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Abstract

In the last year, 3D occupancy prediction for autonomous driving has gained significant atten-
tion. As occupancy prediction mitigates some major limitations found in 3D object detection
using bounding boxes, it is a promising alternative for creating a reliable 3D representation
of the environment. Motivated by this, we present two approaches to predict 3D occupancy
using implicit representations in the context of autonomous driving and showcase their per-
formance, and limitations in the infrastructure as well as in the on-board sensor setups. First,
we present a new data generation pipeline that tackles the lack of ground truth data in this
emerging field by generating multi-sensor synthetic datasets for both the infrastructure and
on-board settings. In the first approach, we extend an existing method developed originally
for LiDAR-based object and indoor scene reconstruction to the autonomous driving domain.
The approach exhibits competitive performance in both setups and is able to outperform the
model-based baseline, as well as show great results when tested on real-world data while
being trained on synthetic data. In the second approach, we propose a novel method for 3D
occupancy prediction in the on-board sensor setup based on deeply fused input from RGB
cameras and LiDAR sensors. While the method did not outperform other SOTA methods,
we argue that the model has indeed achieved promising results that can be improved in the
future.

Zusammenfassung

Im letzten Jahr hat die 3D-Occupancy Prediction für autonomes Fahren erhebliche Aufmerk-
samkeit erhalten. Da die Occupancy Prediction einige wesentliche Einschränkungen der
3D Object Detection durch die Verwendung von Bounding Boxes mildert, stellt sie eine
vielversprechende Alternative dar. Motiviert dadurch präsentieren wir zwei Ansätze zur
3D-Occupancy Prediction im Kontext des autonomen Fahrens und präsentieren ihre Poten-
ziale und Einschränkungen sowohl in der Infrastruktur- als auch in der On-Board-Sensor-
Konfiguration. Zunächst präsentieren wir eine neue Datenerzeugungs-Pipeline, die das Fehlen
von Ground-Truth-Daten in diesem aufstrebenden Bereich bewältigt. Im ersten Ansatz erweit-
ern wir eine vorhandene Methode, die ursprünglich für LiDAR-basierte Indoor-Objekt und
Szenenrekonstruktion entwickelt wurde, auf den Bereich des autonomen Fahrens. Der Ansatz
zeigt eine wettbewerbsfähige Leistung in beiden Konfigurationen und übertrifft das modell-
basierte Baseline-Modell sowie zeigt gute Ergebnisse bei Tests mit realen Daten, während
es mit synthetischen Daten trainiert wurde. Im zweiten Ansatz schlagen wir eine neuartige
Methode zur 3D-Occupancy Prediction in der On-Board-Sensor-Konfiguration vor, die auf
RGB-Kameras und LiDAR-Sensoren basiert. Obwohl die Methode andere State-of-the-Art-
Methoden nicht übertrifft, argumentieren wir, dass das Modell tatsächlich vielversprechende
Ergebnisse erzielt hat, die in Zukunft weiter verbessert werden können.
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Chapter 1

Introduction

1.1 Motivation

In recent years, automated driving has gained huge momentum. The main driver behind
this increased momentum has been the recent advances in computation technologies, which
have made running complex and computationally intensive algorithms in real-time possible.
The interest in automated driving is not limited to vehicles only, but also includes other
autonomous systems used for transportation, such as driverless trains.

This evolving technology aims to revolutionize the whole transportation industry by re-
moving the need for human drivers to sit behind wheels, thereby reducing the number of
accidents that cause significant losses in terms of fatalities and economic costs. In addition
to that, automated driving would allow for higher utilization rates for vehicles, ultimately
decreasing the cost of transportation.

Automated driving, at its core, relies on combining various sensors, complex algorithms,
and sophisticated control systems to perceive and interpret the surrounding environment,
and based on that, make decisions that control the movement of the vehicle.

Perception in automated driving is a complex process that involves processing data from
multiple sensors of different modalities, such as cameras, LiDARs, and radars, that capture
information about the environment. An example of such a sensor setup can be seen in the
Nuscenes research platform shown in Figure 1.1. This information is then processed to com-
pute an internal representation of the system’s operating environment. Further systems de-
pend on this to recognize and interpret objects and their movements, and predict their future
trajectories. Perception is critical for automated driving systems to operate safely and effi-
ciently, as it enables the vehicle to navigate through complex environments, avoid obstacles,
and make decisions in real-time.

The perception system is not limited to the vehicle-mounted setup only. The use of
infrastructure-mounted sensors has been an active research field in recent years. The re-
search in this field aims to provide automated driving vehicles with additional information
about the environment and the road conditions, where the onboard sensors may have been
insufficient in capturing. The Providentia++ test bed [Krä+; Cre+] is an example of such
an installation, where different sensors (cameras, LiDARs, radars) are mounted on gantry
bridges as seen in Figure 1.2. The sensors used in the infrastructure setup are primarily
similar to those mounted on the vehicles. Nevertheless, some differences have to be taken
into consideration when developing or adapting perception algorithms for the infrastructure
setup.

Autonomous trains rely on concepts and technologies in perception similar to those devel-
oped for vehicles. These systems have to be able to operate in complex dynamic environments
as well. The key difference may be the need for the perception systems to operate at extended
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Figure 1.1: Motional (formerly NuTonomy) research platform vehicle used in Nuscenes dataset [Cae+].

Figure 1.2: Overview of the Providentia++ test bed showcasing the different sensor stations on the highway as
well as in urban field in Garching, Germany.

ranges, since trains’ braking distance is ranges from several hundreds of meters for a regional
train up to kilometers for high-speed trains.

Perception methods used in automated driving can be principally divided into model-
based approaches and learning-based approaches. Both approaches have their advantages
and disadvantages, which in turn affect their performance and applicability in different sce-
narios.

Classical model-based approaches have been widely used in this context. They typically
rely on physical and mathematical models that provide reliable deterministic results. These
approaches are often optimized to be computationally efficient, making them adequate for
deployment on real-time systems. Nonetheless, these model-based approaches have the dis-
advantage of being dependent on the accuracy and completeness of the underlying models,
which makes them limited to certain situations or use-cases, and limits their ability to gener-
alize to handle complex and dynamic environments.

Learning-based methods have become increasingly relevant in perception. They have
proven to be very flexible and adaptive, as seen in their ability to generalize against a wide
range of situations. They are also characterized by their ability to capture complex high-
level features from raw data, which provides accurate results. Nevertheless, learning-based
approaches generally require large amounts of data that are often challenging to collect and
label. This data plays a huge role in the performance as well, since non-representative data
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can often cause the models to perform poorly. Despite that, they have been able to produce
very promising results lately, often outperforming model-based methods in various tasks.

1.2 Problem Statement

Bounding box detections and semantic segmentation are two commonly used methods to
model the environment for autonomous vehicles, but for supervised learning-based methods
they have shown to be limited to a finite number of known classes present in the training data.
Additionally, the quality and sparsity of the input data plays a huge role in the quality of the
predictions. This in turn limits the performance of these methods in challenging dynamic
environments, where new unseen objects may be present. Such a limitation was showcased
by Tesla in as can be seen in Figure 1.3, where the multi-camera-based object detector failed
to detect a trailer in plain sight, since it did not resemble any previously seen dynamic object.
It is maybe then deducible that using bounding boxes or semantic segmentation is not the
most suitable method to model the environment. A potential alternative are occupancy grids.

Occupancy grids are also common representations, but to a lesser extent. They are
geometry-based representation which have the advantage of being class agnostic in compari-
son to semantic representations. Each region in the grid contains a value indicating whether
it is occupied or not. A semantic label can additionally be added to each occupied region
when needed. In 2D occupancy grids, these probability values represent presence of obsta-
cles on the ground plane, the height dimension is not taken into consideration. 3D occupancy
grids on the other hand represent all three dimensions. While 2D grids can be sufficient for
various tasks, the additional height dimension in 3D grids provides information necessary to
deal with more complex environments and situations.

Figure 1.3: An example where camera-based object detector on a Tesla vehicle failed to detect an object. [Tes22a;
Tes22b] .

Classically, 3D occupancy maps are constructed using model-based methods such as ray
tracing, but in the recent years several learning-based methods have been introduced to fur-
ther improve the results. In contrast to classical occupancy maps that output the occupancy
at fixed discrete locations, occupancy networks approximate a function that can predict the
occupancy of any 3D location given an observation and the desired location [Mes+]. Until
very recently, occupancy networks were used only for single object reconstruction, or for oc-
cupancy prediction in indoor scenes. These methods have used only single sensor modalities,
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either cameras, or LiDARs.
In automated driving 3D object detection benchmarks, such as Nuscenes [Cae+], ap-

proaches based on multiple sensor modalities have been steadily rising up the leaderboard,
frequently outperforming single modality approaches. Complementary sensors such as Li-
DARs and cameras can provide synergistic information that enables more accurate reasoning
about a scene. This provides an interesting direction, where the performance of deep fused
camera-LiDAR features can be compared to the case where a single modality is used to predict
the occupancy.

The goal of this thesis is to create a class agnostic 3D representation of the surround-
ing environment in autonomous vehicles, based on deeply fused inputs from camera and
LiDAR sensors. This can be achieved by leveraging the concept of occupancy networks and
adapting them to be used in autonomous driving for 3D representation of the surrounding
environment, instead of indoor scene reconstruction.

1.3 Contribution

The main contribution of this thesis is developing a novel approach for 3D perception that can
be used in either vehicle mounted sensor setups or infrastructure-based sensor setups. The
work provides an exploration to applying occupancy networks for creating a class agnostic
3D perception system, that can be applied using different sensor configurations (camera-
LiDAR, LiDAR only and camera only). The proposed approach is tested and evaluated on real-
data, while being mainly trained on synthetic data generated in a novel way. The results of
the LiDAR-based methods have shown competitive performance outperforming the selected
baseline, while the camera-LiDAR-based methods have shown promising results that can be
further improved.

1.4 Content Overview

This thesis is structured in 6 chapters. The remainder of this work is organized as follows:

• Chapter 2: Background

This chapter provides relevant background information, that is necessary to understand
the proposed methods. It includes a brief introduction to the field of automated driving,
and the different sensors used to tackle perception tasks this context. Additionally,
it provides an overview on different 3D representations. A brief introduction on the
Providentia++ [Krä+] test-bed is also provided, in addition to an overview of the
CARLA simulator [Dos+].

• Chapter 3: Related Work

In this chapter, we present a detailed review of the literature and related work in the
area of 3D occupancy prediction for automated driving using different sensors, and
multi-modal sensor fusion as a general task.

• Chapter 4: Methodology

In this chapter, the proposed methods for occupancy prediction are discussed in detail.
Different models and approaches are presented and discussed, where the models not
only differ in their architecture, but also in their sensor modalities inputs.
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• Chapter 5: Results and Evaluation

This chapter presents the results of the experiments conducted on the proposed meth-
ods. It includes quantitative and qualitative analysis of the results, as well as supporting
visualizations and diagrams. Additionally, we present a detailed analysis on the results,
where the strengths against other approaches are highlighted, in addition to the limita-
tions of the developed approaches.

• Chapter 6: Conclusion and Future Work

This chapter provides conclusions of the thesis, bases upon implications and limitations
of the proposed methods, as well as future directions for further research.





Chapter 2

Background

Since the industrial revolution, humans have been trying to automate every process, from
production to transportation. Autonomous vehicles have been a conceptual idea since the
early 1900s, and they were always part of the imagination of how the future would look
like. With the advances in technology in the last century, first prototypes of assisted driv-
ing started to appear in the 1950s, when vehicles equipped with radar sensors for brake
assistance were developed. Later, in the 1980s, autonomous vehicles became a hot research
topic for academia and industry alike, with many prototypes being developed, such as in Fig-
ure 2.1to drive automatically solely based on sensor readings from mounted cameras. The
research in this area continued as more technologies have matured. This allowed the integra-
tion of new sensors such as laser scanners, in addition to more complex computing platforms
for decision-making.

For an autonomous vehicle to navigate safely, the vehicle has to first sense the surrounding
environment. While sensors generally capture what is happening around the vehicle, this
information has to be processed in order for the vehicle to understand the complex context
of the whole scene. Only then, the planning and decision-making can be executed.

Human drivers rely primarily on visual input from the eyes while driving, which is then
complemented by other sensory inputs from the ears. The cognitive and perceptual abilities of
humans allow them to process complex contextual information such as predicting the intent
of other traffic participants which is challenging for machines. Additionally, humans have the
ability to make judgements based on incomplete information in ambiguous situations, and to
adapt to changing situations as well. This proved to be also difficult for machines, however
the gap is being steadily decreased as the technology and research advances, with machines
even outperforming humans in some specific tasks [He+15].

In this chapter, we provide a brief introduction to perception systems in autonomous ve-

Figure 2.1: The seeing passenger car (VaMoRs-P), one of the first self-driving vehicles equipped with camera
sensors as part of the EUREKA project [E D+94] .
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hicles. We start by briefly explaining how cameras and LiDAR sensors work, and how they
are used in autonomous vehicles. Then, we compare the two sensors in terms of their advan-
tages and disadvantages. After that, we provide a brief introduction on different methods for
3D representations of the environment, with an emphasis on their advantages and disadvan-
tages. Additionally, we highlight perception tasks in autonomous driving, which are relevant
to this work. In Section 2.4, we introduce the infrastructure Providentia++ test-bed which
is used in this work. Finally, CARLA simulator is introduced in Section 2.5.

2.1 Perception Systems

The perception system in autonomous vehicles is a cornerstone for their success. Different
sensors have been used in autonomous vehicles in order to capture what is happening around
the vehicle. The most commonly used sensors for perception are cameras, radars, LiDARs,
and ultrasonic sensors. In this work, we focus on inputs from camera and LiDAR sensors only
since they have complementary strengths.

2.1.1 Cameras

In order to better explain how a camera principally works, we consider the simple pinhole
camera model. This is a purely geometric model which explains how 3D points in the world
are projected into the 2D image. A camera works by capturing light emitted from objects.
This light passes through the camera lens, which focuses the light onto a digital sensor or
a film [Pri12]. The color information is extracted by measuring the intensity of specific
visible light spectra. Commonly red, green and blue are measured to determine the color
information.

In the real world, a pinhole camera is composed of a sealed chamber with a small hole
(called the pinhole) in the front. Light rays from an object in the outside world pass through
the hole and form an inverted image on the image plane. However, the inverted image
produced by the pinhole camera can be inconvenient to work with. Therefore, instead of
using the true pinhole model, we consider a virtual image that would result from placing
the image plane in front of the pinhole. Although it is not possible to physically construct a
camera in this manner, the resulting image is mathematically equivalent to the true pinhole
model (with the exception that the image is right-side up) and is easier to comprehend. This
can be seen in Figure 2.2.

The pinhole itself (the point at which the rays converge) is called the optical center. We
will assume for now that the optical center o is at the origin of the 3D camera coordinate
system in which points are represented as w = [u, v, w]T. The virtual image is created on
the image plane, which is displaced from the optical center along the w-axis or optical axis.
The point where the optical axis strikes the image plane is known as the principal point. The
distance between the principal point and the optical center is known as the focal length f .

The standard convention is for the origin of the image coordinate system to be located
in the top left corner of the image. Pixel coordinates [x , y] point to the right and down-
ward, respectively. The center of the image (principal point) is designated as c = [cx , cy] in
x y-coordinates. The camera coordinate system is established as a right-handed coordinate
system, with the x-axis parallel to the u-axis and the y-axis parallel to the v-axis of the image
coordinate system. This setup means that the w-axis extends toward the image plane at the
center of the image. To project a 3D point w = [u, v, w]T in camera coordinates onto the
image plane, a ray is cast from p to o to generate a 2D point x = [x , y] on the image plane.
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Figure 2.2: The pinhole camera model: Rays from an object in the world pass through the pinhole in the front of
the camera and form an image on the back plane (the image plane) [Pri12].

Figure 2.3: Pinhole camera model terminology.

This is illustrated in Figure 2.3.
To calculate the 2D projection x of a single 3D point w onto the image I , we multiply

the focal length f with the normalized camera pixel coordinates x = [ x̂ , ŷ]T where x̂ = u/w
and ŷ = v/w, where this serves as a scaling factor. The photoreceptors may differ in the x-
and y-directions, and so the scaling differs according to the respective focal length. An offset
parameter c = [cx , cy] has to be additionally added, since the pixel position x = [x , y]T is at
the top-left of the image rather than the center as can be seen in Equations 2.1 and 2.2.

x =
fxu
w
+ cx (2.1)

y =
f y v

w
+ cy (2.2)

These calculations can also be expressed using matrix notation, by introducing the cam-
era matrix M and the intrinsic matrix K. The camera matrix M describes the mapping of
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Figure 2.4: Operation principal of LiDAR technology [RCG22].

a 3D point from the world coordinate system to the camera coordinate system, while the
camera intrinsic matrix K transforms the points from the camera coordinate system to pixel
coordinates. This can be seen in Equations 2.3 and 2.4.

x=
1
w

KMw (2.3)





x
y
1



=
1
w





fx 0 cx
0 f y cy
0 0 1









1 0 0 0
0 1 0 0
0 0 1 0











u
v
w
1






(2.4)

In this simplified model, we assume that there is neither rotation nor translation between
the world coordinate system and the camera coordinate system. This means that the camera
matrix M is the identity matrix. Additionally, it does not take distortions and skew into
account.

2.1.2 LiDARs

Light detection and ranging (LiDAR) has long been utilized in military and other applications
since the 1930s [McM19; RCG22], however it first appeared in the context of automated
driving in the Defense Advanced Research Projects Agency (DARPA) 2005 Grand Challenge.
Since then, LiDARs have played an increasingly important role in the recent advances in au-
tomated driving. When first introduced, LiDARs were extremely expensive, with the costs
that can exceed the price of the car. This has been changing with the wide adaption of such
sensors and the continuous maturation of the technology. LiDARs have been also used in dif-
ferent applications other than automotive; these applications range from 3D reconstruction,
mapping to environmental monitoring and surveillance.

A LiDAR is an active sensor, that falls under the category of Time of Flight (ToF) sensors
[McM19; RCG22; Raj+20; Hec18]. A LiDAR works by emitting a laser beam towards the
object, and then measuring the travel time as seen in Figure 2.4. The range R to the target
can be calculated using Equation 2.5, where c denotes the speed of light and τ is the round
trip delay of the emitted signal.

R=
1
2

cτ (2.5)

There exists different technologies for LiDARs, the four most common scanning mech-
anisms are opto-mechanical, electromechanical, micro-electromechanical systems (MEMS),
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Figure 2.5: Typical spinning 3D LiDAR.

and solid-state scanning, with the electromechanical LiDAR being currently most commonly
used. These can produce 1D, 2D or 3D scans [Raj+20; McM19].

Autonomous vehicles use mainly 2D or 3D scanning LiDARs. While the field of view (FoV)
of 2D LiDARs is only limited to the horizontal plane by employing single channels, 3D LiDARs
involves both the horizontal and vertical plane using multiple stacked channels. This results
in a very high cost for 3D LiDARs in comparison to 2D ones. The horizontal FoV also depends
on the type of the LiDAR, where spinning LiDARs provide a wider view up to 360◦ compared
to nonrotating LiDARs. For the scope of this work, we only consider the spinning variant.

LiDAR typically rotates at a speed of 5 to 20 Hz, resulting in a complete measurement
frame every 100 ms for a sensor operating at 10 Hz. The rotational speed also affects the
angular resolution of each frame, typically ranging from 0.2 to 0.8 degrees. While most
LiDAR manufacturers state a maximum operating range of 50 to 500m, the point density
decreases exponentially as distance from the sensor increases due to the sensor emitting all
laser beams from one point with varying vertical angles. As a result, an object may only be
sensed by one LiDAR channel or may be completely missed, making it invisible to the sensor,
when the vertical spacing is greater than the object’s height. Additionally, LiDAR can only
measure the distance of surfaces facing the sensor and cannot sense what is behind the first
surface that blocks a laser beam’s path, resulting in occlusion and an incomplete perception of
an object’s shape. However, laser beams can partially penetrate glass and windows, leading
to an absence of reflections in the concerned spot. Finally, laser light can scatter when it hits
the edge of walls, leaves, or tree branches [Bru22; Raj+20; RCG22; War19; McM19; LI20].

2.1.3 Camera vs. LiDAR Comparison

Having explained the idea of how cameras and LiDARs work, it is interesting to compare both
sensors in the spectrum of autonomous driving. The LiDAR technology is capable of real-time
sensing of the surrounding environment, and generating accurate 3D representation out of
the box. However, the point cloud data obtained is usually sparse and can include noise due to
various factors, including acceleration, deceleration, change of driving direction, and skewing
due to ego motion. While most LiDAR systems can provide intensity information about the
target surface of different objects based on the reflected rays and properties, this information
can vary greatly depending on the LiDAR system, weather conditions, and the target material
among others. Additionally, the LiDAR point cloud data only contains spatial coordinate
information of the object’s surface, with hardly any other object specific information that can
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Capabilities Human Camera LiDAR
Object detection ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆

Object classification ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Distance estimation ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆

Edge detection ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Lane tracking ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Visibility range ⋆ ⋆ ⋆ ⋆⋆ ⋆⋆

Poor weather performance ⋆⋆ ⋆ ⋆⋆

Bad illumination ⋆ ⋆ ⋆ ⋆ ⋆

Table 2.1: Performance matrix of LiDAR and camera sensors in comparison with human driver [Wan21].

Figure 2.6: The four common types of 3D representation. (a) Voxels. (b) Point cloud. (c) Explicit representation
(mesh). (d) Implicit representation [M M+19].

aid in object detection and classification tasks [Wan21; BGZuu; LI20].
Cameras on the other hand are a widely used technology in autonomous vehicles because

they offer the most accurate way to visually represent the vehicle’s surroundings in a rich,
dense representation. They can be placed on every side of the car to capture a wide picture
of the environment, aiding object recognition. However, adverse weather conditions and ex-
ternal light sources can severely affect camera output, which poses a limitation on their use
due to the drop in performance. Additionally, the depth information is lost during the camera
projection process. Although monocular cameras can be used to estimate the depth, it per-
forms very poorly when compared to other sensors such as LiDARs or Radars. Multi-camera
setups can however be used to robustly estimate the depth and create a 3D representation of
the environment with a much better performance compared to single cameras. Compared to
LiDARs, which are active sensors providing self illumination, cameras use natural light or an
external illumination source to recognize colors of objects, such as cars and traffic lights, and
identify distant objects with higher resolution and lower costs in full-light conditions [Wan21;
BGZuu; RCG22].

Both sensors have their advantages and disadvantages, as seen in Table 2.1, when it comes
to 3D perception in autonomous driving. A combination of using both sensors is often used in
autonomous driving systems to provide the most comprehensive and reliable results [Wan21;
BGZuu].

2.2 3D Representations

There are multiple 3D representations, which can be categorized into 4 main categories as
can be seen in Figure 2.6; point-based, voxel-based, implicit, and explicit representations
[YSA18; Mes+; Son+20; Mic+; Nie+; M M+19].

Point-based representations have a long history in robotics and computer graphics, but
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their irregular structure complicates their usage in deep learning. This changed with the
proposal of PointNet [Qi+a] which achieved invariance by means of a global pooling oper-
ation over all points. Since point clouds are typically sparse, they often require extensive
post-processing to create denser representation. Additionally, although they require fewer
parameters to store than dense volumetric grids, for instance, they are typically limited by
the number of points, and cannot represent topological relations [YSA18; Mes+].

Voxel-based representations are commonly used in learning-based 3D reconstruction
tasks due to their simplicity, but they are limited in terms of memory and computation. Sev-
eral works have proposed to operate on multiple scales or use octrees for efficient space
partitioning to address the cubic memory requirements of voxel-based representations. How-
ever, even with adaptive data structures, voxel-based techniques are still limited. While voxel
representations can be processed in a fully-convolutional manner, they are memory-intensive
and inherently restrict their ability to produce fine-scale, detailed surfaces [Mes+; Son+20].

Explicit surface representations, such as triangle meshes, are widely used in the graph-
ics community due to their ability to capture detailed geometry. However, they are irregular
in nature, not uniquely defined, and not easily integrated into learning frameworks. In con-
trast, implicit surface representations are more structured and can be organized as a set of
vertices and edges. Several works have explored using neural networks to classify and seg-
ment shapes based on the graph of a 3D mesh, but they assume a fixed input graph while 3D
reconstruction requires inferring the graph itself. Methods for mesh-based inference are lim-
ited and often restricted by a fixed 3D topology or mild deviations from a 3D template. Some
works have proposed directly regressing the vertices and faces of a mesh using a neural net-
work, but these approaches can result in non-watertight reconstructions with self-intersecting
mesh faces [YSA18; Mes+; M M+19].

Implicit surface representations define a volumetric function that characterizes the em-
bedding space of a 3D object by classifying each 3D point as inside, outside, or exactly on
the surface. They have continuous representations of 3D geometry without topology restric-
tions, and they are becoming increasingly popular as they can be processed using standard
3D CNNs. Two examples of such representations are binary occupancy grids, and Truncated
signed distance function (TSDF). Binary occupancy grids are being used more often recently,
but they can suffer from the limitation of accuracy being restricted to the size of a voxel.
Adaptive space partitioning techniques can scale up the resolution, but sub voxel estimation
is required to avoid voxel-based discretization artifacts. TSDF is another representation that
stores the truncated signed distance to the closest 3D surface point in each voxel. However,
post-processing is required for isosurface extraction, which can be avoided by an end-to-end
trainable solution [YSA18; Pou+; Son+20].

2.3 Perception Tasks in Autonomous Driving

Detection, segmentation and tracking are considered to be the main perception tasks in auto-
mated driving [Sun+; Liu+17; HC; Li+22]. Although tracking is a very important task, we
consider it out of the scope of this work.

Object Detection: It refers to the task of detecting presence of an object in addition to lo-
calizing it by fitting a bounding box around it. In the 2D object detection, objects are detected
and localized using a 2D bounding box in the image space, without providing any informa-
tion about the objects’ position in 3D. In contrast, 3D object detection provides information
about the objects’ position, orientation and size in the 3D space.

Semantic Segmentation: In 2D semantic segmentation, each pixel in the image is as-
signed a semantic category such as roads, buildings, vehicles, and pedestrians based on a
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Figure 2.7: 2D Object detection and semantic segmentation in autonomous driving as seen in Nuscenes dataset
[Cae+].

classification of which category it belongs to. 3D semantic segmentation is similar to 2D se-
mantic segmentation, but point clouds or voxels are classified into the semantic categories
instead of image pixels.

An example of 2D object detection and semantic segmentation in autonomous driving is
shown in Figure 2.7.

2.4 Intelligent Infrastructure: Providentia++

Sensors can be mounted in different settings. On-board sensors have limited visibility due to
occlusions and a restricted field of view. Infrastructure sensors on the other hand, can avoid
occlusions and offer wider visibility, but installation requires a considerable effort in setup
and construction, and can be difficult to maintain. Additionally, autonomous vehicles cannot
solely rely on infrastructure sensors due to possible signal interference and disconnections, it
is however argued that on-board sensors may be not sufficient on their own. Integrating both
on-board and infrastructure sensors might therefore be a solution to improve dependability,
integrality, and credibility of environmental perception.

The last years saw the introduction of several intelligent infrastructure projects such as
Test Area Autonomous Driving Baden-Württemberg [Tob+18], the Austrian highway project
[Sie+19] and the Providentia project [Krä+] near Munich.

The Providentia test bed was initially built along a stretch of the A9 highway close to
Munich as a large-scale distributed multi-modal sensor system. In addition to the sensors,
the systems includes multiple edge computing units running different algorithms providing
a real-time digital twin of the road traffic. Initially, the setup was composed of two gantry
bridges equipped with 8 sensors each, with two cameras and two radars for each viewing
direction providing a redundant coverage of the whole stretch. This can be seen in Figure 2.8.

The Providentia++ project followed up shortly after, where the test bed was expanded
to cover other scenarios rather than just the highway. The covered scenarios now include
freeway, highway, roundabout and intersection in urban areas. The map of the test bed can
be seen in Figure 2.9. Covering urban areas ensures that more pedestrians and cyclists are
present in the captured data. The expansion saw the addition of new sensor types such as
LiDARs and event cameras as well, in addition to increasing the numbers of the existing sen-
sors. This way, the test bed now includes 75 sensors along 7 measurement points. Particularly
interesting for this work is the s110 intersection.
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Figure 2.8: The initial sensor setup of the Providentia test bed on the A9 highway [Krä+].

Figure 2.9: Top: Overview of the test bed Providentia++. The original stretch highlighted in yellow, and the
extension is highlighted in blue [Cre+]. Bottom: Gantry bridge within the s110 intersection in the Providentia++
project.

2.5 CARLA Simulator

Learning-based methods require a huge amount of data when compared to model-based ones.
To overcome the absence of real data, simulators such as CARLA [Dos+] can be used.

CARLA (Car Learning to Act) is an open source simulator for driving, built specifically to
overcome the need for physical systems to develop and test algorithms in both perception and
control. CARLA contains various maps denoted as "Towns" that cover a wide range of driving
environments such as cities, suburban and rural areas, mountains and even highways. These
maps were developed from the ground up while taking small details like vehicle models,
buildings, pedestrians, street signs, and similar into account. Additionally, the simulator also
enables the specification of different environmental conditions, including weather and time
of day, making it a highly flexible and adaptable tool for autonomous driving research. The
environments are composed of 3D models of static and dynamic objects, designed for visual
quality and rendering speed with the option to add additional models by the user if needed.

At its core, CARLA is built as an open-source layer on top of Unreal Engine 4 (UE4),
allowing it to be flexible and realistic. The server-client system runs the simulation and
renders the scene, with the client API implemented in Python to interact with the server via
sockets. The client sends commands and meta-commands to the server and receives sensor
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Figure 2.10: An example scene from CARLA.

readings in return. Users can also use the client to inquire additional information, which is
possible using the Python API.

The behavior of non-player characters such as vehicles and pedestrians can be configured
as well, which are critical for creating a realistic simulation. The vehicles are controlled by a
basic controller that governs their behavior in terms of lane following, respecting traffic lights
and speed limits, and decision-making at intersections. This allows the creation of random
as well as deterministic, recurring scenarios. Different sensors are supported as well, such as
RGB cameras, LiDARs, Radars, and event cameras in addition to a number of pseudo-sensors
providing ground-truth depth and semantic segmentation.



Chapter 3

Related Work

The 3D perception is a complex task that is vital for safe and reliable autonomous vehicles,
and although this work focuses on representing the surrounding environment with occu-
pancy, 3D object detection in the form of bounding boxes is currently most commonly used.
The methods developed for 3D object detection have been extensively researched for longer
times, and they provide a starting point to build upon in order to develop a learning based
occupancy prediction approach. We, therefore, present some state-of-the-art methods in 3D
object detection using cameras, LiDARs in addition to fusion based models. Afterwards, we
present some model-based methods for 3D occupancy prediction. Finally, we present some
learning-based methods for occupancy prediction.

3.1 LiDAR-based 3D Object Detection

Point clouds have represented a challenge to researchers in learning-based 3D object de-
tection. But due to their irregular format, they had to be first transformed into another
representation before being processed. In 2017, PointNet [Qi+a] presented a solution for
this problem. PointNet is a unified architecture that directly processes the input point clouds
without converting them first to intermediate-representation. The main idea is to make use
of max pooling, which is a single symmetric function, allowing the network to learn how to
select informative points. These are then aggregated into a global representation that can
be used for different tasks. An overview of the architecture can be seen in Figure 3.1. It
is important to note that initially, PointNet was not developed as a 3D object detector, but
rather as a classifier or part of segmentation network. It has only afterwards been extensively
used as a feature extractor, due to its ability to process point clouds effectively.

Shortly afterwards, VoxelNet [ZT] was introduced. VoxelNet propose an end-to-end
generic 3D detection network, that unifies the feature extraction and bounding box pre-
diction steps in a single stage. This made manual feature engineering unnecessary. First, the
point cloud is transformed into an equally spaced voxel grid. This is then processed using
multiple stacked voxel feature encoding (VFE) layers, allowing the network to learn com-
plex 3D shapes in which point-wise features are combined with locally aggregated features.
The resulting high dimensional feature representation of the points is then fed into a region
proposal network (RPN) based on Faster-RCNN [Ren+], to output the detection results.

In 2018, PointPillars [Lan+] introduced a new method that achieved significant gains
in performance and speed compared to other state-of-the-art models at the time. The idea
behind PointPillars is to convert the 3D point cloud input into vertically stacked pillars that
are processed by simplified PointNet [Qi+a] encoding layers, allowing it to be processed by
2D convolution architectures. The resulting features are scattered, back forming a 2D pseudo
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Figure 3.1: PointNet architecture. Input and feature transformations are applied to n input points, the resulting
features are then aggregated using max-pooling [Qi+a].

Figure 3.2: PointPillars architecture overview [Lan+] (top). PV-RCNN architecture overview [Shi+] (bottom).

image. The 2D pseudo images are further processed, and fed into a detection head based on
Single Shot Detector (SSD) [Liu+15], a 2D detection network. Since the detection head is
originally developed for 2D detection, it had to be adapted to regress 3D bounding boxes. The
head matches predicted boxes with the ground using 2D Intersection over Union (IoU), and
uses the bounding boxes’ height and elevation as additional regression targets. An overview
of the method can be seen in Figure 3.2.

PV-RCNN [Shi+] deeply integrates point-based and voxel-based methods to combine the
advantages of both approaches. Voxel-based methods, that leverage sparse convolutions, are
generally efficient and can produce high-quality proposals, while point-based methods are
more flexible and can deal with irregularity and are thus contextually more aware. In order
to achieve that, the paper proposes a voxel-to-keypoint operation to aggregate all the voxels
to a selected number of feature keypoints, and a point-to-grid operation to convert these
feature keypoints to region of interest (RoI) grids to refine the previous object proposals. The
pipeline of PV-RCNN can be seen in Figure 3.2.

Sparse-to-Dense 3D Object Detector (STD) [Yan+b] presented a two-stage detector. The
first stage is a bottom-up proposal generation network where a spherical anchor is seeded for
each point individually, then processed by a PointNet++ [Qi+b] backbone. The sparse fea-
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Figure 3.3: Overview of the SE-SSD model depicting the student-teacher architecture and the formulated losses
[Zhe+].

tures are then converted into a more compact form to increase the efficiency of convolutional
operations. The second stage has two branches for box and IoU estimations to further boost
performance, and to alleviate inappropriate removal during post-processing.

Instead of using anchors, CenterPoint [YZKa] predicts objects’ centers. In the first stage
of the two-stage detector, a class-specific heat map along with other properties such as size
and rotation are predicted from features processed by a standard point-based or voxel-based
backbone. The first stage is based on the 2D object detector CenterNet [Dua+]. The predic-
tions are then further refined in the second stage using point features at the 3D centers of
each face of the estimated 3D bounding box.

In 2021, SE-SSD [Zhe+] was introduced, leveraging a student-teacher architecture based
on single stage SSD [Liu+15] models. The student model is supervised using soft targets
provided by the teacher, as well as the manually annotated hard targets to optimize the
model jointly. In order to achieve this, multiple losses are used. The authors formulate a
consistency loss to reduce prediction misalignment between the student and the teacher, in
addition to an orientation-aware distance-IoU (ODIoU) loss between the student predictions
and the hard targets, as can be seen in the model overview in Figure 3.3. The models are
trained in an end-to-end supervised manner, while only the student model is used during
inference.

The last couple of years saw an increase in the use of attention layers [Vas+] allowing
models to selectively focus on more important features. VISTA [Den+] propose a plug-and-
play multi-view fusion module that additively fuses bird-eye-view (BEV) and range view (RV)
features in a global spatial context. The multi-view approach provides richer and more com-
prehensive information than single-view methods to the detection head, allowing for an im-
proved performance. The high-level architecture of VISTA can be seen in Figure 3.4. D-Align
[Lee+] is another module that uses attention layers in order to align BEV features over time.
As a plug-and-play module that can be used with any BEV feature extractor, D-Align boosts
the performance of 3D detectors by utilizing the spatio-temporal information in a sequence
of frames.

Recently, MDRNet [Hua+22] was proposed to alleviate the information loss during di-
mensionality reduction while constructing BEV feature maps. The model retains rich 3D
information in the BEV, in which the 3D voxel features and BEV features are fused along dif-
ferent scales. Figure 3.4 provides an overview of this architecture. VoxelNext [Che+a], which
was also recently proposed, achieves a boost in efficiency and performance by using a voxel-
to-object direct approach. This allows it to directly predict 3D objects from voxel features,
with fully sparse convolutional networks, without the need of anchor proxies, sparse-to-dense
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Figure 3.4: VISTA module [Den+] (top). MDRNet architecture overview [Hua+22] (bottom).

conversions or region proposal networks.

3.2 Camera-based 3D Object Detection

In the past, 3D object detection using cameras was challenging due to the lack of depth infor-
mation. However, this changed with the increasing availability of high-resolution cameras,
and the advances in deep learning techniques. Some state-of-the-art multi-view camera-
based 3D Object detectors are briefly presented in this section, as they provide a good basis
for the following sections.

ImVoxelNet [RVK] is a 3D object detector for monocular or multi-view camera images.
The model accepts an arbitrary-sized set of images and their corresponding camera poses.
These input images are processed by a 2D backbone network for feature extraction. The
extracted features are then projected onto a 3D voxel volume, in which the projected voxel
features from the different cameras are fused together using simple element-wise averaging
to produce a unified voxel representation. The 3D voxel features are passed into a 3D "neck"
network for further processing, before being fed into a detection head. It is worth mentioning,
that the method is not dependent on a certain backbone or head architecture, and therefore
provides flexibility according to the desired task.

Similarly, authors of Lift, Splat, Shoot [PF] propose a method that extracts a 3D bird-eye-
view representation of the scene, based on an arbitrary number of cameras. The method can
be used for several tasks such as detection, segmentation or motion planning. In the first step,
a categorical distribution is predicted over the depth as can be seen in Figure 3.5, in order
to transform the images from the local 2D coordinate system to the global 3D coordinate
system. The 3D information is then processed following the PointPillars [Lan+] architecture,
allowing the attachment of any compatible task-specific head.

In 2021, the authors of DETR3D [Wan+] introduced a 3D object detector that follows
a top-down approach in which the 3D bounding boxes are predicted directly from the 2D
image features bypassing the need for the intermediary depth estimation step. In the model,
2D features extracted from the images are linked with the 3D predictions using geometric
back-projection given the cameras’ transformation matrices. Initially, a sparse set of priors
are learned in an end-to-end manner across the target dataset, then the locations of the
object priors are back-projected into each camera view. The corresponding 2D features are
then extracted using a 2D backbone network. A multi-head attention layer and multiple
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Figure 3.5: Depth prediction step in Lift, Splat, Shoot [PF] (top), for each pixel p, a context feature c and a depth
distribution α are predicted, features at each point along the ray are determined by the outer product of α and c.
Model overview of DETR3D [Wan+] (bottom).

self-attention layers are used to extract the 3D bounding boxes parameters while using a loss
inspired by DETR [Car+]. Ego3RT [Lu+] is also a 3D object detector that follows a top-down
similar to DETR3D [Wan+]. The authors propose an end-to-end formulation to construct
dense BEV representations inspired by the ray-tracing principle widely used in computer
graphics.

The authours of SpatialDETR [Dol+23] build upon DETR3D [Wan+]. They argue that
the DETR3D formulation is not sufficient since it only uses the pixels corresponding to the
query center while ignoring feature patches from other camera views. To address this issue,
the authors propose to use a global cross-sensor attention module that can compare object
queries with keys corresponding to feature patches in the different camera images. Addi-
tionally, they propose a new geometric positional encoding motivated from the success of
pseudo-LiDAR methods. It is worth mentioning that the authors suggest that their method
can be scaled to include different sensor modalities such as LiDARs or radars.

The authors of BEVDET [Hua+a] propose a model that performs 3D object detection in
the BEV. For the development of the model, the authors reuse existing modules from previ-
ous works and managed to achieve state-of-the-art performance on the Nuscenes [Cae+] test
set. High-level features are first extracted from the input images using a 2D backbone net-
work such as ResNet [He+] or the attention-based SwinTransformer [Liu+b], followed by a
Feature Pyramid Network (FPN) to further process the image features at multiple scales. To
transform the 2D features into the BEV, the authors use the view transformer module based
on Lift, Splat, Shoot [PF], which can be seen in Figure 3.5. The BEV encoder, which is similar
to the initial image encoder, processes the BEV features, then passes them to a 3D detection
head based on CenterPoint [YZKa]. To increase the performance of the model, the authors
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Figure 3.6: An overview of BeVerse [Zha+b] fusing information from previous frames (top). The framework of the
depth-guided BEVDepth [Li+d] (bottom).

also introduce a further augmentation step in the BEV space and adapt Non-Maximum Sup-
pression (NMS) for the 3D object detection scenario.

BEVFormer [Li+e] extended the use of transformers by taking not only the spatial in-
formation, but also the temporal information into account. The model learns a unified BEV
representation of the scene, which can be then used in multiple tasks, similar to LSS [PF]. The
authors propose two types of attention mechanisms, the first one is a spatial cross-attention
in which each BEV query is able to extract spatial features from RoIs across different camera
views. The second one is a temporal self-attention that can extract information based on
previous BEV features, aiding in detection of occluded objects. The resulting unified BEV
representation can be used for detection as well as segmentation.

BEVerse [Zha+b] incorporates a similar approach as BEVFormer by fusing the spatio-
temporal information from multiple camera views to create a BEV representation. An image
view encoder similar to BEVDET’s [Hua+a] based on SwinTransformer [Liu+b] is used to
extract the features from the input images. They also adopt the view transformer module
from Lift, Splat, Shoot [PF] to create the BEV representation. An additional spatio-temporal
encoder is used to fuse the BEV features over N timestamps with ego motion taken into
consideration. This can be seen in Figure 3.6. A task-specific head is then used to predict the
3D bounding boxes.

BEVDepth [Li+d] and CrossDTR [Tse+] approach the problem by using depth-guidance
as an auxiliary supervised task. BEVDepth [Li+d] back-projects the LiDAR generated point
clouds to create 2.5D ground-truth depth maps. The depth maps are then used to train
the camera-aware depth prediction module which takes the respective camera’s intrinsic and
extrinsic parameters as an additional input. The predicted depth is further refined and con-
verted into a BEV feature map using voxel pooling. The pipeline of BEVDepth can be seen
in Figure 3.6. CrossDTR [Tse+] on the other hand, uses a lightweight depth predictor su-
pervised by an object-wise sparse depth map generated from each camera view. The depth
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predictor produces depth embeddings that are fed into a cross-view attention module in-
spired from [Liu+a; Zha+a], along with the 2D images features from the respective camera
views, combining cross-view and cross-depth attention mechanisms.

3.3 Multi-modal 3D Object Detection

LiDAR-based 3D object detection methods have generally achieved better performance than
camera-based methods. However, as mentioned before in Subsection 2.1.3, each sensor
modality has its advantages and disadvantages. Therefore, it is beneficial to combine the
information from both sensor modalities to achieve better performance. In this section, we
will discuss the different approaches that have been proposed to fuse the information from
camera and LiDAR sensors.

MVX-Net [SZT] propose an early-fusion approach based on VoxelNet [ZT]. Semantic
features from an RGB image are used to enhance the LiDAR features and provide more con-
textual information. The model developed two fusion techniques to achieve this; PointFusion
and VoxelFusion. In PointFusion, points from the Lidar point cloud are projected onto the
image plane, and then concatenated with the corresponding image features produced by a
2D feature extractor based on Faster-RCNN [Ren+]. The produced features are concatenated
to the LiDAR point features and then fed into a set of VFE [ZT] layers to produce the final 3D
features. In VoxelFusion, features are combined at a relatively later stage when compared to
PointFusion. Features from the RGB image are appended at the voxel level. The first stage
involves dividing the 3D space into equally spaced voxels and encoding each voxel using VFE
layer. Every non-empty voxel is projected onto the image plane to produce a 2D region of
interest, and features within the RoI are pooled and reduced, and then appended to the fea-
ture vector produced by the stacked VFE layers at every voxel. The fused features are further
used by a 3D RPN to produce 3D bounding boxes.

In contrast to MXV-Net, the authors of ContFuse [Lia+a] propose a continuous fusion
approach that fuses image and LiDAR features at different levels. The end-to-end architec-
ture consists of two streams; an image stream and a LiDAR stream. In the image stream, a
lightweight ResNet18 [He+] backbone is used to extract image features. These features are
then projected on the BEV plane and fed into the fusion layers at each level. In the LiDAR
stream, the LiDAR point cloud is first projected onto the BEV plane and encoded at different
levels using a similar 2D convolutional backbone. The encoded features are then passed to
the fusion layers at each level. Finally, a simple detection head followed by a NMS layer is
used to predict the final 3D bounding boxes.

Similarly, Dense Voxel Fusion (DVF) [MHW] also uses a continuous approach to fuse the
information from camera and LiDAR sensors. The method uses different pipelines during the
training and inference phases. During training, ground-truth 3D bounding boxes are used to
generate a foreground 2D mask in the image plane. This foreground mask is generated in the
inference phase using the output of any pretrained 2D object detector. The foreground masks
are associated with the corresponding LiDAR-generated voxel features at different levels. A
parameter-free weighting function is used to fuse the features from the two modalities. The
fused features are then collapsed onto the BEV plane and fed into a 3D detection head.

MVP [YZKb] takes another approach to fuse the information from the camera and LiDAR
sensors. The authors take advantage of the dense representation of the RGB images by con-
verting them into a pseudo-LiDAR representation, creating what they called "virtual points".
These virtual points, combined with the LiDAR-generated points are then fed into a 3D object
detection network. To generate these virtual points, the LiDAR points are projected onto the
image planes and then matched with a 2D detection mask. Randomly sampled 2D points
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Figure 3.7: Overall structure of 3D-CVF [Yoo+20].

within the mask are appended with depth values from the nearest LiDAR point in the 3D
frustum and the objects’ semantic features, and then projected back into 3D space, thus cre-
ating the virtual points. For the 3D detection, features from the LiDAR points and the virtual
points are concatenated and fed into a 3D detection network based on CenterPoint [YZKa].

A similar approach is taken by Sparse Fuse Dense [Wu+], where pseudo-LiDAR points
are generated from the RGB images and then combined with the LiDAR-generated points.
In the pseudo stream, the LiDAR point cloud is first converted into a sparse depth map in
the image space, the depth map is fed into a depth completion network along with the RGB
image to produce a denser depth map. The denser depth map is then projected back into
the 3D space to produce the pseudo-LiDAR points. The pseudo-points are processed by a
specially designed feature extractor that takes advantage of the 2D image features and 3D
geometric features of pseudo-point clouds simultaneously. The LiDAR points are voxelized
and processed, then fused with the pseudo-LiDAR features in a grid-wise attentive way. A
simple detection head is finally used to generate the predictions.

3D-CVF [Yoo+20] is another approach that fuses the information from the camera and
LiDAR sensors. The overall structure of the model is shown in Figure 3.7. The model consists
of two streams; a LiDAR stream and an image stream. In the LiDAR stream, the LiDAR
point cloud is first voxelized before being encoded to produce a feature map in the BEV
space. Parallelly, the RGB images are processed by a 2D CNN to produce feature maps in the
image space are then projected onto the BEV space using the proposed "Cross-View Feature
Mapping" module. Spatial attention maps are applied to the feature maps, to adaptively
select the most relevant features from the different modalities and fuse them. Once the region
proposals have been created using the combined camera-LiDAR feature map, the RoI pooling
technique is utilized for proposal refinement. As the joint feature map still lacks adequate
spatial information, multi-scale LiDAR features and camera features are extracted through
3D RoI-based pooling. These features are then encoded independently by a PointNet [Qi+a]
encoder and combined with the joint camera-LiDAR feature map via a 3D RoI-based fusion
network. The resulting fused feature is ultimately used to generate the final predictions.

Authors of DeepFusion [Li+c] argued that deep fusion of camera and LiDAR features re-
sults in better performance when compared with early and late fusion approaches. In Deep



3.4 Model-Based 3D Occupancy Estimation 25

fusion, high-level features from the camera and LiDAR sensors are fused together to generate
a joint feature map. The authors propose two techniques that can be used to fuse 2D and 3D
features from generic feature extractors. The two techniques deal with common misalign-
ment between camera and LiDAR features when fused together. InverseAug inverses the
geometric-related data augmentation applied to the inputs before fusing the features. While
LearnableAli gn, utilizes a cross-attention mechanism to dynamically correlate the features
from the two modalities. Extracted features are fed into the fusion block. The resulting fused
features can be processed by any 3D object detection head.

Interestingly, two concurrent works named BEVFusion have been proposed in [Liu+c]
and [Lia+b]. Both works propose deep fusion approaches that fuse the information from
the camera and LiDAR sensors in the BEV space. In [Liu+c], the authors used a modified
view-transformer based on LSS [PF] to transform the multi-view image features into the
BEV space while achieving a huge speedup in comparison with the original implementation.
The transformed image features are fused with the LiDAR features, produced by an encoder,
using a BEV encoder-decoder network, after which they are fed into a 3D detection head. In
[Lia+b] on the other hand, the authors transform the multi-view image features into the 3D
space first, before transforming them into the BEV space. They also fuse the image features
with the LiDAR using an attention-based dynamic fusion module. In the fusion module,
channel-attention is used on the concatenated BEV features.

UVTR [Li+a] also fuses the information from the camera and LiDAR modalities, after
converting them into a unified representation. In contrast to BEVFusion [Liu+c] and [Lia+b]
methods, UVTR’s unified representation is in the 3D space, rather than the BEV space. The
multi-view images are first processed by a 2D backbone, then depth is predicted for each
image using a simple depth estimation network. The features, along with the predicted
depth maps, are then transformed into the 3D space using a view transformer. Having the
image features in the 3D space, the LiDAR point cloud is also voxelized. The voxelized
features from both modalities are separately encoded by a voxel encoder and fused together
using a single convolution to create the unified 3D representation. To enhance the features
of each modality, a knowledge-transfer module is utilized to transform knowledge from the
geometry-rich modality to the geometry poor taking advantage of the unified representation.
Finally, the unified features are passed through a 3D detection head based on DETR [Car+].

AutoAlignV2 [Che+b] follows a different approach to fuse the information from the cam-
era and LiDAR sensors. First, the input images are processed by a ResNet lightweight back-
bone [He+], then are passed through a feature pyramid network to obtain the feature maps.
Next, a learnable alignment map is utilized to aggregate relevant information from the im-
ages to enhance the 3D representations of non-empty voxels during the voxelization phase
of the 3D LiDAR inputs. Finally, the improved features are fed into the subsequent 3D de-
tection pipeline, which generates the final bounding box predictions. The proposed feature
alignment map reduces the sampling candidates when compared to other attention-based
methods and dynamically decides the key-point regions on the image plane for each voxel
query feature.

3.4 Model-Based 3D Occupancy Estimation

Before the deep learning era, model-based occupancy grids were used to represent the en-
vironment in a probabilistic manner. While there are plenty of 2D model-based occupancy
estimation approaches, we are particularly interested in 3D model-based methods. The 3D
occupancy grid is a 3D grid that represents the environment as a set of voxels, where each
voxel can be either occupied or free. The occupancy grid is usually represented as a 3D data
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structure, where each element in the structure represents a voxel in the 3D space.
Octomap [Kai+10] is a popular representation of 3D occupancy grids. The approach is

based on an octree data structure, where the surrounding space is represented as a set of
different size voxels in a tree-like structure. The approach explicitly represents surrounding
space as a mixture of occupied, free, and unknown voxels. The probability of a node being
occupied, given the sensor measurements, is estimated using an update formula. This for-
mula depends on the current measurement, a prior probability, and the previous estimate.
The probability of a voxel being occupied is specific to the sensor that is used. The update
rule is based on a uniform prior probability assumption. When using the 3D map, a thresh-
old is applied to determine occupancy. To adapt the map to changes in the environment, a
clamping update policy is proposed, which sets upper and lower bounds on the occupancy
estimate. This policy limits the number of updates needed to change the state of a voxel and
ensures bounded confidence in the map.

GPOctoMap [WE16] and BGKOctoMap [DWE17] are two methods that further build on
Octomap [Kai+10]. GPOctoMap [WE16] combines gaussian process (GP) regression and bi-
nary classification functions to estimate the probability of occupancy for each map cell. The
authors argue that the use of covariance functions captures variations in occupancy more
effectively. Additionally, the authors introduce a new data structure called test-data octrees,
which is more effective than octrees by pruning nodes with the same state. BGKOctoMap
[DWE17] uses Bayesian non-parametric inference and sparse kernel techniques to maintain
a predictive distribution of occupancy states in 3D maps. It allows for exact inference and
updates and provides mean and variance estimations. Additionally, it categorizes cell states
based on occupancy probabilities and variance thresholds. The computational efficiency of
the algorithm is achieved through a sparse kernel and recursive updates, enabling the gener-
ation of maps offline or incrementally.

Another method was proposed in [HUD09], which represents the environment in the
form of stixels based on stereo cameras. Stixels are a set of rectangular sticks, where each
stixel is defined by its 3D position relative to the camera and stands vertically on the ground,
having a certain height. An example of stixel representation is shown in Figure 3.8. Initially,
the method computes the disparity map from the stereo images using dense stereo matching.
An occupancy grid is then generated based on the stereo disparities. This grid represents the
likelihood of occupancy for different regions in the scene. To identify the free space in front of
the obstacles, dynamic programming is used to find an optimal solution while taking spatial
and temporal clues into consideration. To further enhance the accuracy of the free space
boundary, a background subtraction step is performed. After that, the height of the obstacles
is estimated through segmentation between foreground and background disparities. Finally,
stixel extraction is performed to obtain a precise 3D model of dynamic objects in the scene.

Multi-Volume Occupancy Grids (MVOGs) [IWJ10] are another method to represent spatial
occupancy information. MVOGs utilize a 2D grid composed of square cells in the x y-plane
to represent the environment. Each cell contains two lists of volumes: positive volumes
representing obstacles and negative volumes representing free space. Volumes are defined by
their height, occupancy mass, and occupancy density, where the occupancy mass represents
the amount of sensory information observed, while the density represents the information
per unit space. The update of an MVOG using laser data involves three steps: rasterization,
creating new volumes, and applying constraints. Rasterization involves determining which
grid cells are intersected by laser readings. New volumes are then created based on the
height information of the laser rays, and positive and negative volumes are inserted into the
corresponding cell lists. Constraints, such as minimum volume size and no overlap between
volumes, are enforced to ensure the validity of the volume lists. Occupancy probabilities are
calculated based on the density of positive and negative volumes containing a point.
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Figure 3.8: Stixel representation of 3D environment [HUD09].

Figure 3.9: An example of NDT representation compared to a normal occupancy grid [Saa+13a]. (a) The mea-
surement points are placed into grid cells and (b) The distribution parameters are computed for each cell for which
there are measurement points. (c) An example of an occupancy grid using the same measurement points.

Several other approaches [DWE16; GR18; GSRuu] use 3D Hilbert maps to represent
the environment. Hilbert maps model the environment by projecting spatial coordinates
into a high-dimensional feature representation known as a Hilbert space. Linear separation
methods, such as logistic regression classifier, can be then used to classify the occupancy of
the environment.

Normal Distributions Transform (NDT) occupancy maps are also used to represent the
environment, as in [Mar09; Saa+13a; Saa+uu; Saa+13b]. The methods use a probabilistic
approach to represent the environment, in which 3D range points are represented as a set of
Gaussian probability distributions. An example can be seen in Figure 3.9.

3.5 Learning-Based 3D Occupancy Estimation

Learning-based 3D occupancy estimation methods have been proposed in the literature for
different use cases. These use cases are not limited to autonomous driving but also include
object and scene reconstruction and completion. In this section, we will discuss some of the
most relevant methods in the literature.

One of the first learning-based methods for scene completion was proposed in [Son+].
The semantic scene completion network (SSCNet) propose an end-to-end 3D CNN that takes
a single depth image as input and outputs a completed 3D voxelized scene, in the form of
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occupancy and semantic labels for all voxels in the camera view frustum. The input depth
image is first transformed as a 3D volume, which is then fed into a set of 3D convolutional
layers, enabling the network to learn a local geometric representation of the scene. To reduce
the resolution to one-fourth of the original input, convolution layers with stride and pooling
layers are utilized. Following this, a dilation-based 3D context module is employed to capture
higher-level inter-object contextual information. The network then combines the responses
from different scales by concatenating them, and passing them through two additional con-
volution layers to aggregate information. Finally, a voxel-wise softmax layer is used to predict
the final voxel label.

DeepSDF [Par+] models shapes as the zero iso-surface decision boundaries of feed-forward
networks trained to represent Signed Distance Functions (SDFs). An SDF is a continuous
function that provides the distance from a given spatial point to the nearest surface, with its
sign indicating whether the point is inside or outside the surface. In the paper, the authors
suggest directly regressing the continuous SDF using deep neural networks, enabling the pre-
diction of SDF values for query positions and extraction of the zero level-set surfaces. To train
the model, the authors use a dataset of 3D shapes represented as triangle meshes, in which
they compute the SDF values for a set of points through a distance transform for the water-
tight meshes. The resulting network represents the shape’s surface as the zero iso-surface of
the learned SDF.

The work Occupancy Networks [Mes+] was introduced to reason about the occupancy of
3D objects at any given point without being bound by the limitations of voxel representations.
To address this, the authors propose a neural network that assigns an occupancy probability
between 0 and 1 to each point in 3D space, effectively approximating the desired occupancy
function. The authors model the problem as a binary classification network, which focuses
on the decision boundary that implicitly represents the surface of the object. Where objects
can be reconstructed from an observation, such as an image or a point cloud. The network
approximates a function that outputs the probability of a point being occupied, conditioned
on the observation.

Several works [Son+20; Lio+] have extended the occupancy networks framework to im-
prove the reconstruction quality and enable scene reconstruction instead of being limited
to single objects. In Convolutional Occupancy Networks [Son+20], the input point cloud
is first encoded into a 2D or 3D feature grid. These features are additionally processed
using convolutional networks and then decoded into occupancy probabilities using a fully
connected network. Contrary to the original Occupancy Networks, the proposed method ex-
ploits convolutional operations, resulting in a scalable and translationally equivariant implicit
representation.

LMSCNet [RCV] introduced an end-to-end learning-based method, that performs multi-
scale semantic completion and occupancy estimation of a 3D environment based on sparse
point clouds. The method is based on a U-Net-like architecture, which enhances feature and
gradient flow due to the multiscale skip connections. To further reduce the computational
cost, the authors propose using a 2D U-Net instead of 3D, where 2D convolutions are used
along the x y plane while turning the height dimension into a feature dimension. 3D seg-
mentation heads are appended at multiple scales, where the dimensions of the inputs are
expanded again to the 3D space, and fed into 3D convolutional layers.

S3CNet [Che+c] takes another approach to solve the semantic scene completion task
using sparse point clouds. The method involves the construction of two sparse tensors from
the sparse point cloud input, to represent the scene in 2D and 3D. The 2D sparse tensors
represent a set of non-empty pillars approximating the point distribution along the x y plane
(BEV). The tensors are then fed into their respective semantic scene completion networks,
2D S3CNet and 3D S3CNet, to complete the scene with semantic information. To address



3.5 Learning-Based 3D Occupancy Estimation 29

Figure 3.10: An overview of the S3CNet architecture [Che+c].

memory demands on the 3D network caused by exponential sparsity growth, a dynamic
voxel fusion method is proposed, which densifies the reconstructed scene using a predicted
2D semantic BEV map. A sparse tensor spatial propagation network is utilized to refine the
semantic labels in noisy regions of the fused 2D-3D predictions. The complete architecture
can be seen in Figure 3.10

JS3C-Net [Yan+a] is also a semantic scene completion network that operates on point
cloud data. It consists of three main components: Semantic Segmentation, Cascaded Seman-
tic Scene Completion (SSC), and Shape-aware Point-Voxel Interaction (PVI). The Semantic
Segmentation module takes a point cloud as input and uses sparse convolutions to perform
semantic segmentation. It converts the input into voxel grids and applies convolution oper-
ations efficiently by storing only non-empty voxels. The resulting voxel-based output is then
transformed back to point-wise features using nearest-neighbor interpolation. To incorporate
shape priors, the features are further processed through multi-layer perceptions (MLP) to ob-
tain shape embeddings (SE). These shape embeddings are fused with the features from the
SparseConv UNet and the final output is obtained through MLPs. The SSC module aims to
complete the scene by leveraging contextual shape priors from the entire LiDAR sequence.
It takes the semantic probability output from the semantic segmentation component and
predicts the completion results. The module voxelizes the input point cloud to obtain a high-
resolution 3D volume and then uses convolution and pooling layers to reduce complexity.
The PVI module further enhances the completion results by combining the incomplete point
clouds and the complete voxels obtained from the SSC module.

Local-DIFs [Ris+] uses implicit functions to obtain a continuous scene representation that
is not based on voxelization, contrary to other methods. The implicit function maps 3D po-
sitions in a scene to a probability vector representing the semantic class of the position. The
function incorporates both geometric and semantic segmentation of space, including objects
and free space. The overall function is constructed from local functions, each with its own
coordinates of interest and parameterization vector. A grid structure is used to encode spatial
structure in the latent space, and an hourglass convolutional encoder generates feature maps
for the grid. The composition of the global completion function involves multiple condition-
ing vectors and grid resolutions. Bilinear interpolation is used to obtain the final interpolated
classification result based on the query coordinates.

MonoScene [CC] tackles the scene completion task by using a single RGB image as input.
The proposed approach uses a pipeline that combines 2D and 3D UNets with a Features
Line of Sight Projection module (FLoSP) and a 3D Context Relation Prior component (3D
CRP). The FLoSP module lifts multi-scale 2D features to plausible 3D locations, allowing the
3D network to leverage high-level 2D features for 3D disambiguation. It projects 3D voxel
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centroids to 2D and samples corresponding features from the 2D decoder feature map. These
features are then aggregated into a single 3D representation that serves as input to the 3D
UNet. To capture long-range semantic context, the 3D CRP component is inserted between
the 3D encoder and decoder. It learns voxel-to-voxel semantic scene-wise relation maps,
providing the network with a global receptive field and increasing spatio-semantic awareness.
The component considers bilateral voxel-to-voxel relations grouped into free and occupied
categories, disregarding voxel semantics. The outputs of the 3D UNet are fed afterwards to a
completion head, which outputs the final semantic labels in the desired resolution.

In 2022, Tesla Inc. presented its approach for 3D occupancy prediction [Tes22b; Tes22a],
while referencing the work of [Son+20]. Although Tesla has not published any paper, the
approach has gained a lot of attention in the scientific community. Motivated by this, several
datasets [Tia+; FAN23; Ope23] and approaches tackling the 3D occupancy prediction task
have been published the following year, well after the start of this work. In the following, we
will briefly describe the most relevant approaches that were recently published.

TPVFormer [Hua+b] propose a method for 3D occupancy prediction that uses a trans-
former architecture to map 2D image features into a 3D planar representation similar to
[Son+20]. Multi-view input images are first processed using a 2D backbone, the result-
ing feature maps are passed into the TPVFormer module. The TPVFormer consists of TPV
queries, image cross-attention (ICA), and cross-view hybrid attention (CVHA). TPV queries
encode view-specific information from pillar regions, and cross-view hybrid attention allows
interactions between TPV queries to gather contextual information. The TPVFormer also in-
cludes hybrid-cross-attention blocks (HCAB) and hybrid-attention blocks (HAB) for querying
visual information and encoding contextual information, respectively. The planar features
for each query location are aggregated and then passed to a lightweight MLP to predict the
semantic occupancy.

VoxFormer [Li+b] is also a transformer-based approach to learning 3D voxel features
from 2D images for Semantic Scene Completion (SSC). The architecture involves extracting
2D features from RGB images and employing a sparse set of 3D voxel queries to access these
2D features, linking 3D positions to the image stream using camera projection matrices. The
voxel queries are learnable parameters shaped like a 3D grid, designed to query features
within the 3D volume from images using attention mechanisms. The framework consists of
two stages: stage one generates class-agnostic query proposals, and stage two utilizes an
architecture similar to MAE (masked autoencoder) to propagate information to all voxels.
The voxel features are then up-sampled for semantic segmentation to match the desired
resolution.

The pipeline of SurroundOcc [Wei+] starts with a 2D backbone network, such as ResNet-
101, to extract multi-scale features from N cameras and M levels. For each level, a trans-
former is utilized to fuse these multi-camera features with spatial cross-attention. The output
of the 2D-3D spatial attention layer is a 3D volume feature instead of a BEV feature. A 3D
convolution network is applied to upsample and combine the multi-scale volume features.
The occupancy prediction in each level is supervised using dense occupancy ground truth
with a decayed loss weight. Additionally, the authors propose a pipeline to generate dense
occupancy ground truth, leveraging existing 3D detection and 3D semantic segmentation la-
bels without extra human annotations, after arguing that a network supervised by sparse
LiDAR points is unable to predict dense occupancy.

SimpleOccupancy [Gan+] and OccFormer [ZZD] are two other approaches that use trans-
formers their architectures. SimpleOccupancy uses a transformer-based encoder to predict
only the 3D occupancy without semantic labels. The approach uses a shared 2D backbone to
extract image features from multiple views. A parameter-free interpolation is then used to
obtain the initial 3D volume, while an hourglass 3D convolution network with position-prior
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guidance is used to effectively aggregate the 3D feature in the volume space. The resulting
volume space can be used to predict the occupancy using simple binary classification.





Chapter 4

Methodology

In this chapter, the proposed approach is presented in detail. The proposed approach is
composed of two main parts: synthetic data generation and 3D occupancy prediction. In
Section 4.1, the proposed approach for generating synthetic data for the 3D occupancy pre-
diction is presented. In Section 4.2, the LiDAR-based approach is first presented in Subsec-
tion 4.2.1. Then, the multimodal-based approach, where inputs from LiDAR and multi-view
cameras are described. Finally, the different loss functions used for training the proposed
approaches are presented in Subsection 4.2.3. In the last section, Section 4.3, the implemen-
tation details of the proposed approaches as well as the hardware and software used for the
experiments are presented.

4.1 Synthetic Data Generation

After initial research, it was found that there is no publicly available dataset for continuous
3D occupancy prediction. Therefore, as part of this work, we generated a synthetic dataset
for the 3D occupancy prediction task.

The required data should be ideally not bounded to a specific resolution, this way a con-
tinuous representation of the environment can be learned. CARLA simulator, which we briefly
introduced in Section 2.5, provides a flexible way to generate synthetic data using different
sensors. Using the simulator, data for object detection, semantic segmentation, and depth es-
timation can be generated. However, the simulator does not provide a direct way to generate
3D occupancy data.

Initially, different approaches for data generation were considered. One approach of
which, was to spawn various LiDAR sensors around the ego vehicle, and accumulate the point
cloud data over time. Then, the densely accumulated point cloud data can be converted to
water-tight meshes or voxel grids, where occupancy values can be queried. However, this
approach has several drawbacks. First, the accumulated point cloud data over time will con-
tain dynamic objects such as pedestrians and vehicles, which change their position over time.
This would therefore introduce noise to the ground truth data. To mitigate this, probability-
based algorithms can be used to filter out these noisy points. However, this would introduce
additional computations and complexity to the data generation process. In addition to the
dependency on how well these algorithms can filter out the noise, which is not guaranteed.
Another drawback of this approach is that the resolution generated data will be dependent
on the resolution of the voxel grid, and whether all voxel cells have been observed by the
sparse point clouds from the LiDAR sensors. Using meshes would partially solve the reso-
lution problem, however, it would introduce additional computations and errors to the data
generation process for generating the meshes for point clouds. To address the sparsity of the
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point clouds, additional depth cameras can be used, this way the resolution of the generated
data can be increased. However, it does not solve the rest of the aforementioned problems.

Objects in CARLA are rendered using the Unreal Engine. Each object is represented in-
ternally as a high-definition mesh, which is then textured and rendered. The LiDAR sensors
in CARLA uses these meshes to generate the point cloud data along with Unreal Engine’s ray
tracing algorithm. Additionally, each object has a collision mesh which is a simplified ver-
sion of the high-definition mesh. The collision mesh is used for collision detection and other
physical simulations.

The cast_ray method in CARLA provides the ability to cast a ray from an initial to a
final location. The function then detects all geometries intersecting with the ray using the
objects’ collision meshes, and returns a list of coordinates of all intersections, along with their
semantic labels. An example of this is shown in Figure 4.1.

Figure 4.1: An example of the output of cast_ray method in CARLA. In the top image, a spherical point cloud
is sampled around the ego vehicle. The points are used as an initial location for the cast_ray method. The end
location is set to be the center of the vehicle. The bottom image shows the returned points with the Car label in
CARLA. .

The idea of the proposed approach is to use the cast_ray method to generate the ground
truth data for the 3D occupancy prediction task. The approach is simple, for a point to
be labelled as occupied, it has to be within an object’s bounding box, and when a ray is
cast from outside the object’s bounding box, to the query point, it should intersect with the
object’s collision mesh in all 6 faces of the bounding box. A simplified example of this in 2D
is shown in Figure 4.2.

To generate occupancy data for a whole scene, we spawn first an ego vehicle and attach
camera and LiDAR sensors to it. The sensor setup can be flexibly configured using a configu-
ration file. Initially, we spawned the ego vehicle along with a top-mounted LiDAR sensor pro-
viding 360◦ view and a forward-facing camera. However, we extended the setup to include a
second forward-facing camera to provide a stereo view analog to the KITTI dataset [Gei+13]
sensor setup, and a multi-view camera setup similar to the Nuscenes dataset [Cae+]. Dif-
ferent traffic participants are randomly spawned in the scene, where their positions, orienta-
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Figure 4.2: An example of the using cast_ray method in CARLA to determine a point’s occupancy in a simplified
2D scenario. The left image shows that the point is labelled as occupied since the ray intersects with the object’s
boundary from both sides while being within the object’s bounding box. The right image shows that the point is
labelled as unoccupied, since the ray only intersects with the object’s boundary from one side, although being
inside the object’s bounding box.

tions, and velocities are randomly sampled.
For the occupancy points, we uniformly sample n points within a predefined range around

the ego vehicle in 3 directions. This was decided since the authors of the original Occupancy
Networks paper [Mes+] proved that uniformly sampling points are the most adequate to
create a continuous representation of the environment. Using CARLA’s API, we retrieve all
bounding boxes of the objects in the scene. Points that do not lie within any of the bounding
boxes are labelled as unoccupied. For the remaining points, we first assign them to their
corresponding bounding boxes, and then cast a ray from the outside of the bounding box to
the point, perpendicular to each of the 6 faces of the bounding box. If the ray intersects with
the object’s collision mesh from all sides, then the point is labelled as occupied, otherwise, it
is labelled as unoccupied. An overview of this can be seen in Algorithm 1.

Algorithm 1 Check occupancy

def check_occupancy(p, b)
Require Point p, Bounding box b
occupanc y → true
for (i→ 0; i < 6; i→ i + 1)

label led_point → cast_ray(b.face[i], p)
if label led_point is empty

occupanc y → false
break

else
if (label led_point is not in b)

occupanc y → false
break

else
occupanc y → occupanc y&true

return occupanc y

Additionally, to have a more dense representation of small objects, we uniformly sam-
ple m points within each bounding box, and further check their occupancy using the same
approach. The occupancy labels and their coordinates, along with the sensor data and the
bounding boxes are then saved. The process is repeated for k frames, where the ego vehicle is
put in CARLA’s autopilot mode to drive around the scene. This is then repeated for different
drives and in different CARLA Towns.

To generate data for the infrastructure setup, we use a CARLA Town that is built to resem-
ble the Providentia++ test bed in Garching [Krä+; Cre+] provided by the chair of Robotics,
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Artificial Intelligence and Real-time Systems at the Technical University of Munich. We use
the same approach as for the ego vehicle setup, however, we do not spawn an ego vehicle
and sensors are spawned at the predefined locations according to their locations in the test
bed.

4.2 Occupancy Prediction

In this section, we describe the proposed approaches for 3D occupancy prediction using Li-
DAR point clouds as well as camera-LiDAR fusion. In the first subsection, we describe the
LiDAR-based approach, where we use the LiDAR point clouds to predict the 3D occupancy
in a scene based on the original Occupancy Networks paper [Mes+]. The second subsection
describes the multimodal approach, where we use the camera and LiDAR data to predict the
3D occupancy in a scene.

4.2.1 LiDAR-based Occupancy Prediction

The first intuition to develop a LiDAR-based occupancy prediction approach in the context of
autonomous driving is to adopt the original Occupancy Networks approach [Son+20] and
use it as a starting point. An overview of the approach can be seen in Figure 4.3.

In summary, for the model to capture an implicit representation of the environment, 2D
and/or 3D feature grids are constructed from the input. The feature grids are further refined
using convolutional networks. Finally, the features are decoded into occupancy probabilities
using fully connected layers.

Figure 4.3: Overview of the LiDAR-based occupancy prediction approach [Son+20]. Left: The input point cloud
is encoded using a PointNet-based encoder with local pooling and the feature grids are constructed. Right: The
feature grids are refined using UNet hourglass networks. The interpolated features for a given query point are then
decoded into occupancy probabilities using fully connected layers.

To extract features from the input point cloud, the points are encoded using a shallow
PointNet [Qi+a] encoder with local pooling, instead of the originally proposed max pooling.
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Additionally, ResNet blocks are used instead of the originally proposed fully connected layers.
Since the approach is independent of the encoder architecture, it can be swapped with any
point or voxel-based encoder. For this, support for the PointNet++ [Qi+b] encoder is also
implemented. The advantage of using a PointNet++ encoder is that it can generally capture
higher-level features of the input point cloud, due to its hierarchical structure. The output
of the encoder has a dimension of n× d, where n is the number of points in the input point
cloud, and d is the feature dimension that can be set by the user as a hyperparameter.

The implicit representation of the environment is then captured in the form of discrete 2D
and 3D feature grids. The 2D feature grids are constructed by projecting the encoded features
on the canonical x y, xz, and yz planes, based on their respective coordinates. Since the grids
are discrete, features projected on the same cell are aggregated using average pooling. The
3D feature grid is constructed analogously, by projecting the encoded features onto a 3D grid,
where features falling into the same cell are aggregated using average pooling as well. This
results in 2D feature grids of size H ×W × d, and a 3D feature grid of size H ×W × D × d,
where H, W , and D are the height, width, and depth of the grid, respectively. This can be
seen in Figure 4.3 parts a and b.

An efficient representation can be constructed by projecting the encoded features onto
the ground x y plane only instead of all three planes. The volumetric feature grid can also be
used solely, as well as in combination with the 2D feature grids.

The 2D and 3D feature grids are then refined further refined using UNet [RFB] hour-
glass networks, where the combination of up- and down-sampling layers in addition to skip
connections allows the network to capture and integrate both local and global features. Ad-
ditionally, this step allows the creation of a denser feature grid, where empty cells will be
filled with features as a result. The 2D feature grid is refined using a 2D UNet, while the
3D feature grid is processed using a 3D UNet. In the setting where multiple 2D feature grids
are constructed, they are processed using a 2D UNet with shared weights. The translational
equivariant nature of the convolutional operations allows the network to capture the spatial
relationships between the features.

The feature grids and planes are then upscaled to a higher resolution using bilinear in-
terpolation or 2D transpose convolutional layers and trilinear interpolation or 3D transpose
convolutional layers for 2D and 3D feature grids, respectively. This step can be necessary
especially for the 3D feature grid, since the resolution of the grid is bounded by memory
constraints.

Finally, the features are decoded into occupancy probabilities using fully connected layers.
Each query point is projected onto the respective 2D or 3D feature grid, and the feature values
are acquired using bilinear interpolation for 2D grids, and trilinear interpolation for 3D grids.
In the case where multiple feature grids are used, the features are summed up before being
passed to the prediction network. The prediction network consists of multiple linear layers,
followed by multiple ResNet blocks. The output of the last ResNet block is then passed into
a final linear layer, which outputs the occupancy probability for the query point. The process
can be seen in Figure 4.3 parts c, d, and e. This step can be modelled as a function fθ , as
shown in Equation 4.1, where p is the query point, x is the input point cloud, and ψ is the
feature vector representing the input point cloud at the query point p.

Additionally, class labels can be predicted by either using a separate classification branch
that takes the interpolated features as input or by using the same prediction branch where a
class label is directly predicted instead of an occupancy probability.

fθ (p,ψ(p,x))→ [0,1] (4.1)

The model takes a single point cloud as input, in addition to the query points, where both
inputs are in the same coordinate system. To scale the model further, and allow it to process
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multiple point clouds, the point clouds as well as the query points are first transformed into
a common coordinate system as shown in Equation 4.2. The transformation matrix Tw,ego
represents the transformation from the world coordinate system to the ego vehicle coordinate
system, while Tw,l idar1

represents the transformation from the world coordinate system to the
coordinate system of the first LiDAR sensor. pl idar1

is a point cloud from the first LiDAR sensor,
in the LiDAR’s coordinate system.

pego = T−1
w,egoTw,l idar1

pl idar1
(4.2)

After the point clouds are transformed, they are concatenated together and passed to the
model as a single input. The query points are also transformed in the same way. While
this is a naive approach, it allows the model to process multiple point clouds without any
additional overhead. Another approach would be to process each point cloud separately,
after transforming them into the same coordinate system. Separate feature grids and planes
would be constructed for each point cloud, and interpolated features for each query point
would be summed up and passed to the prediction network.

TODO create a figure for the above paragraph

4.2.2 Multimodal-based Occupancy Prediction

Motivated by the comparison between LiDAR and camera sensors in Section ??, we propose a
multimodal-based occupancy prediction model, where the model takes as input both LiDAR
point clouds and multi-view camera images. The model is based upon the UVTR framework
[Li+a] originally proposed for 3D object detection. An overview of the model can be seen in
Figure 4.4.

Figure 4.4: Overview of the UVTR model for 3D object detection [Li+a].

The UVTR model creates a unified representation of the input data using a voxel-based
representation, this eases the fusion of the different modalities. Initially point clouds and
images are processed in separate pipelines: The LiDAR point clouds are first converted into
voxels using a VFE [ZT] layer. The resulting sparse voxels are then processed using a sparse
convolutional encoder based on the valid sparse convolution (VSC) operators [Gv]. The
encoder produces dense feature maps on multiple scales using parallel heads with different
strides. The feature maps are then processed using a Second3D [YYB18] backbone and neck,
where several convolutions are applied at each scale to aggregate spatial cues. These are then
upsampled to the same resolution and summed together to construct the voxel representation
for the LiDAR branch VP ∈ RX×Y×Z×C . The Second3D-based backbone and neck additionally
allow the accumulation of across multiple LiDAR sweeps.

To create the image voxel space, multi-view images are first processed separately using
a single ResNet [He+] backbone followed by a feature pyramid network (FPN) [Lin+] for
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multi-scale context aggregation. A depth distribution is predicted for each camera view fol-
lowing the proposed LSS [PF]. The depth distribution DI(u, v) is a probability distribution
over a set of discrete depth bins D, where u and v are the coordinates in the image plane.
The depth distribution is predicted using a single convolutional layer and is not directly su-
pervised. The operation is modelled in Equation ??, where FI ∈ RH×W×C is the feature map
from the FPN, and DI ∈ RH×W×D is the predicted depth distribution.

DI(u, v) = Softmax (Conv (FI) (u, v)) . (4.3)

These values are then projected into the voxel space VI ∈ RX×Y×Z×C using the view trans-
former, the equation describing the transformation can be seen in Equation 4.4. The point
(u, v, d) in the image plane, (u, v) indicates the coordinate in the image plane and is calcu-
lated from a point (x , y, z) in the ego vehicle frame with the calibration matrix P. Here d
represents the depth value from DI .

VI(x , y, z) = DI(u, v, d)× FI(u, v) (4.4)

Temporal cues can be incorporated into the image voxel space by attaching the relative
time offsets with respect to the initial frame along the channel axis and merging the voxel
grids using a single convolution.

While knowledge transfer and fusion modules are proposed in the original UVTR frame-
work, we do not use them in our model however they can be easily integrated due to the
plug-and-play structure of the model. We instead use the simple proposed fusion module
to construct the unified voxel representation VU ∈ RX×Y×Z×C In this module, the LiDAR and
image voxel grids are processed using three convolutional blocks and are aggregated in both
coplanar and vertical dimensions. This decision was taken to simplify the model and reduce
the number of parameters.

To reap the aforementioned benefits of the hourglass architecture, we further process the
unified voxel representation using a lightweight 3D UNet hourglass network, this is to ensure
that the model is able to capture both local and global context, and to increase the density of
the voxel representation.

Different prediction heads can then be attached after the hourglass network for occupancy
prediction. For the continuous occupancy prediction task, a similar prediction head to the one
used in the LiDAR-based occupancy prediction model is used. In this setting, query points are
projected into the voxel space, and the feature value at the projected point is obtained using
trilinear interpolation with the nearest voxels. The feature value is then processed using a
linear layer and several ResNet blocks. The output of the ResNet blocks is then fed into a
linear layer to predict the occupancy probability at the query point.

The model can also be used for discrete occupancy prediction and scene completion tasks.
In this case, the occupancy and class label are predicted for each voxel cell, after bringing the
voxel representation to the desired output resolution.

The (X , Y , Z) dimensions of the feature voxel grids, as well as the feature dimension,
can be configured based on the specific task. A lightweight version of the model is also
implemented, where Feature grids with reduced (X , Y , Z) dimensions are constructed, and
processed as mentioned before. Higher resolution grids are then obtained through a config-
urable number of upsampling or transpose convolutional operations that lift the resolution to
the desired dimension while reducing memory consumption. This step is performed before
the prediction head.

TODO create multimodal architecture overview



40 4 Methodology

4.2.3 Loss Definition

In this subsection, we define the loss functions used to train the LiDAR-based and multimodal-
based occupancy prediction models. The original LiDAR-based occupancy prediction model is
trained using the binary cross entropy (BCE) loss function between the predicted occupancy
probability ôp and the ground truth occupancy label op at each query point as shown in
Equation 4.5.

LBCE = −
�

op · log
�

ôp

�

+
�

1− op

�

· log
�

1− ôp

��

(4.5)

While this loss function is suitable for the naive binary prediction task, it does not take
the imbalance between the occupied and unoccupied points into account. In a typical urban
environment, the number of unoccupied points is much higher than the number of occupied
points. This imbalance can lead to a model that is biased towards predicting unoccupied
points. To address this issue, we propose using a weighted binary cross entropy loss function,
where the weight of the occupied points is set to be higher than the weight of the unoccupied
points. The weight is calculated for each sample based on the ratio between the number of
occupied points and the number of unoccupied points. The weighted binary cross entropy
loss function is shown in Equation 4.6.

LBCE = −
�

op · log
�

ôp

�

+w ·
�

1− op

�

· log
�

1− ôp

��

, w=
Nunoccupied

Noccupied
(4.6)

For the label classification task, the standard cross entropy loss (CE) function is used as
shown in Equation 4.7.

LCE = −
1
N

N
∑

i=1

[yi log ( ŷi) + (1− yi) log (1− ŷi)] (4.7)

Additionally, author of MonoScene [CC] proposed two additional losses that are used
to train the model. These losses aim to optimize the (P)recision, (R)ecall and (S)pecificity
metrics of the model. These metrics are defined in Equation 4.8.

Pc(p̂, p) = log

∑

i p̂i,c⟦pi = c⟧
∑

i p̂i,c
,

Rc(p̂, p) = log

∑
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i⟦pi = c⟧
,

Sc(p̂, p) = log

∑

i
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1− p̂i,c
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(1− ⟦pi = c⟧)
∑

i (1− ⟦pi = c⟧)
,

(4.8)

In the metrics, Pc and Rc measure the performance of voxels with similar class to c, while
Sc measures the performance of dissimilar voxels (̸= c). The loss function is defined in
Equation 4.9, where pi the ground truth class of voxel i while is p̂i,c its predicted probability
to be of class c

Lscal (p̂, p) = −
1
C

C
∑

c=1

(Pc(p̂, p) + Rc(p̂, p) + Sc(p̂, p)) (4.9)

The semantics loss is defined as Lsem
scal = Lscal ( ŷ , y) while the geometry loss is defined as

Lgeo
scal = Lscal ( ŷgeo , ygeo ). The ground truth geometry and semantic labels are denoted as
{y, ygeo } while their respective predictions are denoted as { ŷ , ŷgeo }.
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4.3 Implementation Details

The proposed approaches are implemented in Python 3.8 with PyTorch 1.13.0 and CUDA
11.6 for hardware acceleration. The implementation is split into different Python packages,
where a package is implemented for the data generation and utility functions, another pack-
age is implemented for the LiDAR-based occupancy prediction model, and a third package is
implemented for the multimodal-based occupancy prediction model in the mmdetection3d
framework [MMD20]. All three packages are implemented within a docker container, to
ensure reproducibility, and to allow for easy deployment. The CARLA simulator is also de-
ployed within a docker container, and it communicates with the data generation package
using CARLA’s Python API.

LiDAR-based occupancy prediction models are trained on a single NVIDIA GeForce RTX
3090 GPU with 24GB of memory, while the multimodal-based occupancy prediction models
are trained on a single NVIDIA RTX 6000 GPU with 48 GB of memory.





Chapter 5

Evaluation and Results

In this chapter, qualitative and quantitative results of the proposed and tested methods from
the previous chapter are presented. In Section 5.1, the datasets and sensor setups used
for training and evaluation are presented. The evaluation metrics used for the quantitative
evaluation are presented in Section 5.2. The results of the proposed methods are presented
in Section 5.3 and Section 5.4 for the LiDAR-based and multimodal methods respectively.

5.1 Datasets

Multiple Datasets were used for training and testing the proposed methods. An objective of
the work is to evaluate the performance of the proposed methods on the onboard as well as
the infrastructure-based sensor setups.

5.1.1 Infrastructure Datasets

Initially, we rely on the synthetic data generated according to the aforementioned proce-
dure in Section 4.1 for training and testing. For the Infrastructure-based sensor setup, we
follow the sensor setup of the A9 dataset [Cre+]’s S110 intersection. We spawn two Li-
DAR sensors namely, the s110_l idar_ouster_south and s110_l idar_ouster_nor th sensors.
Each of the sensors has 64 channels and a range of up to 150 m. Since we are only inter-
ested in the area of the intersection, we filter the point cloud data to only include points
within a rectangular area of 55 m × 55 m from the center of the intersection. Additionally,
two RGB cameras are spawned analog to their counterparts in the real A9 dataset, namely
camera_s110_basler_s1_8 and camera_s110_basler_s2_8. The cameras are configured to
produce images with a resolution of 600 × 800 pixels, with a field of view (FOV) of 72◦.
We spawn an additional camera with a better view of the intersection for debugging and
visualization purposes.

In each frame, we spawn up to 30 vehicles of different types, colors, and sizes and 10
pedestrians. The vehicles are spawned in a random position and orientation within the in-
tersection area. One hundred thousand points are uniformly sampled within the intersection
area and are used to generate the ground truth occupancy data. Each point is assigned a class
label in addition to the occupancy value. Each dataset contains 1200 frames for training and
300 frames for testing, An example of the generated data is shown in Figure 5.1.

The A9 dataset [Cre+] is used to quantitatively evaluate the proposed methods on real
data, where we evaluate on a sequence of 100 continuous frames from the S110 intersection.
An example of the data is shown in Figure ??. walter is going to send me an example
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Figure 5.1: Example of the generated data for the infrastructure-based sensor setup. Top: The ground-filtered
occupancy data is shown in red in the left. The point cloud data from the north and south LiDAR sensors is shown
in blue and red respectively. Objects bounding boxes are shown in green. Bottom: Images from the S1 and S2
cameras.

5.1.2 Onboard Datasets

In the onboard sensor setup, we also rely on the synthetic data generated according to the
aforementioned procedure in Section 4.1 for the training and testing of the LiDAR-based
methods. For the sensor setup, we follow the sensor setups of the KITTI and Nuscenes
datasets [Gei+13; Cae+]. We spawn a top-mounted LiDAR sensor with 64 channels and
a range of up to 150 m, and 360◦ FOV. Additionally, we spawn five RGB cameras with a reso-
lution of 1600 × 900 pixels to create a 360◦ view of the surrounding environment. Similar to
the infrastructure-based sensor setup, we spawn up to 30 vehicles of different types, colors,
and sizes and 10 pedestrians. Also, one hundred thousand points are uniformly sampled
within a grid of 50 m × 50 m around the ego vehicle and are used to generate the ground
truth occupancy data. An example of the generated data is shown in Figure 5.2. While ran-
domly spawning traffic participants in the scene provides a good variety of data, it does not
provide a realistic representation of how the traffic participants are distributed in the real
world. To address this issue, we use the ground truth data to generate additional datasets
with a more realistic distribution of traffic participants. In these datasets, we spawn the traf-
fic participants according to the ground truth bounding boxes of the real A9 dataset [Cre+].
Object’s classes, sizes and colors are also carried over from the real dataset and spawned
accordingly in CARLA. Sensor data are then captured from the generated scenes.

The only existing dataset available at the beginning of this research was from the scene
completion task of the semanticKITTI dataset [Beh+]. However, this dataset is not fully suit-
able for learning an implicit representation of the surrounding environment. In the dataset,
semantic voxel grids are created using segmented point cloud data which is accumulated
over time. The format of the data limits the performance of any 3D Occupancy prediction
approach since it limits them to the resolution of the voxel grid. Additionally, the dataset
is originally tackling LiDAR-based scene completion only. However, camera data from a sin-
gle forward-facing camera can be also used since the dataset is based on the original KITTI
dataset [Gei+13]. Recently though, a new dataset based on the Nuscenes dataset [Cae+]
was released [Ope23]. The dataset provides semantic grids for the 3D occupancy prediction
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Figure 5.2: Example of the generated data for the onboard sensor setup. Top: The generated point cloud data
from the top-mounted LiDAR sensor is shown in purple, ground-filtered occupancy data is shown in red, and extra
sampled points are shown in green. Objects bounding boxes are shown in green. Bottom: The multi-view camera
setup.
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task based on multi-view camera data. LiDAR data can also be used since it is provided in the
original Nuscenes dataset. We, therefore, rely on this dataset for the multimodal methods to
train and test on real-world data, instead of synthetic data. An example of the data is shown
in Figure 5.3.

Figure 5.3: Example of labelled occupancy grids based on the Nuscenes dataset [Cae+; Ope23].

5.2 Evaluation Metrics

To evaluate the performance of the proposed methods, the intersection over union (IoU)
metric is used. The IoU metric is defined as the ratio of the intersection between the predicted
occupancy grid and the ground truth occupancy grid, and the union between the two. The
IoU metric is defined as follows:

IoU=
TP

TP+ FP+ FN
(5.1)

Where TP, FP, and FN are the true positives, false positives, and false negatives respec-
tively, a visualization of which is shown in Figure 5.4. The IoU metric is used to evaluate the
performance of the proposed methods in the case of binary occupancy prediction.

Figure 5.4: Visualization of the meaning of the IoU metric.

For the case of multi-class occupancy prediction, the IoU metric is extended to the multi-
class case. The mean IoU (mIoU) metric is used in this case, which is defined as the mean of
the IoU metric for each class. The mIoU metric is defined as follows:
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mIoU=
1
C

C
∑

i=1

TPi

TPi + FPi + FNi
(5.2)

Where C is the number of classes, and TPi, FPi, and FNi are the true positives, false
positives, and false negatives for class i respectively.

5.3 LiDAR-based Methods

In this section, we present the experiments and results performed on the LiDAR-based ap-
proaches previously explained in Subsection 4.2.1. First we showcase the different mod-
els and model configurations tested, then we present the results of these models on the
infrastructure-based sensor setup as well as the onboard sensor setup.

To compare these models with a model-based approach, we also implement a model-
based approach based on Octomaps [Kai+10]. Since Octomaps splits the space into voxels,
we experiment with different voxel sizes and decide at the end for a voxel size of 0.2 m. While
our learning-based approaches do not include any temporal information as they output the
prediction based on the input from a single frame, it would a fair in comparison if we also use
the same approach for the model-based approach. In the case where a single input is used
for Octomaps, the results are nothing but a voxelized representation of the input. Therefore,
we compare the results of the learning-based approaches with the two versions of Octomaps,
one with a single input and one with a temporal window of 5 frames.

To qualitatively evaluate the results, we use three visualization methods. In the first
method, meshes are constructed from the predicted occupancy values using the marching
cubes algorithm [LC87]. We note that this approach was used in the original occupancy net-
works approach [Mescheder.2019]. In the second method, the predicted occupancy values
are directly visualized as a point cloud, while in the last method the predicted occupancy
values are visualized as a voxel grid with a voxel size of 0.2 m.

5.3.1 Model Configurations

Models based on [Son+20] have two main configurations when trained and tested which
the authors originally proposed. The first of which is what we call ’one-shot’ configuration.
In this setting, the model is trained and tested on the complete scene at once. The second
configuration is the ’crop’. In this setting, the scene is divided into smaller crops, where the
model is trained and tested on each crop separately. The results of the crops are then merged
together in a sliding window fashion. A comparison between the two configurations is shown
in Figure 5.5. For training the cropped model, a point is sampled on the x y-plane and a crop
is generated around this point. The crop size is a hyperparameter that can be tuned.

The feature representations, which the models are based on, can vary as well. As men-
tioned in Subsection 4.2.1, the original approach can use a feature representation based on
planes, grids, or a combination of both. The original implementation did not support the
use of a feature representation based on grids and planes combined for the crop configu-
ration. We therefore implemented this feature representation for the crop configuration as
well. Other parameters such as the resolution of the feature representations and the feature
dimensionality are also tunable parameters, that were tested in the experiments.
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Figure 5.5: Comparison between the ’one-shot’ and ’crop’ configurations. In the one-shot configuration, the
observation point cloud is fed as a whole to the network (top). In the crop configuration, the observation point
cloud is divided into smaller crops, which are fed to the network separately (bottom).

5.3.2 Onboard Sensor Setup

Models with different configurations and feature representations have been trained on the
synthetic dataset mentioned earlier. We train three different models with different feature
representations, but with the same resolutions and feature dimensionality. The first model is
a model based on the ’crop’ configuration with combined planar and grid feature represen-
tations, where the planes had a resolution of 128 × 128 while the grid had a resolution of
32×32×32. Both had a feature dimension of 32. The crop dimensions were set to 5m3 after
some experimentation.

The second model is a model based on the ’one-shot’ configuration with a combined planar
and grid feature representation as well. The resolutions of the planes and grid were kept the
same as the previous model in order to have a fair comparison.

Parallelly, a third model based on the crop setting was trained with a grid feature repre-
sentation only. The grid resolution was chosen to be 32×32×32 with a feature dimension of
32. The crop dimensions were set to 5m3 as well.

All three models were trained were left to train without a maximum number of epochs.
Instead, an early stopping criterion was used based on the validation loss. The training was
stopped when the validation loss did not improve for 3 consecutive epochs.

The training losses of the three models as well as the evaluation score on the validation
set are shown in Figure 5.6.

The evaluation scores of the three models show that the one-shot model achieves the
highest score on the validation set, when compared to the other two models. While this
might look deceiving at first, especially when looking at the training losses, it is important to
note that the loss in the one-shot model is calculated on the whole scene at once, while the
loss in the crop models is calculated at one crop. When divided by the number of crops, the
loss of the one-shot model is then significantly lower than those of the crop models.

It is also noticeable that the crop models have a very fluctuating loss values, which is due
to the fact that the crops are randomly sampled from the scene. This means that the crops
can contain very different information, which can lead to very different loss values. Similar
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Figure 5.6: Training losses (top) and IoU validation scores (bottom) of the three models trained on the onboard
sensor setup. In the loss curves, the number of iterations is shown on the x -axis, while the loss is shown on
the y-axis. In the IoU curves, the number of iterations is shown on the x -axis, while the IoU score is shown on
the y-axis. The first model (crimson) is a model based on the ’crop’ configuration with combined planar and grid
feature representations. The second model (turquoise) is a model based on the ’one-shot’ configuration with a
combined planar and grid feature representation. The third model (blue) is a model based on the crop setting with
a grid feature representation only.
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interpretations can be made for the evaluation scores as well.
When comparing the two crop models, it is also noticeable that the model with the com-

bined feature representation achieves a higher evaluation score and lower loss on average
when compared to the model with the grid feature representation only. This is to be expected
as the combined feature representation contains more information than the grid which has a
significantly lower resolution.

To further analyze the performance of the three models, we evaluate the models on the
test set. Additionally, we evaluate the baseline on the same test set. The results are shown in
Table 5.1.

Model IoU

Baseline X.XXX

Crop (grid) 0.702
Crop (combined) 0.7268
one-shot (combined) 0.249

Table 5.1: IoU scores of the three models trained on the onboard sensor setup, as well as the Octomap baseline.

The results show that the baseline model achieves a very low IoU score on the test set.
This is to be expected as the baseline model is a very simple model, that does not take any
information about the scene into account. A main reason for the low IoU score is that the
baseline model has a very high false negatives rate, since the occupancy values are solely
based on previous observations. This means that it is directly affected by the sparsity of the
point cloud.

The one-shot model also achieves a very low IoU score on the test set, although it achieved
the highest score on the validation set. This is due to the fact that the test set was generated
based on a completely different scenes than the training and validation sets. The training and
validation sets were split randomly from the same scenes, while the test set was generated
from a completely different set of scenes.

To address this issue, an improved data generation pipeline was implemented. The new
pipeline ensures a greater variety in the data by generating frames from different scenes and
Towns in the same dataset.

The crop models achieve a significantly higher IoU score on the test set when compared
to the one-shot model and the baseline. This is to be expected as the crop models have a 5×
higher resolution than the one-shot model.

To have a better perspective on the performance of the different models, we also present
the qualitative results of the three models as well as the baseline. The input point clouds, as
well as images from the multi-view cameras are shown in Figure 5.7. In the shown sample
frame, The ego vehicle is surrounded by vehicles from different types, some oh which are
partially or fully occluded.

The qualitative results of the baseline Octomap are shown in Figure 5.8. In the figure,
we show the performance of the baseline with single and multiple inputs. In addition to the
previously mentioned problem of sparsity the baseline model also has a noticeable problem
with false positives in areas where the occupancy changes rapidly.

The results of the crop and one-shot models with combined feature representation are
shown in Figure 5.9. The performance of the one-shot model does not build an accurate
representation of the scene. The model tend to only predict the occupancy of the ground
plane correctly, while the rest of the scene is mostly predicted as free, apart from some
noticeable false positive artifacts. The crop models achieve a significantly better performance,
as they learn to predict complete shapes of the objects in the scene, although only partially
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Figure 5.7: Input point clouds as well as images from the multi-view cameras in a sample of the test set.

Figure 5.8: Qualitative results of the baseline Octomap with single input point cloud (left), and multiple inputs
(right).

observed in the input data. This can be noticed in particular in the top left side of the rendered
mesh, where the model predicts the full shape of two vehicles, although only observed from
the back side.

5.3.3 Infrastructure-based Sensor Setup

Analogous to the onboard sensor setup, we conduct several experiments on the infrastructure-
based sensor setup. We train the models on synthetic datasets described in Section 4.1 and
Subsection 5.1.1. Specifically, we train the models on the dataset with random objects, while
using the other dataset based on the A9 for testing. This was decided since the dataset with
random objects is more diverse, and contains more variations in the objects’ shapes, types,
and sizes, while the other dataset is composed of sequences that are similar to each other.

We initially train models with the same configurations as the ones used for the onboard
sensor setup. This way we can additionally validate whether the models are able to learn
different representations based on different sensor setups. Two models based on the crop
configuration, and a one-shot model was trained. The first crop model uses a combined
feature representation with a 3D grid and three 2D planes, while the second crop model uses
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Figure 5.9: Qualitative results of the crop (left) and one-shot (right) models with combined feature representation.
To better visualize the results, we construct a mesh from the occupied points and render it using Open3d. The
meshes are colored based on the height of the points.

a 3D grid only. The one-shot model uses a combined feature representation as well. The
feature dimensions is kept the same in the three models at 32 channels. The resolution of the
3D grid is set to 32× 32× 32, while the resolution of the 2D planes is set to 128× 128.

To shorten the training period, we use the already pre-trained weights of the models
trained on the onboard sensor setup as a starting point, this has brought some improvements
on the performance of the models, when compared to their counterparts that were trained
from scratch. Figure 5.10 shows IoU evaluation score on the validation set.

Figure 5.10: The evaluation score on the validation set, the number of iterations is shown on the x -axis, while
the IoU score is shown on the y-axis. The first model (grey) is a model based on the ’crop’ configuration with
combined planar and grid feature representations. The second model based on the crop setting with a grid feature
representation only (blue). The model based on the ’one-shot’ configuration with a combined planar and grid
feature representation (orange).

The validation scores of the models show a comparable performance between the crop
and one-shot models that use a combined feature representation. Surprisingly, the crop
model that uses a grid feature representation only, achieves a significantly lower performance.
This is in contrast to the results of the onboard sensor setup, where the crop model with a
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grid feature representation only, achieved a comparable performance to the crop model with
a combined feature representation.

Model IoU

Baseline X.XXX

Crop (grid) 0.55
Crop (combined) 0.74
one-shot (combined) 0.72

Table 5.2: IoU scores of the three models trained in the infrastructure setup, as well as the Octomap baseline on
the test set.

We further analyze the performance of the models on the test set. The results are shown
in Table 5.2. The crop model with a combined feature representation achieves the highest
performance, with an IoU score of 0.74. The one-shot model with a combined feature repre-
sentation achieves a comparable performance, with an IoU score of 0.72. This is in contrast
to the results of the onboard sensor setup, where the one-shot model achieved a significantly
lower performance. The crop model with a grid feature representation only, achieves a sig-
nificantly lower performance, with an IoU score of 0.55.

Figure 5.11: Input point clouds as well as images from the cameras in a sample of the test set.

Additionally, we qualitatively analyze the results of the crop and one-shot models with a
combined feature representation. A selected frame on the test set is shown in 5.11, where
different object types are present. The results of the baseline Octomap method are shown
in Figure 5.13. The rendered meshes based on the occupancy values of the two models are
shown in Figure 5.12.

The results show that the crop model is able to predict occupancy values accurately, while
inferring the correct objects shapes based on a partial observation. However, some false
positives are present, especially in the areas where there is not any observation from the input
point cloud. While the one-shot achieved a comparable performance during quantitative



54 5 Evaluation and Results

Figure 5.12: Qualitative results of the crop (left) and one-shot (right) models with combined feature representation.
To better visualize the results, we construct a mesh from the occupied points and render it using Open3d. The
meshes are colored based on the height of the points.

evaluation, the results show that the one-shot model mostly predicts the occupancy of the
ground plane, and some other static objects. Areas with dynamic objects are mostly predicted
as free space. The results of the baseline Octomap method are shown in Figure 5.13. The
baseline suffers from the same issues as in the onboard sensor setup, where the results are
sparse and noisy.

Figure 5.13: Qualitative results of the baseline Octomap with single input point cloud (left), and multiple inputs
(right).

In the previously mentioned results, a single input point cloud was used for training and
testing. We further analyze the performance of the methods when multiple input point clouds
are used. Following the approach presented in Subsection 4.2.1, we extend the models to
use multiple input point clouds, by concatenating them together after being transformed to
common coordinate frame. Although this maybe a naive approach, it allows us to study the
impact of density of the input point clouds on the performance of the models.

While the results of the crop model with a combined feature representation are promising,
the model has a high latency. A more in depth analysis of the inference time is presented in
Section 5.3.4. To address this issue, we propose a modified version of the crop model where
only 2D planar representations are used. This allows for a lighter model, and at the same
time allows the exploit the performance of the crop configuration.

A comparison of the results of the crop model with a combined feature representation
and the crop model with a planar feature representation is shown in table 5.3. For these
experiments, a new dataset was generated, where we spawned two LiDAR sensors (south
and north) analogue to their real world counterparts in the Providentia++ test-bed. The
model configurations are same to the ones used in the previous experiments. We additionally
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train the two models on a single input point cloud from the south sensor to provide a better
comparison.

Model Number of point clouds IoU

Crop (grid) 1 XXX
Crop (planar) 1 XXX

Crop (grid) 2 XXX
Crop (planar) 2 XXX

Table 5.3: IoU scores of the three models trained in the infrastructure setup, as well as the Octomap baseline on
the test set.

Finally, we showcase the results of the crop model with combined feature representation
on the test set of the real A9 dataset. While exact quantitative evaluation is not possible
due to the lack of ground truth, we can only qualitatively analyze the results. The results
shown in Figure 5.14 show that the model is able to predict the occupancy of two vehicles
with different shapes, as well as the ground plane, while being trained solely on the synthetic
data. The two vehicles are circled in red and black for more clarity. Objects not observed by
the LiDAR sensor are predicted as free space as the model is not able to infer the occupancy
of the area.

Figure 5.14: Qualitative results of the crop model with combined feature representation on the A9 dataset. On the
left, the image from S1 camera is shown with the input point cloud from the LiDAR sensor projected on it. On the
right, the rendered mesh based on the occupancy values of the model is shown. (Note that the view is from an
opposite perspective to the one in the left image.)

5.3.4 Inference time

Another important aspect of the proposed methods is the inference time. The authors of the
original paper have reported very significant accuracy, but have not reported the inference
time. We therefore measure the inference time of the proposed methods.

The structure of the network has a significant impact on the inference time. The 3D convo-
lutional operations in models that use 3D grid representations are the most computationally
expensive operations. Additionally, the number of parameters and the memory footprint of
the network increases significantly with higher resolution 3D grids.

To analyze the impact of the different modules of the network on the inference time, we
use Pytorch Profiler to create flame graphs. The flame graphs show the time spent in
each module of the network during inference. The flame graphs are shown in Figure 5.15.
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Figure 5.15: Flame graphs showing the time spent in each module of the network during inference. The top graph
shows the flame graph of the crop model with combined feature representation, the middle graph shows the flame
graph of the one-shot model with combined feature representations as well. Finally, the bottom graph shows the
flame graph of the crop model with only planar feature representation.
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The trace of the crop model with the combined feature representation shows that the most
time during inference is spent in the 3D UNet module. However, the trace of the one-shot
model with the combined feature representation does not show a similar behavior. While
this is an unexpected result, we leave this for future work. Interestingly, the trace of the crop
model with the planar features only shows that the most time is spent in the 2D UNet module
instead, which is the module with most parameters and computation footprint.

Model Feature representation shape Inference speed Number of parameters in millions

crop 3× 1282 0.54 s 7.8M
crop 3× 1282 + 323 3.68 s 8.8M
crop 323 2.55 s 1M
one-shot 3× 1282323 0.06 s 8.8M

Table 5.4: Inference speed for crop models and their respective feature representation shape.

The one-shot configuration has the fastest inference between all the methods, since the
network is only evaluated once for the whole scene. The crops models are not only slower
due to the inferring the scene in multiple crops, but also due to the additional overhead of the
pre and post-processing steps needed to crop the input point cloud and to stitch the cropped
predictions back together. Comparing the inference speed of the crop models with different
feature representation shapes, we can see that the inference speed is significantly faster for
the model with only planar representations. This is expected, since the number of parameters
and the computation footprint of the model is significantly smaller.

5.3.5 Further Analysis

The one-shot models were further analyzed to determine the reason behind their poor per-
formance. Initially, we thought that the poor performance was due to the low resolution
of the feature representation. In order to test this hypothesis, we trained a one-shot model
with upsampled feature representation. The model is similar to the one-shot model with
combined feature representation we mentioned earlier. However, the feature representations
are upsampled before being fed into the occupancy prediction head. Two upsampling steps
using convolutional layers bring the resolution of the 2D planar feature representations to
512× 512, while a single upsampling step was used to bring the resolution of the 3D feature
representation to 643.

Model IoU

one-shot (combined) 0.249
one-shot (planes) +upsampling 0.69

Table 5.5: Comparison between one-shot models. The model with the combined feature representation has a
significantly lower performance than the model with the plane feature representation and upsampling.

Table 5.5 shows the results of the one-shot model with the upsampled feature represen-
tation. The model has a significantly higher performance than the one-shot model without
upsampling, but further analysis showed that the boost in the performance is due to the
reduced number of false positive artifacts.

Another experiment was conducted to determine the impact of the crop size on the perfor-
mance of the crop models. Initially, we use a crop size of 10m2 on the x y-plane for the crop
models. This translates to 25 crops for the whole scene. The results are shown in Figure 5.16.
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Figure 5.16: Comparison between crop models with different crop sizes. The performance of the model increases
with more crops

5.4 Multimodal Methods

In this section, we present the experiments conducted to evaluate the proposed multimodal
models based on the approach described in Subsection 4.2.2. In the first subsection, we
present the different models and model configurations developed and used in the experi-
ments. We then present the results of these models and configurations in the on-board sensor
setup.

The absence of model-based approaches that use camera and LiDAR data for occupancy
prediction makes it difficult to compare the performance of the proposed learning-based
methods. Additionally, we were not able to find any publicly available methods that use
camera and LiDAR data for occupancy prediction. Since we decided to train and test the
models on the real-life 3D Occupancy Dataset [Ope23], contrary to the previous experiments,
we decided to use the baseline models offered by the dataset authors as a reference.

The authors of the 3D Occupancy Dataset [Ope23] provide a baseline model based on the
BEVFormer [Li+e] model proposed for multi-view camera 3D object detection. Additionally,
Authors of the BEVDET [Hua+a] camera-based 3D object detection model provide another
baseline model for the 3D Occupancy Dataset. The BEVFormer is able to achieve a mIoU of
23.67% on the multi-class occupancy prediction task, while the BEVDET model achieves a
mIoU of 23.7%. An improved version of the BEVDet which incorporate tempral information
is able to achieve a mIoU of 42.0%.

The ground truth occupancy labels of the 3D Occupancy Dataset are provided in the form
of a 3D semantic grid with a cell size of 0.4m, resulting in a resolution of 200×200×16. It is
therefore necessary to for our proposed models to have the same output resolution. However,
this resolution increases the memory footprint of the models significantly. In order to reduce
the memory propose a model that uses a feature representation with a lower resolution which
can be then upsampled to the desired output resolution.

While the authors of UVTR showed that using ResNet-101 as an image backbone yields
better performance than ResNet-50, we decided to use ResNet-50 as the image backbone for
the proposed models. This is to reduce the memory footprint of the models, and ensure that
the models can be trained on fit on the GPU.

The unified feature representation of the UVTR model provides extra flexibility in choos-
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ing the modalities used for the occupancy prediction. Since both camera and LiDAR are used
to generate their respective feature representations before the fusion module, it is possible to
use only one of the modalities for the occupancy prediction.

Initially, the intuition was that the publicly available trained weights of the UVTR model
would be a good starting point for the training of the proposed models. To validate this,
tested the models on the Nuscenes validation set for the 3D object detection task. The results
of the model were unexpectedly poor, with a mean average percision (mAP) of 0.13. This is
significantly lower than the advertised mAP of 0.65. We therefore decided to train the UVTR
model on the v1.0-mini train set of Nuscenes to validate the performance of the model.
Training the model for 20 epochs on the v1.0-mini set resulted in a mAP of 0.3 on the v1.0-
mini val set. Although the score was still significantly lower than expected, it was considered
sufficient for the purpose of the experiments taking the size difference into account.

Training the models on the complete dataset was challenging, especially in the experi-
mentation phase. Training a model on the v1.0-mini set of Nuscenes takes approximately 8
hours on a single RTX 3090 GPU for 20 epochs. This makes it difficult since the full dataset
is around 34× bigger than the v1.0-mini set.

Apart from the classification head and the loss, the models for binary and multi-class
occupancy prediction are identical. The binary model is trained used the previosly described
weighted binary cross entropy loss. The multi-class model is trained using the cross entropy
loss, in addition to the geo-scale and semantic scales losses described in Subsection 4.2.3.
After several experiments, the following model configurations were decided:

• Voxel size: LiDAR point clouds are voxelized into a voxel grid with a size of 0.2m

• Image backbone: ResNet-50

• Feature channel size: 256

• Feature grid resolution: 100× 100× 8

• Upscaling factor: 2

While testing a new model, it is often advised to first overfit the model on a single frame,
to ensure that the model is able to learn. After experimenting with different hyperparameters
such as loss functions, optimizers, and learning rates. The overfitting experiment for the
binary and multi-class models are shown in Figure 5.17.

Before training on the full dataset, the models were trained on the v1.0-mini set of
Nuscenes for 20 epochs. The training losses and validation scores for the binary and multi-
class models are shown in Figure ??.

While the performance of the models is not as good when compared baseline models,
we can validate that the models are able to learn. Training on the full dataset was started
afterwards. Since training a single model on the full dataset takes around 8 days, we only
showcase the results of the binary model trained on 10 epochs. The training losses and
validation scores for the binary model are shown in Figure ??. The quantitative results shown
in Figure ?? shows a good performance in areas near the ego vehicle, but the performance
drops significantly due to false postives, as the distance from the ego vehicle increases.
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Figure 5.17: Training losses (top) and IoU validation scores (bottom) in the overfitting experiment for the binary
(green) and multi-class (orange) models.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

3D occupancy prediction in autonomous driving is an emerging topic that has gained signif-
icant attention in the last year. Motivated by this, we present two approaches to predict 3D
occupancy in the context of autonomous driving, and showcase their performance, potential
and limitations in different scenarios.

Motivated by the fact that data is a decisive factor in the performance of learning-based
methods, and the lack of publicly available datasets for 3D occupancy prediction in au-
tonomous driving, at the time of starting this thesis, we propose a new data generation
pipeline based on CARLA simulator to generate synthetic data for 3D occupancy prediction.
We show that the proposed pipeline is capable of generating large-scale, high-quality, and
diverse datasets for the task of 3D occupancy prediction in autonomous driving in the infras-
tructure sensor setup, as well as in the on-board sensor setup. The pipeline is also capable
of generating multimodal data, using RGB cameras and LiDAR sensors, while allowing the
extension to other sensors.

In the first approach, we extend an existing 3D occupancy prediction developed originally
for object and indoor scene reconstruction [Son+20] to autonomous driving domain. In
this, we hypothesize that implicit representation of the environment is more suitable for
autonomous driving than explicit representation. The presented approach can be used for
both, the infrastructure sensor setup, as well as the on-board sensor setup. The methods
exhibit competitive performance in both against the baseline models in the respective setups.
We also demonstrate that the methods trained on synthetic data generalize well to real-world
data by qualitatively evaluating the methods trained in CARLA on the real A9 dataset [Cre+].
Additionally, we study the effect feature representations on the performance of the method,
with respect to the choice of feature representation dimension and its resolution.

In the second approach, we propose a novel method for 3D occupancy prediction in the
on-board sensor setup, which can be easily extended to the infrastructure sensor setup. We
repurpose a model originally developed for 3D object detection [Li+a] and modify it to suite
the 3D occupancy prediction task. Although the model did not outperform other state-of-
the-art methods, we argue that the model has indeed achieved promising results, that can be
further improved in the future.
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6.2 Future Work

The work presented in this thesis is a step closer towards understanding the potential of
implicit representations for 3D occupancy prediction in autonomous driving. However, based
on our results, there are still many open questions and limitations that need to be addressed
in the future.

The data generation pipeline presented can be further improved to generate more diverse
scenarios, which can help in improving the generalization of the models. Additionally, the
pipeline can be extended to generate data from other sensors, such as radar, which can be
used along with data from LiDAR and RGB cameras to achieve better performance.

To provide a more insightful analysis of the methods, other metrics such as the F1 score
can be used in addition to the IoU metric, which showed to be biased towards the majority
class.

In the LiDAR-based approach, the method can be improved by using a more powerful
feature extractor, which is more globally aware. The performance of the one-shot model
can be improved by constructing the feature representations in a non-uniform resolution
grid, which can help in capturing more fine-grained on x y plane, and prevent the loss of
information. This, and the use of sparse convolutions can help in improving the performance
of the method, by increasing the resolution of the feature representations without increasing
the computational and memory requirements.

Additionally, to exploit the full potential of the crop models and allow it to work in real-
time, the inference speed can be improved by using batching at inference time.

While the multimodal approach showed promising results, the performance of the method
can be improved by using pre-trained backbones and feature extractors to shorten the re-
quired training time, in combination with hyperparameter tuning. Additionally, different
fusion strategies such as learnable attention mechanisms can be used to increase the perfor-
mance.

Analogous to recently proposed methods for 3D object detection, both models could ben-
efit from making use of temporal information, which can help in cases of occlusion.
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