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1 Introduction

Irregular parallelism is a critical type of workload like sparse linear algebra and graph analytics, being pervasive
in scientific computing and simulation, and machine learning tasks. However, they feature data dependent branch
and pointer-based data structure, challenging the traditional computer architecture with frequent synchronization,
irregular memory access and dynamic task generation. Manycore architecture has massive parallelism with at
least hundreds of cores compared with conventional multicore. Furthermore, as a multiple instruction multiple
data machine with higher flexibility, it can inherently handle irregular workloads, being more efficient than single
instruction multiple data machines like GPUs. With full programmability, it is more widely applicable than the
fixed datapath, i.e. accelerators though at the cost of extra area for instruction processing. Software or hardware
level dynamic scheduling by task-based dataflow programming enables the loading balancing of available computing
resources, making the most of computing capacity. Overall, manycore architecture is good choice of general purpose
solution for a wide range of irregular parallelism workloads balancing performance, programmability, and flexibility.

2 Research directions and questions

• Microarchitecture of the single core. Two types of core design, i.e. basic in order core [1]–[5] and
the complex core[6]–[8] with SIMD, multithreading, or superscalar, offer a trade-off between the single core
performance and area. This brings question that which case could lead to larger aggregated performance of
the manycore system. Targeting pointer-based data structure like graph and tree, which can hardly benefited
from the data locality offered by cache, some designs [4], [5], [7], [8] completely get rid of the cache and
its coherence overhead. Specific optimizations through ISA extension are also widely used to improve the
efficiency further in terms of a application domain: non-linear functions[6], flow control, network access and
synchronization[8], streaming semantics register extension and floating point repetition extension[2]. Other
micro-architectural efforts include pipeline parallelism exploiting [9], [10] and prefetching[11], [12] to improve
the latency of irregular memory access, and speculative execution[13], [14] which may speed up ordered
irregular parallelism[15].

• System organization. In the flat distributed system[4]–[8] each core is independent and has exclusive
resources, while in the clustered-based system[1]–[3], several cores are grouped up and they may share resources
like router/interconnect, vector unit, and memory which can increase the density, i.e. the number of cores
under the same area, at the potential cost the performance due to resource contention. Network-on-chip
(NoC) is the key to organize the manycore system, and (custom) 2D Mesh [3]–[6], [8] is the most used one
while other topology choices are 2D Torus[1], hierarchical crossbar[2] and island[7].

• Implementation of dynamic scheduling. Dynamic scheduling, especially task-based dataflow, is critical
to allocate those dynamically generated tasks in the irregular parallel workloads to computing units available
for loading balancing. Full software implementation is common ranging from from industry to academia
like Intel TBB, Microsoft .NET, Cilk[16], ParSEC[17] and StarPU[18]. Besides, most publications centering
hardware also provide a primitive programming model. However, hardware level support like a hardware task
scheduler [4], [5] could be included underneath the programming model to efficiently accelerate the scheduling
at the cost of extra hardware area which is a valuable trade-off to be balanced.
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3 Tentative target and Conduct

• Have a basic understanding of manycore architecture, including its hardware structure (single core, scaling),
software infrastructure (compiler, runtime), and application (algorithm, dataset, benchmark suite);

• Study the state of the art open-source full system system simulator, e.g. Dalorex[4]. Then iterative effort may
involve: identify the bottleneck in terms of performance, power and area in three directions aforementioned,
propose optimizations, implementation the simulator, performance evaluation.

• RTL implementation of full system or core components, physical design, evaluation and report.
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