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Abstract

The environmental perception and resulting scene and situation understanding of an au-
tonomous vehicle are limited by the available sensor ranges and object detection perfor-
mance. Even in the vicinity of the vehicle, the existence of occlusions leads to incomplete
information about its environment. The resulting uncertainties pose a safety threat not only
to the autonomous vehicle itself but also to the other road users. This incomplete information
results in impaired driving comfort, as the vehicle must stay alert to spontaneously react to
unforeseen scenarios.

Intelligent Infrastructure Systems (IIS) can alleviate these problems by providing au-
tonomous vehicles - as well as conventional vehicles and drivers - at operating time the com-
plementing information about each road participant and the overall traffic situation, thereby
greatly extending their perception range as well.

This thesis is part of the extensive Providentia++ Project - a research project of the Tech-
nical University of Munich aimed at improving traffic flow and road safety by overcoming the
limitations of local sensor systems of a single vehicle.

With the infrastructure provided by the IIS Providentia, this thesis project is aimed at
designing and implementing a backend module that will enhance the system by providing
existing road users a possibility to connect to it by the means of a mobile application over
conventional cellular data networks. Besides that, the backend module should actually be a
framework that is client-agnostic, implying that any client can connect to the system as long
as it implements the connection and data exchange protocols. The users will have access
to the digital twin of the testbed. Furthermore, different accident prevention mechanisms
can be implemented on top of this module: lane change/average speed recommendations,
warnings about vehicles on the entry ramp, standing vehicles, ghost drivers, jam/slowdown
warnings, accident/collision warnings, etc.
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Zusammenfassung

Die Umgebungswahrnehmung und das daraus resultierende Szenen- und Situationsverständ-
nis eines autonomen Fahrzeugs sind durch die verfügbaren Sensorreichweiten und die Objek-
terkennungsleistung begrenzt. Auch in der Nähe des Fahrzeugs führt das Vorhandensein von
Verdeckungen zu unvollständigen Informationen über seine Umgebung. Die daraus resul-
tierenden Unsicherheiten stellen nicht nur ein Sicherheitsrisiko für das autonome Fahrzeug
selbst dar, sondern auch für die anderen Verkehrsteilnehmer. Diese unvollständigen Infor-
mationen beeinträchtigen den Fahrkomfort, da das Fahrzeug wachsam bleiben muss, um
spontan auf unvorhergesehene Szenarien reagieren zu können.

Intelligente Infrastruktursysteme (IIS) können diese Probleme entschärfen, indem sie au-
tonomen Fahrzeugen - sowie konventionellen Fahrzeugen und Fahrern - zur Betriebszeit die
ergänzenden Informationen über jeden Verkehrsteilnehmer und die Gesamtverkehrssituation
zur Verfügung stellen und damit deren Nutzung erheblich erweitern.

Diese Arbeit ist Teil des umfangreichen Providentia++-Projekts - ein Forschungsprojekt der
Technischen Universität München mit dem Ziel, den Verkehrsfluss und die Verkehrssicherheit
zu verbessern, indem die Einschränkungen lokaler Sensorsysteme eines einzelnen Fahrzeugs
überwunden werden.

Mit der von IIS Providentia bereitgestellten Infrastruktur zielt diese Arbeit darauf ab, ein
Backend-Modul zu entwerfen und zu implementieren, das das System erweitert, indem es
bestehenden Verkehrsteilnehmern die Möglichkeit bietet, sich mit einer mobilen Anwendung
über die herkömmlichen Mobilfunkdatennetze zu verbinden. Abgesehen davon sollte das
Backend-Modul tatsächlich ein Framework sein, das Client-agnostisch ist, was bedeutet, dass
sich jeder Client mit dem System verbinden kann, solange er die Verbindungs- und Date-
naustauschprotokolle implementiert. Die Nutzer haben Zugriff auf den digitalen Zwilling des
Testbeds. Darüber hinaus können auf diesem Modul verschiedene Unfallverhütungsmecha-
nismen implementiert werden:
Spurwechsel-/Durchschnittsgeschwindigkeitsempfehlungen, Warnungen vor Fahrzeugen auf
der Einfahrt, stehenden Fahrzeugen, Geisterfahrern, Stau-/Verzögerungswarnungen, Unfall-
/Kollisionswarnungen usw.
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Chapter 1

Introduction

1.1 Motivation

The environmental perception and resulting scene and situation understanding of an au-
tonomous vehicle are limited by the available sensor ranges and object detection perfor-
mance. Even in the vicinity of the vehicle, the existence of occlusions leads to incomplete
information about its environment. The resulting uncertainties pose a safety threat not only
to the autonomous vehicle itself but also to the other road users. To enable it to operate
safely, one of the conservative policies can be reducing the driving speed, which in turn slows
down entire traffic, which causes economical and ecological impacts. Furthermore, this in-
complete information results in impaired driving comfort, as the vehicle must stay alert to
spontaneously react to unforeseen scenarios.

Intelligent Infrastructure Systems (IIS) can alleviate these problems by providing au-
tonomous vehicles - as well as conventional vehicles and drivers - at operating time the com-
plementing information about each road participant and the overall traffic situation [QA13;
Men+17], thereby greatly extending their perception range as well. In particular, an IIS can
observe and detect all road participants from multiple superior perspectives, with extended
coverage compared to that of an individual vehicle. Then providing a vehicle with this addi-
tional information gives it a better spatial understanding of its surrounding scene and enables
it to plan its maneuvers more safely and proactively. Furthermore, an IIS with the described
capabilities enables a multitude of services that further support decision making.

1.2 Providentia Project

This thesis is part of the extensive Providentia++ Project - a research project of the Techni-
cal University of Munich aimed at improving traffic flow and road safety by overcoming the
limitations of local sensor systems of a single vehicle [Krä+19]. IIS Providentia is a research
project that has been funded by the Federal Ministry of Transport and Digital Infrastructure
(BMVI) in early 2017. In the beginning of 2020, it has been continued under the name
Providentia++ with the Chair of Robotics, Artificial Intelligence and Real-Time Systems at
the Technical University of Munich’s Department of Informatics serving as the consortium
leader. Additional cooperative partners supporting the project are fortiss, Valeo, Intel, Cog-
nition Factory, Elektrobit Automotive, Huawei Technologies Deutschland, IBM Deutschland,
3D Mapping Solutions, brighter AI, Siemens, and Volkswagen.
The architecture of the Providentia++ Project, hereinafter introduced in more detail, includes
both the system’s hardware as well as the software to operate it. The road infrastructure of a
particular testbed is enhanced with various sensors to collect traffic data. The software stack
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with detection and fusion algorithms is used to generate an accurate and consistent virtual
model of the testbed, called Digital Twin. In their paper, Krämmer et al. demonstrate that
the provided digital twin information to an autonomous driving research vehicle can be used
to extend the limits of the vehicle’s perception far beyond its on-board sensors.

1.2.1 Road Infrastructure

The testbed of the project includes a stretch of the A9 Highway and an extension into the
surrounding urban area of Garching to the north of Munich depicted in Figure 1.1.

Figure 1.1: A map view of the Providentia road infrastructure, consisting of multiple measurement stations: three
on a highway (S40/50/60) and four surrounding urban area of Garching (M70/80/90 and S110). The corresponding
sections colored blue (Providentia++) and green (Providentia 1).

The infrastructure is a constellation of 7 sensor stations equipped with more than 60 state-
of-the-art and multi-model sensors, providing a road network coverage of approximately 3.5
kilometers. Its primary purpose is to provide a real-time and reliable digital twin of the cur-
rent road traffic at any given time or day of the year, for use in a variety of applications. The
range of types of sensors used for measurements includes optical cameras, Light and Radio
Detection and Ranging sensors (LiDAR and radar).
Each measurement point comprises eight sensors with two cameras and two radars per view-
ing direction. In each direction, one radar covers the right-hand side while the other covers
the left-hand side of the highway.
All the sensors at a single measurement point are connected to a Data Fusion Unit (DFU),
which serves as a local edge computing unit and runs with Ubuntu 16.04 Server. It is
equipped with two INTEL Xeon E5-2630v4 2.2 GHz CPUs with 64 GB RAM and two NVIDIA
Tesla V100 SXM2 GPUs. All sensor measurements from the cameras and radars are fed into
the detection and data fusion toolchain running on this edge computing unit. This results
in object lists containing all the road users tracked in the field of view (FoV) of that mea-
surement point. Each DFU transmits this object list to a backend machine via a fibre optic
network, where they are finally fused into the digital twin that covers the entire observed
highway stretch. Figure 1.2 demonstrates the sensor setup of a single measurement point.
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Figure 1.2: An image of a single Providentia measurement point on the A9 highway. Two optical cameras pointing
in both road directions are visible (yellow circles on top). Two radars pointing to the south can also be seen (red
circles). Also, a Data Fusion Unit (DFU) collecting and fusing the sensory data is displayed on the image in the
bottom left corner.

1.2.2 Digital Twin

Summarizing information in the previous section, the purpose of the road infrastructure is
to collect sensor data, perform a data fusion of the measurements from different sensors to
improve the detection capabilities, and finally detect vehicles and additional meta-data to
map these into a virtual road model, digital twin. The idea of the digital twin is then to
represent a relevant subset of the road section that can later be used for further research
purposes and to complete and extend a vehicle’s perception and to provide information that
enables the implementation of various algorithms and applications based on that digital copy.
The digital twin initially includes information such as position, velocity, vehicle type and a
unique identifier for every observed vehicle. Figure 1.3 shows a visual example of the digital
twin of traffic computed by the system.

Figure 1.3: Qualitative example of how the system captures the real world (left) in a digital twin (right). The scene
is recreated in CARLA driving simulator. During operation, all information is sent to the autonomous vehicle in
form of a sparse object list.

As of the writing of this thesis, the live production system provided digital twin informa-
tion for the stretch s40s50 (approximately 440 meters) highlighted in green in Figure 1.1.
Therefore, all the work outlined and described in this paper is using digital twin modeled for
that stretch only.
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1.3 Project Goals

With the infrastructure provided by the IIS Providentia, this thesis project is aimed at design-
ing and implementing a backend module that will enhance the system by providing existing
road users a possibility to connect to it by the means of a mobile application over the conven-
tional cellular data networks. Besides that, the backend module should actually be a frame-
work that is client-agnostic, implying that any client can connect to the system as long as it
implements the connection and data exchange protocols described in section 3.3.1. The users
will have access to the digital twin of the testbed. Furthermore, different accident prevention
mechanisms can be implemented on top of this module: lane change/average speed recom-
mendations, warnings about vehicles on the entry ramp, standing vehicles, ghost drivers,
jam/slowdown warnings, accident/collision warnings, etc.

1.4 Contributions

Thus, this work consists of two contributions:

1. Implemented fully functional backend framework that provides real-time communica-
tion server that handles multiple clients to effectively distribute relevant traffic data.
Also, the system has a direct connection with the ROS backend to receive digital twin.

2. A module with a set of warnings/recommendations as a working concept of an accident
prevention mechanism that is implemented on top of this backend framework. See
Section 3.6 for more details.

Most of this project has been implemented in cooperation with Mohammad Naanaa’s
bachelor thesis Accident Prevention Frontend Framework to Support Autonomous Driving. He
developed an iOS native application that connects to this backend according to the data ex-
change specifications in section 3.3.1. The mobile application uses Google Maps SDK (Soft-
ware Development Kit) to visualize digital twin information directly overlaid over the actual
map of the testbed [Naa22]. The module with a set of frame-level and object-level warnings
(Section 3.6) was developed after the completion of Naanaa’s thesis, so the mobile applica-
tion does not have support for it.
Also, the backend is using scenarios implemented by Aaron Kaefer in his Master thesis Deep
Traffic Scenario Mining, Detection, Classification and Generation on the Autonomous Driving
Test Stretch using the CARLA Simulator [Aar22]. The goal of this work was to "create a col-
lection of diverse driving scenarios, which are automatically classified and labeled by an
algorithm that is capable of detecting various driving maneuvers and traffic scenes". The
backend receives this extended digital twin output and relays the detected scenarios in the
additional object field called scenarios (Table 3.3) to the clients to generate appropriate
warnings directly on the frontend.

The design and implementation of the system is described in great detail in the following
chapters.



Chapter 2

Related Work

This chapter reveals and elaborates on works related to the project. The works include re-
search papers, projects, and review articles, all of which have had the most influence and
contribution in various aspects: from conceptual perception and problem understanding to
overall architecture design and implementation.

ITS. First ideas and concepts for assisting vehicles, as well as monitoring and managing
road traffic in the form of an Intelligent Transportation System (ITS) have been formalized in
the PATH [Shl92] and PROMETHEUS [BR95]. The California PATH Program was established
in 1986 by the Institute of Transportation Studies of the University of California at Berkeley,
under the sponsorship of the California Department of Transportation (Caltrans). This was
the first research program in North America focused on the subject of ITS. Its mission was to
conduct the research and development work needed to establish the foundation for applying
advanced technologies to improve the operation of the state’s transportation system. Sim-
ilarly, in the same year, the Programme for a European Traffic with Highest Efficiency and
Unlimited Safety (PROMETHEUS) was established. It is a research program to elaborate the
technical base for advance in the development of road transport. The strategic objective is
to create concepts and solutions which will make traffic perceptibly safer, more economical,
with less impacts on environment, and thus render the traffic system more efficient. Both
research projects conceptualized the architecture of ITS with intelligent vehicles equipped
with radars, vision cameras, GPS receivers, and onboard computers to process the sensor
measurements. Communication is via WLAN using mobile ad hoc networks between vehicles
and roadside routers. Such ITS, on one end, enables the vehicle to be driven safely by means
of "electronic sight" which increases the perception area of the driver, and on the other end,
it enables higher level traffic management for better efficiency.

IIS. Recently, with the growing efforts of industry and academia to realize autonomous driv-
ing, the need for intelligent infrastructure systems (IIS) that are able to support autonomous
vehicles has further increased. Several new projects have been initiated, and Providentia is
one of them. However, the focuses of the projects differ widely in scope.

Some IIS projects primarily focus on the communication aspects between the vehicle and
infrastructure, and sometimes additionally on the vehicle-to-vehicle communication. The
research project DIGINET-PS [Ber] by the Technical University of Berlin focuses on the com-
munication of traffic signals, occupancy of parking spaces, traffic queues, weather and road
conditions, environment measurements for air quality. For real-time communication roadside
routers with the ETSI ITS-G5 standard based on the IEEE 802.11p WLAN [ETSa] are used
to directly transmit raw information to the vehicle. Intelligent vehicles are equipped with a
selection of different sensors in the form of cameras, radar, LiDAR, GPS, as well as actuators
for lateral and longitudinal guidance, signalization control, vehicle gear control and pedal
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level transmitter. A powerful on-board computer is responsible for the rapid processing of
all the information. For this purpose, a software stack is provided. The stack brings together
all collected information about the current situation, derives predictions of the future states,
plans suitable driving maneuvers and controls the vehicle accordingly. This costly hardware
and software extension greatly limits the practical aspect of the system.
Similarly, the Antwerp Smart Highway [Ant18] project focuses on vehicle-to-everything (V2X)
communication and distributed edge computing. V2X communication (incorporates vehicle-
to-vehicle and vehicle-to-infrastructure) entails the use of the Collective Perception Service
which enables vehicles to share information about other road users and obstacles that were
detected by local perception sensors such as radars, cameras and alike. In that sense, it aims
at increasing awareness between vehicles by mutually contributing information about their
perceived objects to the individual knowledge base of the vehicle by disseminating Collective
Perception Messages (CPM) [ETSb]. The test site consists of a highway strip of 4 km equipped
with road side communication units (RSUs). The RSUs are connected to the fiber network of
the road operator, able to fetch information about electronic traffic signs on the highway. The
data is transmitted using the ETSI ITS-G5 over WLAN technology to the specially equipped
car.
The New York City Connected Vehicle Project [DOT15] is much greater in scope and prac-
tical application. The primary goal of the project is to eliminate the traffic related deaths
and reduce crash related injuries and damage to both the vehicles and infrastructure. The
project deployment is primarily focused on safety applications – which rely on vehicle-to-
vehicle, vehicle-to-infrastructure and infrastructure-to-pedestrian communications. These
applications provide drivers with alerts so that the driver can take action to avoid a crash
or reduce the severity of injuries or damage to vehicles and infrastructure. Similarly to the
previous projects, the dedicated short-range communication protocol on top of WLAN is used
for data transmission among road participants and RSUs. However, the infrastructure-to-
pedestrian communication is done over cellular networks with pedestrians using the special
mobile application installable on regular smartphones. The main functionality of the mobile
app is to send the pedestrian presence information to the system, which in turn broadcasts it
to the vehicles approaching the crosswalk.

Other IIS projects, similar to Providentia, focus on roadside perception. The paper by
Fleck et al. [Fle+18] presents the concept, realization and evaluation of a flexible and
scalable setup for smart infrastructure at the example of the Test Area Autonomous Driv-
ing Baden-Württemberg [Ver]. In particular, the system is perceiving a cross-road with two
high resolution cameras and creates a digital twin. However, an autonomous vehicle with
the onboard hardware (numerous cameras, sensors, GPS antennas, and laser scanners) and
complex software bears the bulk of the computation and evaluation of the information. The
deployed roadside system is much smaller than Providentia infrastructure and cannot oper-
ate at night as it only uses cameras.
Another example of such an IIS is the test field of 1.2 km on the motorway A2 near Graz,
Austria, operated by ASFINAG, the Austrian motorway operator. Seebacher at al. in their
work Infrastructure data fusion for validation and future enhancements of autonomous vehi-
cles’ perception on Austrian motorways [See+19] focus primarily on post-validation of driving
maneuvers by comparing an autonomous vehicle’s on-board sensor data with the traffic data
captured by roadside infrastructure sensors. However, the application outlook described in
the paper involves future real-time enhancement of autonomous vehicle’s perception range.

Application server. An article Getting Started with Building Realtime API Infrastructure [Bak17]
describes rather an abstract model of the high-level conceptual design of a real-time appli-
cation server. The author focuses on the true essence of the real-time systems. Specifically,
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he argues that realtime does not necessarily mean that something is updated instantly, as
there is no universal practical definition of "instantly". But realtime is about pushing data
as fast as possible. Thus, the author accentuates the focus of building realtime systems on
the mechanism of pushing the changes. Another article, Building Scalable Web Application for
Your Project: Best Principles and Practices [KS21], gives an extensive overview of principles
and guidelines in building scalable web application from different perspectives.

Network communication. A recent article by Eduardo Ribeiro [Rib21] gives an overview of
network protocols to use in the server-client model. The article explains each protocol with
a detailed description of how it operates on the request, response, and message levels. It
provides both advantages and disadvantages based on the use cases. Whereas, a more schol-
arly article by Ogundeyi K.E. [Ogu19] specifically advocates for the use of WebSockets for
real-time communication by providing sufficient technical comparison with other protocols
such as HTTP and SSE(Server-Sent Events).



Chapter 3

Implementation

3.1 Conceptual Approach

Providentia’s digital twin is implemented in ROS1 Noetic (A.1). The general approach is
to create a backend server that communicates both with the digital twin to get data, and
the mobile applications to send the data. Figure 3.1 gives schematic view of this concept.
The backend system should provide seamless, fast, real-time integration with the Providen-
tia’s digital twin. Furthermore, the application server should make real-time connections
with the clients to relay the relevant information quickly. The backend should have a public
static IP address to allow mobile devices to directly communicate with it over the Internet.
Accordingly, mobile endpoints are connected to the Internet through the wide-area communi-
cation technologies such as 3G, 4G, and 5G provided by cellular carriers. Each mobile device
constantly shares its GPS location with the backend server and in turn receives the traffic
information specific to the location. Precise data exchange format specification (3.3.1) de-
signed at the start of the project serves as the building ground for the entire communication
protocol. The mobile platform can be of any type. The iOS mobile application specifically
designed by Mohammad Naanaa was used during the development and testing phases.

Figure 3.1: Module architecture

In a nutshell, the design of the backend system should address three following aspects:

1. Connection to the ROS backend to receive digital twin;

2. Network protocol for frontend-backend connection;
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3. Distribution of relevant data.

These questions are addressed in detail and solved by the contributions made in this work
in the following sections.

3.2 General Application Server Requirements

3.2.1 Connection to the ROS Backend

So, first of all, the analysis of the Providentia’s digital twin outbound interface is performed.

Figure 3.2: Platform architecture of the Providentia system. Three distinct components (DFU, Backend, and
Frontend/Autonomous Vehicle) can be seen with the inter-component data flow. A DFU is connected to sensors
on the left and processes the raw data. The data is used to construct a digital twin. Additive Services are then
provided using that twin. These services are offered to the Frontend ([Krä+19]).

Figure 3.2 displays the platform architecture of the Providentia system. The software
architecture involves three major components: Data Fusion Unit (DFU), Backend (hereafter
"ROS backend"), and Frontend (hereafter "backend" for mobile applications), on the creation
on which this work is focused.

A DFU is responsible for running local sensors collecting raw data, performing sensor data
fusion, object detection and classification. The processed data is then pipelined further into
the ROS backend.

Each DFU is responsible for one road section (e.g., s40s50) and does the processing in-
dependently of other DFUs. Thus, it enables multiple DFUs to asynchronously publish their
local traffic data to the ROS backend, making the process scalable for an industrial applica-
tion with numerous DFUs that allow the Providentia system to monitor many road sections
simultaneously.

The ROS backend does final global fusion of the traffic data, refinement to finally produce
the digital twin information in the form of sparse list of objects for each road section. Since
ROS is used on all computing units, the digital twin for s40s50 stretch is published as the
ROS topic /s40/s50/tracker/estimates/throttled. Thus, the ultimate consumption of the list
of objects is accomplished by creating a ROS node and subscribing to the ROS topic. The rate
at which the messages are published to the topic is approximately 25 Hz.

3.2.2 Web interfacing capability

Apparently, the backend for mobile applications should be able to allow and sustain web
connections from the clients. The only network technology that is widespread and easily
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available to the mobile applications is the Internet through the wide-area communication
technologies such as 3G, 4G, and 5G provided by cellular carriers. Therefore, the backend
should additionally contain a web server to make interaction between a user and backend
software running on the application server possible.

3.2.3 Comparison and Selection of a Technological Framework

The right backend technology goes a long way in enhancing an app development project. An
excellent will enhance development speed, increase app responsiveness, and give room for
scaling when the need arises.

Apparently, the backend server can be written in any server-side programming language,
the most used ones among which are server-side JavaScript, Python, Java, and C++. Nowa-
days, all of these languages also support web interfaces. The actual selection of the tar-
get framework depends on several factors. Considering the aspects described in previous
sections, the factors that heavily affect the choice can be summarized in the following list,
ordered by priority:

1. Availability of the ROS client library. This is the most important point to consider, for
the development of such library using ROS API is out of scope of this work and would
require a lot of time.

2. Programming model. There are basically two types of programming models: event-
driven (or asynchronous) and sequential. Two different methods to support two differ-
ent needs. In this project, when the backend receives a message from ROS, it should
process it immediately and relay further to the clients. Likewise, when the backend
receives GPS locations from the clients, it should react to this event by processing the
information without any delay. Clearly, the event-driven paradigm is more appropri-
ate in such case as all the processing (application logic) is bound to external events.
Moreover, the event-driven programming model is the best fit to create real-time web
applications (Figure 3.3). Sequential programming is more often found in batch pro-
cessing.

3. Strong community. Strong community of developers behind any open-source technol-
ogy defines its maturity, popularity and widespread use. There is abundant documenta-
tion online and applications written in such languages can be easily maintained in the
future. Moreover, these languages have a lot of developed add-on modules that can be
easily used to handle various core functionalities.

4. Fast prototyping. The language and the framework inside which it runs should allow
for fast prototyping and development of applications. Low level languages, e.g., C and
Go, require too much effort to learn and also to produce the code.

The following analysis includes a few server-side technologies with the most potential to
sustain real-time communication.

C++ It is rather a low-level programming language with the support of object-oriented
paradigm. Being an extension of C, it is extremely fast in execution. There is a ROS
library client roscpp (A.3). Originally C++ supports sequential programming model.
However, there exist Boost libraries (A.2) that support event-driven style for managing
real-time communication through the web interface. C++ is one of the oldest robust
programming languages. There is a strong community of peer developers behind it.
One major disadvantage though, is that it is not suitable for fast prototyping. The
development in C++ is quite long and expensive.
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Figure 3.3: Event-driven architecture. Event-driven programming depends upon an event loop that is always
listening for the new incoming events [Tei12].
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Java There is a ROS library client rosjava (A.4). Java’s support of the event-driven program-
ming model depends on the high-end framework used to create the application. Java is
quite old, it was released to public in 1995. It is the most popular server programming
language in the corporate world due to various open-source and proprietary frame-
works with in-built security features. The major disadvantage of using this language,
is that it needs high-end systems to run excellently, making it expensive to implement
Java backend. Moreover, writing Java programs can be time-consuming compared to
other languages. This is mostly due to the complexity of Java application servers with
no unified specification. So, first additional step is to learn the application framework
which can be quite costly in terms of time.

Python Python is a popular, multi-purpose programming language developed in 1991. It
offers a simple and easy-to-use backend. There is a ROS client library rospy (A.5).
The event-driven programming is done through the use of Asyncio module, which
provides infrastructure for writing single-threaded concurrent code using co-routines
(A.6). Python is completely open-source and has a large community of developers. It is
suitable for fast development, however, it is required to learn the Asyncio module first,
since pure Python fits the sequential programming model.

Node.js It is an open-source, cross-platform, back-end JavaScript runtime environment. There
is a ROS client library rosnodejs (A.7). Node.js has an event-driven architecture capable
of asynchronous I/O. These design choices aim to optimize throughput and scalability
in web applications with many input/output operations, as well as for real-time web
applications. Although, Node.js is relatively young, its initial release was in 2009, there
is a strong industrial and community support for it. Documentation is abundant, as well
as, there are thousands of open-source libraries for Node.js, most of which are hosted
on the npm website (A.8). Node.js brings event-driven programming to web servers,
enabling development of fast web servers in JavaScript [Tei12]. Due to the simplicity
of JavaScript syntax and easy deployment of Node.js, this technology is ideal for fast
prototyping and development.

So, the obvious choice is Node.js. It is primarily used to build network programs such
as Web servers. The most significant difference between Node.js and C++ and Java is that
most functions in the latter two block until completion (commands execute only after pre-
vious commands finish), while Node.js functions are non-blocking (commands execute con-
currently and use callbacks to signal completion or failure). Technically, non-blocking pro-
gramming is actually possible in inherently blocking C++ and Java, but it requires additional
in-depth knowledge of low-level functionality and coding skills, making it practically impos-
sible for this project.
Although, Python and Node.js are somewhat similar candidates, the main advantage of the
latter is that its event-loop does not need to be called explicitly (unlike when using Asyncio
module in Python). Instead, callbacks are defined, and the server automatically enters the
event loop at the end of the callback definition. Node.js exits the event loop when there are
no further callbacks to be performed. Thus, the code for Node.js has more simplistic style,
provides better readability, and can be easily maintained in the future.
In conclusion, Node.js operates on a single-thread event loop, using non-blocking I/O calls,
allowing it to support tens of thousands of concurrent connections without incurring the cost
of thread context switching [Tei12].
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3.3 Frontend-Backend connection requirements

3.3.1 Data Exchange

For scalability purposes, a mobile app user should dynamically receive only the relevant part
of the traffic data for its current position. This technique limits the amount of data that has to
be received by the client and therefore improves both backend’s and mobile device’s network
resources consumption. However, for this approach to work, a notion of data relevance has
to be defined.

In this work, the relevance of the data is determined based on the principle of locality.
This principle requires a bidirectional exchange between the backend and frontend with a
well-defined specification outlined and described in the following two sections. The chosen
format of the messages is JSON. Important to note, this specification defines the minimum,
i.e. the mandatory fields for the exchange, as the entire functionality of the backend and
frontend application software depends on this information. Due to the used JSON format,
extensions of messages are possible with backwards compatibility.

Received Data Specification

For the backend to decide which traffic data is relevant for each user, the frontend has to
reveal its location first. This requires the frontend to transmit the user’s GPS location that the
backend server will process. Additionally, some meta-data, e.g. user’s velocity and heading
direction, is required to be sent to allow for additional processing, especially in the case of
client-specific warnings described in section 3.6. The complete message specification from
the frontend’s side is listed in Table 3.1

Name Type Description

timestamp Number
The interval between the date value and 00:00:00
UTC on 1 January 1970

course Number
The direction in which the device is traveling, mea-
sured in degrees and relative to due north

speed Number
The instantaneous speed of the device, measured
in meters per second

longitude Number
The longitude in degrees with positive values ex-
tending east of the meridian and negative values
extending west of the meridian

latitude Number
The latitude in degrees with positive values ex-
tending north of the equator and negative values
extending south of the equator

Table 3.1: Received data specification from the device to the backend

Transmitted Data Specification

The backend constantly receives (approximate rate is 25 Hz) the digital twin data in the form
of sparse object list, i.e. all the detected and classified objects with additional attributes for
each road section. Currently, the testbed consists of just one stretch s40s50, and the ROS
topic is /s40/s50/tracker/estimates/throttled. Each received message is of type BackendOut-
put (A.10), which contains a list of objects of type DetectedObject (A.11). Thus, the backend



3.3 Frontend-Backend connection requirements 14

mostly mirrors the data received in the digital twin, and also adds additional metadata for
the mobile app.

Upon receiving user’s GPS data, the server stores it in the user’s attributes. When the next
event, i.e. receiving of the frame message from the ROS, happens, the backend server then
decides what part of the traffic data is relevant based on each user’s location and sends the
corresponding data to each client.

The transmitted frame message contains a list of detected objects of type Vehicle and
additional fields for metadata and the frame-level warnings and recommendations: recom-
mended speed and weather condition (see Section 3.6). Table 3.2 contains the full specifica-
tion of the message.

Name Type Description

msg_type String Message type. The value is ’frame’.

seq String
Unique sequence identifier coming from
the ROS Header type

timestamp_secs String
The timestamp of this message, originating from the
ROS, number of seconds

timestamp_nsecs String
The timestamp of this message, originating from the
ROS, remaining number of nanoseconds

timestamp_full String
The timestamp of this message, originating from the
ROS, formatted as secs.nsecs

num_detected String Number of detected objects in the list of objects
objects [Vehicle] The list of all detected Vehicle objects
weather_condition String Values: rainy, foggy, snowy, cloudy, sunny

speed_rec String
Recommended speed based on the average speed
of the vehicles in the list

warnings String
A string that contains different frame-level
warnings separated by a semicolon

Table 3.2: Transmitted frame message specification from the backend to the frontend

Each Vehicle from the aforementioned list also holds its unqiue global id, a vehicle’s
category, position, speed, shape, and scenarios (see Table 3.3).

Name Type Description

id String Unique id of the object.

category String
The category of a vehicle. Possible values:
{’bus’,’car’,’truck’,’motorcycle’,’pedestrian’,’special_vehicle’}

position Position The position of the object as a 3-dimensional vector
speed Speed The speed of the object as a 3-dimensional vector
shape Shape The shape of the object as a 3-dimensional vector

scenarios Scenarios
A container storing various risk-scenarios
associated with the object

Table 3.3: Specification of the Vehicle type

The corresponding vehicle’s position, speed, shape, and scenarios are also data
structures holding specific information. The position field contains the GPS position of
a vehicle - latitude and longitude, described in Table 3.4.

The speed field stores the speed of a vehicle in two dimensions - latitudinal and longitu-
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Name Type Description

position.x String
The latitude of a vehicle in degrees with positive
values extending east of the meridian and negative
values extending west of the meridian

position.y String
The latitude of a vehicle in degrees with positive
values extending north of the equator and negative
values extending south of the equator

position.z String The altitude of a vehicle - Unused field set to 0

Table 3.4: Specification of the Position type

dinal - and the derived heading direction, described in Table 3.5. The magnitude of the first
two dimensions gives the absolute speed value in m/s.

Name Type Description

speed.x String x-component of the vector
speed.y String y-component of the vector

speed.z String
Angle (in radians) between the north (0,1)-vector and
the speed vector indicating movement direction

Table 3.5: Specification of the Speed type

The shape field stores the shape of a vehicle in three dimensions: width, length, and
height, described in Table 3.6.

Name Type Description

length String Length of a rectangle corresponding to a vehicle
width String Width of a rectangle corresponding to a vehicle
height String Height of a rectangle corresponding to a vehicle

Table 3.6: Specification of the Shape type. Note: the values might be set to zero if computation is impossible, i.e.
in bad weather conditions or darkness

The scenarios field is an extension for a vehicle storing information for all detectable
hazardous scenarios associated with a vehicle (see Aaron Kaefer’s Master thesis Deep Traf-
fic Scenario Mining, Detection, Classification and Generation on the Autonomous Driving Test
Stretch using the CARLA Simulator). Table 3.7 describes the Scenarios type.

3.3.2 Comparison and Selection of a Network Protocol

Following the described data exchange specification, the backend server and a mobile appli-
cation therefore form a bidirectional communication channel through the Internet, as both
constantly send its corresponding messages to each other.

To implement this communication channel, a web connection protocol has to fulfill several
crucial requirements:

• Bidirectionality

• Low latency real-time
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Name Type Description

lane_id String Detected lane id of a vehicle
lane_change_left String This vehicle is changing its lane to the left
lane_change_right String This vehicle is changing its lane to the right
cut_in_left String This vehicle cuts into a lane to the left
cut_in_right String This vehicle cuts into a lane to the right
cut_out_left String This vehicle cuts out from a lane to the left
cut_out_right String This vehicle cuts out from a lane to the right
tail_gate_level String This vehicle is tailgating. Severity ∈ {0,1, 2,3}
speeding String This vehicle is exceeding the speed limit
standing String This vehicle is standing
wrong_way String This vehicle is driving in a wrong way

Table 3.7: Specification of the Scenarios type. Boolean values: ’True’ or ’False’

• Good security model

Low latency real-time connection is essential - traffic data is expected to be transmitted
very frequently. The data publishing frequency of each DFU is approximately 25 Hz, i.e.
around every 40 ms the ROS backend publishes new frame message for each road section.
Moreover, as the vehicle moves on the highway with no official speed limit, the location
information sent to the backend should reach it quickly, to ensure the server has the most
accurate position information of a vehicle. This is necessary for the correct traffic data to be
delivered to the device incurring no stale data.

A further concern for the data transfer is security. The frontend will send user’s GPS
position, while the backend will send the GPS position of all vehicles of a certain part of
traffic - both representing location data. Location data is considered a sensitive data subject
to protection under European Union’s General Data Protection Regulation (GDPR), and hence
regulation-conformant handling of the data is required [Com18].

With the aforementioned requirements, protocol candidates has to be considered on two
distinguished layers: the low-level Data Transport Layer - layer 4 in the OSI model (A.12),
and the more abstract Application Layer - layer 7.

Data Transport Layer

For the underlying data transport layer, the selection of a protocol is straightforward. As
both connection endpoints are connected to the Internet, the underlying network protocol
was chosen to be the connection-oriented TCP as it provides reliable, ordered, and error-
checked delivery of a byte stream between applications running on hosts communicating via
an IP network. Another alternative is connectionless UDP. However, it has no handshaking
dialogues, and thus exposes the user’s program to any unreliability of the underlying network;
there is no guarantee of delivery, ordering, or duplicate protection.

Application Layer

At this level, there are basically 3 options to consider for the final network protocol to be used
in the project. Since this is the last layer in the OSI model (A.12), the direct exposure to the
programming API’s of the lower levels allows to actually develop own protocol to suit specific
needs. However, custom development of such protocol is out of scope of this project, and
would require a lot of time. Important to note, at this stage of the project, there aren’t any
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specific needs to be addressed for the communication between the backend and the mobile
application.

REST API over HTTP REST, i.e. Representational State Transfer, defines a set of constraints
to be utilized for creating web services. It is one of the architectural styles to create
REST endpoints using HTTP in a web application. RESTful endpoints are being called,
which would invoke APIs that are RESTful in nature and give an HTTP response (A.13).
This is the classic client-server communication model that fits most of the cases. It is
largely used in the server-browser setup. However, in real-time applications it is already
assumed that the information is needed from the server as soon as it becomes available
- and, fundamentally, the classic HTTP request/response paradigm isn’t up to the job.
That’s because the server will be silent, new data or not, unless or until a consumer
requests an update.

That limitation saw the emergence of all manner of hacks and workarounds as devel-
opers sought to adapt that request/response model to the demands of a more dynamic,
real-time web – some of which became formalized and pretty widely adopted.

All these technologies and approaches – from Comet (A.14) to HTTP long polling –
have one thing in common: Essentially, they set out to create the illusion of truly real-
time (event-driven) data exchange/communication, so when the server has some new
data, it sends a response. Figure 3.4 shows how it works.

Even though HTTP is not an event-driven protocol, so is not truly real-time, these ap-
proaches actually work quite well in specific use cases, Gmail chat for instance. Prob-
lems emerge, however, in low-latency applications or at scale, mainly because of the
processing demands associated with HTTP.

That is, with HTTP you have to continuously request updates (and get a response back),
which is very resource-intensive: a client establishes a connection, requests an update,
gets a response from the server, then closes the connection. Imagine this process being
repeated endlessly, by thousands of concurrent users – it’s incredibly taxing on the
server at scale.

Aggressive polling keeps the app responsive, but leads to larger server resource utiliza-
tion. Any bugs in the polling frequency result in significant backend load and degrada-
tion. As the number of features with real-time dynamic data needs might increase in
future, this approach will prove infeasible as it would continue to add significant load
on the backend.

Consequently, polling leads to faster battery drain, app sluggishness, and network-level
congestion. This is especially evident in places with 2G/3G networks or spotty networks
across the terrain where the app might retry multiple times for each polling attempt.

Thus, this technique fails at both bidirectionality and low latency real-time constraints:
as the HTTP works only in one way - from client to the server and the connection over-
head is huge considering that for every request/response pair there is a new connection
to be established.

Robust security can be achieved by using secure version of HTTP - HTTPS (A.17).

Server-sent events (SSE) SSE is server push technology (A.15) enabling a client to receive
automatic updates from a server via an HTTP connection, and describes how servers
can initiate data transmission towards clients once an initial client connection has been
established. They are commonly used to send message updates or continuous data
streams to a browser client and designed to enhance native, cross-browser streaming
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Figure 3.4: Long polling using HTTP diagram
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through a JavaScript API called EventSource (A.16), through which a client requests a
particular URL in order to receive an event stream.

This technology essentially removes the overhead associated with constant polling for
updates and improves latency, as persistent connection is established once. However,
SSE is a mono-directional protocol. After doing the initial request/response step, the
server is then able to push messages to the client. But, the client cannot send any
information to the server, except initiating a new request. Thus, there is no way for
the client to efficiently send its location data to the backend on a periodic basis. If new
requests to be made on each client position update, then it basically boils down to the
same REST API over HTTP model. Figure 3.5 shows the underlying behavior of SSE.

Figure 3.5: SSE diagram

WebSocket Around the middle of 2008, the limitations of using continuous two-way server/
browser interaction system Comet were being felt particularly keenly by developers
Michael Carter and Ian Hickson. Through collaboration on IRC and W3C mailing lists,
they hatched a plan to introduce a new standard for modern real-time on the web via
bi-directional communication, thus creating the name “WebSocket”. The idea made
its way into the W3C HTML draft standard and, shortly after, the first version of the
protocol was introduced.

The WebSocket protocol enables full-duplex interaction between a web browser (or
other client application) and a web server with lower overhead than half-duplex alter-
natives such as HTTP polling, facilitating real-time data transfer from and to the server.
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This is made possible by providing a standardized way for the server to send content
to the client without being first requested by the client, and allowing messages to be
passed back and forth while keeping the connection open. In this way, a two-way on-
going conversation can take place between the client and the server. Figure 3.6 shows
this process.

Figure 3.6: WebSocket diagram

Moreover, WebSocket is designed to work over HTTP ports 443 and 80 as well as to
support HTTP proxies and intermediaries, thus making it compatible with HTTP. To
achieve compatibility, the WebSocket handshake uses the HTTP Upgrade header to
change from the HTTP protocol to the WebSocket protocol.

Although WebSocket is relatively new technology, the protocol was standardized by the
Internet Engineering Task Force (IETF) as RFC6455 ([MF11]) in 2011. Since then the
protocol has been implemented in all browsers, and all server-side application frame-
works fully support the specification. In addition, mobile platforms have introduced
full native support of the protocol ([Dia20b], [Dia20a]).

Similar to HTTP, WebSocket has a secure version of it called WebSocket Secure.
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Obviously, the WebSocket is the most suitable option to go with the network protocol
between the backend and the mobile application. To summarize:

• Websockets are event-driven (unlike HTTP). Arguably, event-driven is a prerequisite for
true real-time.

• Full-duplex asynchronous messaging. In other words, both the client and the server
can stream messages to each other anytime independently from each other.

• WebSocket keeps a single, persistent connection open while eliminating latency prob-
lems that arise with HTTP request/response-based methods due to the overhead. Fig-
ure 3.7 shows the comparison of outbound traffic bandwidth for websockets and HTTP
[Ogu19].

Figure 3.7: Total information sent for each character entered into the search bar.

3.3.3 Security

Admittedly, WebSocket protocol is known to have some serious considerations regarding the
security aspect. As opposed to the HTTP requests, WebSocket requests are not restricted
by the same origin policy, i.e. a vanilla implementation of a WebSocket server could easily
expose a vulnerability to cross-site hijacking attacks [Kuo16]. To improve the security as-
pect and mitigate that risk, as well as to protect private data of the clients (as per GDPR
regulation), three security-improving decisions were made:

• Switching to the secure version of the WebSocket protocol, called WebSocket Secure
(wss)

• Safe parsing of the client data using JSON.parse()

• Validation of user message against the specification outlined in Table 3.1. Connections
are dropped immediately, if the validation fails, and also when the location data is not
received in the first 2 seconds after establishing a connection.
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The secured wss (WebSockets over SSL/TLS (A.18)) version of the protocol offers two
benefits for the overall security: it encrypts the data between the frontend and the backend,
preventing capturing or tampering with the sensitive data in the middle (man-in-the-middle
attack (A.19)), and it avoids issues with websockets on networks that employ so-called inter-
mediaries (proxies, caches, firewalls). The latter is especially relevant for the mobile operator
networks, which are expected to be the primary network source for clients.

However, because for the encryption of data, wss needs a valid certificate issued by a
trusted third-party called certificate authority (CA), for testing purposes during the devel-
opment it suffices to either use self-signed certificates or use an SSH tunnel (port 22) with
enabled port forwarding between the two endpoints, the server and the mobile client. Obvi-
ously, in such a case, because the application server is directly connected to the production
ROS backend, all the network ports except 22 are disabled. Additionally, only key based
logins for a set of predefined public keys is allowed. Thus, utilizing SSH tunneling addresses
the concern of WebSocket’s vulnerability - after a secure (encrypted) tunnel between two
endpoints is established, the server is accepting data only coming from it, eliminating a pos-
sibility of cross-origin attacks. This final connection setup is depicted in Figure 3.8

Figure 3.8: A visual representation of the connection between the frontend (seen here on the left side) and
backend (seen here on the right side consisting of two abstract parts: SSH handler and the actual application
server)

3.4 Distribution of Data

With the right technology and protocols in place, it is now imperative to discuss the core
logic of the application server - data distribution. So, on one end, the server receives data
from the ROS backend, and on the other it distributes this data to the clients through low
latency real-time websocket connections. The main concern is now to efficiently distribute
relevant traffic data to all the connected clients. Two different techniques were implemented:
brute-force looping and pub/sub model (A.21).

3.4.1 Brute-Force Approach

This approach employs the simplest looping method in its algorithm:

1. A frame message is received from the ROS backend

2. The message handler loops through the object list, and for every client connected to the
system, checks if the object is close enough to its last known location. Thus, for every
client it forms a temporary list of relevant objects. Any client, which connects to the
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system in the middle of this process, starts receiving the updates from the next frame
message processing cycle.

3. With the temporary non-empty lists defined, the backend forms the outgoing messages
to the corresponding clients and actually sends the information.

The proximity of an object and a vehicle is checked using the radius search - if the ob-
ject falls inside the radius (configurable parameter) of a circle centered at the vehicle’s lo-
cation, then it is sent to that vehicle as a detected object. Radius search in turn uses the
Haversine formula to calculate the great-circle distance between two points – that is, the
shortest distance over the earth’s surface – giving an ‘as-the-crow-flies’ distance between the
points (ignoring any hills they fly over):

d = 2 ∗ R ∗ arcsin

√

√

sin2(
ϕ2 −ϕ1

2
) + cosϕ1 ∗ cosϕ2 ∗ sin2(

λ2 −λ1

2
)

where ϕ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371,000 meters).

The JavaScript implementation:

const R = 6371e3; // metres
const ϕ1 = lat1 * Math.PI/180; // ϕ, λ in radians
const ϕ2 = lat2 * Math.PI/180;
const ∆ϕ = (lat2-lat1) * Math.PI/180;
const ∆λ = (lon2-lon1) * Math.PI/180;

const a = Math.sin(∆ϕ/2) * Math.sin(∆ϕ/2) + Math.cos(ϕ1) * Math.cos(ϕ2) *
Math.sin(∆λ/2) * Math.sin(∆λ/2);

const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
const d = R * c; // in metres

Important to note, the Haversine formula remains particularly well-conditioned for numer-
ical computation even at small distances.

As with any brute-force algorithm which simply loops over all the data and variables,
this approach fails to generalize well when the size of data to consider scales up. This tech-
nique definitely works fine in the testing scenario: one road section s40s50 and 1-2 clients
connected to the system. However, brute-force looping will fall short in future, as it repre-
sents a single centralized computing unit. A different horizontally scalable data distribution
algorithm is needed.

3.4.2 Pub/Sub Model

The Providentia infrastructure already divides the testbed into road sections with separate
DFUs for each section, and the ROS backend which performs global fusion outputs digital
twin for each road stretch in different topics (channels), e.g., s40s50 for the section between
two measurement points s40 and s50. Thus, the ROS pattern of the publisher-subscriber
communication among nodes can be mirrored and implemented in this project to achieve
scalable data distribution technique. The algorithm then proceeds as follows:

1. A frame message is received from the ROS backend



3.4 Distribution of Data 24

2. The message handler processes the message by transforming it into the output format
and computing additional required meta-data. Then it is published immediately to its
appropriate channel. The topic name can be the same as the one for the corresponding
road section.

3. The pub/sub broker works independently. Its main duty is to send messages queued in
a channel to every recipient subscribed to that channel.

4. Meanwhile, when a location message is received from a client, the backend processes
it by identifying which road sections are relevant for the vehicle, and subscribes the
client to those channels. Similarly, if the client has subscriptions to channels that are
no longer relevant, then the client is unsubscribed from it.

The identification of relevant road sections and non-relevant ones is done through the
same location proximity procedure as in the previous section, namely radius search using the
Haversine formula.

Key point here, is that this pub/sub model is completely transparent to the clients (see
Figure 3.9). The pub/sub broker works asynchronously and independently from the incoming
message handlers, thus ensuring scalable concurrent processing. Moreover, in such a case,
there is no costly looping through the object list of a frame message and all the clients,
instead, the entire message is processed and relayed directly to the set of relevant vehicles.

Figure 3.9: Pub/sub model depicting the client connection part. Clients are completely unaware of the underlying
model, as the communication setup has not changed.

Furthermore, this data distribution technique is horizontally scalable, as channels can be
easily divided among several high-load physical servers. A load balancing can then be applied
to distribute incoming client connections based on positional relevance.
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Backpressure

Since the pub/sub broker forms queues for each topic, and there are many clients that
are subscribed to the same topic, one caveat that needs to be discussed additionally is the
backpressure [Phe19]. In the software world “backpressure” is an analogy borrowed
from fluid dynamics, like in automotive exhaust and house plumbing:
Resistance or force opposing the desired flow of fluid through pipes (definition taken from
Wikipedia).
In the context of software, the definition could be tweaked to refer to the flow of data within
software:
Resistance or force opposing the desired flow of data through software.
The purpose of software is to take input data and turn it into some desired output data. That
output data might be JSON from an API, it might be HTML for a webpage, or the pixels dis-
played on a monitor.
Backpressure is when the progress of turning that input to output is resisted in some way.
In most cases that resistance is computational speed — trouble computing the output as fast
as the input comes in. In the case of this work, the backpressure issue arises when there are
slow receivers in the list of subscribers. Nowadays, when simple smartphones are equipped
with powerful CPUs and have plenty of RAM, this backpressure is mostly due to the network
slowdowns rather than sluggish processing of messages. As the broker quickly sends out a
message to all the clients it has to handle slow receivers in some way, so as not to make other
fast clients wait for them to receive next message.

Definitely this issue should be tackled from both sides: the backend and a mobile ap-
plication or frontend. There are several strategies to handle backpressure from the server
side:

• Control the producer (slow down/speed up is decided by consumer)

• Buffer (accumulate outgoing data spikes temporarily)

• Drop (either sample out a percentage of the outgoing data, or drop messages that
cannot be processed by a client at the moment)

Obviously, the option of slowing down the relay of messages is not viable. Since the
backend receives live data from the ROS infrastructure it is imperative to send the processed
digital twin data as fast as possible for the clients to receive the traffic info with the minimal
delay.

Buffering messages for each connection is a good option as vehicles that move on high-
ways can experience occasional problems with mobile networks causing network slowdown,
thus impairing the mobile application to receive timely updates. In such a case, when the
vehicle is back to a good coverage area, the buffer will get quickly drained. The size of the
buffer is a hyperparameter and has to be set up in advance. However, even with sufficiently
large buffer size, it might get full. Bad strategy would be to increase the size of the buffer.
The problem of a slow connection can persist for some long time. Additionally, there is no use
of handling out the old messages with stale data. So it is better to skip the clients with the
full buffer, i.e. drop messages that cannot be processed by them. Dropping random messages
is not a good idea at this point, as the client then will experience stuttering without realizing
that the problem is with the slow network.

To summarize, the implemented strategy to handle backpressure involves using buffers
for each connection and skipping the clients with full buffers. This way, there is no slowdown
of the relay of live messages from the ROS infrastructure because of the slow receivers.
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3.5 Solution Architecture

The final technological stack of the backend system consists of the following modules:

1. Node.js is used as the application server. Its event-driven architecture is particularly
well suited for this project. The programming language is JavaScript.

2. rosnodejs is the client library for Node.js through which a connection to the ROS
system is established (A.7). This library can be easily installed through the npm module
manager (A.8).

3. WebSocket protocol is used for real-time low latency connections between the back-
end and the clients. Security is maintained by using WebSocket Secure (wss), or SSH
tunneling with port forwarding for testing purposes.

4. Publisher-subscriber model functions as the core application logic for efficient and
scalable data distribution. It runs asynchronously and independently of the incoming
message handlers.

Figure 3.10 depicts the final overall solution architecture of the project.

Figure 3.10: Overall solution architecture. The backend is directly connected to the ROS utilizing rosnodejs
client library. Each client establishes a persistent full-duplex websocket connection with the backend.

3.6 Features

The modularized architectural setup summarized in the previous section gives enough flexi-
bility for the backend system to act as a framework. On top of it additional accident preven-
tion mechanisms can be implemented adding value to the whole system for the end users, i.e.
drivers. In particular, for this project a set of warnings/recommendations was implemented
to compliment the digital twin information.

Essentially, there are two types of warnings: frame-level and object-level (personalized
warnings for the vehicle). The former means that this kind of information can be put together
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into the frame messages and are to be seen by all the vehicles who receive it. The latter means
that this kind of information should be sent personally to a vehicle.

3.6.1 Frame-level warnings

Frame-level warnings include the following (fields are defined in Table 3.2):

1. Weather condition. Field weather_condition may contain values: rainy, foggy, snowy,
cloudy, and sunny. This information is taken from the ROS backend. For example, when
the value is ’rainy’, then the frontend can display an aquaplaning warning encouraging
a driver to slowdown. Or if it is ’foggy’, then display a warning to slowdown and turn
on fog lights.

2. Speed recommendation. Field speed_rec contains the average speed of the vehicles
driving in the same direction of a road section, in km/h.

3. Warning about ghost drivers. Ghost drivers are detected on the backend, when a ROS
message is being parsed. The warning text is put into the field warnings. Note:
warnings is a concatenation of different warning descriptions separated by a semi-
colon. Additionally, each warning type has a unique id (refer to the code base on
TUM GitLab https://gitlab.lrz.de/providentiaplusplus/providentia-smartphone-app/-/
tree/main/backend). This might be helpful for the frontend to distinguish among dif-
ferent texts.

4. Stationary vehicles. This information can be extracted from the existing field
objects[i].scenarios.standing. If ’True’, then the frontend can highlight this ob-
ject on the map.

5. Pedestrian on the highway. This information can be extracted from the existing field
objects[i].category. If ’pedestrian’, then the frontend can display an alert and
highlight that object on the map.

3.6.2 Object-level warnings

Since Section 3.3.1 (Data Exchange) does not contain any specification for this separate
warning messages, it is defined here. Table 3.8 contains the specification.

Name Type Description

msg_type String Message type. Value = ’warning’

timestamp String
The interval between the date value and 00:00:00
UTC on 1 January 1970

warnings String
A string that contains different object-level warnings
separated by a semicolon

Table 3.8: Specification of the object-level warning message

The personal warning messages are to be seen only by the vehicles that they are sent to.
These include:

https://gitlab.lrz.de/providentiaplusplus/providentia-smartphone-app/-/tree/main/backend
https://gitlab.lrz.de/providentiaplusplus/providentia-smartphone-app/-/tree/main/backend
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1. Overspeeding warning. Although this can be easily implemented by the mobile appli-
cation, the backend also determines this case, and sends an appropriate warning in the
’warnings’ field.

2. Notify vehicles on the right lane if there are vehicles on the entry ramp. A notification
message is sent in case if the vehicle is moving along the right lane of the highway, and
there is a detected object on the entry ramp (lane 5).

3. Notify vehicles when they enter/exit the Autonomous Driving Test Stretch. An entrance
notification is sent to the device when it approaches the testbed. Similarly, an exit
notification is sent when the vehicle is about to exit the testbed.

4. Lane recommendation. For this notification, first the lane of the client is detected, then
lane recommendation is based on a simple count of objects for each lane. The lane with
the minimal number of vehicles is recommended for the driver.

To incorporate this functionality, the architecture of the backend was extended with the
additional module for object-level warnings. The module is bound to the external event trig-
gered by the receipt of location information from a client. The message handler first processes
the information and then invokes sendWarnings module in an asynchronous mode. This en-
sures the concurrent and independent computation of personalized warnings using the last
acknowledged position of the driver. Figure 3.11 depicts the augmented module stack.

Figure 3.11: sendWarnings module. Its asynchronous execution is triggered by the receipt of location informa-
tion from a client.

3.7 Implementation Details

3.7.1 Playing ROS Bags and Direct Deployment as a ROS Node

The final deployment of the backend assumes direct connection with the ROS infrastructure.
Using rosnodejs library, the server starts its own ROS node under the /nodejs_server
name, and subscribes to the ROS topics corresponding to road sections.

However, for testing purposes during the active development phase it is more convenient
to use prerecorded ROS messages from the live system in the form of a ROS bag file (A.22).
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The python script is used to extract each message from the bag file into the corresponding
JSON file, which is then used as an input to the backend system.

To summarize, there are two types of input in the development environment: ROS mes-
sage from the live ROS infrastructure and extracted JSON files.

3.7.2 Configuration file

The backend system needs a configuration file to start the application. At the minimum, it
contains configurable parameters such as websocket port, ssl toggle with paths to key and
certificate files, backpressure buffer size, and a list of road sections. The format of the file is
JSON. Table 3.9 lists the specification of the config.json.

Name Type Description

port Number Port number to be used for WebSocket connections

ssl Boolean
Flag that defines the use of the WebSocket
Secure protocol

key_file_name String
Path to the key file. Has to be defined in the
case of ssl=true

cert_file_name String
Path to the certificate. Has to be defined in the
case of ssl=true

maxPayloadLength Number
Maximum length of received message. If a client tries
to send a message larger than this, the connection
is immediately closed.

maxBackpressure Number

Maximum length of allowed backpressure per socket
when publishing or sending messages. Slow receivers
with too high backpressure will be skipped until they
catch up or timeout.

radius Number Radius (in m) used in defining location proximity
road_sections [Section] A list of road sections of type Section

Table 3.9: Specification of the config file. The ’Type’ column specifies the actual data type after parsing.

Each road section in turn contains its own properties described in Table 3.10.

Name Type Description

stretch String Name of the topic to be used in the pub/sub broker

latitude Number
The latitude in degrees with positive values ex-
tending north of the equator and negative values
extending south of the equator

longitude Number
The longitude in degrees with positive values ex-
tending east of the meridian and negative values
extending west of the meridian

ros_topic String Name of the ROS topic
path String Path to the folder containing parsed rosbag messages

Table 3.10: Specification of the Section type. The ’Type’ column specifies the actual data type after parsing.

Important to note, since the format of the configuration file is JSON, any extension, i.e.
addition of new parameters is always backwards compatible. However, omission of any
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parameter specified in the tables leads to error outputs.

3.7.3 WebSocket Module

There are two ways to go about WebSocket implementation:

1. write own native websocket server using the built-in http module,

2. or utilize a library with robust implementation of the websocket server.

The option of writing own server is applicable in a case where a specific custom func-
tionality is required. Otherwise, it is the same as re-inventing the wheel. Since, there are
no specific implementation requirements, it suffices to go with the second option and choose
among the many WebSocket libraries available for Node.js.
µWebSockets.js was chosen due to its three main advantages:

1. It is a standard’s compliant websocket library with a perfect Autobahn|Testsuite score
since 2016 (A.26), i.e. there is no need for a client to implement any particular sub-
protocol or stick to the provided client library of the module. Any client with built-in
standard support for WebSocket protocol is able to connect to the web server.

2. It provides built-in support for pub/sub and TLS 1.3 (A.18).

3. The thoroughly optimized implementation is header-only C++17, cross-platform and
compiles down to a tiny binary of a handful kilobytes on any platform. Being written in
native code directly targeting the Linux kernel makes it way faster than any JavaScript
implementation. In fact, the µWebSockets.js WebSocket server is battle tested as one
of the most popular implementations, reaching many millions of end-users daily. It’s
currently juggling billions of USD in many popular Bitcoin exchanges, every day with
outstanding real-world performance.

3.7.4 Coordinates Transformation

The digital twin coming from the ROS backend contains a list of objects. The position of
an object is coded as a two-dimensional vector in the road coordinate system. In order to
forward this information further to the clients, it has been decided to do the inline transfor-
mation of the position into the Earth geographical coordinates, latitude and longitude. Figure
3.12 depicts the global and road reference frames.

The outer leg of the traffic sign gantry bridge (top left corner in the figure) is the global
coordinate system (the testbed origin). The inner leg of the traffic sign gantry bridge (bottom
right corner in the figure) is the road coordinate system.

The algorithm to convert local position to GPS coordinates is the following:

1. Translate the global origin GPS to the UTM coordinates (A.23) using the PROJ software
(A.24). Zone 32, northern hemisphere.

2. Apply translation and rotation. ∆x = −7.67 and ∆y = −25.89. The rotation of the
coordinate system is -196.5 degrees. This will yield the origin of the road reference
frame in UTM coordinates.

3. Add the offset given by an object position to the origin.
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Figure 3.12: Global and road reference frames. x-axis is red, y-axis is green.

4. Project back UTM coordinates to the GPS latitude and longitude using PROJ.

Performing position transformation at the backend saves time and battery life of the de-
vices.
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Evaluation Analysis

This chapter describes evaluation analysis of the implemented backend server application.

4.1 Experiments

In order to do the evaluation, a set of experiments has been carried out according to the
following three testing scenarios:

1. Testing of the backend system on the local development machine using parsed messages
from a provided ROS bag (A.22). The already parsed messages are saved as JSON
files into a predefined folder. The server application performs synchronous read of the
files, orders by time preserving the chronological order, and invokes a ROS message
handler by issuing an emit event. The server emulates the ROS publishing rate which
is approximately 25 Hz through the use of synchronous timeouts which are set to 40
ms. A dummy client connects through the localhost interface and sends its location
every 100 ms which is set somewhere in the middle of the s40s50 road section.

2. Testing of the backend system on the local development machine by playing the ROS
bag file (A.22 on the local ROS installation. This process emulates the real-case sce-
nario of receiving ROS messages through the rosnodejs (A.7) library. The ROS mes-
sage handler is invoked directly when a message is received. The dummy client con-
nects through the localhost interface and sends its location every 100 ms which is set
somewhere in the middle of the s40s50 road section.

3. Live testing of the backend system hosted on the premises of the Providentia server
infrastructure. The framework is directly connected to the ROS backend and receives
the live traffic data. The client is the mobile application implemented in the scope of
Mohammad Naanaa’s bachelor thesis. The secure connection is established through the
use of SSH tunneling with port forwarding enabled (see Section 3.3.3). That is, a direct
SSH connection is established using a predefined user and its private/public key pair.
Then WebSocket connection is tunneled through it. In such case, no other option is
provided, so as not to expose the ROS server infrastructure.

In all the testing cases, the server software was packaged into the same Docker container
(A.25) with the base image noetic-ros-core-focal. This image comes with pre-installed
latest version of ROS called Noetic on top of the Ubuntu 20.04 (Focal) operating system.

Figure 4.1 lists the configuration file (3.7.2) used for the first testing scenario. Whereas,
Figure 4.2 lists the configuration file used for the second and the third cases.
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Figure 4.1: Configuration file for the case of parsed messages from a ROS bag file. Here in the road section
object, the path to the folder containing parsed messages is specified.



4.1 Experiments 34

Figure 4.2: Configuration file used for the second and third testing scenarios. The ros_topic field is specified
in the road section object, as messages are received through the ROS topic subscription interface.
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4.1.1 Results

For the first two scenarios that involved testing on the local machine a simple command-
line client was implemented. It establishes a websocket connection, sends its position on
the testbed, and upon receiving any message from the backend, it outputs it to the console.
Testing scenarios involved a concurrent connection of up to 3 dummy clients.

To test the pub/sub model working correctly in the case of just one stretch s40s50, it
was decided to mock additional s50s60, s60s70, s70s80 stretches of the same length to the
north of the current testbed by making a translated copy of the s40s50 digital twin. A client
would then send a series of GPS locations progressing northwards along the mocked extended
testbed. Setting the search radius to 440 meters, ensured that at any point a client would be
subscribed to at most two adjacent road sections.

Additionally, in order to test a set of warnings/recommendations described in Section
3.6 that serve as a proof of concept of an accident prevention mechanism implemented on
top of the framework, a web browser client (webpage) was developed using the html and
JavaScript. Figure 4.3 shows the webpage with a sample output of both frame and warning
messages in separate panes.

Figure 4.3: The web browser client developed for testing the frame-level and object-level warnings. After connect-
ing to the server, the left pane shows some basic information extracted from a received frame message. The right
pane shows the entire warning message upon its receipt. Top-level buttons emulate different vehicle positions
which are associated with the scenarios described in Section 3.6.

For the live testing of the backend system, the emulated mobile application prototype
developed with the full support of the data exchange protocol described in Section 3.3.1 was
used directly on the testbed. The mobile app sent its real GPS position and received the
digital twin of the s40s50 road section. It was able to show live animated traffic data overlaid
over Google Maps satellite view of the testbed (Figure 4.4).

The qualitative results of the experiments demonstrate the fully functional backend pro-
totype that fulfills the goals set out at the start of the project. The backend system is able to
receive digital twin information. At the same time, the backend is handling real-time con-
current connections from clients and receives location information from it. The implemented
pub/sub model properly distributes digital twin information to the connected clients based
on the positional proximity.

4.1.2 Performance

Essentially, the main aim of the project is the accident prevention aspect. In the context
of the goals specified, it basically boils down to the minimum delay in the processing of
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Figure 4.4: UI screenshots (iPhone 13) displaying two different approaches for visualizing detected vehicles on a
map. The map on the left draws all vehicles with a single marker type indicating only vehicle’s position. The map
on the right generates scenario-based markers for each vehicle based on the risk scenarios provided by the ROS
backend. [Naa22]
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digital twin information. A client should receive traffic data as quickly possible, as well as be
notified about potential hazards in advance, thus making the implemented backend system
time-critical.

Backend Time Delay

In order to quantitatively measure the performance of the system during the experiments,
processing latency was used as the main characteristic.

Local machine testing

In the local testing scenarios it was not logical to time latency incurred by connections, since
the communication is done over the localhost interface, and it does not generalize to real-
world scenarios. So, in such case the latency of the ROS message handling was measured
against a ROS bag containing 1480 messages. The average measured latency was 2 ms, the
minimum and maximum values were 0 and 8 ms respectively. Zero milliseconds implies that
the message was actually processed in less than one millisecond. Figure 4.5 demonstrates
the histogram with a normal curve over it.

Figure 4.5: Histogram of ROS messages handling latencies. Plot was produced in RStudio.

The average latency of 2 milliseconds is a good result performance-wise. Since, ROS mes-
sages are published approximately every 40 ms, the information from a message is processed
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and relayed further in a relatively instant mode. Besides that, it is worth mentioning that the
message handling step also includes extraction of frame-level warnings.

Similarly, the timing of the independent asynchronous module sendWarnings() that
is responsible for object-level warnings/recommendations was produced. This module is
triggered every time a client sends its location information. Figure 4.6 displays a histogram
of 645 latencies recorded in approximately one minute. The average latency is 0.31 ms, the
minimum and maximum values are 0 and 3 ms respectively.

Figure 4.6: Histogram of sendWarnings() latencies. Plot was produced in RStudio.

Mobile application

On the contrary, in the live testing mode with the mobile app involved, the latency incurred
along the entire path from the ROS backend to the mobile device display was measured
(Figure 4.7). ROS messages provide timestamp information, which corresponds to the time a
message was processed at the data fusion unit (refer to 3.2). This timestamp is then relayed
by the Node.js backend system inside the frame message (Table 3.2).

For the analysis data was collected from 1095 real vehicles from the s40s50 road stretch.
The average measured latency was 665 ms, the minimum and maximum values were 128 ms
and 1326 ms respectively. Figure 4.8 displays a histogram of the latencies.

Table 4.1 demonstrates the time delay translation into meters traveled for different speeds
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Figure 4.7: A scheme describing the complete path of a single message generated by the data fusion unit. After
generation, a timestamp is attached to the message and it travels to the Node.js backend, which in turn after
processing it, relays further to the mobile app. After the decoding process, a timeToDisplay is computed as
the difference between Date.now and the original timestamp.

Figure 4.8: Histogram of 1095 latencies recorded on the mobile app from the generation timestamp of the traffic
data at DFU.
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for the average latency, as well as minimum and maximum latencies.

Speed smin savg smax

10 km/h 0.36 m 1.85 m 3.68 m
30 km/h 1.07 m 5.54 m 11.05 m
50 km/h 1.78 m 9.24 m 18.42 m
80 km/h 2.84 m 14.78 m 29.47 m
100 km/h 3.55 m 18.47 m 36.83 m
130 km/h 4.62 m 24.01 m 47.88 m
200 km/h 7.11 m 36.94 m 73.67 m

Table 4.1: A table demonstrating distances traveled for different vehicle speeds based on the minimum, average,
and maximum time delay of a single frame message. Typical values for speeds were taken ranging from slow city
driving to a highway with no speed limit. For each speed, three distances were calculated: for minimum, average,
and maximum delays.

In addition to the theoretical values of meters traveled for the delay, a field test was
performed to obtain an empirical result [Naa22]. During the test, a static reference object
- a massive cell tower - was selected and a perpendicular line from this object to the road
was drawn. A video was captured with both live footage and the output from an iPhone
simulator connected to the backend. The difference between the real vehicle position and
the one displayed in the simulator was then estimated using a truck size of 16 m. Based on
this approximation a delay of approximately one truck length was observed, which translates
accordingly into 16 meters traveled. With a measured truck velocity of approximately 80
km/h, this result matches the average estimate in the theoretical values in Table 4.1 for the
average latency. Figure 4.9 displays the performed test.

Figure 4.9: Empirical experiment. On the left, a live output from the mobile app simulator with the road section
s40s50 is visible. A reference object (a massive cell tower) is highlighted on the map with a red circle and a
perpendicular line to the road is also drawn in red. A truck is highlighted with a violet rectangle around its detected
center drawn as a green hollow circle. On the right, the actual road with the truck (in violet) and the perpendicular
line (in red) is seen. A delay of approximately one truck length with respect to the red line can be observed.
[Naa22]
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System Throughput Capability

Extensive load testing has not been conducted due to the lack of server hardware resources.
However, the system throughput capability can be estimated theoretically. With the provided
ROS bag, where each frame message contains around 23 to 25 detected objects, it has been
estimated through the use of Linux command line tools that each parsed message contains
approximately 5 kilobytes of data. The size of the separate warning messages and location
data from the clients is negligible. Since the rate of incoming ROS messages is 25 Hz, then the
outbound bandwidth per client is 1 megabit per second. This estimate accurately corresponds
to the actual network bandwidth consumption on a small rented cloud host. One connected
client consumed ≈1 Mbps, whereas 3 concurrent clients consumed in total 2.7 – 3 Mbps. The
actual numbers are slightly lower, since the µWebSockets.js library has been optimized for
secure TLS 1.3 (A.18) connections and utilizes compression.

The processing burden is negligible, for the current prototype is mostly data-heavy. For
each connected client it has to send 40 messages per second. The results of message handling
performance measurements (Figure 4.5) further enforce this statement.

The library responsible for managing WebSocket connections and the pub/sub algorithm,
µWebSockets.js, has already been practically benchmarked in comparison with the other pop-
ular WebSocket library - Socket.IO - on a limited Raspberry Pi 4 hardware. The study showed
that µWebSockets.js provided the best possible throughput and was able to sustain 100k
secure TLS 1.3 connections, with 50k outgoing messages per second [Hul20].

4.2 Conclusion

In this work, two main accomplishments are achieved. These include:

1. Creation of a backend framework which effectively relays digital twin from the ROS
infrastructure to the connected clients in real-time mode. A client runs a mobile appli-
cation to connect to the server using secure WebSocket protocol. The mobile application
advertises its location, and receives the relevant traffic data.

2. Creation of a module with a set of warnings/recommendations on top of the framework.
The module processes both traffic data and a client location in order to detect risk
scenarios and issue associated warnings (see Section 3.6).

The choices made during the implementation phase proved to be correct. The event-
driven architecture of Node.js gave enough flexibility to create a time-critical prototype of
the backend framework. Whereas, the WebSocket protocol is used for low-latency real-time
communication with the clients.

With appropriate hardware resources available, it is however imperative to conduct fur-
ther thorough testing and benchmarking of the backend system. Nevertheless, the demon-
strated processing latency measurements in Figures 4.5 and 4.6 give a solid good result and
an optimistic starting point for further developments and extensions. Important to note, the
latencies measured with the mobile application directly on the testbed serve actually as an
upper bound due to the following factors:

1. The connection is tunneled through the SSH with port forwarding. This gives a network
slowdown factor of at least two, for it is essentially tunneling TCP over TCP.

2. For a more accurate timing, the clocks have to have constant synchronization.
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3. The latency also includes some time involved in the processing of a message on the
ROS backend.

4. The mobile app prototype was run in a simulator on a computer connected to the
Internet through wireless Internet tethering by a cell phone. This gives considerable
slowdown.

5. The backend system was not hosted on a high-availability server.
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Summary

Given the Providentia infrastructure on the A9 highway near Garching, the aim of this work
was to create a physical gateway on one end connected to the Providentia system, on the
other end providing virtual access through the Internet. This gateway should allow users
(drivers, pedestrians) to connect and receive relevant digital twin information from the Prov-
identia backend. The relevance of the traffic data is determined by the geographical proximity
of a client. With the access to the extended coverage provided by the Providentia system a
driver now has better spatial understanding of its surrounding scene and is able to plan its
maneuvers more safely and proactively. Thus, the result of this work is to approach and
tackle the limited perception coverage of a vehicle in a more cost-effective practical way:
rather than working only with autonomous vehicles, the gateway provides access to the vir-
tual surrounding scene through the conventional data networks of the cellular carriers.

The efforts made in this work spanned six months of research and development and can
be summarized in the following brief outline, which basically corresponds to the structure of
the thesis:

• Firstly, relevant works which include research papers, projects, and review articles are
scrutinized to deepen the understanding of the project, its motivation and goals, and to
obtain a rough conceptual view of the technical approach.

• The Providentia software stack and infrastructure is studied to obtain good knowledge
of the underlying technology and to figure out the appropriate way to connect to it.
The Providentia backend is run using ROS (A.1) and the digital twin information is
provided in the form of ROS messages under a specified topic at 25 Hz rate. ROS
developer community provides client libraries for different platforms.

• Having basic understanding and knowledge of building server-client web applications,
a high-level schema of the architecture is proposed (Figure 3.1). The design of the
backend system should address three main aspects:

1. Connection to the ROS backend
2. Network protocol for client connections
3. Distribution of relevant data

• The data exchange specification (Section 3.3.1) between the backend and a client is
defined which serves as a foundation for the following software development work.

• With imposed requirements on the application server (event-driven, real-time), Node.js
is chosen as a technological framework. Its event-driven architecture is especially suit-
able for creating high-load real-time web servers. Importantly, there is a client library
for Node.js to connect to the ROS.
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• WebSocket among other options is chosen as a network protocol for client connections.
It provides low-latency persistent full-duplex connections between two entities, as the
backend and a client push data independently from each other.

• Initially the brute-force looping is used as a data distribution algorithm, but later on,
the more elegant pub/sub model is introduced. The division of the road into stretches
defined by measurement points [Krä+19] is mirrored in the backend. The backend
then automatically manages client subscriptions based on the client GPS position.

• A set of frame-level and object-level warnings/recommendations (Section 3.6) is im-
plemented on top of the backend framework.

• Evaluation of the backend system is performed using three testing scenarios:

1. Local testing using parsed messages from a ROS bag.

2. Local testing using local ROS installation and playing a ROS bag.

3. Live testing on the testbed using an iOS mobile application [Naa22].

The qualitative and quantitative results demonstrate the fully functional backend sys-
tem that fulfills the goals set out at the start of project. Although, the more extensive
testing is required in the live testing scenario in order to determine the lower bound of
the latencies.

The implemented backend framework in Node.js provides real-time performance with
the negligible processing latency (not including the connection latencies). It also provides
flexibility for future performance enhancements and value-adding modules such as various
accident prevention mechanisms on top of the framework.



Chapter 6

Outlook

This last chapter provides summarizing insight on the current utility of the implemented
backend framework, as well as next possible improvements to reduce the processing latency
and make the system more flexible towards further enhancements.

6.1 Deployment

Given the functional ROS infrastructure and the equipped testbed, the implemented backend
system is ready to be deployed along the ROS server infrastructure. It is able to receive digital
twin information, process it, augment with a set of warnings/recommendations (Section 3.6,
and relay further to the clients. The implemented data distribution algorithm through the
pub/sub model is robust and scalable. The backend framework is client-agnostic, meaning
that any client implementing the data exchange specification and utilizing WebSocket proto-
col can connect and receive the relevant traffic data and warnings. Thus, any updates and
enhancements to the Providentia project can be easily verified down the pipeline directly on
the testbed when the digital twin shows up on the mobile application’s map.

Furthermore, as already mentioned in the previous chapter, the modularized event-driven
architecture of the backend framework (due to the use of Node.js) provides great flexibility
for possible future enhancements - various accident prevention mechanisms - on top of the
framework. For example, an asynchronous module for object-level warnings (Section 3.6)
was implemented as a proof of concept. This module is currently bound to the external
event: receipt of GPS position from a client.

The pub/sub model aligns well with the ROS infrastructure by mimicking the data distri-
bution of the ROS system. The implemented pub/sub is scalable, as the algorithm does not
perform global brute-force looping through all the detected objects, but rather assigns each
client to the relevant road sections. One caveat though: the search of relevant road sections
is done by looping through all available stretches and calculating the distance as a measure of
relevance. However, since there are very few (currently one) road sections, and its quantity
does not change often, and does not significantly increase, the simple looping is preferable
to the optimized algorithms (for example, binary search). In the case of more road sections
(n> 100), the search procedure can be easily optimized using interval trees.

To summarize, since the ROS backend divides road into sections and provides digital
twin output by subscribing to corresponding topics, and the implemented backend uses the
same pub/sub model, the entire system is therefore horizontally scalable. With the future
expansion of the ROS infrastructure, the road sections can be clustered geographically, and
clusters can be assigned to separate high-load servers. The load-balancer then reroutes the
client connections to the appropriate servers. Moreover, each server can be safely replicated
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to handle increased load of concurrent connections, i.e. two or more servers serving the same
cluster of road sections. This is possible because there is no centralized data and computation
critical for the entire system operation.

6.2 Future Improvements

Obviously, further improvements are possible and are in fact mandatory in case of rapid and
massive deployment of the Providentia system. The improvements can be categorized into
two groups: architectural modifications and refined data model.

6.2.1 Improved Architecture

In order to decrease processing latency the first obvious step is to move ROS message han-
dling logic into a C++ code, thankfully roscpp (A.3) is the main client library for ROS.
Because Node.js runs on the V8 JavaScript execution engine written completely in C++,
there exist native bindings through a C-based API between code written in Node.js and a
C++ code loaded by it ([Wik]). The execution in such case of the ROS message handling will
significantly speed up, as C++ is directly compiled into optimal machine code.

During the development of the module for object-level warnings, it became apparent that
this module and any other possible modules on top of the framework depend on the ROS
data. Since, personal warnings and ROS message handling are bound to different events,
then the ROS message handler was augmented to store some data, required for personal
warnings every time a ROS message is received. It is a sub-optimal solution for the following
two reasons:

1. ROS message frequency is 25 Hz, and every time the handler is invoked it runs the
same augmented code to compute and store data for personal warnings. However,
the frequency of client messages containing GPS position is different. The exact rate
is unknown as the mobile device decides the frequency of updates based on several
factors, such as remaining battery charge, GPS satellite signal strength, magnitude of
distance change, and the like. It is better to compute and store required data once,
when it is actually needed.

2. Any further enhancement and development of accident prevention mechanisms on top
of the framework will require in-depth analysis of the data required from the digital
twin. And the ROS message handler will then need to be augmented accordingly. This
is ineffective and prone to bugs and code breaks.

Thus, instead of figuring out what part of data might be needed for any further enhancements
and augmenting ROS message handler correspondingly, and also in order to reduce CPU
waste, it is advisable to store the entire digital twin data in the fast memory. Every time the
ROS message is received, the data is updated. Apparently by storing all the data, a greater
flexibility is achieved by decoupling and optimization of processing and relay of information.
Two immediate advantages follow:

1. Any further extension on top of the framework can utilize the available ROS data with-
out a need to edit other core modules, e.g., message handlers. Besides this, it solves
the problem of the CPU waste, the additional computations by separate data processing
modules are only performed at exactly the moment they are needed.
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2. Another big and the most important advantage is the ability now to decouple frequen-
cies of inbound and outbound frame messages. In the Chapter 4 Evaluation Analysis,
it was estimated that the outbound traffic per client is 1 Megabit per second. Each
client receives roughly 40 messages in one second. This is a huge load, which will
lead to problems with the increasing number of clients. Though horizontal scaling is
possible, it is very inefficient to send too much data. Moreover, data processing mod-
ules can define its own outbound rates without explicit binding to any external event,
such as receiving location messages from clients. Obviously, traffic data is not the stock
exchange data, and microsecond updates and reactions are not applicable to it. Thus,
decreasing the outbound rate is a valid solution with far-reaching benefits for the entire
system.

Additionally, system monitoring and management tools should be developed to comple-
ment the backend framework. This will give better system administration using one applica-
tion console to manage a cluster of servers as a unified resilient system.
The improved schematic architectural stack is depicted in Figure 6.1.

Figure 6.1: Modified architecture of the backend framework. The key novelty is the storing of the digital twin
information, better encapsulated modularization, and development of monitoring tools.

6.2.2 Refined Data Model

To further optimize and reduce the outbound bandwidth per client, the granularity of data
distribution algorithm can be further refined. Currently, the way it operates, the pub/sub
model obviates three apparent inefficiencies:

1. The test stretch s40s50 is 440 meters, and sending all the traffic data in one frame
message is an overhead. If a client is at the end of the stretch, it also receives entire
data from the next long stretch, as well as the data that is behind it. It is planned, that
the road sections in Providentia will be of roughly the same length.

2. The digital twin for the stretch contains traffic in both directions. A client travelling in
one direction on a highway does not actually need the data of the opposite direction.
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3. The radius property (Table 3.9) is defined globally for all the vehicles. It does not take
each vehicle properties such as velocity and location update frequency into considera-
tion. That is, the data received by two vehicles, one of which is slow, and the other one
is fast, is the same. Setting the radius property to big enough value (in the current
implementation it is set to 440 m) still ensures the properly functioning backend system
for all clients, however, at the cost of too big outbound bandwidth.

In order to overcome these problems, following improvements can be applied:

1. A road section can be further divided into several short stretches of roughly the same
length. For example, stretch s40s50 can be divided into four stretches of around 110
meters long each. The data distribution algorithm then operates on the short stretches.
The predefined remapping of the existing road sections in the ROS system to the short
stretches of the Node.js backend system can be configured and executed at the start
of the server application. Further, when a ROS message is received, the remapping is
applied to dynamically assign detected objects to the corresponding stretches.

2. Additionally, the shorter stretches can be defined for both directions. That is s40s50 is
divided into actually 8 stretches, 4 for each direction. Since the digital twin includes
lane id of each detected object, it is very trivial. This will cut the outbound traffic per
client in half.

3. A new module inside the backend can be developed to dynamically determine the
length of the immediate upcoming traffic distance converted into meters based on the
speed and location update rate of a client. This dynamic individual approach ensures
the optimal bandwidth consumption. Thus, given the length of the shorter stretches,
the system determines the number of those stretches that a client should receive data
from. For example, a speeding vehicle will be subscribed to more stretches ahead, than
a slow vehicle at the same position.

The first two steps involve creating a directed adjacency graph where each edge is a
stretch with a particular moving direction. Figure 6.2 depicts the directed graph for the
s40s50 testbed. Important to note, that this graph is defined once for the entire road, and is
loaded and utilized by the backend system with appropriate remapping of the road sections
defined by the ROS infrastructure into more fine-grained structure with short sub-stretches
in each direction.

Since, the adjacency graph contains the complete reachability information, it also solves
the problem of finding the right sub-stretches for a client. Initial search upon the connection
can be performed through the optimal interval trees. Whereas, the following searches can be
done in a much smarter way by utilizing the last known position and direction of a vehicle.
The system knowing the speed and the elapsed time from the previous update, and consid-
ering the spatial information in the adjacency graph can very efficiently, in constant time,
determine the next relevant sub-stretches.
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Figure 6.2: The directed graph of the refined s40s50 road section. Each sub-stretch is 110 meters long. The
graph is partitioned into two sub-graphs, as there is no actual possibility to switch directions.
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Appendix

A.1 ROS

Robot Operating System (ROS or ros) is an open-source robotics middleware suite. Although
ROS is not an operating system (OS) but a set of software frameworks for robot software de-
velopment, it provides services designed for a heterogeneous computer cluster such as hard-
ware abstraction, low-level device control, implementation of commonly used functionality,
message-passing between processes, and package management. Running sets of ROS-based
processes are represented in a graph architecture where processing takes place in nodes that
may receive, post, and multiplex sensor data, control, state, planning, actuator, and other
messages. See http://wiki.ros.org/ROS/Introduction.

A.2 Boost

Boost provides free peer-reviewed portable C++ source libraries. See https://www.boost.
org/.

A.3 roscpp

roscpp is a C++ implementation of ROS. It provides a client library that enables C++ pro-
grammers to quickly interface with ROS Topics, Services, and Parameters. roscpp is the most
widely used ROS client library and is designed to be the high-performance library for ROS.
See http://wiki.ros.org/roscpp

A.4 rosjava

Rosjava provides both a client library for ros communications in java as well as growing list
of core tools (e.g. tf, geometry) and drivers (e.g. hokuyo). See http://wiki.ros.org/rosjava

A.5 rospy

rospy is a pure Python client library for ROS. The rospy client API enables Python program-
mers to quickly interface with ROS Topics, Services, and Parameters. The design of rospy

http://wiki.ros.org/ROS/Introduction
https://www.boost.org/
https://www.boost.org/
http://wiki.ros.org/roscpp
http://wiki.ros.org/rosjava
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favors implementation speed (i.e. developer time) over runtime performance so that algo-
rithms can be quickly prototyped and tested within ROS. It is also ideal for non-critical-path
code, such as configuration and initialization code. Many of the ROS tools are written in
rospy to take advantage of the type introspection capabilities. Many of the ROS tools, such
as rostopic and rosservice, are built on top of rospy. See http://wiki.ros.org/rospy

A.6 Asyncio

Asyncio module was added in Python 3.4 and it provides infrastructure for writing single-
threaded concurrent code using co-routines. See https://www.tutorialspoint.com/concurrency_
in_python/concurrency_in_python_eventdriven_programming.htm

A.7 rosnodejs

rosnodejs is a pure Node.js implementation of ROS. It provides a client library that enables
Node.js programmers to quickly interface with ROS Topics, Services, and Parameters. See
http://wiki.ros.org/rosnodejs

A.8 npm

npm (originally short for Node Package Manager) is a package manager for the JavaScript
programming language maintained by npm, Inc. See https://www.npmjs.com/

A.9 JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to parse and generate. It is based on
a subset of the JavaScript Programming Language Standard ECMA-262 3rd Edition - De-
cember 1999. JSON is a text format that is completely language independent but uses con-
ventions that are familiar to programmers of the C-family of languages, including C, C++,
C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal
data-interchange language. See https://www.json.org/json-en.html

A.10 BackendOutput.msg

Data definition of the frame message with the list of detected objects received from the ROS
backend. See https://gitlab.lrz.de/providentiaplusplus/toolchain/-/blob/master/package/
system_messages/msg/BackendOutput.msg

http://wiki.ros.org/rospy
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_eventdriven_programming.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_eventdriven_programming.htm
http://wiki.ros.org/rosnodejs
https://www.npmjs.com/
https://www.json.org/json-en.html
https://gitlab.lrz.de/providentiaplusplus/toolchain/-/blob/master/package/system_messages/msg/BackendOutput.msg
https://gitlab.lrz.de/providentiaplusplus/toolchain/-/blob/master/package/system_messages/msg/BackendOutput.msg
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A.11 DetectedObject.msg

Data definition of each object in the list of detected objects of the BackendOutput.msg. See
https://gitlab.lrz.de/providentiaplusplus/toolchain/-/blob/master/package/system_messages/
msg/DetectedObject.msg

A.12 OSI model

The Open Systems Interconnection model (OSI model) is a conceptual model that describes
the universal standard of communication functions of a telecommunication system or com-
puting system, without any regard to the system’s underlying internal technology and specific
protocol suites. Therefore, the objective is the inter-operability of all diverse communication
systems containing standard communication protocols, through the encapsulation and de-
encapsulation of data, for all networked communication.
The model partitions the flow of data in a communication system into seven abstraction
layers, to describe networked communication from the physical implementation of trans-
mitting bits across a communications medium to the highest-level representation of data
of a distributed application. Each intermediate layer serves a class of functionality to the
layer above it and is served by the layer below it. Classes of functionality are realized in
all software development through all and any standardized communication protocols. See
https://en.wikipedia.org/wiki/OSI_model

A.13 REST

Representational state transfer (REST) is a software architectural style that was created to
guide the design and development of the architecture for the World Wide Web. REST de-
fines a set of constraints for how the architecture of an Internet-scale distributed hyper-
media system, such as the Web, should behave. The REST architectural style emphasises
the scalability of interactions between components, uniform interfaces, independent deploy-
ment of components, and the creation of a layered architecture to facilitate caching compo-
nents to reduce user-perceived latency, enforce security, and encapsulate legacy systems. See
https://en.wikipedia.org/wiki/Representational_state_transfer

A.14 Comet

Comet is a web application model in which a long-held HTTPS request allows a web server
to push data to a browser, without the browser explicitly requesting it. Comet is an umbrella
term, encompassing multiple techniques for achieving this interaction. All these methods
rely on features included by default in browsers, such as JavaScript, rather than on non-
default plugins. The Comet approach differs from the original model of the web, in which a
browser requests a complete web page at a time. See https://en.wikipedia.org/wiki/Comet_
(programming)

https://gitlab.lrz.de/providentiaplusplus/toolchain/-/blob/master/package/system_messages/msg/DetectedObject.msg
https://gitlab.lrz.de/providentiaplusplus/toolchain/-/blob/master/package/system_messages/msg/DetectedObject.msg
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Comet_(programming)
https://en.wikipedia.org/wiki/Comet_(programming)
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A.15 Push technology

Push technology or server push, is a style of Internet-based communication where the request
for a given transaction is initiated by the publisher or central server. It is contrasted with
pull/get, where the request for the transmission of information is initiated by the receiver or
client. See https://en.wikipedia.org/wiki/Push_technology

A.16 EventSource API

The EventSource interface is web content’s interface to server-sent events. An EventSource
instance opens a persistent connection to an HTTP server, which sends events in text/event-
stream format. The connection remains open until closed by calling EventSource.close(). See
https://developer.mozilla.org/en-US/docs/Web/API/EventSource

A.17 HTTPS

Hypertext Transfer Protocol Secure (HTTPS) is an extension of the Hypertext Transfer Pro-
tocol (HTTP). It is used for secure communication over a computer network, and is widely
used on the Internet. In HTTPS, the communication protocol is encrypted using Transport
Layer Security (TLS) or, formerly, Secure Sockets Layer (SSL). The protocol is therefore also
referred to as HTTP over TLS, or HTTP over SSL. See https://en.wikipedia.org/wiki/HTTPS

A.18 SSL/TLS

Transport Layer Security (TLS), the successor of the now-deprecated Secure Sockets Layer
(SSL), is a cryptographic protocol designed to provide communications security over a com-
puter network. The protocol is widely used in applications such as email, instant messaging,
and voice over IP, but its use in securing HTTPS remains the most publicly visible.
The TLS protocol aims primarily to provide cryptography, including privacy (confidentiality),
integrity, and authenticity through the use of certificates, between two or more communi-
cating computer applications. It runs in the application layer and is itself composed of two
layers: the TLS record and the TLS handshake protocols.
See https://en.wikipedia.org/wiki/Transport_Layer_Security

A.19 Man-in-the-middle attack

In cryptography and computer security, a man-in-the-middle, monster-in-the-middle, machine-
in-the-middle, monkey-in-the-middle, meddler-in-the-middle (MITM) or person-in-the-middle
(PITM) attack is a cyberattack where the attacker secretly relays and possibly alters the com-
munications between two parties who believe that they are directly communicating with each
other, as the attacker has inserted themselves between the two parties.
See https://en.wikipedia.org/wiki/Man-in-the-middle_attack

https://en.wikipedia.org/wiki/Push_technology
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
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A.20 SSH port forwarding

SSH port forwarding is a mechanism in SSH for tunneling application ports from the client
machine to the server machine, or vice versa. It can be used for adding encryption to legacy
applications, going through firewalls, and some system administrators and IT professionals
use it for opening backdoors into the internal network from their home machines.
See https://www.ssh.com/academy/ssh/tunneling/example

A.21 Publish-subscribe pattern

The Publish/Subscribe pattern, sometimes known as pub/sub, is an architectural design pat-
tern that enables publishers and subscribers to communicate with one another. In this ar-
rangement, the publisher and subscriber rely on a message broker to send messages from
the publisher to the subscribers. Messages (events) are sent out by the host (publisher) to a
channel, which subscribers can join.

Figure A.1: Publisher-Subscriber (Pub-Sub) Design Pattern

See https://www.enjoyalgorithms.com/blog/publisher-subscriber-pattern

A.22 ROS Bag

A bag is a file format in ROS for storing ROS message data. Bags are typically created by a
tool like rosbag, which subscribe to one or more ROS topics, and store the serialized message
data in a file as it is received. These bag files can also be played back in ROS to the same
topics they were recorded from, or even remapped to new topics.
See http://wiki.ros.org/Bags

https://www.ssh.com/academy/ssh/tunneling/example
https://www.enjoyalgorithms.com/blog/publisher-subscriber-pattern
http://wiki.ros.org/Bags
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A.23 UTM coordinate system

The Universal Transverse Mercator (UTM) is a map projection system for assigning coordi-
nates to locations on the surface of the Earth. Like the traditional method of latitude and
longitude, it is a horizontal position representation, which means it ignores altitude and
treats the earth as a perfect ellipsoid. However, it differs from global latitude/longitude in
that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates.
See https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

A.24 PROJ

PROJ is a generic coordinate transformation software that transforms geospatial coordinates
from one coordinate reference system (CRS) to another. This includes cartographic projec-
tions as well as geodetic transformations.
See https://proj.org/

A.25 Docker container

A container is a standard unit of software that packages up code and all its dependencies
so the application runs quickly and reliably from one computing environment to another. A
Docker container image is a lightweight, standalone, executable package of software that in-
cludes everything needed to run an application: code, runtime, system tools, system libraries
and settings.
See https://www.docker.com/resources/what-container/

A.26 Autobahn|Testsuite

The Autobahn|Testsuite provides a fully automated test suite to verify client and server im-
plementations of The WebSocket Protocol for specification conformance and implementation
robustness.
See https://github.com/crossbario/autobahn-testsuite
Report for µWebSockets.js: https://unetworking.github.io/uWebSockets.js/report.pdf

https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://proj.org/
https://www.docker.com/resources/what-container/
https://github.com/crossbario/autobahn-testsuite
https://unetworking.github.io/uWebSockets.js/report.pdf
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