
Dataflow processing for irregular parallelism, Part I

Exploration of manycore architecture

Chair of Computer Architecture and Operating Systems (CAOS) &
Chair of Computer Architecture and Parallel Systems (CAPS)

Technical University of Munich
yicheng.zhang@tum.de

1 Introduction

Irregular parallelism is a critical type of workload like sparse linear algebra and graph analytics, being pervasive
in scientific computing and simulation, and machine learning tasks. However, they feature data dependent branch
and pointer-based data structure, challenging the traditional computer architecture with frequent synchronization,
irregular memory access and dynamic task generation. Manycore architecture has massive parallelism with at
least hundreds of cores compared with conventional multicore. Furthermore, as a multiple instruction multiple
data machine with higher flexibility, it can inherently handle irregular workloads, being more efficient than single
instruction multiple data machines like GPUs. With full programmability, it is more widely applicable than the
fixed datapath, i.e. accelerators though at the cost of extra area for instruction processing. Software or hardware
level dynamic scheduling by task-based dataflow programming enables the loading balancing of available computing
resources, making the most of computing capacity. Overall, manycore architecture is good choice of general purpose
solution for a wide range of irregular parallelism workloads balancing performance, programmability, and flexibility.

2 Research directions and questions

• Microarchitecture of the single core. Two types of core design, i.e. basic in order core [1]–[5] and
the complex core[6]–[8] with SIMD, multithreading, or superscalar, offer a trade-off between the single core
performance and area. This brings question that which case could lead to larger aggregated performance of
the manycore system. Targeting pointer-based data structure like graph and tree, which can hardly benefited
from the data locality offered by cache, some designs [4], [5], [7], [8] completely get rid of the cache and
its coherence overhead. Specific optimizations through ISA extension are also widely used to improve the
efficiency further in terms of a application domain: non-linear functions[6], flow control, network access and
synchronization[8], streaming semantics register extension and floating point repetition extension[2]. Other
micro-architectural efforts include pipeline parallelism exploiting [9], [10] and prefetching[11], [12] to improve
the latency of irregular memory access, and speculative execution[13], [14] which may speed up ordered
irregular parallelism[15].

• System organization. In the flat distributed system[4]–[8] each core is independent and has exclusive
resources, while in the clustered-based system[1]–[3], several cores are grouped up and they may share resources
like router/interconnect, vector unit, and memory which can increase the density, i.e. the number of cores
under the same area, at the potential cost the performance due to resource contention. Network-on-chip
(NoC) is the key to organize the manycore system, and (custom) 2D Mesh [3]–[6], [8] is the most used one
while other topology choices are 2D Torus[1], hierarchical crossbar[2] and island[7].

• Implementation of dynamic scheduling. Dynamic scheduling, especially task-based dataflow, is critical
to allocate those dynamically generated tasks in the irregular parallel workloads to computing units available
for loading balancing. Full software implementation is common ranging from from industry to academia
like Intel TBB, Microsoft .NET, Cilk[16], ParSEC[17] and StarPU[18]. Besides, most publications centering
hardware also provide a primitive programming model. However, hardware level support like a hardware task
scheduler [4], [5] could be included underneath the programming model to efficiently accelerate the scheduling
at the cost of extra hardware area which is a valuable trade-off to be balanced.

1

mailto: yicheng.zhang@tum.de


3 Tentative target and Conduct

• Have a basic understanding of manycore architecture, including its hardware structure (single core, scaling),
software infrastructure (compiler, runtime), and application (algorithm, dataset, benchmark suite);

• Study the state of the art open-source full system system simulator, e.g. Dalorex[4]. Then iterative effort may
involve: identify the bottleneck in terms of performance, power and area in three directions aforementioned,
propose optimizations, implementation the simulator, performance evaluation.

• RTL implementation of full system or core components, physical design, evaluation and report.

Bibliography

[1] J. Vasiljevic and D. Capalija, “Blackhole & tt-metalium: The standalone ai computer and its programming
model,” in 2024 IEEE Hot Chips 36 Symposium (HCS), 2024, pp. 1–30. doi: 10.1109/HCS61935.2024.
10664810.

[2] F. Zaruba, F. Schuiki, and L. Benini, “Manticore: A 4096-core risc-v chiplet architecture for ultraefficient
floating-point computing,” IEEE Micro, vol. 41, no. 2, pp. 36–42, 2021. doi: 10.1109/MM.2020.3045564.

[3] D. C. Jung, M. Ruttenberg, P. Gao, et al., “Scalable, programmable and dense: The hammerblade open-
source risc-v manycore,” in 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture
(ISCA), 2024, pp. 770–784. doi: 10.1109/ISCA59077.2024.00061.

[4] M. Orenes-Vera, E. Tureci, D. Wentzlaff, and M. Martonosi, “Dalorex: A data-local program execution and
architecture for memory-bound applications,” in 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2023, pp. 718–730. doi: 10.1109/HPCA56546.2023.10071089.

[5] M. Orenes-Vera, E. Tureci, M. Martonosi, and D. Wentzlaff, “Muchisim: A simulation framework for de-
sign exploration of multi-chip manycore systems,” in 2024 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2024, pp. 48–60. doi: 10.1109/ISPASS61541.2024.00015.

[6] S. Lie, “Wafer-scale ai: Gpu impossible performance,” in 2024 IEEE Hot Chips 36 Symposium (HCS), 2024,
pp. 1–71. doi: 10.1109/HCS61935.2024.10664673.

[7] S. Knowles, “Graphcore,” in 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. doi: 10.1109/
HCS52781.2021.9567075.

[8] E. Talpes, D. Williams, and D. D. Sarma, “Dojo: The microarchitecture of tesla’s exa-scale computer,” in
2022 IEEE Hot Chips 34 Symposium (HCS), 2022, pp. 1–28. doi: 10.1109/HCS55958.2022.9895534.

[9] Q. M. Nguyen and D. Sanchez, “Pipette: Improving core utilization on irregular applications through intra-
core pipeline parallelism,” in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 596–608. doi: 10.1109/MICRO50266.2020.00056.

[10] Q. M. Nguyen and D. Sanchez, “Phloem: Automatic acceleration of irregular applications with fine-grain
pipeline parallelism,” in 2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA), 2023, pp. 1262–1274. doi: 10.1109/HPCA56546.2023.10071026.

[11] M. Orenes-Vera, A. Manocha, J. Balkind, et al., “Tiny but mighty: Designing and realizing scalable latency
tolerance for manycore socs,” in Proceedings of the 49th Annual International Symposium on Computer Ar-
chitecture, ser. ISCA ’22, New York, New York: Association for Computing Machinery, 2022, pp. 817–830,
isbn: 9781450386104. doi: 10.1145/3470496.3527400. [Online]. Available: https://doi.org/10.1145/
3470496.3527400.

[12] N. Talati, K. May, A. Behroozi, et al., “Prodigy: Improving the memory latency of data-indirect irregular
workloads using hardware-software co-design,” in 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2021, pp. 654–667. doi: 10.1109/HPCA51647.2021.00061.

[13] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “A scalable architecture for ordered par-
allelism,” in 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2015,
pp. 228–241. doi: 10.1145/2830772.2830777.

[14] M. Abeydeera and D. Sanchez, “Chronos: Efficient speculative parallelism for accelerators,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ser. ASPLOS ’20, Lausanne, Switzerland: Association for Computing Machinery, 2020, pp. 1247–
1262, isbn: 9781450371025. doi: 10.1145/3373376.3378454. [Online]. Available: https://doi.org/10.
1145/3373376.3378454.

2

https://doi.org/10.1109/HCS61935.2024.10664810
https://doi.org/10.1109/HCS61935.2024.10664810
https://doi.org/10.1109/MM.2020.3045564
https://doi.org/10.1109/ISCA59077.2024.00061
https://doi.org/10.1109/HPCA56546.2023.10071089
https://doi.org/10.1109/ISPASS61541.2024.00015
https://doi.org/10.1109/HCS61935.2024.10664673
https://doi.org/10.1109/HCS52781.2021.9567075
https://doi.org/10.1109/HCS52781.2021.9567075
https://doi.org/10.1109/HCS55958.2022.9895534
https://doi.org/10.1109/MICRO50266.2020.00056
https://doi.org/10.1109/HPCA56546.2023.10071026
https://doi.org/10.1145/3470496.3527400
https://doi.org/10.1145/3470496.3527400
https://doi.org/10.1145/3470496.3527400
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1145/3373376.3378454
https://doi.org/10.1145/3373376.3378454
https://doi.org/10.1145/3373376.3378454


[15] K. Pingali, M. Kulkarni, D. Nguyen, et al., “Amorphous data-parallelism in irregular algorithms,” The Uni-
versity of Texas at Austin, Department of Computer Sciences, Austin, TX, USA, 2009.

[16] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou, “Cilk: An efficient
multithreaded runtime system,” in Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPOPP ’95, Santa Barbara, California, USA: Association for Com-
puting Machinery, 1995, pp. 207–216, isbn: 0897917006. doi: 10.1145/209936.209958. [Online]. Available:
https://doi.org/10.1145/209936.209958.

[17] R. Hoque, T. Herault, G. Bosilca, and J. Dongarra, “Dynamic task discovery in parsec: A data-flow task-
based runtime,” in Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems, ser. ScalA ’17, Denver, Colorado: Association for Computing Machinery, 2017, isbn: 9781450351256.
doi: 10.1145/3148226.3148233. [Online]. Available: https://doi.org/10.1145/3148226.3148233.

[18] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: A unified platform for task scheduling
on heterogeneous multicore architectures,” in Euro-Par 2009 Parallel Processing, H. Sips, D. Epema, and
H.-X. Lin, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 863–874, isbn: 978-3-642-03869-3.

3

https://doi.org/10.1145/209936.209958
https://doi.org/10.1145/209936.209958
https://doi.org/10.1145/3148226.3148233
https://doi.org/10.1145/3148226.3148233

	Introduction
	Research directions and questions
	Tentative target and Conduct
	Bibliography

