
0 5,000 10,000 15,000 20,000
0

2, 000

4, 000

6, 000

8, 000

10, 000

Payload size (byte)

R
ou

nd
tri

p
tim

e
(µ

s)

ICMP Ping
DDS

0

1

2

3

4

O
ve

rh
ea

d
fa

ct
or

:D
D

S/
IC

M
P

pi
ng

ICMP ping
DDS
Overhead ratio

Figure 6: Average RTT of messages of varying sizes

In Figure 6, the results of the benchmark are presented.
As can be seen in the figure, RTTs in both cases (DDS
and ICMP) increase linearly with payload size at nearly
the same rate. We did not identify any abnormal behavior,
except for minor deviations from the ideal line. Regardless
of message size, we observed a relatively constant overhead
in the DDS case of 3.7 ms on average. When put in relation
with the ICMP case, the overhead becomes less noticeable
with increasing payload size. For small messages (0 byte
payload), the overhead is at a factor of 4.8. For larger
messages, the effective overhead becomes less and less
determinative, down to a factor of 1.8 for 20 KB payloads.
This leads to the conclusion that the volume of data has
no noteworthy impact on transmission time, despite the
fact that messages need to be parsed in DDS. Conversely,
the benefits of more light weight (non-DDS) transmission
methods diminish with increasing data volume. Overall, we
consider the latency attributes of DDS to be adequate for
the automotive use case.

2) Failover Test: In our second test, we evaluated DDS’
suitability in failover scenarios, i. e., in cases in which a
service fails so that a backup service needs to take over.
Note that our definition of failure includes a service’s
failure to fulfill QoS requirements, such as, when a service’s
LIVELINESS drops below the agreed upon threshold.

In the test setup, two publishers and one subscriber were
used. All three participants were deployed on three different
nodes, again, connected via Ethernet. Both publishers were
set to publish on the same topic and the subscriber was
subscribed to that topic. OWNERSHIP_KIND was set to
EXCLUSIVE, so that only one publisher would send data
at any given time. The publishers would continuously send
small messages with a gap of 10 ms between each dispatch.
To simulate failure, one of the publishers (the one with
higher OWNERSHIP_STRENGTH) would shut down in the
process. Once the shutdown was initiated, we measured the
time it took for the second publisher to take over operation

by starting sending samples.
The test was repeated 1000 times. Our statistical evalua-

tion reveals that the take-over process took on average 16.8
ms. We notice a high standard deviation of 10.4 ms which
can be attributed to the fact that the publishers were put to
sleep between each message dispatch. Thus, their reaction
time upon failure was significantly impaired. The maximum
take-over time is therefore a more expressive measure for
this test. The longest take-over we recorded was at 41.5 ms.

C. Case Study
We modeled a service-based software architecture to

conduct our experiments. For this purpose, we recreated a
failover scenario which will be found in highly automated
vehicles. In case of a failure (failure) in the nominal (N)
control path, a fail-operational fallback path is activated
(FO) for a limited period of time ⌧ . If the driver assumes
control by pushing a button in time (push [⌧ ]), she has
control (D). If not (push [>⌧ ]), an emergency stop maneuver
is initiated (ES). Similarly, in the human-controlled mode,
an emergency-stop assistant is active, which initiates the
emergency stop, if an obstacle is in the trajectory (dist < �)
and executing an evasive maneuver is not possible anymore.

N FO D

ES

failure push [⌧ ]

push [>⌧ ]
dist < �

Figure 7: Mode manager:
Nominal (N), failover
(FO), human driver (D),
and emergency stop (ES).

The nominal mode is re-
sponsible for the automated
control of the driving ma-
neuver. In this mode, sensor
data from several sources
is received and actuators
responsible for longitudi-
nal and lateral movement
are triggered. If something
fails, the failover mode
takes over temporarily and the driver gets notified to take
over control (aka take-over request) within a defined time
span ⌧ or otherwise the car stops (cf. Figure 7).

The developed service architecture is as hardware agnostic
as possible: Only services encapsulating direct access to
connected sensors and actuators (e. g. sd, sla ) need to be
placed on the respective ECU. Other services can be placed
arbitrarily respecting resource and safety requirements.

Services are enriched with specific QoS policies: All peri-
odically updated topics have a DEADLINE, and to drastically
diminish the probability of losing an important message all
safety critical messages are sent with RELIABILITY set to
RELIABLE and TRANSPORT_PRIORITY. In addition to
these QoS, it is important for all services that the subscribing
party can detect whether a publisher is alive or not, such that
counter measures can be taken. Thus, the LIVELINESS
QoS is set with a topic-specific lease_duration to
AUTOMATIC. For other QoS that are not explicitly men-
tioned, the default values are used as specified in OMG’s
DDS standard [9]. Further details about the services are
summarized in Table III. Figure 8 depicts a detailed view


