
autopin – Automated Optimization of
Thread-to-Core Pinning on Multicore Systems

Michael Ott, Tobias Klug, Josef Weidendorfer, and Carsten Trinitis

Technische Universität München
Lehrstuhl für Rechnertechnik und Rechnerorganisation / Parallelrechnerarchitektur

Boltzmannstraße 3, 85748 Garching bei München
{ottmi,klug,weidendo,trinitic}@in.tum.de

Abstract. In this paper we present a framework for automatic detec-
tion of the best binding between threads of a running parallel applica-
tion and processor cores in an SMP system, by making use of hardware
performance counters. This is especially important within the scope of
multicore architectures with shared cache levels. We demonstrate that a
lot of the applications from the SPEC OMP benchmark show quite sen-
sitive runtime behavior depending on the thread/core binding used. In
our tests, the proposed framework is able to almost always find the best
binding. The proposed framework is intended to supplement job schedul-
ing systems for better automatic exploitation of systems with multicore
processors, as well as making programmers aware of the given issue by
providing measurement logs.

Key words: Multicore, CMP, automatic performance optimization,
hardware performance counters, CPU binding, thread placement.

1 Introduction

During recent years, a clear paradigm shift from increasing clock rates towards
multicore chip-architectures (CMP) has taken place. With multicore architec-
tures becoming standard, clock frequencies have become more or less stable, but
the number of cores on a die is increasing. In order to take advantage of existing
and future multicore processor architectures, it is essential to develop parallel
applications and to adapt existing serial applications accordingly. Otherwise, all
but one core remain idle, and no performance gain can be achieved at all. Par-
allel programming is leaving the high performance computing (HPC) niche and
establishing itself as a mainstream programming technique.

Asymmetric properties of the memory subsystem are a big obstacle for run-
time performance on shared memory machines, as they need to be taken care
of explicitly. Non Uniform Memory Access (NUMA) architectures are a famil-
iar example. A new type of asymmetric property comes with shared caches in
multicore processors: The access history of one or multiple nearside cores can
significantly influence the speed of memory accesses. While overlapping working
sets in threads running on cores sharing a cache can improve runtime, the non-
existence of any overlapping usually degrades performance by cutting available



2

cache space into half. Without sophisticated tools and detailed analysis, the pro-
grammer can only roughly assess the reason for acceleration or slowdown in her
parallel code, let alone come up with optimization strategies for badly running
code. This problem is expected to increase with the number of cores available on
one chip1, as in this case the need for complex on-chip interconnection and cache
buffer hierarchies is evident. The ubiquity of multicore processors nowadays on
standard computer hardware can easily lead to a situation where deterministic
runtimes become a myth for programmers, forcing sequential programming on
a 256 core processor for runtime predictability.

To overcome the issue with non-uniform memory subsystems, including the
shared cache problem, we propose an automatic approach in this paper: While
the application is running, the autopin tool checks a given set of fixed thread-
to-core bindings (called pinnings) in order to find the pinning with optimal
performance. In a first study, we used autopin to find optimal pinnings for
applications in the SPEC OMP benchmark2 on various multicore systems. We
check pinnings where all cores are active as well as pinnings with a smaller
number of threads than cores available on a given system. This is due to the fact
that one core on a multicore processor can already fully exploit the available
connection to main memory, thus slowing down any work on other cores on the
same chip. In this case, it might be recommended to not use these cores for the
parallel application. In addition, there exist applications that run with thread
counts which do not match available core counts: Examples are parallel tree
traversals or load balancing schemes generating/killing threads on the fly. The
proposed framework is intended to supplement job scheduling systems for better
automatic exploitation of systems with multicore processors, as well as making
programmers aware of the given issue by providing measurement logs.

2 Related Work

With the large amount of computer systems available today, there is no global
strategy for performance optimization. One approach is to use performance anal-
ysis tools such as GProf [1] or Intel VTune [2], and to adapt the code to a specific
system. However, this approach is not always feasible: Commercial software and
library packages are available for certain classes of systems only. To still allow for
good exploitation, different approaches exist: Foremost, the best code optimiza-
tion approaches are architecture independent, e.g. using algorithms with lower
complexity. For caches, cache oblivious algorithms [3] use recursive splitting of
data structures for blocking optimization, independent on cache size. Another
approach is to check for hardware features at runtime (as in math libraries from
vendors [4]) or at install time with an automated search for best parameters and
according recompilation. A prominent example using this strategy is the Atlas
1 In the remainder of this work, the term chip will refer to a single physical processor

chip which may consist of multiple processor cores plus cache. Hence, the term core
will refer to a single x86 based physical processor unit.

2 http://www.spec.org/OMP



3

library [5]. Our automated search for best thread-to-core pinning takes a similar
approach.

Initially used for internal correctness checks after production only, Hardware
Performance Counters are integrated into processors on the market nowadays.
The amount of different events that can be measured differs heavily among pro-
cessors (e.g. see [6] or [7]). Typically, there are 2 or 4 counters available for a
huge number of event types related to the processor pipeline, the cache subsys-
tem, and the bus interface, thus allowing to check the utilization of resources.
However, the semantics of events can be difficult to interpret, and often, de-
tailed documentation is rare. Hardware Performance Counters are either used
to read exact counts, or to derive statistical measurements. The most common
commercial tool is VTune [2]. A library for multiple platforms and operating
systems to read counters is PAPI [8]. For Linux, there is a statistical measure-
ment tool called OProfile [9], available as part of the standard kernel. However,
to get read access to counters, it was required to install a kernel patch (Perfctr),
complicating the use significantly. However, HP has started to work on another
kernel patch which is called perfmon2 [10]. This patch initially existed in the
Linux Itanium architecture only. It provides support for latest Intel and AMD
processors. Its user level parts (libpfm, pfmon) form the basis for autopin.

3 The autopin tool

As a proof-of-concept implementation of our framework for automated CPU
pinning, we extended the pfmon utility from the perfmon2 package (see [10])
with the required functionality:

Upon creation, each new thread is enumerated and pinned to one specific
CPU core using the sched setaffinity() system call. The cores to be used and
the order in which the cores are assigned to the threads is specified by the user via
an environment variable called SCHEDULE . Each position of this string-variable
defines a mapping of a thread ID to a CPU core ID. For example, SCHEDULE=2367
would result in the first thread being pinned to core #2, the second thread to core
#3, and so on. The user may pass several, comma-separated sets of scheduling
mappings via this environment variable. If so, the tool will probe each of these
sets for a certain time interval n which can be specified using the -t parameter.
The probing is performed using the following algorithm:

1. Let the program ”warm up” for n/2 seconds.
2. Read the current timestamp t1 and value p1 of the performance counter for

each thread.
3. Run the program for n seconds.
4. Read the current timestamp t2 and value p2 of the performance counter for

each thread.
5. Calculate the performance rate ri = (p2−p1)/(t2− t1) for each thread i and

the average performance rate ravg over all threads.
6. If further mappings are left for probing, re-pin the threads according to the

next mapping in the list and return to 1.



4

The ”warm up” time at the beginning of each probing cycle is needed for the
actual rescheduling of the threads and to refill the cache.

The specific average performance rate ravg of each scheduling mapping is
written to the console. After all mappings have been probed, autopin displays
the mapping which achieved the highest performance rate and re-pins the threads
accordingly. The program then continues execution with this optimal pinning
which will not be changed until the program terminates. Additionally, every n
seconds the current performance rate is calculated and written to the console.

As non-optimal pinnings are used in the beginning, a slight overhead is im-
posed during this phase. However, in most cases this overhead can be neglected,
especially when n is small compared to total application runtime.

The performance counter event which is used for the calculation of the per-
formance rate can be specified by the user with the -e parameter. A list of
events which are supported by libpfm for the used architecture can be retrieved
by calling autopin -L.

4 Experimental Setup

This chapter describes the experimental setup that has been chosen in order to
assess the performance of the autopin framework. First, the deployed benchmark
suite SPEC OMP is described. After this, the hardware platforms that were used
to perform the benchmark applications under control of autopin are specified.
The last section deals with different CPU pinnings that were selected to be
evaluated by autopin during the benchmark run.

4.1 Benchmark

SPEC OMP was used as a benchmark basis for autopin. SPEC OMP is an
OpenMP benchmark suite for measuring performance of shared memory parallel
systems consisting of eleven applications (see table 1), most of which are taken
from the scientific area[11].

There are two different levels of workload for SPEC OMP: Medium and
Large. All benchmark runs were executed with medium size, as the maximum
number of cores used was 16, whereas runs with workload size large are intended
to be used for large scale systems of 128 and more cores. In SPEC OMP all
benchmark applications are provided in form of source code and have to be
compiled with an appropriate compiler. For all hardware platforms described
below, Intel Compiler Suite 9.1 was utilized.

4.2 Hardware environment

Our testbed consists of several machines:

– One node with two Intel Clovertown processors. The Clovertown processor
consists of four cores, while two cores have a shared Level 2 cache (4 MB),



5

respectively. Our system has 16 MB of cache in total, runs at a clock rate
of 2.66 GHz and has 8 GB RAM, DDR2 667 MHz. The frontside bus has a
clock rate of 1333 MHz.
Figure 1 demonstrates a schematical diagram of this machine, which will be
referred to as Clovertown. The core numbers in the figure are corresponding
to the logical processor id assigned by the Linux kernel. The drawing also
illustrates which cores are sharing a cache (for instance core #0 and core
#2). Whether two cores share a cache or not was detected with the authors’
false sharing benchmark [12].

– A system with four Intel Tigerton processors. The Tigerton processor con-
sists of four cores, while two cores have a shared Level 2 cache (4 MB), re-
spectively. There are four independent frontside buses (1066 MHz), so each
CPU has a dedicated FSB. Each FSB is connected to the Chipset (Clarks-
boro) which has a 64 MB snoop filter. The memory controller can manage
four fully buffered DIMM channels (see figure 2). Our system has 32 MB of
cache in total, runs at a clock rate of 2.93 GHz and has 16 GB RAM (DDR2
667 MHz). This machine will be referred to as Caneland.

– A two socket machine, equipped with two AMD Opteron 2347. Each CPU
has four cores, each of which has a L2 cache size of 512 KB. All cores on a
chip are sharing a 2 MB L3 Cache. The four cores are running at a clock
rate of 1.9 GHz. The system has 16 GB main memory, DDR2 667 MHz. In
contrast to the two hardware platforms described above, this system repre-
sents a NUMA-Architecture. Each CPU has an integrated memory controller
and can access local memory faster than remote memory. Access to remote
memory takes place via HyperTransport (see figure 3). This machine will be
referred to as Barcelona in the following sections.

4.3 Thread-to-Core Pinning

All benchmark applications were started with autopin monitoring the hard-
ware counters INSTRUCTIONS RETIRED on Intel architecture and accordingly

Table 1. SPEC OMP benchmark applications

application name description

310.wupwise quantum chromodynamics
312.swim shallow water modeling
314.mgrid multi-grid solver in 3D potential field
316.applu parabolic/elliptic partial differential equations
318.galgel fluid dynamics analysis of oscillatory instability
330.art neural network simulation of adaptive resonance theory
320.equake finite element simulation of earthquake modeling
324.apsi weather prediction
326.gafort genetic algorithm code
328.fma3d finite-element crash simulation
332.ammp computational chemistry



6

Table 2. Investigated CPU Pinnings for Different CPU Architectures

#Threads Caneland Clovertown Barcelona

1 1 4 1

2 1,2 2,6 4,5
1,7 4,5 2,6
1,8 4,6 4,6

4 1,7,8,9 4,5,6,7 2,6,3,7
1,8,2,11 2,3,6,7 4,6,5,7
5,8,11,14 1,3,5,7 1,3,5,7
8,9,11,12

8 1,7,8,9,2,10,11,12 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7
4,6,7,9,10,12,13,15
5,6,8,9,11,12,14,15

RETIRED INSTRUCTIONS on AMD architecture. As the deltas of the performance
counters are divided by the measurement time interval, the measured metric
represents the MIPS rate. For floating point intensive programs it might also
be interesting to count the retired floating point instructions and calculate the
FLOPS rate.

As described in chapter 3, autopin starts with a short warmup phase and
then probes the different CPU pinnings read out of the environment variable
SCHEDULE for a specified time period. For the measurements described in this
paper, a time period of 30 seconds was chosen.

We did not probe all possible pinnings, as most of them are redundant due
to symmetries of the architectures:

– For the 1-thread runs we chose a core which is located on a different chip
than core #0 as this one often is used for operating systems tasks and thus
could disturb the benchmark.

Fig. 1. Intel Clovertown System



7

Fig. 2. Intel Caneland Platform

Fig. 3. AMD Barcelona System

– For runs with 2 threads we chose configurations on two different chips, on
one chip with the 2 cores sharing the L2 cache (Intel only), and on one chip
with both cores not sharing the cache.

– The measurements with 4 threads were carried out on 1 chip with all cores
utilized, on 2 chips once with 2 cores not sharing the L2 cache and – where
applicable – once with 2 cores sharing the L2 cache. On the Caneland plat-
form we additionally made a run on 4 chips, using one core per chip.

– On Clovertown and Barcelona 8 threads were pinned to the core IDs in the
same order as they were forked (e.g. the 1st thread on core #0, the 2nd on
core #1, and so on). On the Caneland platform we probed configurations
exploiting all 4 cores on 2 chips, and 4 chips utilizing 2 cores each – once
with shared cache once without.

– The 16-core on Caneland runs were conducted analogously to the 8-core runs
on the Clovertown platform.

The detailed list of probed CPU pinnings can be found in table 2 (the first
column shows the number of threads used, the second to fourth columns stand
for the different thread-to-core pinnings). In order to find the best and worst pin-
ning, we made additional runs with autopin being called with one SCHEDULE-
parameter only, so the CPU pinning stayed unchanged from start to finish.
Such runs were performed for every pinning listed in table 2. So for example,



8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

8421

max
optimal
autopin

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

168421

max
optimal
autopin

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

8421

max
optimal
autopin

Fig. 4. 314.mgrid on Clovertown (left), Caneland (middle), Barcelona (right)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

8421

max
optimal
autopin

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

168421

max
optimal
autopin

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

8421

max
optimal
autopin

Fig. 5. 316.applu on Clovertown (left), Caneland (middle), Barcelona (right)

on the Caneland platform for two threads there are the following CPU pin-
nings to investigate: (1,2), (1,7) and (1,8). Accordingly autopin was called with
SCHEDULE=12,17,18. Additionally, autpoin was called three times one after an-
other with parameter SCHEDULE=12 for the first run, SCHEDULE=17 for the second
run and SCHEDULE=18 for the last run. This way it is possible to double-check if
autopin really found the perfect CPU pinning.

5 Results

As described in chapter 4, we used the SPEC OMP benchmark suite to evaluate
the effectiveness of our approach. As this suite consists of 11 individual bench-
mark applications, presenting the runtimes for all benchmarks, architectures, and
configurations (# of cores used, pinning to cores) would go beyond the scope
of this paper. Therefore we only discuss three of the benchmark applications in
detail: 314.mgrid, 316.applu, and 332.ammp. For the remaining benchmarks we
will only sum up our observations shortly:

– On the Clovertown platform, our autopin tool found the optimal pinning
for all benchmarks.

– On the Caneland platform it proposed a wrong pinning two times. How-
ever, the difference in total runtime of the optimal pinning and the pinning
proposed by autopin was below 1% which is below metering precision.

– On the Barcelona platform, the pinning suggested by autopin seemed to be
influenced by the order in which the pinnings were listed in the SCHEDULE
variable: if the optimal pinning was listed first, it was found. If it was listed
last it only was found if the runtime gap between the best and worst pinning
was significant (over 10%). This is likely due to the fact that the Barcelona
system is a NUMA architecture. Though the threads can easily be moved



9

 0

 1000

 2000

 3000

 4000

 5000

 6000

8421

max
optimal
autopin

 0

 1000

 2000

 3000

 4000

 5000

 6000

168421

max
optimal
autopin

 0

 1000

 2000

 3000

 4000

 5000

 6000

8421

max
optimal
autopin

Fig. 6. 332.ammp on Clovertown (left), Caneland (middle), Barcelona (right)

to another core on another chip, the memory allocated by the thread re-
mains on the origin node. All following memory accesses thus have to use
the Hypertransport which has a higher latency and lower bandwidth than
a direct memory access to local memory. However, now that we are aware
of the problem, a solution to just obtain the optimal pinning is the follow-
ing: Instead of rescheduling the running threads to other cores, the program
has to be terminated and restarted with a different pinning. This way, each
thread can access the memory locally and maximum bandwidth is therefore
guaranteed.

– On all platforms, different CPU pinnings had only little effect on the total
runtime of the benchmarks if only one core or all available cores were ex-
ploited. Note, that this does not mean that one can neglect CPU pinning in
these cases. Pinning is still important to prevent threads from moving from
one core to another.

– On the Clovertown platform, CPU pinning is most important for configura-
tions with 2 cores. For 8 benchmarks, the difference in total runtime between
the optimal and the worst configurations was over 20% (over 50% for 314
and 316). For the remaining three (324, 328, 332) it is in the range of 3-10%.
For configurations with 4 utilized cores, pinning improved the total runtime
between 1 and 7% and in one case (314) by 17%.

– The Caneland platform is very sensitive to CPU pinning. Pinnings on two
cores showed runtime differences in the range of 25-65% for 8 benchmarks
out of 11. 324, 328, and 332 were in the range of 4-15%. The gap between the
optimal and the worst pinning even increases for setups with 4 cores: only
for 3 benchmarks (324, 328, 332) the difference was below 50%, 312 and
314 even showed differences over 100%. For 8 cores the runtime differences
were widely distributed between 7 and 78%. Furthermore, for all benchmarks
besides the usual suspects 324, 328, and 332, the best 4-core pinning showed
better runtimes than the worst 8-core pinning. Utilizing all 16 cores improves
runtime only slightly for most benchmarks. In fact, for 314 and 320, the
optimal 4-core pinnings achieve better runtimes.

– In general, the Barcelona platform seems to be more tolerant on wrong CPU
pinnings. At least on 2-thread runs: runtime differences for the best and worst
pinning were between 0.1 and 6.5%, except for 312 where the gap was 32%.
On 4-thread configurations the pinning has a higher impact, though not as
high as on the Caneland platform: for most benchmarks the runtimes differed



10

between 1.5 and 28%, with 312 making an exception again by showing a gap
of 58%.

– For all datasets, the 2-core configurations which pinned the threads to cores
on different chips showed the best runtimes. With 4 threads, it is best to pin
them on cores which don’t share a common cache on Intel Platforms. This
is simply due to the fact, that with two cores sharing a common L2 cache,
one core can utilize the whole 4MB L2 cache for one thread if the other
one is idle. The same is true for 8-core configurations on Caneland. On the
Barcelona it is best to distribute the threads equally to both chips. Being a
NUMA architecture, this gives the highest aggregated memory bandwidth
to all threads. Furthermore, as the L3 cache is shared between all cores on
one chip, the available cache per thread is higher, if half of the cores are
idling.

Figure 4 shows the total runtimes (in seconds) of the 314.mgrid micro bench-
mark on the Clovertown, Caneland and Barcelona platform utilizing 1, 2, 4, 8,
and 16 (Caneland only) cores. For 1 core and 8 cores (16 on Caneland) we only
show the runtime for one CPU pinning as different pinnings had only little effect
on the total runtime in these cases. For the other core counts we show runtimes
of the worst (”max”) and the best (”optimal”) pinning, as well as for the con-
figuration autopin has proposed (”autopin”) - which in all cases is identical to
the optimal pinning. Note, that on the Intel systems, utilizing more than 4 cores
does not improve runtimes any further - even with perfect pinning. If the wrong
pinning is chosen, the runtime can be worse than the runtime with perfect pin-
ning on half the number of cores. This effect significantly influences performance
on the Caneland platform: The worst 2- and 4-core setups are less than 9% faster
than the single-core setup. On Barcelona, wrong pinning does not show problems
for 2 threads: the runtimes for both cases are within metering precision. For 4
cores the difference is approximately 20%. Furthermore, the scaling behavior on
Barcelona is better than on Intel platforms: while the latter one can not benefit
from more than 4 cores, the AMD system scales fine up to 8 cores. This leads to
the fact that the total runtime for 8 Opteron cores is shorter than the runtime
for 16 Tigerton processors. Given the fact that the single core runtime on the
Opteron was 40% higher than on the Intel processors, this is remarkable.

Similar effects can be observed on the 316.applu benchmark (see figure 5),
especially on Caneland: Doubling the number of utilized CPU cores can slow
down the computation if the wrong pinning is used. While this effect is weaker
for the Clovertown, it still shows weak scaling performance. Again, using more
than 4 cores does not improve performance at all. The Barcelona only shows
runtime differences for the 4 core setup (44%). For the optimal pinning, runtimes
and scaling behavior is very similar to the Intel processors.

The 332.ammp benchmark draws a whole different picture as one can see on
figure 6: Pinning of threads has almost no impact on the runtime and even on
the Intel platforms we can see almost linear speedups up to 16 cores. We assume
that this benchmark can run almost totally in cache and is therefore not limited
by the memory bandwidth which is shared with the other cores.



11

6 Conclusion and Outlook

In this paper, the autopin framework was presented. autopin allows to deter-
mine which thread pinning is best suited for a shared memory parallel program
on a selected architecture. Performance analysis is done by means of hardware
performance counters which can be freely specified by the user. It could be shown
that autopin always proposed optimal pinning for the SPEC OMP benchmark
on UMA architectures, aside from very few cases where the difference in runtime
between optimal pinning and the pinning obtained by autopin was less than one
percent. There is a drawback for autopin on the NUMA architectured Barcelona
platform: When a thread is moved away from the chip where it has been created
(and it’s memory has been allocated on), all following memory accesses have to
be performed over the slower Hypertransport which usually slows down program
execution. Remarkably, the best and worst pinnings for some benchmark appli-
cations yielded a runtime difference of more than 100 per cent. Keeping these
numbers in mind, it is obvious that CPU pinning is an important topic that will
become even more crucial with future multicore processor architectures, which
will have much more complicated on-chip interconnects with strongly varying
access speeds.

Future versions of autopin can be improved in several ways. At the moment
the user has to know the hardware infrastructure (how many cores are avail-
able on how many sockets, how many cores are on a chip, which cores do share
caches, etc.) in order to choose a reasonable set of schedule mappings. To make
the tool easier to use for people with no background in computer architecture,
a mechanism could be implemented that automatically detects the hardware in-
frastructure and selects appropriate schedule mappings to analyze. A promising
idea that goes one step further is to integrate parts of autopin into the scheduler
of the Linux kernel.

In its current version, autopin starts with one pinning and switches to the
next pinning after a specified time frame and so on. When no more pinnings to
be tested are left, autopin re-pins to the best mapping found so far and uses this
pinning until the program terminates. This behavior could be inappropriate for
programs that have strongly varying execution phases. For example, a parallel
program with four active threads might have a first phase in which it is memory
bound. Within this phase, distributing threads over four different chips makes
much more sense than putting all threads together onto one chip. Consider the
next phase to be dominated by very fine grain communication with all relevant
data being held in caches. This time the situation is vice versa, and pinning all
threads onto one chip with four cores sharing a L3 cache would be most efficient.
Taking these considerations into account, the idea is to adapt autopin to allow
for specifying different execution phases, which even can be triggered by the
application itself.

Finally, a future version of autopin will be able to migrate memory pages
from one node to another: Whenever a thread is re-pinned to a core on another
chip, the according memory pages are migrated too.



12

References

1. Graham, S.L., Kessler, P.B., McKusick, M.K.: gprof: a Call Graph Execution
Profiler. In: SIGPLAN Symposium on Compiler Construction. (1982) 120–126

2. Intel: VTune Performance Analyzer.
http://www.intel.com/software/products/vtune

3. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-Oblivious Algo-
rithms. In: FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations
of Computer Science, Washington, DC, USA, IEEE Computer Society (1999) 285

4. Intel: Math Kernel Library.
http://developer.intel.com/software/products/mkl

5. Whaley, R.C., Dongarra, J.J.: Automatically Tuned Linear Algebra Software.
Technical report (1997)

6. Intel Corporation: Intel 64 and IA-32 Architectures: Software Developer’s Manual,
Denver, CO, USA (2007)

7. Advanced Micro Devices: AMD64 Architecture Programmer’s Manual. Number
24593. (2007)

8. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In: Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing, Washington, DC, USA, IEEE Computer Society (2000) 42

9. Levon, J.: OProfile manual.
http://oprofile.sourceforge.net/doc/

10. Eranian, S.: The perfmon2 Interface Specification. Technical Report HPL-2004-
200R1, Hewlett-Packard Laboratory (February 2005)

11. Saito, H., Gaertner, G., Jones, W.B., Eigenmann, R., Iwashita, H., Lieberman,
R., van Waveren, G.M., Whitney, B.: Large system performance of spec omp2001
benchmarks. In: ISHPC ’02: Proceedings of the 4th International Symposium on
High Performance Computing, London, UK, Springer-Verlag (2002) 370–379

12. Weidendorfer, J., Ott, M., Klug, T., Trinitis, C.: Latencies of conflicting writes
on contemporary multicore architectures. In Malyshkin, V.E., ed.: PaCT. Volume
4671 of Lecture Notes in Computer Science., Springer (2007) 318–327


