Evolving Soft Robots Via Generative AI

Master Thesis

Advisor: Erdi Sayar (erdi.sayar@tum.de)
Supervisor: Prof. Alois Knoll

Introduction and Problem Description

Both the design and control of a robot play equally important roles in its task performance. This problem can be formulated as a two-level optimization framework (co-optimizing design and control), where the outer loop evolves the physical structures of robots and the inner loop optimizes a controller (i.e. reinforcement learning algorithm) for a given proposed structure design. Evolution Gym is the first large-scale benchmark for co-optimizing the design and control of soft robots. Each robot is composed of different types of voxels (e.g., soft, rigid, actuators), resulting in a modular and expressive robot design space. As shown in the overview in Figure 1, Evolution Gym [1] is comprised of a task-specific environment and a back-end soft-body simulator. The gym suite provides seamless interfaces with a user-defined co-design algorithm. The co-design algorithm typically consists of a design optimizer and a control optimizer. The design optimizer can propose a new robot structure to the control optimizer, then the control optimizer will compute an optimized controller for the given structure through interactions with Evolution Gym and finally return the maximum reward that this robot structure can achieve.

Evolution Gym benchmark environments span a wide range of tasks, including locomotion on various types of terrains and manipulation. Furthermore, this benchmark includes several robot co-evolution algorithms by combining state-of-the-art design optimization methods and deep reinforcement learning techniques.

![Figure 1: Overview of Evolution Gym and its integration with the co-design algorithms](image)

Evolution Gym benchmark environments span a wide range of tasks, including locomotion on various types of terrains and manipulation. Furthermore, this benchmark includes several robot co-evolution algorithms by combining state-of-the-art design optimization methods and deep reinforcement learning techniques.

![Figure 2: Environment evolution in the PickAndPlace task.](image)

While Evolution Gym utilizes state-of-the-art algorithms, none of the algorithms tested in the benchmark have succeeded in finding robots that can succeed in the most challenging environments.
Task Description

In this thesis, your task will be to learn state-of-the-art algorithms in Evolution Gym, as well as how to use the Evolution Gym benchmark, and develop your design algorithm using Generative AI, such as diffusion models [2], and compare it with the state-of-the-art methods in the Evolution Gym benchmark.

- You will first learn the basics of state-of-the-art algorithms in Evolution Gym, and you will reproduce the results of Evolution Gym benchmark. By doing this, you will gain an understanding of Evolution Gym and the state-of-the-art research results.

- You will learn how to generate hand designed robots using Evolution Gym environment.

- This thesis will equip you with the knowledge and skills to understand Generative AI, particularly diffusion models. You will then apply this knowledge to design your own robot and then you will evaluate its performance against established state-of-the-art methods in the Evolution Gym benchmark.

References
