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Abstract

In the pursuit of advancing autonomous driving, 3D object detection stands as a crucial task.
Traditional Light and Ranging Sensors (LiDARs), predominantly positioned atop vehicles,
struggle with a restricted field of view and frequent occlusions. Recognizing this limitation,
the focus has shifted towards leveraging infrastructure LiDARs strategically placed at elevated
positions like light poles or gantry bridges to counteract these issues and enhance safety.
Our research deepens into this context, seamlessly integrating the TUMTraf dataset with the
OpenPCDet codebase. The core of our study is the PointPillars model and its more advanced
counterpart, CT3D, which extends the PointPillars model with the attention mechanism. We
meticulously compare these models, scrutinizing their performance and inference speeds. In
our study, we introduced a post-processing overlap filter to further refine detection accuracy,
aiming to remove overlapping detections. The results underscored the prowess of CT3D, but
a detailed exploration into inference time illuminated PointPillars as the more time-efficient
model, making it a contender for real-time deployments. The prospective integration of
TensorRT can reduce its inference time even further.

Zusammenfassung

Der Fortschritt im Bereich autonomes Fahren ist ohne die 3D-Objekterkennung kaum vorstell-
bar. Herkömmliche auf englisch Light and Ranging Sensors (LiDARs), die überwiegend auf
Fahrzeugen angebracht sind, haben mit einem eingeschränkten Sichtfeld und häufigen Verdeck-
ungen zu kämpfen. Angesichts dieser Einschränkungen hat sich der Schwerpunkt auf die
Nutzung von LiDARs für die Infrastruktur verlagert, die strategisch an erhöhten Positionen
wie Lichtmasten oder Schilderbrücken platziert werden, um diesen Problemen entgegen-
zuwirken und die Sicherheit der Verkehrteilnehmer zu erhöhen. Unsere Forschung beschäftigt
sich mit diesem Thema und integriert den TUMTraf-Datensatz in die OpenPCDet Codebasis.
Der Essenz unserer Studie sind das PointPillars-Modell und sein fortschrittlicheres Gegen-
stück CT3D, dass das PointPillars-Modell um die Transformer Architektur erweitert. Wir
führen detailierte Vergleiche zwischen diesen Modellen durch und untersuchen ihre Perfor-
mance und Inferenzgeschwindigkeit. Um die Erkennungsgenauigkeit weiter zu verbessern,
haben wir in unserer Studie einen Überlappungsfilter eingeführt, um überlappende Erken-
nungen zu entfernen. Die Ergebnisse bestätigen die Performance von CT3D, aber eine detail-
lierte Untersuchung der Inferenzzeit ergab, dass PointPillars das zeiteffizientere Modell ist,
was es zu einem Anwärter für Echtzeiteinsätze macht. Die künftige Integration von TensorRT
bietet das Potenzial, die Inferenzzeit noch weiter zu reduzieren.
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Chapter 1

Introduction

Autonomous driving technology has experienced significant advancement in recent years,
laying the foundation for the future of transportation. Central to these advancements is the
capability for a vehicle to perceive its environment accurately, with 3D object detection play-
ing a fundamental role. The motivation for this study arises from the understanding that
achieving robust 3D object detection is essential for the safe and efficient operation of au-
tonomous vehicles. In our study, we primarily focus on the modality of Light Detection and
Ranging (LiDAR), which serves as a cornerstone for the perception of the car. It represents
its environment as a point cloud, a collection of 3D points that, compared to traditional im-
ages, offers the critical advantage of depth information. This depth enables a comprehensive
understanding of the surroundings. Nevertheless, the inherent unordered nature of point
clouds introduces challenges. Point cloud processing necessitates meticulous pre-processing
to organize points and extract point features, making direct data utilization complex. While
a multitude of methods like grid-based and point-based techniques exist to process these
point clouds [Shi+21], there is always room for enhancement, steering the direction of our
research questions:

1. How do infrastructure datasets, with elevated sensor positioning, improve 3D object
detection compared to traditional datasets?

2. How do traditional 3D object detectors perform on infrastructure datasets?

3. Can the integration of Transformer architecture with 3D object detection models offer
superior performance in terms of accuracy and efficiency?

4. What are the specific advantages of using the TUM Traffic Dataset (TUMTraf) for
infrastructure-based 3D object detection?

Existing 3D object detection methodologies predominantly detect objects from the ego ve-
hicle’s viewpoint [Wu+22]. Although robust, these strategies struggle with occlusions and
restricted fields of view, posing potential safety hazards. Infrastructure datasets, however,
present a promising alternative. With sensors on infrastructures like light posts and gantry
bridges, the resulting scans cover a larger area with a broader field of view, diminishing
occlusion and leading the way for our research goals. This research aims to underscore the
advantages of infrastructure datasets, particularly leveraging the TUMTraf [Zim+23] dataset.
The PointPillars model [Lan+19] is employed as a benchmark for 3D object detection. Still,
our study focuses on the effect of deploying the Transformer architecture [Vas+17] using
CT3D [She+21] as a comparison model. The expected results hinge on the premise that
Transformers, renowned for their attention mechanism and pivotal role in deep learning, es-
pecially in natural language processing, will enhance the 3D object detection performances.
Our contributions are three-fold:
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1. Meticulous evaluation of the PointPillar model on the TUM Traffic dataset.

2. A focused ablation study on integrating Transformer architecture with 3D object detec-
tion using infrastructure LiDAR with the CT3D model.

3. An ablation study scrutinizes various filtering method effects.

The trajectory of this research unfolds over a year as shown in fig. 1.1, segmented into me-
thodical phases: an initial literature review, the development of a preliminary functional
prototype to gauge the performance of 3D object detection, establishing an initial baseline,
the integration of Transformers for enhancing 3D object detection, a comprehensive evalua-
tion of both methodologies and, ultimately, refinement and optimization. Subsequent chap-
ters give a basic understanding of the area of 3D object detection. They provide in-depth
knowledge, examine the architectural distinctions of the models employed, outline our ex-
perimental setup, and present detailed evaluation results, leveraging various performance
metrics. This thorough exploration underscores our methodology and the improvements our
approach introduces to 3D object detection.

May’22 Jun Jul Aug Sep Oct Nov Dec Jan’23 Feb Mar Apr May Jun Jul Aug

WP1: Introduction

Literature Research

WP2: Methodology

Dataset Preparation

Working Baseline Model

Implement Transformer model

Overlap Filter Design

Performance Evaluation

WP3: Writing Report

Figure 1.1: Project Time Schedule from May 2022 to August 2023
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Related Work

2.1 Point Cloud Representation

In the contemporary scientific landscape, point clouds have gained considerable momentum
across various disciplines, such as computer vision, robotics, autonomous driving, and virtual
reality. At the same time, point clouds provide an invaluable three-dimensional representa-
tion of the real world but pose substantial challenges due to their large data size, inherent
noise, and partial coverage. Given point clouds’ irregular, unstructured, and unordered na-
ture, direct processing is often impractical. Therefore, the need to devise efficient and ef-
fective methodologies for extracting valuable information from point clouds is crucial. This
section provides an overview of prevalent approaches employed in this domain.

2.1.1 Voxel-based

A straightforward yet practical approach entails discretizing the point cloud into a grid struc-
ture called voxels. This voxelization procedure renders the data compatible with standard
methodologies, such as two-dimensional convolutional neural networks (2D CNNs). More-
over, the process can be extended to three dimensions by implementing three-dimensional
CNNs or sparse convolutions, as suggested in [Shi+21]. Due to their speed and efficiency,
Voxel-based methods are frequently employed for proposal networks in bird’s eye view con-
texts, such as in [Che+17b] and 3D. However, a notable limitation of CNNs is the constrained
receptive field, which depends on kernel size.

2.1.2 Point-based

In contrast, point-based approaches pioneered by PointNet [Qi+17a] to directly work with
the point cloud without discretization. This approach extracts point cloud features using a
Multilayer Perceptron (MLP). Despite its intuitive appeal, a major drawback lies in the size
limitation of the point cloud, which significantly impacts performance.

2.1.3 Point-Voxel-based

Bridging the gap between voxel-based and point-based methodologies, models such as Point-
Voxel CNN [Liu+19] leverage both strengths. Initially, voxel-based feature aggregation is
applied to the input point cloud, followed by direct extraction of point features from the
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point cloud. These two distinct feature sets are combined using various techniques, such as
attention mechanisms. This hybrid approach strives to balance the strengths and limitations
of both voxel-based and point-based methodologies, offering a comprehensive solution to
point cloud representation challenges.

2.1.4 Bird’s-Eye View Methods

Bird’s-eye view (BEV) methods project the 3D point cloud onto a 2D plane, usually the hori-
zontal plane, and apply 2D detection methods on the resulting image. This approach allows
for the use of well-established image-based object detection methods, such as the Region-
CNN (R-CNN) [Gir+14], Faster-R-CNN[Ren+16], SSD [Liu+16], and YOLO [Red+16]. How-
ever, information about the vertical structure of objects may be lost in the projection.

2.2 3D Object Detection

The principal objective of 3D object detection is identifying and localizing objects within
a given scene. Typically, this involves processing an input point cloud to discern the spa-
tial positioning of objects and classify their type. This task bears considerable significance
across several fields, such as autonomous navigation, robotics, and computer vision, with
the overarching aim of creating systems that can accurately interpret and interact with their
environment. Recent advances in deep learning have introduced novel techniques and mod-
els that significantly enhance the performance of 3D object detection algorithms, as will be
explored in later sections. Over the years, several approaches have been proposed for 3D ob-
ject detection. These can broadly be divided into four categories: voxel-based, point-based,
point-voxel-based, and bird’s-eye view methods, as discussed in the previous section. As
voxel-based methods, VoxelNet [ZT17] naively partitions 3D space into voxels and aggregates
point features for each voxel to apply dense 3D convolutions for context generation. SECOND
[YML18] improves the efficiency of the 3D convolution operation by introducing sparse 3D
convolutions. On the other side, point-based method such as PointRCNN [SWL19] generates
proposals with the help of a feature extractor such as PointNet, PointNet++ [Qi+17b], or
PointNext [Qia+22]. The generated proposals are 3D bounding boxes consisting of the 3D
location (x , y, z), the dimensions (l, w, h), and the rotation around the z-axis. For further re-
finement, the proposals are subjected to 3D RoI pooling. This step ensures that each proposal,
irrespective of its original size or shape, is converted into a fixed-size feature representation.
By extracting and pooling the features within these proposed regions, it becomes possible
to efficiently process varying bounding box sizes through the subsequent layers of the net-
work. This pooled representation streamlines the computational process and facilitates a
more accurate classification and regression for the final 3D object detection task. Despite
all efficiency, grid-based methods induce fine-grained information loss due to discretization.
Therefore, point-voxel-based methods are introduced, Point-Voxel CNN (PVCNN) [Liu+19]
to fuse point and voxel features. A newly introduced model PllarNext [LLY23], which builds
upon PointPillars, extends the PointPillars architecture that consists of a Pillar Encoder, a 2D
CNN backbone, and a detection head by inserting an ASPP [Che+17a] neck between back-
bone and detection head. The neck utilizes the aggregated features from the backbone to
enlarge the receptive field and fuse multi-scaled context. ASPP is used in semantic segmenta-
tion to segment objects with multiple scales. PillarNext uses this property instead to segment
objects for context with various scales.
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2.3 Transformer

The Transformer model, introduced by Vaswani et al. in [Vas+17], represents a significant
advancement in deep learning, particularly for sequence-to-sequence tasks. Predicated on
the self-attention mechanism, the Transformer has revolutionized numerous areas, offering
impressive results in natural language processing, image recognition, and even 3D object
detection. Unlike traditional recurrent or convolutional layers, the self-attention mechanism
processes data in order or localized fields. This gives the model a global view of the input
and allows it to consider the entire context when generating each element of the output se-
quence. This mechanism is then used in the multi-head attention architecture, where the
input is divided into several parts, each of which is processed by a self-attention mecha-
nism independently. The outputs of these mechanisms are then concatenated and linearly
transformed to produce the final result. This approach allows the Transformer model to
pay attention to information from different positions simultaneously, enhancing its ability to
understand complex patterns and relationships.

In computer vision, Transformer models, such as Vision Transformers (ViT) [Dos+21],
have shown that they can be applied directly to image patches, treating them as a sequence,
and still achieve competitive performance on image classification tasks. In 3D object de-
tection, Transformers offer the potential for more expressive feature interactions. Tradi-
tional convolutional-based models have limitations due to their localized receptive fields,
making capturing long-range dependencies within the data difficult. With their global self-
attention mechanism, transformer models can potentially overcome this hurdle. Moreover,
Transformer models are known for their high interpretability. The attention maps generated
during their operation can provide insights into what parts of the input sequence the model
focuses on to create each output piece, aiding in understanding the model’s decisions. In
the subsequent sections, we will explore how integrating Transformer architectures with the
PointPillars model can enhance 3D object detection, potentially leading to a more robust and
efficient model for infrastructure-based 3D object detection.





Chapter 3

Infrastructure Dataset

Infrastructure datasets present a novel approach to data collection for autonomous systems.
Unlike traditional ego-centric datasets, where data is collected from the vehicle’s perspec-
tive, infrastructure datasets are captured from an elevated view, usually from high positions
within urban infrastructure, such as traffic light posts, overpasses, or high-rise buildings. This
change of perspective offers a unique set of advantages and new challenges. The advantages
of infrastructure datasets are an elevated position offers a broader field of view, enabling
the detection of objects farther away from the sensor. This extended detection range offers
the autonomous system a longer reaction time, improving overall system safety. In urban
environments, lower-placed sensors often suffer from occlusions due to large vehicles, pedes-
trians, or other urban structures blocking the line of sight. An elevated sensor position, as
afforded by infrastructure-based sensing, significantly mitigates this problem. Infrastructure
datasets can capture more diverse perspectives of the environment, which can be particularly
useful in complex urban scenarios with multiple dynamic actors.

3.1 TUMTraf Dataset

The TUM Traffic Dataset (TUMTraf) is a multi-modal dataset consisting of image and LiDAR
data. It also includes highway and intersection data, providing a range of vehicle maneuvers
and scenarios. This work mainly focuses on the intersection dataset [Zim+23], which con-
sists of 4.8k camera images and 4.8k LiDAR point cloud frames containing 57.4 labeled 3D
boxes.

Several infrastructure datasets have been introduced to facilitate research in this area.
One prominent example is the A9 [Zim+23] and the DAIR-V2X [Yu+22] dataset, which
are large-scale, real-world datasets designed explicitly for 3D object detection research from
infrastructure LiDAR sensors. It provides high-resolution LiDAR scans and corresponding
annotations, which will be used in this work to investigate the application of Transformer
mechanisms for infrastructure 3D object detection.

3.2 Statistics

A detailed analysis of the TUMTraf dataset reveals a significant distribution of ten distinct
object classes, namely: CAR, TRUCK, TRAILER, VAN, PEDESTRIAN, MOTORCYCLE, BUS,
BICYCLE, EMERGENCY VEHICLES, and OTHER. Figure 3.1 shows the occurrences of all ten
classes in a logarithmic scale for better visual comparison. On the first look, we can observe
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that the CAR class is the most dominant one with 22773 bounding boxes, followed by the
VAN class. On average, we have 3805 occurrences across all ten categories, reflecting the
occurrences for the TRUCK, TRAILER, and PEDESTRIAN classes since they are close to it.
The least represented categories are EMERGENCY_VEHICLE and OTHER with 142 and 84
occurrences, respectively. In fig. 3.2 shows the average number of points per class. On
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Figure 3.1: Class occurrences [Zim+23].

average, a bounding box contains 103 LiDAR points across all categories. The TRAILER and
BUS classes have the highest number of points on average, with 328 and 222, respectively.
The high number of points can be attributed to its dimensions. The two classes are the largest
in length and height, where the TRUCK has a length of 3.11m and a height of 3.43m, and the
TRAILER a length of 10.19m and a height of 3.65m as shown in table 3.1. The classes with
the least amount of points are MOTORCYCLE, BICYCLE, and PEDESTRIAN, with magnitudes
of 21, 20, and 14. Following our prior reasoning, we can confirm that it is due to the most
diminutive dimensions of these classes, where the pedestrian has the very most minor extent.

Table 3.1: The total number of 3D box labels, average dimensions in meters, and the average number of 3D
LiDAR points among all classes [Zim+23].

Class #Labels �Length �Width �Height �Points
Car 22,773 4.27 1.91 1.59 34.03
Truck 2,704 3.11 2.90 3.43 116.87
Trailer 3,177 10.19 3.12 3.65 328.36
Van 4,353 6.35 2.52 2.47 86.11
Motorcycle 734 1.90 0.83 1.60 21.23
Bus 908 12.65 2.95 3.27 222.36
Pedestrian 2,507 0.80 0.73 1.72 14.98
Bicycle 663 1.57 0.74 1.72 20.95
Emergency Vehicle 142 6.72 2.35 2.35 58.95
Other 84 5.28 1.92 1.90 128.17
Total 38,045 - - - 103.20
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Figure 3.2: Average number of points per class [Zim+23].

3.3 Data Split

In 3D object detection, partitioning our dataset is of essential importance. Therefore, to bol-
ster the reliability and robustness of our 3D object detection model, we ensured a meticulous
partitioning of our dataset. We have divided the data into training, validation, and test sets.
The split ratio is 80% training, 10% validation, and 10% test set. The dataset is segmented
into four subsets, each representing recordings from a separate day and under varied atmo-
spheric conditions. These subsets labeled S1 to S4, encompass continuous camera footage
coupled with labeled LiDAR captures. S1 and S2 have a duration of 30 seconds, showcasing
scenarios during dusk. S3 offers a more extended glimpse with a 120-second sequence cap-
tured under bright daylight and clear skies. Meanwhile, S4 provides a 30-second recording
taken during nighttime amidst heavy rainfall. This division inherently incorporates varying
environmental factors, ensuring our model remains invariant to daily fluctuations and diverse
weather scenarios. Such an approach helps make the model more adaptable and capable of
handling real-world inconsistencies. For the actual partitioning, we employed stratified sam-
pling, using object classes as the stratification criterion. Stratified sampling is grounded in
maintaining an approximately equal distribution of each class across the subsets. Doing so
ensures that no specific class is overrepresented or underrepresented in any given subset.
Such an equal distribution across different days and weather conditions aids in constructing
a training set that offers universal exposure to the model. Similarly, it ensures the valida-
tion and test sets are comprehensive and have a similar object class distribution. The chosen
balanced stratification mitigates the potential risk of model overfitting to certain classes dur-
ing the training. In essence, it helps develop a 3D object detection model that is robust in
terms of performance across varying scenarios and generalized, ensuring consistent detection
capabilities across diverse object classes and environmental conditions.
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Methodology

This chapter presents our systematic approach, spanning dataset integration, model imple-
mentation, inference, and post-processing steps. We start by detailing the integration of the
TUMTraf dataset into the OpenPCDet [Tea20] codebase and the subsequent inclusion of the
CT3D model. Through detailed adjustments, we have tuned the configurations to be suitable
for both training and test pipelines. Our primary focus is on the 3D object detection model,
emphasizing the PointPillar model and its enhanced variant, the CT3D model. The latter
augments PointPillar by introducing an attention mechanism. Furthermore, we will explore
the subtle differences between attention mechanisms, such as self-attention, cross-attention,
and tunnel-attention. Moving on to the inference stage, we discuss how our trained model
processes unseen data and the means used to generate predictions. This is followed by the
post-processing steps, where we discuss the filtering strategies implemented to refine and
enhance the raw predictions, ensuring optimal results.

4.1 Integration of TUMTraf Dataset with OpenPCDet Codebase

OpenPCDet is a well-established codebase designed explicitly for point cloud-based object
detection tasks. Powered by PyTorch, OpenPCDet has been widely accepted by researchers
and developers due to its modular architecture and the ability to support various state-of-
the-art point cloud detection networks. It provides a holistic ecosystem for point cloud data
preprocessing, complex model architectures, and vital post-processing utilities. Our choice of
OpenPCDet as the primary codebase was motivated by several factors:

• Modularity: The clear separation of various components in OpenPCDet allows for
seamless integration of custom datasets and models.

• Community Support: A vast community of researchers and developers supports Open-
PCDet. This ensures quick troubleshooting and updates in line with the latest advance-
ments in point cloud detection. Additionally, many state-of-the-art models are also built
upon the OpenPCDet codebase.

• Pipeline: OpenPCDet offers a whole training pipeline with augmentation, distributed
training support, and an inference template.

Integrating the TUMTraf dataset into the OpenPCDet framework required several systematic
steps:

1. Data Format Conversion: The TUMTraf dataset was initially transformed into a format
compatible with OpenPCDet’s data loaders. Since the TUMTraf point cloud data is in
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.pcd format and OpenPCDet expects .bin for custom datasets, we have to create a
converter from .pcd to .bin following a float32 format. Similarly, the TUMTraf
labels are naturally in the standard OpenLabel format, but the labels in OpenPCDet are
expected to be in KITTI format. Therefore, we create a script that does this conversion
from OpenLabel to KITTI format. After converting, we make a serialized dictionary
using the OpenPCDet pickle file script. This step ensures the codebase can efficiently
ingest the data without redundant transformations during runtime.

2. Adjusting Configuration Files: OpenPCDet operates based on configuration files that
dictate various parameters for preprocessing, model architecture, and post-processing.
These configurations were fine-tuned to account for the specifics of the TUMTraf dataset.
We limited the point cloud range from [0,64] in x direction, [−64, 64] along y-axis and
[2,−8] in z-axis, due to the elevated height of the LiDAR sensors. Additionally, we
extend the classes with the calculated dimensions discussed in the previous chapter.

3. Model Architecture Customization: While OpenPCDet supports numerous models,
slight modifications were needed to optimize performance on the TUMTraf dataset,
ensuring that the model was tuned to the unique characteristics of the dataset. In our
case, we adapted the voxel and pillar grid sizes.

4. Validation and Testing: Post-integration, rigorous validation and testing cycles were
performed to ascertain that the integration was seamless and devoid of any potential
glitches. One such measure is the qualitative analysis of the predicted bounding boxes
and whether they align with the ground truth. Another one is if the filtering appropri-
ately worked, but compare the results with and without filtering.

This integration process allowed us to leverage the capabilities of OpenPCDet and ensured
that our models were tailor-made for the nuances and intricacies of the TUMTraf dataset.

4.2 PointPillars

PointPillars is a popular model for 3D object detection from point clouds, primarily because of
its effective architecture that transforms point clouds into pseudo-images for further process-
ing, its computational efficiency, and its high performance. The PointPillars model comprises
three core components: the feature encoder network, the 2D convolutional backbone, and
the detection head. The first module, the feature encoder network, is responsible for the
processing of the raw point cloud data. Point cloud data is a set of data points in a three-
dimensional coordinate system. These data points represent the external surfaces of objects
sensed by the LiDAR. However, point clouds are unordered and irregular, making them chal-
lenging to process directly. To tackle this issue, the feature encoder network of the PointPillars
model transforms the point cloud into a more manageable format known as a pseudo-image.
The pseudo-image created by the feature encoder network is a sparse 2D representation of
the original 3D point cloud. This transformation retains the key spatial and depth informa-
tion from the point cloud but presents it in a format more suitable for processing by standard
2D convolutional neural networks (CNNs). The pseudo-image is then passed to the second
module in the PointPillars model, the 2D convolutional backbone. This component of the
model leverages the strength of 2D CNNs to extract features from the pseudo-image. These
features capture valuable information about the spatial relationships and patterns in the data
crucial for object detection. Finally, the extracted features are fed into the third module, the
detection head. The detection head is a specialized network that performs the actual task
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of object detection. It uses the features provided by the 2D convolutional backbone to pre-
dict the 3D bounding boxes for the objects in the scene, effectively identifying each detected
object’s location, size, and orientation.

Figure 4.1: PointPillars model illustration: Shows the feature transformation into a pseudo-image which is pro-
cessed by a 2D CNN backbone.

4.3 CT3D

In the following we discuss different attention mechanism, their differences and how the
CT3D module extends PointPillars with channel-wise attention.

4.3.1 Attention Mechanism

In deep learning, attention mechanisms are a class of approaches designed to enable models
to focus on the most pertinent information during prediction tasks. This powerful technique
has demonstrated remarkable results in various fields, particularly in natural language pro-
cessing, where it has been successfully applied in models like Transformers [Vas+17]. Three
prominent types of attention mechanisms can be identified - self-attention, cross-attention,
and tunnel-attention, each with unique characteristics and applications. Self-attention, or
intra-attention, allows a model to focus on different parts of its input when producing an
output. It computes a weighted sum of all features at every position of the input sequence
for each output feature, creating an internal representation of the input that highlights the
relevant parts. Self-attention excels in tasks involving sequences, where the model needs to
correlate elements that are distant from each other in the input sequence. Cross-attention
extends the concept of self-attention by allowing one sequence to attend to another. This
mechanism is beneficial in tasks where a model must map one sequence to another, and the
alignment between the sequences is unknown a priori. It has been particularly successful
in machine translation and other sequence-to-sequence prediction tasks. Tunnel-attention,
a more recent development, builds on self-attention but incorporates additional spatial de-
pendencies. It achieves this by dynamically aggregating channel-wise features from different
spatial positions of the input, which can enhance the model’s ability to capture long-range
dependencies in the data.

The CT3D module extends PointPillars by introducing a channel-wise attention mecha-
nism. This mechanism, built on the principles of the tunnel-attention approach, seeks to
refine the feature representation by dynamically adjusting the relative importance of differ-
ent channels in the feature map. In essence, CT3D uses attention to identify which channels
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in the feature map are most relevant for the detection task. By focusing on these appropriate
channels and down-weighting the less relevant ones, the model can generate a more ex-
pressive and task-specific feature representation, which can potentially enhance its detection
performance.

4.3.2 Approach

The CT3D module extends the PointPillars model by incorporating a channel-wise trans-
former module that enables it to use global context information to enrich point features. The
process involves a sequence of operations, including encoding input features, decoding pro-
posal features, and finally, prediction and regression stages. First, the raw point cloud data
and the preliminary 3D bounding box proposals from the PointPillars model are fed into the
channel-wise transformer module. This module employs a transformer architecture to effec-
tively aggregate features across different channels, using proposal-aware context information
from all parts of the scene. This operation can help the model capture global contextual cues
that a standard PointPillars model might miss due to its locally constrained receptive fields.
Once the point features have been enriched with this global context information, they are de-
coded into a proposal feature representation. The decoding process transforms the encoded
point features into a format readily used for downstream tasks. Finally, the translated pro-
posal features are passed to a fully connected network. This network performs two crucial
functions: confidence prediction and bounding box regression. The confidence prediction
stage estimates the likelihood of each bounding box proposal containing an object. In con-
trast, the bounding box regression refines the preliminary bounding boxes from the PointPil-
lars model, adjusting their size, orientation, and location to better match the actual objects
in the scene. By integrating this channel-wise attention mechanism with the PointPillars ar-
chitecture, the CT3D module creates a more robust and efficient 3D object detection model
capable of effectively leveraging global context information for improved detection perfor-
mance. The performance of this extended model will be empirically evaluated and discussed
in the following chapter.

Figure 4.2: PointPillars model illustration: Shows the feature transformation into a pseudo-image which is pro-
cessed by a 2D CNN backbone.

4.4 Filtering

Post-processing steps can further boost the accuracy and efficiency of the detection results.
We will discuss one such approach involving implementing a filtering process based on a
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score threshold and overlap detection. The filtering process aims to refine the model’s output
and remove any potential false positives or redundant detections. This process involves two
main stages:

Score Threshold Filtering

The first stage of the filtering process involves setting a threshold for the confidence scores
generated by the model. Every detected object is associated with a confidence score that
indicates the model’s certainty about the detection. Any detections with a confidence score
below the specified value are filtered out by setting a score threshold. This reduces the
chances of false positives, leading to more reliable and accurate detection results.

Overlap Detection

Following the score threshold filtering, the next stage involves filtering based on overlap. It’s
not uncommon for a model to produce multiple detections for the same object, particularly
in complex scenes. To address this issue, an overlap detection algorithm is applied. We use
the Intersection over Union (IoU) calculation algorithm from Meta’s PyTorch3D library in our
work. The IoU score is a measure of the overlap between two bounding boxes. If the IoU
score for two detections exceeds a certain threshold, it indicates that the boxes significantly
overlap and likely correspond to the same object. In this case, only the detection with the
highest confidence score is kept, while the others are filtered out.

Through this two-stage filtering process, the output of the 3D object detection model is
refined and improved, leading to a more precise and reliable set of object detections.
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Evaluation

This research aims not merely to propose approaches to 3D object detection on infrastructure
LiDAR but to substantiate their efficacy through rigorous empirical analysis. In this chapter,
we present our evaluation of the PointPillars and the CT3D model applied to the TUMTraf
dataset. The TUMTraf dataset, as previously outlined, encompasses a rich and varied array
of vehicle maneuvers and scenarios.

5.1 Evaluation Metrics

Our evaluation is based on a key metric: the Intersection over Union (IoU). The IoU is a
measure of overlap between the ground truth bounding box and the predicted bounding
box by the model. It is a popular evaluation metric in object detection tasks due to its
straightforward interpretability and robustness. The IoU is calculated as the area of overlap
between the predicted bounding box and the ground truth box, divided by the area of the
union of the two boxes. A higher IoU score corresponds to a higher degree of overlap,
indicating a more accurate prediction.

5.2 Quantitative Results

In our experimental analysis of the test set, we first centered our attention on PointPillars.
The baseline configuration was PointPillars without any post-processing, excluding the appli-
cation of a score threshold filter. Table 5.1 presents the performance metrics of this baseline
model. After introducing an overlap filter, which accounted for three specific overlap sce-
narios in object detection, we noticed a tangible improvement in the model’s performance
metrics. Notably:

1. The TRUCK and TRAILER classes can overlap since they are typically found together.

2. Overlapping instances of the TRAILER class are permitted since a truck can have mul-
tiple trailers.

3. Overlapping instances of pedestrians are also allowed, as they often move in groups,
particularly at red lights.

The results of the overlap filter lead to a slight uptick in mIoU scores and an observable
increase in precision for nearly all classes. This reaffirms the filter’s relevance in aligning the
detection process closer to real-world scenarios.
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Baseline Overlap Filtering
Class Precision Recall mAP Precision Recall mAP

CAR 79.03 65.84 78.61 79.06 65.73 78.64
TRUCK 90.09 80.72 89.89 90.09 80.72 89.89

TRAILER 81.52 66.73 81.15 81.11 66.73 80.74
VAN 76.23 57.73 75.75 76.23 57.73 75.75

MOTORCYCLE 85.93 74.88 85.65 85.93 74.88 85.65
BUS 80.39 64.31 80.00 80.39 64.31 80.00

PEDESTRIAN 88.34 84.07 88.10 88.39 84.07 88.16
BICYCLE 84.37 100.00 84.05 84.60 100.00 84.29

Overall 83.23 74.29 82.90 83.28 74.20 82.94
F1-Score 78.506 78.478

Table 5.1: Ablation study of PointPillars

Additionally, we conducted several experiments comparing the performance of PointPil-
lars and CT3D, with the baseline being PointPillars without any post-processing except for
filtering by a score threshold. Subsequently, we examined the impact of applying an overlap
filter and evaluated its effect on the results. Table 5.2 presents the performance metrics of
the transformer model compared to PointPillars, which serves as the baseline model. The
results indicate that the Transformer model outperforms PointPillars. CT3D’s outstanding
performance in the BICYCLE class, registering a score of 93.33 compared to PointPillars’
84.05, emerges as a focal point of discussion. On the other hand, CT3D underperformed
PointPillars in detecting classes like CAR, TRAILER, VAN, BUS, and PEDESTRIAN. After ap-

PointPillars CT3D
Class Precision Recall mAP Precision Recall mAP

CAR 79.03 65.84 78.61 78.55 64.76 78.12
TRUCK 90.09 80.72 89.89 90.10 80.37 89.90

TRAILER 81.52 66.73 81.15 81.51 66.17 81.14
VAN 76.23 57.73 75.75 74.98 57.23 74.48

MOTORCYCLE 85.93 74.88 85.65 87.01 78.25 86.75
BUS 80.39 64.31 80.00 80.36 63.37 79.97

PEDESTRIAN 88.34 84.07 88.10 86.82 84.07 86.56
BICYCLE 84.37 100.00 84.05 98.33 100.00 98.3

Overall 83.23 74.29 82.90 84.66 74.35 84.35
F1-Score 78.506 79.170

Table 5.2: Baseline results of PointPillars and CT3D

plying the overlap filter, we observed slightly improved mIoU scores for both PointPillars and
CT3D. Specifically, PointPillars exhibited an increase of 0.05 in mIoU, while CT3D showed
an improvement of 0.08 in mIoU. Additionally, we observed a slight increase in precision
for almost all classes after the overlap filtering was applied. These findings suggest that the
overlap filter contributes to refining the detection results by allowing for specific overlaps
that are expected or typical in real-world scenarios. The slight improvement in mIoU and
precision across classes indicates the effectiveness of the overlap filter in enhancing the accu-
racy and quality of the object detection models. In the analysis of detection results with the
baseline and the filtering, there is a prominent performance disparity: CT3D excels notably
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PointPillars CT3D
Class Precision Recall mAP Precision Recall mAP

CAR 79.06 65.73 78.64 78.65 64.64 78.23
TRUCK 90.09 80.72 89.89 90.10 80.37 89.90

TRAILER 81.51 66.17 81.14 81.15 66.73 78.82
VAN 76.23 57.73 75.75 75.08 57.06 74.58

MOTORCYCLE 85.93 74.88 85.65 87.11 78.25 86.85
BUS 80.39 64.31 80.00 80.39 63.37 80.00

PEDESTRIAN 88.39 84.07 88.16 87.03 83.67 86.77
BICYCLE 84.60 100.00 84.29 98.33 100.00 98.3

Overall 83.28 74.20 82.94 84.73 74.26 84.43
F1-Score 78.478 79.150

Table 5.3: Results of PointPillars and CT3D with filtering as post-processing step

in detecting bicycles compared to other object categories. One potential reason is the unique
structural intricacy of bicycles. Given the transformer architecture of CT3D, it’s plausible
that the model’s self-attention mechanism effectively focuses on distinct features of bicycles,
such as its frame or wheels. Contrarily, for more significant object categories such as cars,
trailers, vans, and buses, PointPillars demonstrates superior performance. The extensive data
produced by these larger objects might be processed more adeptly by PointPillars. While
beneficial for bicycles, CT3D’s self-attention mechanism may become too excessive in spe-
cific scenarios, focusing on localized features and missing more macroscopic details of larger
objects.

5.3 Qualitative Results

Figure 5.1 presents a qualitative analysis comparing the performance of two object detec-
tion models, PointPillars and CT3D. The objective is to assess the differences between the
models and evaluate the impact of overlap filtering. The findings indicate that the CT3D
model surpasses the PointPillars model regarding object detection capabilities. Specifically,
the CT3D model successfully detects and classifies a bus undetected by PointPillars. This out-
come highlights the superior accuracy and effectiveness of CT3D in correctly identifying the
bus object. Additionally, it is noteworthy that both models successfully detect a bicycle behind
the bus despite the occlusion caused by the camera’s field of view. This observation showcases
the ability of both models to handle challenging scenarios involving partially visible objects.
These qualitative results provide valuable insights into the comparative performance of Point-
Pillars and CT3D for object detection. CT3D demonstrates more robust detection capabilities
by accurately identifying objects that PointPillars fails to detect. Moreover, both models’ suc-
cessful detection of an occluded bicycle indicates their robustness in handling complex visual
scenarios. In the context of the experiment discussed in Figure 5.2, the filter demonstrates
the efficacy of an overlap filter in improving the quality of object detection results. The figure
presents a comparative analysis before and after the application of the filter. Before filtering,
a pedestrian is detected within a trailer, indicating a false positive. However, after applying
the overlap filter, the pedestrian detection inside the trailer is successfully removed, leading
to a more refined and accurate outcome. This observation suggests that the overlap filter
effectively addresses the issue of redundant or erroneous detections by eliminating false pos-
itives. The qualitative assessment of the results demonstrates the improved accuracy and
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(a) PointPillars (b) CT3D

Figure 5.1: Qualitative results on the test sequence of the baseline model PointPillars and the extended model
CT3D. We can see that the CT3D model detects slightly more objects e.g. the bus.

reliability of the object detection when the filter is applied.

(a) Unfiltered (b) Filtered

Figure 5.2: We see a comparison between without filtering overlaps on the left and with on the right. It can be
observed that the detected pedestrian inside the trailer is filtered.

5.4 Inference Time Analysis

To gauge the performance efficiency of the two primary models in the study, PointPillars,
and CT3D, we evaluated their inference times. These times are critical to understand, espe-
cially when considering the potential deployment of these models in real-time systems where
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rapid response is paramount and weighing whether accuracy is more important than speed.
The benchmarking was conducted on a high-performance NVIDIA RTX 4090 GPU to ensure
representative results. The table below illustrates the inference times and frames per sec-
ond (FPS) for both models, with and without filtering: As observed in table 5.4, PointPillars

PointPillars CT3D
Without Filtering 16.2 ms/62 FPS 33.2 ms/ 30 FPS

With Filtering 17.5 ms/57 FPS 34.3 ms/ 29 FPS

Table 5.4: Inference time of PointPillars and CT3D on a RTX 4090.

showcases a quicker inference time, achieving up to 62 FPS without filtering and 57 FPS with
filtering. Conversely, the CT3D model, incorporating more complex operations such as the
self-attention mechanism, displays a slightly lower performance, reaching 30 FPS without
filtering and 29 FPS post-filtering. This performance differential underlines the trade-offs
between accuracy, as seen in previous sections, and computational efficiency.
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Future Outlook

Our discussion into the area of 3D object detection with the PointPillars and CT3D models has
uncovered significant potential, yet there are many points for expansion and improvements:

1. Pedestrian Detection: The highest priority is ensuring the safety of traffic participants.
Pedestrians are especially vulnerable in the case of traffic accidents. Therefore, enhanc-
ing the model’s detection capabilities for pedestrians is inevitable. Grid-based models
struggle to detect those since reducing the voxel size is always tightly coupled with a
loss in inference speed. Additionally, the model might not detect large objects or classify
them correctly.

2. Post-Processing Filter Refinement: Our current filter, designed to prune false posi-
tives, has shown potential. However, the filtering is imperfect, and the rules are pretty
simple. We believe refining this filter will better align model outputs with real-world
scenarios.

3. Deployment in Live Systems: Deploying the model to a live system and testing it
on unseen scenarios with real-time performance will offer genuine insights into the
model’s limitations.

4. Optimizing Inference Time with TensorRT: For a model to be deployed on a live sys-
tem, it has to meet the system requirements and be able to infer in real time. Leveraging
TensorRT can potentially reduce the model’s inference time.

5. Transfer Learning. The DAIR dataset offers a rich repository of learning. By harness-
ing transfer learning techniques, we can imbibe knowledge from DAIR to boost the
performance of our current models.

By addressing these focal points, we anticipate an overall improvement in the performance
and robustness of our models, contributing to the advancement of autonomous driving.
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Conclusion

In this report, we conducted experiments comparing the performance of PointPillars and
CT3D. Our findings indicate that the transformer-based CT3D model outperforms PointPil-
lars regarding mIoU scores, achieving a higher accuracy of 84.35 compared to PointPillars’
82.90. This demonstrates the superior performance and improved object detection capabil-
ities of the Transformer model. However, it’s imperative to highlight an intrinsic trade-off
between the models. While CT3D excels in accuracy, PointPillars shines in terms of inference
time. This disparity becomes particularly salient when considering real-time or live systems:
while CT3D offers refined detection capabilities, its higher latency exceeded our expectations.
It might be a hindrance in environments where rapid responses are paramount. Conversely,
PointPillars, with its faster inference, might be a preferred choice in scenarios where the in-
ference time is crucial, even at the cost of a slight drop in accuracy. Our innovative addition,
to further improve the results, the overlap filter, has further refined detection capabilities. By
considering specific exceptions for overlaps in the detection task. The filter allowed overlap-
ping instances of the TRUCK and TRAILER classes, multiple trailers associated with a truck,
and overlapping instances of pedestrians moving in groups. Applying this overlap filter re-
sulted in a slight improvement in mood for both PointPillars and CT3D. Furthermore, we
observed a slight increase in precision across various classes. These findings highlight the
effectiveness of the overlap filter in refining the object detection results. By accounting for
expected or common overlaps in real-world scenarios, the filter contributes to improved ac-
curacy and quality of the detection models. Overall, the study demonstrates the advantages
of the Transformer model over the baseline model, showcasing its ability to achieve higher
mIoU scores and superior object detection performance. Adding the overlap filter further
enhances the results, leading to slight improvements in mIoU and precision. The adjacent
performance comparison against inference time becomes even more pertinent considering
future deployments, especially in live systems. Integrating tools like TensorRT could offer
a middle ground, potentially optimizing the models to achieve quicker inference without
significant compromises on accuracy. In sum, our study not only underscores the superior
detection capabilities of CT3D but also highlights the need to mind the balance between de-
tection accuracy and computational efficiency. Further research and experimentation could
focus on refining the overlap filter and exploring other techniques to boost the performance
of object detection models.
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