, it is excluded from the co-scheduling target
and is executed with exclusively using the entire GPU while
collecting the profile that shall be stored in the Job Profiles
Repository. If the application is executed again on the system,
it is included in the co-scheduling target as the profile is
available in the repository. This procedure requires a matching
function to select a corresponding profile for each job based
on its submission information (e.g., binary path, user ID, etc.).

In this study, we simply consider using the application binary
path plus name as a key and checking if there is a profile
associated with it in the repository. Developing an advanced
way to generate the key from the job submission information,
while taking a variety of aspects into account (e.g., input
dependency1), is an open problem for profile-based approaches
in general, and our matching function will be replaced with a
more sophisticated scheme in our future work.

For the offline model training, we create variants of bench-
mark program mixes to co-locate on the target GPU. For each
program mix, we continuously examine the co-run through-
put while changing the partitioning setup. This partitioning
search is based on reinforcement learning, i.e., we update
the partitioning and resource allocations accordingly when
the next co-run (with the exact same program mix) based on
the reward function output that takes the co-run throughput
into account. During this procedure, the state-action table,
which is approximated by a neural network in this study, is
trained, and the model coefficients in the agent are eventually
determined. The model coefficients are hardware specific and
are not portable to different hardware, however the training
procedure is required only once for a system though.

We take this offline training approach based on reinforce-
ment learning due to the following reasons. First, the resource
partitioning setup is not configurable dynamically at runtime in
commercial GPUs, and thus we cannot adaptively/dynamically
learn the optimal configurations for a given set of jobs in
the queue (Q) by testing various configurations at runtime.
Second, in the offline training phase, we apply reinforcement
learning instead of utilizing well-known supervised learning
using training dataset because it is infeasible to obtain the
labeled dataset. More specifically, labeling here associates
a given job mix with the best co-scheduling and resource
partitioning decisions, which requires the exhaustive search
for each job mix (or data) in the dataset.

In the online phase, we deploy an optimization agent that
solves the optimization problem formulated in Section IV-A
using the model generated in the offline phase. The agent
regards the optimization as a classification problem and uses
the model to choose sets of co-scheduling job mixes (LJS) and
corresponding resource allocations (LR) to maximize the GPU
throughput. In this work, we do not update the model during
the online phase, however dynamically refining the trained
model is a promising option for our future work.

C. Reinforcement Learning-based Solution
In reinforcement learning, an agent learns what action to

take based on the situation so as to maximize the cumulative
reward [43]. The goal of this form of learning is to enable an
agent to explore the parameter space based on its interaction
with the environment, perform trial-and-error, and eventually
generalize to perform optimal set of actions to reach the goal
state. The properties of reinforcement learning relevant to this
work are as follows:

1For instance, the characteristics/behavior of an application can depend on
its inputs, and there are several promising solutions to compensate for it [42].



1) Agent: An agent is an entity that interacts with the
environment, receives feedback (reward signal), and learns
a policy that governs the behavior at a given state of the
system. It learns an optimal policy in order to maximize the
accumulation of the reward signals in the offline training in
our approach. In this work, our agent serves as a co-scheduler
that selects the sets of job mix and the associated partitioning
(LJS and LR) from the given queue (Q).

2) Environment: An environment acts as a black-box for
the agent. In this work, the environment consists of the target
GPU and its hardware features.

3) State: The representation of the current situation of the
system is defined as the state. The state should contain all the
relevant information required for deciding the actions. In our
approach, the state of the system represents all the jobs in the
current job window (Q = {J1, J2, · · · , JW}) along with their
job features characterized by their profiles.

4) Action: An action is a decision made by the agent based
on the current state of the system. For our approach, actions
can include decisions for selecting the sets of co-scheduling
job mix and corresponding resource allocation (LJS and LR).

5) Reward: A reward signal define the goal of the rein-
forcement learning [43]. For every action, the agent receives
the reward signal as a numerical value. As agent’s goal is to
maximize the cumulative reward, the reward signal quantifies
and evaluates an action at a given state of the system. The
details of the setup for this reward function will be provided
in Section V-A.

D. Agent Implementation with Deep Q-Learning
We apply deep Q-learning to the offline training for optimiz-

ing the actions, i.e., co-scheduling and resource partitioning
decisions, made by the agent. For a given finite Markov
Decision Process, Q-learning can be used to determine the
optimal Q-value function. For a given state s and action a,
Q(s, a) (Q-value function) can be defined as the expected
value of the overall rewards. The optimal Q-value function
(also known as action-value function) has been defined using
Bellman Optimality Equation [44].

Q⇤(s, a) = E[Ias + �
X

s02S

maxQ⇤(s0, a0)]

In this formulation, there is an immediate reward Ias which
will be the gain for taking the action a at the state s and there
is a long-term value which is an estimate of the values of the
series of actions and state transitions. � is the discount factor
which defines the weight for the long-term rewards. The Q-
values for the given state-action pair are updated as per the
following update rule: Qnew(st, at)  Q(st, at) + ↵(rt +
�maxa Q(st+1, a)�Q(st, at)) where ↵ and � are the learning
rate and the discount factor respectively. Conventionally, the
Q-value function has been estimated by generating the Q-table,
for mapping every state-action pairs.

For more complex and higher dimensional state spaces, it
might not be possible to estimate the optimal values using the
Q-table and hence deep neural networks would be useful. As

neural networks are non-linear function approximators, they
are well-suited to estimate the optimal action-value function
in the process of Q-learning. In particular, in this work, we use
a duelling double deep Q network. The choice of this network
is based on the benefits highlighted from two separate works
by Hasselt et al. [45] and Wang et al. [46].

V. EVALUATION

In Section V-A, we first describe our evaluation setups
including our platform, workload selections, neural network
configurations, compared methods, and partitioning variants.
We then introduce our evaluation results in Section V-B.

A. Evaluation Setup

1) Platform: Table II lists the system environment used
for evaluating our approach. As mentioned before, we utilized
an A100 GPU and applied the MIG and MPS features to
it. Our system is implemented in Python using multiple
standard python libraries. We build our reinforcement learning
environment using the gymnasium python library [47]. For
implementing the agent, we use the PyTorch library for
implementing the deep neural networks for Q-learning [48].
Further, we use scikit-learn for performing additional data
pre-processing and feature engineering [49]. We collect hard-
ware performance counters to profile and characterize the
applications. To this end, we utilize the NVIDIA Nsight
compute framework [50]. Table III lists the collected hardware
performance counters by using the framework. These statistics
are useful to characterize the applications in terms of compute
intensity, memory intensity, parallelism/scalability, memory
access pattern, and so forth.

2) Workloads: We utilize the Rodinia benchmark
suite [51], a stream benchmark [52], a randomaccess
benchmark [53], and the Quicksilver mini application
chosen from the CORAL benchmark suite [54]. These bench-
mark programs are classified into CI (Compute Intensive),
MI (Memory Intensive), and US (UnScalable) as shown in
Table IV. We follow a prior study for the classification
procedure [6]: (1) if the performance degradation caused by
1GPC run with the private memory option compared with the
full 8GPC run is less than 10%, we regard it as an UnScalable
(US) application; (2) otherwise, if the ratio of Compute

TABLE II: Evaluation Environment
Name Remarks
GPU NVIDIA A100 40GB PCIe 250W TDP

Operating
System Ubuntu 20.04.4 LTS, Kernel Version: 5.4.0-137-generic

Software CUDA Version: 11.6, Driver Version: 510.108.03, Python
Version: 2.7.18

TABLE III: Collected Hardware Performance Counters
Statistics

Duration, Memory [%], Elapsed Cycles, Grid Size, Registers Per Thread, DRAM
Throughput, L1/TEX Cache Throughput, L2 Cache Throughput, SM Active
Cycles, Compute (SM) [%], Waves Per SM, Achieved Active Warps Per SM



(SM) [%] to Memory [%] is more than 0.80, we regard
it as a CI application; (3) otherwise it is an MI application.

In our evaluation, we first setup the job window size (W )
to twelve. We later scale the size as well to assess the
impact of the window size selection. For the offline training,
we exclude nine programs marked with * in the Table IV
and use the remaining 18 programs. The objective of the
exclusion procedure is to check if our approach can generalize
to unseen applications. We create 20 different job queues for
the agent training, each of which consists of W programs
randomly selected from the 18 programs while including all
the 3 categories in the queue. As for the online inference,
we test our approach with using different types of job mixes:
(1) CI-dominant; (2) MI-dominant; (3) US-dominant; and (4)
Balanced. On one hand, the X-dominant job mix is composed
of 50% of X class applications (X=CI, MI, or US), and the
rest of the 50% are from the other classes selected in a round
robin manner. For instance, when W = 12, the CI-dominant
class consists of 6CI, 3MI, and 3US applications. On the other

TABLE IV: Benchmark Classifications
Class Benchmarks

CI lavaMD, huffman*, hotspot3D, hotspot*, heartwall*,
bt solver A, bt solver B, bt solver C

MI lud A, lud B, lud C*, sp solver A, sp solver B,
sp solver C, randomaccess, cfd*, gaussian*, stream

US kmeans, dwt2d, needle*, pathfinder, backprop*,
qs Coral P1, qs Coral P2, qs NoFission*, qs NoCollisions

TABLE V: Tested Job Mixes per Category (W = 12)
Category Name Jobs

Q1
huffman*, bt solver C, bt solver B, hotspot3D,
heartwall*, lavaMD, lud B, cfd*, sp solver B,

pathfinder, needle*, qs NoFission*

CI-dominant Q2
bt solver C, heartwall*, lavaMD, huffman*, hotspot*,
hotspot3D, cfd*, sp solver C, gaussian*, pathfinder,

needle*, qs Coral P1

(CIx6, MIx3,
USx3) Q3

huffman*, bt solver C, hotspot3D, hotspot*,
heartwall*, lavaMD, lud B, stream, sp solver C,

qs NoFission*, pathfinder, needle*

Q4
bt solver B, heartwall*, bt solver C, lud B,

gaussian*, sp solver B, cfd*, sp solver C, stream,
qs NoCollisions, pathfinder, qs Coral P2

MI-dominant Q5
heartwall*, hotspot*, bt solver B, lud B, gaussian*,

randomaccess, stream, lud C*, sp solver B,
qs Coral P2, dwt2d, qs Coral P1

(CIx3, MIx6,
USx3) Q6

bt solver C, huffman*, lavaMD, sp solver B,
gaussian*, randomaccess, lud C*, stream, cfd*,

qs NoFission*, needle*, qs Coral P1

Q7
heartwall*, hotspot*, hotspot3D, gaussian*, stream,

lud B, pathfinder, qs NoFission*, qs Coral P2,
backprop*, qs NoCollisions, dwt2d

US-dominant Q8
bt solver C, hotspot3D, lavaMD, stream, cfd*, lud B,

qs Coral P1, needle*, kmeans, qs Coral P2,
qs NoFission*, qs NoCollisions

(CIx3, MIx3,
USx6) Q9

lavaMD, hotspot3D, hotspot*, sp solver B, lud C*,
randomaccess, qs Coral P1, dwt2d, kmeans, needle*,

qs NoCollisions, qs Coral P2

Q10
lavaMD, huffman*, hotspot3D, bt solver C, lud C*,

lud B, stream, sp solver C, qs NoCollisions,
needle*, pathfinder, qs Coral P1

Balanced Q11
huffman*, hotspot3D, hotspot*, bt solver B, cfd*,
lud C*, stream, gaussian*, qs Coral P2, needle*,

pathfinder, dwt2d

(CIx4, MIx4,
USx4) Q12

lavaMD, hotspot*, huffman*, heartwall*, sp solver C,
lud C*, randomaccess, gaussian*, needle*, pathfinder,

qs NoCollisions, backprop*

hand, the Balanced job mix selects a set of application classes
in a round robin manner, and when W = 12, it consists
of 4CI, 4MI, and 4US applications. For each of these job
mix categories, we create several job mix variants (A, B, and
C), and for each job mix variant, we assign applications to
each application class, which are randomly selected by using
Table IV. The exact job mix selections for W = 12 are listed
in Table V. Note the programs marked with * are unseen in
the training.

3) Setups for Training and Inference: Table VI lists the
setups used for the reward function and the agent. In this eval-
uation, we use two kinds of rewards: (i) intermediate reward ri
and (ii) final reward rf . On one hand, the intermediate reward
evaluates the resource allocation for a selected job, which
can be assessed before launching the job using the associated
profile. It returns a higher reward when assigning a resource
where it is needed (e.g., allocating more memory bandwidth
to an memory intensive application). On the other hand, the
final reward refers to the measured throughput improvement
over the time-sharing executions, which is obtained only after
the completion of co-running a job mix.

In the table, SmAllocRatio and MemoryAllocRatio
are hardware parameters, which characterize (i) the ratio
of allocated Streaming-Multiprocessors to the total num-
ber of them, and (ii) the ratio of allocated memory band-
width to the total available memory bandwidth respectively.
ComputeRatio, MemoryRatio and DurationRatio are
job-specific profile parameters which are described as follows:
(i) ComputeRatio: the ratio of Compute (SM) [%] of the
current job to the mean Compute (SM) [%] of the job
window, (ii) MemoryRatio: the ratio of Memory [%] of
the current job to the mean Memory [%] of the job window,
and (iii) DurationRatio: the ratio of solo-run execution time
of the current job to the mean solo-run execution time of the
job window. With this particular formulation of the reward
function, our focus has been on optimizing for co-run through-
put. Nevertheless, this approach can be further expanded by
fine-tuning the reward function to encompass additional pa-
rameters, including job-specific priorities, scheduling fairness
and energy consumption.

As for the agent, it is configured with double dueling deep
Q-network [46], and the details are listed also in Table VI. In
a dueling deep Q-network, the Q-value is split into two values:
(i) V value of being in the given state, and (ii) A advantage
of selecting a particular action in the given state. More details
about the update rule for Q-value, with use of A and V can
be seen in the work by Wang et al. [46]. Further, by following
the existing work [45], we use two different networks based
on the same described architecture: one for predicted Q-value
and the other for target Q-value. For the training, we use the
well-known ✏-greedy approach, in which we initially set a
parameter ✏ to 1 and gradually decrease it until it reaches
a certain point (e.g., 0.01 in our evaluation). The parameter ✏
controls the frequency of random actions taken by the agent.
More specifically, with a probability of ✏, the agent takes an
action randomly chosen from the entire search space. This



procedure is meant to converge to the global optimal as far
as possible. After the training procedure is completed, we set
the ✏ to 0 so as not to take any random action when using the
trained agent in the online phase.

4) Compared Methods: To assess the effectiveness of our
approach, we compare the following different scheduling
policies. We compare them in terms of throughput, application
performance, and fairness when scheduling given job mixes.

• Time Sharing (Baseline): Jobs in the given job mix
(or queue) are executed using the entire GPU resources
exclusively without co-scheduling/partitioning.

• MIG Only (C = 2): Following the existing studies [6],
[34], we test a MIG only option with the concurrency C
at 2. The job set selections and assignments are optimal,
i.e., exhaustively chosen from all the possible setups.

• MPS Only (C  Cmax): We test the MPS only option
with concurrency selections (C  Cmax). The job set se-
lections and resource assignments are determined through
an exhaustive search too.

• MIG+MPS Default (C  Cmax): The MIG partitioning
is selected so that the average throughput across Q1-Q12
is maximized. The MPS allocation is set to the default
mode. The job set selections (LJS) are optimal, i.e.,
they are chosen through an exhaustive search within the
designated concurrency limit and configuration space.

• MIG+MPS w/ RL (C  Cmax): Our proposed reinforce-
ment learning-based co-optimization of co-scheduling
and hierarchical partitioning.

5) Evaluated Partitions: Table VII lists all the partitioning
variants explored in the evaluation for different concurrency
setups (C). We list them for MPS Only and MIG+MPS w/ RL
described above. For MIG Only, we explore the two options
shown in Figure 2 to compare with the existing works [6],
[34]. For MIG+MPS w/ Default, it assigns the default active
thread percentage over the optimized MIG partitions.

The format to represent partitioning states is defined as
follows. First, a GI or the entire GPU is enclosed in a
square brackets. It is denoted as [compute resource setup,
assigned memory resource]. For the memory resource part,
when ↵ ⇥ 100% of the entire GPU memory bandwidth is
assigned, it is denoted as ”↵m”. As for the compute resource
setup, a CI or an MPS process is enclosed in curly brackets
or parentheses, respectively. The number in brackets (let it be
�) represents the amount of allocated compute resources (i.e.,
� ⇥ 100% of the GPU total). For instance, [{�}, ↵m] shows
one CI exists inside the GI, which can utilize � ⇥ 100% (or

TABLE VI: Agent and Reward Function Setups
Type Setups

Reward
Function

ri = (SmAllocRatio ⇥ ComputeRatio +
MemoryAllocRatio ⇥ MemoryRatio) ⇥

DurationRatio2

rf = (SoloRunTime/CoRunTime � 1) ⇥ 100

Agent

[# of neurons in the input layer]: W ⇥ (f + 5), [# of neurons
in the output layer]: V = 1, A =29, [# of hidden layers]: 3, [#
of neurons in each hidden layer]: 512/256/128, [Layer NW]:

Fully connected, [Activation function]: Rectified Linear

Fig. 8: Throughput Comparison (Cmax = 4, W = 12)

↵⇥ 100%) of compute (or bandwidth) resources. Further, the
partitions in the same level of the hierarchy are combined with
”+” in the format. For instance, [{0.375}+{0.5},1m] is the
3GPC+4GPC MIG-only partitioning with the shared memory
option, whereas [{0.375},0.5m]+[{0.5},0.5m] is the private
memory option with the same GPC allocations.

B. Experimental Results
Figure 8 compares throughput among different methods

and across different workloads. The horizontal axis represents
executed workloads (AM: Arithmetic Mean), while the vertical
axis indicates relative throughput normalized to that of Time
Sharing for each workload. Throughout the evaluation, the
maximum concurrency (Cmax) is set at 4. In general, the
proposed reinforcement learning-based approach outperforms
all the other methods for almost all the workloads. Compared
with the Time Sharing, it achieves 1.516 or 1.873 times
throughput improvement on average or at best, respectively.
The MIG+MPS Default is also hierarchical with a constant
MIG partitioning and the default MPS setup. Our approach
outperforms this option, which implies that the hierarchical

TABLE VII: Partitioning Setups for Different Concurrency
(See Section V-A5 for the Format Definition)

C For MPS Only For MPS+MIG w/ RL

2
[(0.1)+(0.9),1m];

[(0.2)+(0.8),1m]; . . . ;
[(0.5)+(0.5),1m];

[(0.1)+(0.9),1m]; [(0.2)+(0.8),1m]; . . . ;
[(0.5)+(0.5),1m]; [{0.375}+{0.5},1m];

[{0.375},0.5m]+[{0.5},0.5m]

3 [(0.1)+(0.1)+(0.8),1m]; . . . ;
[(0.34)+(0.33)+(0.33),1m];

[(0.1)+(0.1)+(0.8),1m]; . . . ;
[(0.34)+(0.33)+(0.33),1m];

[{0.375},0.5m]+[(0.1)+(0.9),{0.5},0.5m];
. . . ;

[{0.375},0.5m]+[(0.5)+(0.5),{0.5},0.5m];
[{0.375}+(0.1),(0.9){0.5},1m]; . . . ;

[{0.375}+(0.5),(0.5){0.5},1m];

4
[(0.1)+(0.1)+(0.1)+(0.7),1m];

. . . ;
[(0.25)+(0.25)+(0.25)+(0.25),1m];

[(0.1)+(0.1)+(0.1)+(0.7),1m]; . . . ;
[(0.25)+(0.25)+(0.25)+(0.25),1m];

[(0.1)+(0.9),{0.375},0.5m]+
[(0.1)+(0.9),{0.5},0.5m]; . . . ;
[(0.5)+(0.5),{0.375},0.5m]+

[(0.5)+(0.5),{0.5},0.5m];
[(0.1)+(0.9){0.375}+(0.1)+(0.9){0.5},1m];

. . . ;
[(0.5)+(0.5){0.375}+(0.5)+(0.5){0.5},1m];



Fig. 9: Average Throughput Comparison for various Window
Sizes (Cmax = 4)

Fig. 10: Average Throughput Comparison for various values
of Cmax (W = 12)

partitioning needs to be changed depending on the charac-
teristics of jobs to be co-located. The MPS Only option is
less effective than ours because it is not capable of mitigating
the interference on the shared resources among co-scheduled
programs. By combining with the MIG feature, it becomes
even more effective.

Next, Figure 9 and Figure 10 present the average throughput
as a function of the window size (W ) and the maximum
job concurrency (Cmax). The vertical axes of the mentioned
figures represent the average throughput based on all of the
12 job queues, and the horizontal axes represent W and Cmax

respectively. Note that Cmax is fixed at 4 when scaling W in
Figure 9, while W=12 stands when scaling Cmax in Figure 10.
As shown in the figures, the throughput increases as we scale
these parameters. This is because of the following reasons: (1)
our approach can find better co-scheduling groups for higher
W ; and (2) our co-scheduling can utilize resources more
effectively for higher Cmax thanks to the flexible partitioning
and shared resource isolation features offered by MPS and
MIG. We selected W=12 and Cmax=4 as scaling them further
did not improve the throughput further for our workloads.

Next, Figure 11 demonstrates the average application slow-
down caused by co-scheduling for different methods across
different job queues. The X-axis lists evaluated workloads,
while the Y-axis represents the average application slowdown.
We define the application slowdown (AppSlowdown) for a
given job taken from the given queue (J 2 Qi) as follows:

AppSlowdown(J) =
CoRunAppT ime(J)

SoloRunAppT ime(J)

Fig. 11: Per Application Slowdown (Cmax = 4, W = 12)

Fig. 12: Fairness Comparison (Cmax = 4, W = 12)

Here, CoRunAppT ime(J) or SoloRunAppT ime(J) denote
the space-sharing execution time or the solo-run execution
time for the given job (J), respectively. We calculate the
average across all the jobs in the given queue for each method.

The average application slowdown for our approach is on
average 1.829 and is 1.345 at best. As co-scheduling can offer
more concurrency up to Cmax, it can achieve higher through-
put in total as observed in Figure 8 even with the application
slowdowns. Note that the average application slowdown of
MIG Only (C = 2) is smaller than those of the others, however
due to the limited concurrency, the total throughout is smaller
than the others. As our approach can trade-off the application
slowdowns and concurrency in a better way, it achieves higher
total system throughput as a consequence.

Figure 12 compares the fairness in scheduling among dif-
ferent methods across different workloads. By following an
existing study [55], we define the fairness metric (Fairness)
for the given queue (Qi) as follows:

Fairness(Qi) =
minJ2Qi(AppSlowdown(J))

maxJ2Qi(AppSlowdown(J))

A higher value is better for this metric, and the highest one
is 1. More specifically, when this fairness metric is equal to
one, the maximum slowdown becomes exactly the same as the



minimum slowdown, which means all the applications suffer
from the same degree of slowdown. According to Figure 12,
ours is comparable in fairness with the other approaches except
for the Time Sharing, even though ours outperforms them in
throughput. Note we can improve the fairness in our approach
by taking it into account in the reward function.

Finally, we report the overhead of our approach in both the
online and offline phases. The throughput degradation caused
by our online optimization is less than 0.5% on average across
our workloads (W = 12), which is negligible compared with
the throughput gain, and thus we observe the considerable
throughput improvement, as shown in Figure 8. As for the
offline training time, a key bottleneck arises due to real-time
interactions with the system, i.e., continuous benchmark runs.
With available MIG/MPS setups for the selected concurrency
(let NC be the number of available setups for C, see also
TABLE VII), the maximum count of distinct job selections
plus resource assignments is

PCmax

C=2

�W
C

�
⇥ C! ⇥ NC . Here,

to assess the maximum, we suppose selecting C jobs from
W unique jobs and assigning them to C distinct regions
partitioned with a certain MIG/MPS setup chosen from NC

variants. Consequently, for W = 12 and Cmax = 4, the
training overhead could escalate to the order of 105 ⇥ tavg ,
where tavg signifies the average duration taken for executing
a scheduling policy on the system. However, as the agent
progressively converges towards optimal policies, it need not
explore every conceivable policy within this set. Hence, in our
environment, the offline training procedure takes only couple
of hours. The overhead is reasonable as the training is required
only once for a system.

VI. DISCUSSION

Our approach is equally extensible to clusters of GPUs be-
cause node-local optimizations naturally carry over to clusters
and have direct impact on GPU cluster operations. To this end,
the hierarchical optimization presented in this work needs to
be extended by adding another level of resource assignments
at the top, i.e., node/GPU allocations. For this extension, the
vector of job characteristics denoted as Ji needs to include
the numbers of GPUs/nodes requested by the job, which can
be retrieved from the corresponding job script. Based on this
information, the agent will decide the resource allocations
denoted as Ri which also needs to be extended to cover the
physical IDs of assigned nodes/GPUs as well as their partition-
ing states. In addition, the agent and the reward function need
to coordinately deal with load imbalances introduced by co-
scheduling multi-node/-GPU jobs. For instance, a multi-node/-
GPU job can be co-located with different jobs at different
nodes/GPUs which can induce a significant load imbalance
for the job. We consider the following two options for this
extension: (1) introducing a larger and more scalable neural
network; (2) using a multi-level agent to cope with the system-
wide and node-level optimizations separately but coordinately.

The scenario we are focusing on in this paper are over-
crowded systems with long queuing times (i.e., always
runnable jobs available). This is because they are common in

HPC centers with GPU demand going beyond GPU offerings.
In this situation, we believe it is reasonable and advisable
to pick multiple GPU jobs and co-locate them on the same
GPU(s) to maximize throughput, and the option for co-starting
multiple jobs like our approach can be highly efficient. When
the system becomes less crowded, a commonly used schedul-
ing policy such as FCFS (First Come First Serve) with back-
filling without co-scheduling can be a more efficient option.
Therefore, in practice, we may choose the policy between them
depending on the system state including currently running and
queuing jobs. Developing such a policy selection mechanism
is an interesting research direction and can be one of our future
studies in addition to integrating our approach into an existing
HPC cluster management tool such as Slurm.

VII. CONCLUSION AND FUTURE WORK

In this paper, we focused on resource partitioning features
available in recent commercial GPUs (e.g., MPS and MIG)
and proposed a reinforcement learning-based approach to co-
optimize the configurations of these multiple and hierarchi-
cal resource partitioning features, as well as to make co-
scheduling decision for a given set of jobs. We observed the
impact of that hierarchical resource allocations consisting of
MPS and MIG has and based on that defined the matching
optimization problem in a concrete mathematical form. We
use this formulation to propose our solution based on a
reinforcement learning approach. Our experimental results
showed that our approach was successful in solving the co-
optimization problem efficiently.

There are several opportunities to extend this work in the
future as discussed in the last section. For one, we can
extend our work to cover multiple GPUs at the entire cluster
scale. To this end, the agent and the reward function need
to be updated accordingly, by such as using a larger and
more scalable neural network or making these entities multi-
level, in order for dealing with the increased complexity. For
implementing this extension, we will consider integrating our
approach with an existing HPC cluster management tool such
as Slurm. Further extensions can include analyzing the impact
of application-level resource sharing features (e.g., NVIDIA
Multi-Streams [56]) on the partitioning features we explored
in this paper (MPS and MIG). We can consider also other
partitioning features on different components as well as other
kinds of resources, such as power.
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