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Abstract

Over the last years the development of autonomous driving systems has experienced substan-
tial progress [201]. The main reason for this development is the potential to bring numerous
improvements to individuals and society. Some of these improvements are assumed to be in-
creased road safety, reduced traffic congestion, and an improved ecological footprint [141].
In order to achieve these benefits, it is crucial for a large number of people to use autonomous
vehicles. For this to be realized the trust and acceptance for automated vehicles (AVs) must
be strengthened [144]. To gain consumer trust and safety, an autonomous vehicle must be
capable of understanding the environment around it in order to act appropriately. This in-
cludes various tasks including object detection, semantic scene understanding [44], and path
planning [121].

In recent years large successes have been achieved in the field of object detection, specifically
due to the introduction of powerful vision-based object detection algorithms such as You Only
Look Once (YOLO) [152] or Single-Shot Detector (SSD) [125] and the availability of many
annotated datasets to train new perception models [28, 33, 37, 44, 70, 86, 172].

This progress has lead to various successful test-wise deployments of automated vehicles on
urban and highway roads [9, 133]. While showing promising performance, various traffic
incidents caused by automated vehicles [30, 52] have negatively influenced the consumer
trust in the technology [162]. These incidents show that in the future large improvements
must be achieved in the field of safety assessment for automated vehicles.

This work is part of the Providentia+ + project, that strives to contribute to the above men-
tioned areas. The work has a special focus on the task of driving scenario generation and
classification for the safety assessment of automated vehicles. It is guided by the scenario-
based approach (SBA) [148].

One goal of this work is to create a collection of diverse driving scenarios, which are auto-
matically classified and labeled by an algorithm that is capable of detecting various driving
maneuvers and traffic scenes. The labeled driving scenarios are then added to a dataset. The
resulting dataset can be used to train deep learning (DL) algorithms on tasks such as ma-
neuver prediction, scenario detection, and classification. Additionally, the classified driving
scenarios are transferred to the OpenSCENARIO (OSC) [93] format for the usage in various
simulation environments. This enables a simulation-based safety assessment of automated
vehicles in different traffic situations.



Zusammenfassung

In den letzten Jahren hat die Entwicklung von autonomen Fahrsystemen erhebliche Fortschritte
gemacht [34]. Der wesentliche Grund fiir diese Entwicklung ist das Potenzial, zahlreiche
Verbesserungen fiir Individuen und die Gesamtgesellschaft herbeizufiihren. Einige dieser
Verbesserungen sind voraussichtlich die Erh6hung der Verkehrssicherheit, die Verringerung
von Verkehrsstaus und eine Reduzierung des 6kologischen Fulsabdrucks [141].

Um diese Nutzeffekte zu erreichen, ist es entscheidend, dass eine Vielzahl von Menschen
autonome Fahrzeuge nutzt. Damit dies gelingt, muss das Vertrauen und die Akzeptanz
fiir automatisierte Fahrzeuge gestdrkt werden [144]. Um Vertrauen zu gewinnen und die
Sicherheit der Verbraucher zu gewéhrleisten, muss ein autonomes Fahrzeug in der Lage sein,
seine Umgebung zu verstehen und angemessen zu handeln. Dazu gehdren verschiedene
Fahigkeiten wie Objekterkennung, Umgebungsverstdandnis [44] und Bewegungsplanung [121].
In den letzten Jahren konnten grol3e Erfolge auf dem Gebiet der Objekterkennung erzielt wer-
den, insbesondere durch die Einfiihrung leistungsfahiger bildgestiitzter Objekterkennungs-
algorithmen wie You Only Look Once (YOLO) [152] oder Single-Shot Detector (SSD) [125]
und die Verfiigbarkeit zahlreicher annotierter Datensédtze zum Training neuer Perzeptions-
modelle [28, 33, 37, 44, 70, 86, 172].

Diese Entwicklungen haben zu mehreren erfolgreichen Tests von automatisierten Fahrzeu-
gen auf urbanen Stralen und Autobahnen gefiihrt [9, 133]. Obwohl die Leistungen vielver-
sprechend sind, haben verschiedene von automatisierten Fahrzeugen verursachte Verkehrsun-
falle [30, 52] das Vertrauen der Verbraucher in diese Technologie negativ beeinflusst [162].
Diese Vorfille zeigen, dass in Zukunft grol3e Verbesserungen im Bereich der Sicherheitsbew-
ertung fiir automatisierte Fahrzeuge erzielt werden miissen.

Diese Arbeit ist Teil des Providentia++ Projekts, das auf eine praktische Umsetzung der
genannten Forschungsbereiche abzielt. Diese Arbeit hat einen besonderen Fokus auf die
Aufgabe der Fahrszenariengenerierung und -klassifizierung fiir die Sicherheitsbewertung von
automatisierten Fahrzeugen. Sie orientiert sich am scenario-based approach (SBA) [148].
Ziel dieser Arbeit ist es, eine Sammlung verschiedener Fahrszenarien zu erstellen, die von
einem Algorithmus automatisch klassifiziert und beschriftet werden, der in der Lage ist, ver-
schiedene Fahrmandéver und Verkehrsszenen zu erkennen. Die markierten Fahrszenarien wer-
den dann zu einem Datensatz hinzugefiigt. Der resultierende Datensatz kann zum Trainieren
von Deep-Learning-Algorithmen fiir Aufgaben wie Manévervorhersage, Szenarienerkennung
und -klassifizierung verwendet werden. Zusétzlich werden die klassifizierten Fahrszenarien
in das OpenSCENARIO (OSC) [93] Format fiir die Verwendung in verschiedenen Simulation-
sumgebungen iibertragen. Dies ermoglicht eine simulationsbasierte Sicherheitsbewertung
von automatisierten Fahrzeugen in unterschiedlichen Verkehrssituationen.
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Chapter 1

Introduction

1.1 Providentia++

This thesis is written in cooperation with Providentia+ 4+, which is a project in the field of
autonomous driving. Its aim is to improve traffic flow and road safety by overcoming the
limitations of sensor systems that are solely located on-board autonomous vehicles. The per-
ception of autonomous vehicles is enlarged by adding a sensor-system composed of cameras,
Light Detection and Ranging (LiDAR) sensors, and Radio Detection and Ranging (Radar)
sensors to the road infrastructure. The system is used to detect and track traffic partici-
pants (TPs), located on a specific road segment. It can then pass information concerning the
current traffic situation on to other vehicles close by via a 5G connection. With this informa-
tion, the control unit of the receiving vehicles can choose more efficient routes and can be
warned about dangerous situations early on [131].

Providentia++ was initiated in 2017 and since the beginning of 2020 is lead by the
Chair of Robotics, Artificial Intelligence and Real-time Systems at the Technical University of
Munich’s Department of Informatics. It is funded by the Federal Ministry of Transport and
Digital Infrastructure (BMVI). Additional cooperative partners supporting the project are
Fortiss, Valeo, Intel, Cognition Factory, Elektrobit, Huawei, 3D Mapping Solutions, brighter
Al, Siemens, and Volkswagen.

1.2 Problem Statement

In order to make intelligent decisions an autonomous vehicle must be able to perceive and
understand its surrounding environment. This means in a first step it must be able to detect
and localize surrounding objects and obstacles. Additionally, in order to plan appropriate
maneuvers or react to dangerous situations it is highly important to understand the interac-
tions between the detected objects and create a comprehensive understanding of the traffic
situation the autonomous vehicle is approaching [121].

To train Deep Learning algorithms for the above-mentioned tasks, a dataset including
labels to train and validate the algorithms is necessary. Depending on the specific task dif-
ferent types of data and labels are necessary. The main tasks in the domain of automated
driving (AD) and the corresponding relevant data and labels are listed in Table 1.1 [12, 44,
91, 187, 203].



Task
Object Detection

Data Type
Images, LiDAR point cloud,
radar

1 Introduction

Label Type
Bounding Box (2D/3D loca-
tion)

Trajectory Prediction

Trajectory data

Coordinate points with cor-

responding time stamps
Trajectories labeled with
maneuver types

Scene Understanding Trajectory data, images

Table 1.1: Overview of data type and labels necessary for different deep learning tasks related to autonomous
driving (sources: [12, 44, 91, 187, 203]).

Two main challenges that arise when creating such a dataset are data coverage and cor-
rect data labeling. In the field of autonomous driving, these two challenges translate into
very concrete problem definitions. A sufficient data coverage means to have a large enough
pool of driving scenarios. These must firstly cover all driving situations that can occur and
secondly be labeled correctly in order to be capable of training perception and navigation
algorithms appropriately. Both of these problems are addressed and solved in this work.

Additionally, algorithms used in AVs must undergo a thorough safety assessment before
a public deployment is possible. A safe operation however, can only be guaranteed if the
AVs proper functionality is proven in all driving situations that can possibly occur in the
real-world. Since this is practically infeasible [195], simulation approaches using driving
scenarios are a common practice for the safety assessment of AVs [15]. In the literature this
approach is often referred to as the SBA [23, 25, 56, 139, 148, 154, 155]. The main challenge
for this approach is determining the relevant test cases and obtaining driving scenarios that
cover all variations of these test cases [80]. In summary three main research questions arise
when creating an implementation of the scenario-based approach.

1. “Which driving scenarios are relevant for the assessment of automated vehicles?”

2. “How can an extensive collection of driving scenarios be created?”

3. “How can driving scenarios be carried out to assess the safety of automated vehicles?”

These questions are addressed and solved by the contributions made in this work. A
detailed overview of the contributions is given in the following section.

1.3 Contributions

This work focuses on the creation of a scenario dataset for the Providentia+ + test stretch on
which Deep Learning-based perception algorithms in the field of autonomous driving can be
trained and validated for various tasks such as object detection, trajectory prediction, traffic
scene understanding, and more.

To create labels for training such algorithms, an automatic recognition of specific vehicle
maneuvers in traffic scenarios is necessary. The goal is to create a properly labeled scenario
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dataset in an automated fashion. To achieve this, an algorithm is needed that can automati-
cally detect and annotate vehicle maneuvers (turn left, slow down, accident, etc.) that occur
based on recorded scenarios. Also, the scenario as a whole must be classified.

The work consists of six main contributions for creating, labeling, classifying, and visual-
izing driving scenarios. The contributions are visualized in Figure 1.1.

Scenario Catalog

Exhaustive List of Driving Scenario Types Relevant for Autonomous Driving Applications

Scenario Generation Framework
Framework for Simplifying the Process of Synthetic Driving Scenario Generation while Maintaining a High Degree of
Customization Possibilities
Scenario Extraction Pipeline

Pipeline for Automatic Extraction of Driving Scenarios from the Data Recordings of the Providentia++ Test Stretch

Scenario Augmentation Framework

Augmentation Framework for Creating Variations of Driving Scenarios by Stochastically Varying the Actor Trajectories
and Other Parameters Describing the Scenario

Maneuver Detection / Scenario Mining

Labeling Framework for Automated Pre Labeling of Driving Maneuvers
Detection of Driving Maneuvers Carried Out by the Actors in a Scenario

Classification of Entire Driving Scenarios into Various Categories

Scenario Simulation / Visualization

File Writer that Automatically Creates OpenScenario Files from Existing Driving Scenarios. These Files can then be used in
Simulators and Visualization Tools

Figure 1.1: Overview of the main contributions made in this work (source: own illustration).

1. Scenario Catalog

In the first stage various sources are analyzed in order to find traffic scenario types
that are safety critical and relevant for the development of automated driving ap-
plications. These sources include documents from government agencies such as the
National Highway Traffic Safety Agency (NHTSA) [143], European New Car Assess-
ment Program (Euro-NCAP) [57], and United Nations Economic Commission for Eu-
rope (UNECE) [142]. The goal of this analysis is to find a good mix of common driv-
ing patterns and those situations that especially frequently lead to accidents. These
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scenario types are then added to a shortlist from which a catalog specifically for the
Providentia+ + test stretch is created.

After the shortlist is finalized, it is determined which of the scenario types occur on the
Providentia+ + test stretch. This is an important step as many scenario types, such as
entering a toll station or exiting a parking lot, cannot occur on the test stretch, based on
the fact that they do not exist on the test stretch. Therefore, they can be ignored. Once
the relevant scenario types for the Providentia+ + test stretch are determined, they are
added to the catalog, which provides an extensive scenario overview.

. Scenario Generation Framework

The "Scenario Generation Framework" additionally supports the artificial creation of
driving scenarios that cannot be extracted from the Providentia++ data recordings
because they have not occurred on the test stretch yet. This is usually the case for rare
events such as accidents or vehicle failures. Thanks to the generation framework, new
driving scenarios can be created very efficiently and exactly to the users’ needs.

. Scenario Extraction Pipeline

The data recordings from the Providentia+ + test stretch contain information about all
detected vehicles and objects at each point in time. In order to form a complete driv-
ing scenario from the raw data recordings, a data extraction pipeline is created. The
pipeline is referred to as the "Scenario Extraction Pipeline" in this work. It utilizes the
sensor recordings to characterize the actors and their trajectories, as well as the envi-
ronment conditions. This information is then transferred into a format that formally
describes concrete driving scenarios.

. Scenario Augmentation Framework

In scenarios extracted from real-world data, some driving situations occur more often
than others. This is normal since situations like accidents are much less likely to hap-
pen compared to lane changes, for example. To increase the number of data samples
from underrepresented scenario types, the "Scenario Augmentation Framework" is in-
troduced. This framework allows for a simple yet very effective variation of driving
scenarios to increase the number of data samples. The variations are created using
a stochastic sampling based approach. The user can control the stochastic sampling
behavior by defining the sampling intervals. These can either follow a Gaussian distri-
bution or a randomly sampled number inside a sampling range. In the first case the
mean and standard deviation of the Gaussian distribution are provided as inputs by the
user. In the latter case the user defines the beginning and end of the sampling interval.
For example if the user wants to sample values between 0 and 10 the input parameters
for the sampling range are 0 marking the beginning and 10 marking the end of the
interval.

. Maneuver Detection / Scenario Mining

In the past, the driving scenario types that are included in the data recordings from the
test stretch have been determined manually. This is done by re-watching each of the
recordings and manually classifying the scenario type. However, to reduce the amount
of manual labor the process of classifying driving scenarios is automated. Therefore,
in this work a maneuver detection and scenario mining framework is created. It is
composed of the following two components:
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(a) Automatic Labeling Framework
Labeling framework for automated labeling of driving maneuvers.

(b) Maneuver Detector
Detection of driving maneuvers carried out by the actors in a driving scenario.

6. Scenario Statistics

For each driving scenario statistics are calculated containing information about the
number of occurrences of each driving maneuver type as well as extreme values. These
include the top speed and the maximum number of lane changes committed by a sin-
gle vehicle. Based on the calculated statistics a classification of driving scenarios into
various categories is possible.

7. Scenario Simulation / Visualization

The OpenSCENARIO standard is a file format for describing driving scenarios. Such files
can be read by many simulation and visualization tools for testing purposes. To make
use of these tools, a "Scenario Writer" is created, that parses extracted or synthetically
generated driving scenarios into the OpenSCENARIO format.






Chapter 2

Theoretical Foundations

This work contains two main accomplishments. One is the creation of a labeled dataset for
training Deep Learning algorithms for the Providentia+ + test stretch. The second accom-
plishment is the creation of a driving scenario database for the simulation-based assessment
of automated vehicles. The basic steps necessary to achieve these two goals and ensure a
high quality of the data are outlined in the introduction of this work. This section describes
the theoretical foundations necessary to fully understand each of the phases.

2.1 Open Source Datasets

In the area of autonomous driving, many complex tasks such as 3D map construction, object
detection, and others are solved by trained Deep Learning models. However, in order to train
these models large amounts of training data are necessary [86]. Since it is often tedious to
extract data from sensor recordings to form a dataset, it is a common practice within the
research community to share data. Such publicly available datasets fall into the category
of open source datasets. The goal of making datasets publicly available is to help others
researching in the same domain to overcome the difficulties of acquiring enough training
data and to focus more on solving their research challenges [146].

2.2 Labeling

For an algorithm to learn from data and to be able to make predictions into the future, it
needs to verify that the way it is interpreting the data is correct. This is comparable to a stu-
dent, that is trying to solve mathematical problems and comparing his result to the solution
given by the professor. If the result and solution match, the student has verified that he or
she has correctly learned how the specific problem is solved [11].

In the case of machine learning (ML) models, in the training phase the model parameters
are adjusted accordingly so that the input data is transformed to generate the correct output.
To ensure the model parameters are adjusted appropriately by the optimization algorithm,
it must be known what the correct output is for every input sample in the training data [129].

These outputs corresponding to input data must be generated in a process called “label-
ing”. In many famous datasets, including MNIST [42] for digit recognition and CIFAR-10
[110] for image recognition, the labels are generated manually by humans. This is the
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case for most datasets for Machine Learning. However, there are also automated or semi-
automated approaches that reduce the human labor necessary for labeling data [129].

2.3 Data Mining

The term data mining (DM) describes the analysis of usually large data collections with the
help of computer-aided methods. This is a partly iterative process, which aims to identify
correlations within the data. These patterns must meet certain criteria in order to be evalu-
ated as meaningful. The criteria include that the patterns are valid over a large part of the
data and that they describe previously unknown and potentially useful relationships within
the dataset. The relationships are represented using logical or mathematical models. The
discovered patterns are subsequently to be recognized in new unknown data as well. Fur-
thermore, there is also the possibility to automatically detect new patterns, for example to
derive predictions for the future [79].

2.4 Scenario Mining

Scenario mining is generally the same as Data Mining, only with a focus on extracting certain
scenario types from recorded sensor data. The extracted information is used to automatically
categorize data recordings of driving scenarios into different categories. Typical categories
are lane change, accident, or cut-in. Scenario mining can also include the augmentation of
existing scenarios or the artificial creation of new scenarios [69].

The development of autonomous driving systems relies on algorithms that perform com-
plex tasks in highly diverse driving scenarios. To ensure the functionality of these systems, it
is crucial to train and test them appropriately. For both the training and testing phase, it is
important to have realistic data so that the system operates appropriately when deployed in
the real world [106].

To ensure this, the algorithms that solve the various tasks associated with autonomous
driving must be trained with an exhaustive list of traffic scenarios that commonly occur and
traffic scenarios that could potentially occur in the future [80].

In practice, many scenario types such as lane changes or right turns at a crossing, are
more common than for example an accident. Hence, a natural class imbalance can occur.
Since this often is undesirable when training Deep Learning algorithms [24], it is common to
mitigate this problem by augmenting or artificially creating underrepresented scenario types
[38, 82].

2.5 Standardized Process Models for Data Mining

Unlike commonly assumed, data mining projects usually cannot be solved by a standardized
approach. Rather, they are a creative process that requires interdisciplinary skills and knowl-
edge. The success of the projects depends very much on the individual circumstances and
peculiarities. Since these can be very different from project to project, it is very difficult to
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define a standardized process [196].

However, some basic procedures can be found in all data mining projects. In order to
increase the chances of success and to make the overall process more transparent, different
procedure models have been developed, which represent all basic work steps and bring them
into the overall context. On the one hand, this should significantly increase the chances of
success, on the other hand, it also provides a better overview of the planned work steps for
outsiders, in order to be able to estimate and understand the costs or duration of a project
more accurately, for example [196].

Widely used process models are the Cross Industry Standard Process for Data Mining
(CRISP-DM) [196] and the Knowledge Discovery in Databases (KDD)[62] [21]. In the section
related work, the details including benefits and drawbacks of both process models for Data
Mining are examined and explained.

2.6 Data Pre-Processing

In general, data is of high quality if the associated data mining goals can be met. Quality is
determined by factors such as accuracy, completeness, credibility and the ability to interpret
the data. In most real-world applications, the factors that determine quality are not fully
developed, which is why pre-processing is necessary. [78] Data pre-processing represents
the first data processing step of a data mining project after the collection of all data to be
analyzed is completed. This process step is sometimes one of the most important, as it
has a direct impact on the success of a project. For example, errors in the data during an
analysis can lead to incorrect conclusions being drawn. Kotsiantis et al. [107] divide data
pre-processing into the following steps, which can be processed one after the other and are
explained in detail in this chapter:

1. Outlier Detection
. Handling of Missing or Faulty Data

. Discretization

2
3
4. Normalization
5. Feature Selection
6

. Feature Construction

1. Outlier Detection

Outliers are data values that lie outside the range of possibility or can be classified as
extremely improbable, for example, because they lie outside a certain probability dis-
tribution of the total data points. There are different categories into which outliers can
be classified according to their type, as can be seen in Table 2.1.

2. Handling of Missing or Faulty Data

Incomplete datasets are very common in practice and can hardly be avoided. This is
mainly due to the methods of data generation. First of all, it is important to understand
why the missing data occurred in order to be able to initiate appropriate corrective
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Outlier Type Example
Cardinality Gender > 2 induces prob-

max, min All values should lie in-
side minimum and maxi-
mum value range

Variance, Deviation Variance and deviation of
statistical values should not
be higher than a certain
threshold

Spelling errors Feature values Sorting on values often

brings misspelled values
next to correct values

Table 2.1: Overview of data type and labels necessary for different deep learning tasks related to autonomous
driving (source: [107]).

measures. For example, data may be (1.) forgotten or lost during generation, (2.) not
applied to a specific instance or non-existent for that instance, or (3.) contain a so-
called "don’t care" value due to irrelevance. [107]

Depending on the type of imperfections in the dataset, it is possible to decide between
several methods for correction. Typical methods are:

€))

(b)

()

Removing all Instances with One or More Missing Values

In this process all instances of the dataset are removed, which have at least one
missing value. This leads to a size reduction of the whole dataset. Advantages
of this method are that only complete data are used and therefore no distortion
of the results due to wrongly assumed substitute values for the missing parts can
occur during the later model building. A disadvantage of this method is that with
datasets with relatively few missing parts, which are however very evenly dis-
tributed over all instances, it can come to a substantial reduction of the data. In
the worst case, too little data remains to perform further data mining steps [67].

Most Common Value

Another method is to replace all missing values with the same-, most frequently
occurring value within the same feature. This method has the advantage of pre-
serving the size of the dataset, but it can also lead to a falsification of the results in
later data analysis due to the uncertainty regarding the correctness of the replaced
values. Nevertheless, in many applications, this method leads to an improvement
in model performance [126].

Concept, Most Common Value

In this method the handling of the missing values runs similarly to the "most com-
mon value" method. The difference is that reference is also made to the class
in which the instance is located. Thus the dataset can be divided for example
into several classes, which all contain a certain number of instances. A missing
instance is now replaced with the most frequently occurring value of the same
feature within the same class. Table 2.2 shows an example of the procedure. The
goal of this approach, compared to the "most common value" method, is to select
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the replacement values in such a way that they are better adapted to the respec-
tive class in which the instance is located, and a possible distortion of the data is
further reduced [107].

Instance Feature value

m Class 1 m Class 2

Table 2.2: Example for "concept, most common value" (source: own illustration).

The dataset shown in Table 2.2 can be divided into two classes. According to the
"concept, most common value" approach, the missing value of instance 8 would
be overwritten with a "2", since the "2" represents the most common value within
the same class. Compared to this, under the "most common value" system, the
missing value would be replaced with a "1" since it is the most frequent across the
entire dataset.

(d) Substitution by Average Value
To minimize the influence of a missing value on later analysis results, it is possible
to replace the missing value with the average of all values of the same feature.
This method turns out to improve the quality of the dataset in many cases [67].
As long as the values of the affected characteristic are subject to a normal distri-
bution, the substituted average values have little influence on the results of a later
data analysis [67].

(e) Regression or Classification

When dealing with error locations by regression or classification, a machine learn-
ing model for regression or classification can be used, depending on the applica-
tion. The model is trained with the complete part of the dataset, whereby the
feature whose errors are to be corrected in the incomplete part of the dataset is
treated as an output. Subsequently, the trained model is applied to the incomplete
part of the dataset. Based on all complete features, the values of the feature with
missing values are determined. [78]

(O Hot-Deck Method
In the hot-deck method, the most similar complete instance is determined for an
instance with a missing value. The missing value in the incomplete instance is
replaced with the value of the complete instance. This procedure is performed for
all instances with missing values. [107]
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(g) Treat Missing Values as Special Values
Another approach is the replacement of missing values with an uniform special
value. The special values stand out from the "normal" values and can also be used
as information. [107]

3. Discretization

The features in a dataset can be either categorical or continuous. The term "continu-
ous" refers to features that contain numerical values or generally have a linearly ordered
range of values [61].

In information theory, the term discretization refers to the conversion of values from
a continuous set of values into values from a discrete set of values. The goal of such
a process is to reduce the total number of possible values. This significantly increases
the efficiency of processing algorithms, since fewer computational operations need to
be performed [61]. This can be done using supervised and unsupervised algorithms.
The supervised algorithms test the results of the discretization using a machine learning
model. If the results are worse, the discretization is adjusted until this is no longer the
case. In unsupervised discretization, it is common to determine the upper and lower
bounds of the set of values and divide this range into k intervals of equal size. Each
continuous value is assigned the value of the interval in which it is located [61].

Discretization algorithms can generally be divided into two categories, the "supervised"
and "unsupervised" algorithms. The "unsupervised" algorithms do not make any refer-
ences to the labels, while the "supervised" algorithms do [61].

The simplest type of discretization is the unsupervised method "equal size discretiza-
tion". Here, the maximum and the minimum of a feature are determined and the span
between them is divided into k intervals. Each interval has its own value and all con-
tinuous values within this interval are assigned this value. The operation of this form
of discretization is illustrated in the example Table 2.3 [61].

Set of continuous Number of inter- Partitioning of in- Value assignment

values vals tervals

0 10 [0;1] —Interval 1 0—1
0.263 [1;2] —Interval 2 0.263 —1
0.36 [2;3] —Interval 3 0.36 —1
1.1 [3;4] —Interval 4 1.1 =2
1.9 [4;5] —Interval 5 1.9 -2
2.464 [5;6] —Interval 6 2.464 —3
4.2 [6;7] —Interval 7 4.2 =5
5.234 [7;8] —Interval 8 5.234 —6
7.452 [8;9] —Interval 9 7.452 —8
8.1 [9;10] —Interval 10 | 8.1 —9
9.32 9.32 —10
9.7 9.7 —10
10 10 —»10

Table 2.3: Example of the operation of the "equal size discretization" method (source: own illustration).
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Many discretization methods are divided into top-down or bottom-up methods. The
top-down methods start with a number of intervals chosen at the beginning, which are
further divided with each iteration until no further improvement of the results occurs.
In contrast, in the bottom-up method, adjacent intervals are gradually combined until
the results degrade. Some of these methods require user parameters to influence the
behavior of the discretization criterion or to set a threshold for the stopping criterion

[8].

4. Normalization

Numerous algorithms - especially in the field of machine learning - can only process in-
put variables and draw meaningful results from them if they are in a certain form. This
can imply, for example, that the input variables must lie in an interval between 0 and 1.
Since in practice data is recorded from a wide variety of sources, the data values rarely
lie in the interval required for the algorithm. Nevertheless, in order for information to
be extracted from the data, the data must be transformed into the required form. This
transformation step is called "normalization". Normalization is used to make data of
any form compatible for a machine learning model [8].

There are a few different forms of normalizing data. Two commonly used methods are
"min-max" and "z-score" normalization:

min-max normalization:

/ __ v—min
max—min

z-score normalization:

v = y—mean
~ standard deviation

Where v represents the input value and v’ represents the normalized value [107].

5. Feature Selection

Feature selection is the process of selecting the most relevant features from all the fea-
tures available in the data. The goal of feature selection is to identify the features that
contain information relevant for the task to be solved and to reduce the originally col-
lected data to the features that really contribute to the solution of the problem [50].

Feature selection represents a process step in which the most relevant features are to
be recognized from all features occurring in the data. The resulting dimensionality re-
duction of the dataset allows processing algorithms to work faster and more effectively.
Removing irrelevant features also improves the results of interpretation models. [50].

Features are divided into three different classes by Kotsiantis et al. [107]:

(a) Relevant: These features influence the output variable or contain information that
allows to draw a conclusion about the output. In addition, the information con-
tained in relevant features is not contained in the rest of the features.
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(b) Irrelevant: Irrelevant characteristics do not contain any information regarding the
outcome variable and thus have no influence on it. The values of irrelevant char-
acteristics are random with respect to the output variable.

(c) Redundant: A feature is redundant if there is another feature that contains all
the information of the first feature, or if all the remaining features contain this
information. Redundant features are not needed for some applications.

Feature selection algorithms generally consist of two components. One component
tries to find the features which together in a new subset lead to the best results in the
later model building. The second component consists of an evaluation algorithm that
provides a measure of how well the previously assembled subset is suited for model
building. The process of feature selection is characterized that many different combi-
nations of features are gradually assembled into separate subsets. Immediately after
its generation, each subset is evaluated and given a score. The subset with the highest
score is used for further model building and the features in it are thus "selected". To
prevent the selection algorithm from running for an extremely long time or even in-
finitely, a termination criterion is required. This can be, for example, a fixed maximum
number of iterations [50].

6. Feature Construction

The features recorded in the data are not always suited for a model optimally. For
example, it may be that the recorded features contain the necessary information, but
in a form that does not allow a model to make a statement. In such a case it is helpful
to derive new features from the original features, which make important information
accessible for a model. The newly generated features can thus lead to an increase in the
prediction accuracy of a classification model. The generation of new features is called
feature construction [107].

2.7 Traffic Scene Recognition

Traffic scene recognition is an important task for autonomous vehicles in order to make sense
of the perceived environment and predict the behavior of surrounding traffic participants.
Understanding a scene and the intentions of the surrounding actors helps the ego vehicle
make smarter decisions when planning its future motion [39]. The aim of traffic scene recog-
nition is to close the gap between the current performance of path planning algorithms and
the visual reasoning capability of human beings [198].

Traffic scene recognition, or more general scene recognition, often includes various tasks
like object recognition and object localization, semantic segmentation, and mapping [120].
In a first step objects and their location are detected. This usually contains the most in-
formation regarding a scene, since the main actors and their position are determined. The
segmentation step separates the scene into meaningful regions [39]. This can contain addi-
tional information as, for example, an actor may behave differently when in the kitchen as
opposed to in the pool. Similarly, mapping the scene can add additional information [120].
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2.8 High Definition Maps

In recent years one of the foundations for many successful deployments of autonomous ve-
hicle in real-world situations is the use of high-definition (HD) maps [90]. Compared to
traditional digital maps, HD maps not only have knowledge of the road network, but also
incorporate highly detailed information about the environment, which can be split into mul-
tiple levels of detail:

1. Road model
2. Lane model

3. Localization model

The road model, like traditional digital maps, includes information about the road net-
work. This is used for planning general routes analogously to a navigation system. The road
model of an HD map additionally contains information on which traffic rules apply to each
lane. These can be static rules, like no lane change allowed or no left turn, but also dynamic
rules coming from a traffic light [124]. Figure 2.1 (left) illustrates a typical road model.

To plan routes in high detail - for example which lane is used or when a lane change
should be made - the road network is not sufficient. In some cases, when driving in a lane,
it may be beneficial for the vehicle to take a route that does not follow the center line of
the lane. Reasons for this can be that an obstacle must be avoided or that a trajectory that
does not follow the center line may be more comfortable for the passengers. For planning
the exact route inside a lane, the next two levels of information are required [147].

The lane model includes information such as the geometry of lanes including their bound-
aries, pedestrian ways, parking spaces, traffic signs, and many more. This information stored
in HD maps can help the vehicle perform certain maneuvers like avoiding obstacles without
endangering other traffic participants or parking the vehicle in a parking lot. Additionally,
some shortcomings of perceptual sensors in areas on the road that are occluded or outside
of the sensor range can be overcome with such detailed road information [124]. The lane
model is visualized in Figure 2.1 (middle).

In the localization model static objects such as landmarks that can be detected by the
sensors located of an autonomous vehicle are stored. This way, the vehicle can compare
landmarks that are detected by its sensors with those stored in the HD map. Therefore, it
is possible to determine the vehicle position with increased accuracy [41]. It can be differ-
entiated between sparse and dense localization models. While a sparse model contains few
landmarks at irregular distances, a dense model has a detailed representation of the environ-
ment at each point. In order to achieve such a dense representation often dense localization,
models are created from high-resolution LiDAR point clouds [92]. An example for a dense
localization model is shown in Figure 2.1 (right).
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Figure 2.1: Left: Example of a lane model (source: [124]). Middle: Example of a road model (source: [124]).
Right: Example of a dense localization model (source: [92]).

2.9 Trajectory Data

A trajectory describes the movement of an object over time. This can be defined by different
sets of parameters, but is often described by a vector containing a set of coordinate points
and a timestamp. For 2D coordinates the vector then can be represented as p = (x,y,t). A
trajectory is defined by a series of such points p4, p,,...p,, [10].

In this case, the coordinate points provide information about the location of the object,
whereas the timestamps give insights to the temporal order in which the object positions are
reached. The combination of the geographical and temporal components shows the direction
in which the object is moving or the type of maneuver it is carrying out [167]. In Figure 2.2
an example trajectory is shown for a vehicle performing a left turn.
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Figure 2.2: Example of a trajectory (source: own illustration based on [2]).
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2.10 Simulation Environments

Currently it is common practice to test systems or processes in a simulation environment be-
fore deploying to the real world. Simulation environments are software based environments
that mimic the real world as accurately as possible or needed. They can be used to test a
virtual copy of a system or process and give a realistic feedback depending on the system’s
actions [87].

Motivations for using a simulation environment are saving costs because only the software
for an autonomous system must be developed. Testing can then be carried out using a digital
twin in a simulation environment without the need to acquire costly hardware like a vehicle.
Another benefit is safety. If an autonomous system fails unexpectedly, this can lead to an
accident, affecting not only the ego vehicle but also other traffic participants, causing personal
and material damages. This means, by using a simulation environment, costs can be reduced
significantly, while guaranteeing safety [122].

2.11 Reality Gap

There is a risk that programs that work well on simulated robots will fail completely on real
robots. Due to differences in sensing and actuation, it is very difficult to model the actual
dynamics of the real world [87]. The differences between a simulation and the real world are
referred to as the “reality-gap”. The reality gap prevents solutions developed in a simulation
environment from performing well when deployed in the real world [43].

Robotics experts have repeatedly warned of the dangers associated with oversimplified,
invalidated robot simulations. Many simulations are highly abstracted computer models
rather than carefully constructed models of real robots. While these abstract models can
be very useful for exploring some aspects of the problem of controlling autonomous agents,
one must be very careful about drawing conclusions about real-world behavior from them.
If the limitations of simulation models are not recognized, they can lead to both the study
of problems that do not exist in the real world and the ignoring of problems that do exist in
reality [87].

The effects of the “reality-gap” can be minimized by selecting a simulator that models the
required physics appropriately [43].

2.12 Deep Learning

Nowadays, many important tasks such as speech recognition, visual object recognition, ob-
ject detection, and many others have been solved by machines using methods of artificial
intelligence. Specifically, the area of Deep Learning is mainly responsible for solving many of
these problems with state-of-the-art performance [116].

Deep learning is a form of machine learning that enables computers to learn from ex-
perience and make decisions without the need to formally define rules of decision-making
or specify the knowledge needed by the computer [73]. In Deep Learning, the information
extraction process is ordered in a hierarchical scheme of multiple layers which enable the
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machine to learn complex concepts by building these out of many simpler concepts. Because
this architecture is composed out of many “stacked” layers, it is referred to as “Deep” Learn-
ing [194].

In order to “learn” the intricate structure in the data, Deep Learning uses the backpropaga-
tion algorithm to indicate how the machine should change its internal parameters to achieve
the desired output [116].

Compared to classical algorithms deep learning has the disadvantages that large amounts
of training data are necessary to achieve good results. Also, depending on the network size it
can take weeks to completely train a model. Reasons for this are the non-linear optimization
technique as well as the large amount of trainable model parameters.

2.13 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a form of deep learning that use bio-inspired con-
volutional operations to extract information. This type of network was originally introduced
to extract information from visual data such as pictures and is still mainly used in this field
[117].

The use of convolutional operations has many benefits over traditional algorithms and
other deep learning network architectures, as less trainable parameters are needed and the
overall model robustness to invariance in the data is increased. These benefits lead to faster
training and the need of less training-data. Additionally, fewer data preprocessing steps are
required [115]. Overall CNNs perform better compared to both traditional algorithms and
other deep learning approaches and are currently the state of the art for image processing
[173].

2.14 Long-Short-Term-Memory Networks

Long-Short-Term Memory (LSTM) networks are a special form of recurrent networks and
were first introduced by Hochreiter and Schmidhuber (1997) [83]. Recurrent networks are
designed to capture temporal dependencies in time-series data.

Classical recurrent network architectures have been prone to the vanishing gradient prob-
lem, which limits them to only capturing relatively recent (short-term) time dependencies
[83]. This means that potentially important information which occurs at the beginning of
a data sequence hardly gets respected when calculating the output of the network [74]. In
contrast to this the LSTM network is able to capture both long-term and short-term depen-
dencies due to its specific architecture which improves the gradient flow when training the
network. The classic LSTM propagates both the cell state C, and hidden state h, to the next
memory cell which is composed of a forget- and an update gate [83]. The components of the
LSTM cell are pictured in Figure 2.3.
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Figure 2.3: LSTM cell as described by Hochreiter and Schmidhuber (1997) (source: [83]).

2.15 Data Augmentation

In the field of Machine Learning, data augmentation refers to a method of reducing the
variance of a model in its decision making [60]. In other words, the augmented data acts as
a form of regularization and therefore often leads to an increase in model performance [174].

Deep Learning models rely on a large amount of data samples to avoid over-fitting. It is
common problem that in many domains the acquisition of data is complicated or very costly,
resulting in limited training data. As a result, the trained model could generalize poorly and
could have a low performance. [163]

When applying data augmentation, an increased model performance is achieved by en-
hancing the size and quality of a dataset. By performing various transformations such as
geometric rotations or applying filter masks, the dataset becomes larger and more versatile.
Because of the larger amount of training data and the coverage of more variations, the chance
of over-fitting is reduced [193]. Figure 2.4 shows an example of an image that is augmented
by rotating the image by various angles.

Over the past years it has proven that data augmentation improves the performance of
Deep Learning models in the field of image classification [47], text-to-speech [114], and time
series classification [60].

" Rotated 45°

Rotational
Augmentation

Figure 2.4: Example for a rotational augmentation of trajectory data (source: own illustration, [2]).
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2.16 Robot Operating System (ROS)

The Robot Operating System (ROS) is an open-source operating system for various types of
robots. It is not an operating system in classical sense of planning and scheduling tasks, but
rather provides a communication layer on top of the host operating system of a heterogeneous
computer cluster. The ROS layer allows for a simpler and more standardized communication
between software and hardware components [151].

The main benefits of ROS are the modular approach, which enables the user to integrate
multiple software and hardware systems easily. This makes it easier to reuse software origi-
nally written for individual tasks and integrate it into a complete robotic system. Also, ROS
enables a more efficient debugging of individual task specific software components. For ex-
ample, a robot that combines the tasks of computer vision and path planning to navigate its
environment can assign each of the two tasks to an individual node. With ROS each of these
nodes can then be debugged separately and eventually integrated into the robotic system
[151].



Chapter 3

Related Work

3.1 Safety Assessment Approaches for Automated Vehicles

The verification of a systems safety is a critical aspect that must be addressed before deploy-
ment. This process is meant to detect any hazardous behavior from functional insufficiencies.
Especially in the context of cyber-physical systems many approaches for the safety assess-
ment of these systems exist. Riedmaier et al. [154] give an overview of seven relevant safety
assessment approaches evaluating the driving capabilities of autonomous vehicles. These ap-
proaches are scenario-based, function-based, shadow mode, formal verification, real-world
testing, staged introduction of AVs, and traffic-simulation-based. They are visualized in Fig-
ure 3.1.

Safety Assessment
Approaches

Scenario-Based Formal Verification Real-World-Testing

Function-Based Shadow Mode Staged Introduction Traffic Simulation
of AVs Based

Figure 3.1: Overview of safety assessment approaches for automated vehicles (source: [154]).

In the following a critical review of each of the before mentioned safety assessment meth-
ods for automated vehicles is given.

3.1.1 Scenario-Based Approach

Because it has the potential to deliver an efficient and reliable safety assessment, the SBA
is the most promising of the strategies currently reported in the literature [154]. In section
3.2, the approach is presented in depth. Only a brief overview is presented here in order to
provide a clear distinction and differentiation from the other approaches.

A scenario is, by definition, a series of actions and events [181]. When examining a
typical highway ride, for example, there is a significant amount of time when no actions
or occurrences occur. The scenario-based approach, which is also used in research projects
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(e.g., in Germany [84], Japan [16], and Singapore [36]), skips areas of the test that have
no notable actions, thus reducing the test’s scope. Furthermore, common situations that do
not provide crucial information for the safety evaluation can be disregarded [139]. Such sit-
uations could for example include cut-in maneuvers with large relative distances where the
leading vehicle’s which performs the cut-in has a higher speed. In such a driving situation no
action is required from the evaluated vehicle in order to maintain traffic safety. Therefore,
the example could be excluded from the assessment process. However, it is still a challenge to
determine which situations must be included in scenario-based assessments and where they
should be located in order to make a meaningful judgment about the vehicle’s safety [155].

The scenario-based approach is used to explore and microscopically evaluate individual
scenarios. After a large number of these microscopic evaluations have been completed, the
results can be used to derive a macroscopic safety statement.

3.1.2 Formal Verification

Formal verification is a mathematical method for formally demonstrating the safety of sys-
tems throughout the entire operational design domain (ODD). The verification is based on a
mathematical model of the system under test. Additionally conditions are defined that deter-
mine the correct operation of the system and its components. If all defined conditions hold
the system is validated. With this approach it is ideally possible to achieve a full coverage of
the systems operational domain [96].

Formal verification is not based on driving scenarios, and therefore is not included in the
SBA.

The disadvantages of this technique include both, that simplifying assumptions must fre-
quently be made. Intel and MobilEye [161] for instance, make three strong assumptions:

1. All sensor inputs are correct
2. An exhaustive legal foundation for the domain of traffic will exist

3. Code can be generated in such a way that it can be formally assessed

This infers that only subsystems of the automated vehicle are addressed, rather than the
entire vehicle. Compared to other approaches, this is a clear downside of formal verification
based on the mentioned assumptions. Therefore, formal verification may be a promising
technique in the future for a separate validation of various sub-systems.

3.1.3 Real-World Testing

At increased levels of automation, a distance-based evaluation of safety through field oper-
ational testing (FOT) is no longer economically practicable. According to [97], 11 billion
miles would have to be driven in the United States to conclude with sufficient certainty that
automated vehicles exceed the safety level of human drivers by 20 percent. In this case,
surpassing indicates that there are fewer deadly accidents. Similar statistical studies have
been conducted in Germany, with Wachenfeld and Winner [185] concluding that a motor-
way chauffeur requires around 6.6 billion test kilometers. These two studies are backed by
[202] which find that it takes 38 years of driving to be involved in a situation leading to
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a noteworthy traffic accident and 6877 years of driving to be involved in a fatal accident.
Testing in the actual world is the norm when there is a low degree of automation. However,
from automated driving level 3 onwards, the operational driving domain grows drastically.
Whereas driver assistance system cover few very limited use-cases, a fully automated vehicle
must perform well in all possible driving situations. At this point real-world testing is no
longer economically possible. This is due to the transfer of all driving tasks and responsibili-
ties to the automated vehicle [171].

3.1.4 Function-Based Approach

In function-based testing, the system’s functions are individually tested on the basis of re-
quirements. This is a common Advanced Driver Assistance System (ADAS) technique. Cur-
rent ISO standards (e.g., ISO 15622 for Adaptive Cruise Control (ACC) [168]) and UNECE
regulations (e.g., UNECE R131 for Advanced Emergency Braking Systems [58]) for ADAS use
this method, defining a series of precisely specified tests for individual systems that check ba-
sic functionality and thus ensure a minimum level of safety. On the one hand, the decreased
testing effort is achievable with ADAS since the systems’ functional scope is limited, while on
the other hand, the driver is required to constantly monitor the system [85].

3.1.5 Shadow Mode

Wang and Winner [186] describe a system known as shadow mode, in which the autonomous
driving function in production cars is conducted passively. The driving function has access
to the sensors’ real-time inputs but not to the vehicle’s actuators. Simulation may be used to
assess the autonomous driving function’s judgments and, as a result, the level of safety. Car
manufacturers, such as Tesla, utilize a similar method to test new systems or new versions of
old ones [149].

However, because other road users also plan and execute their actions depending on the
activities of the AV, the conduct of the possible conflict partner (other traffic participants) in
the simulation does not correlate to reality. If the passive driving function in a circumstance
makes a different decision from the vehicle’s actual (active) driving function or the human
driver, another traffic participant may have made a different decision, and the simulation’s
findings are only partially valid.

3.1.6 Staged Introduction of Automated Vehicles

The goal of the incremental introduction of automated driving functions is to lower the ve-
hicle’s operational driving domain. Consequently, the number of traffic scenarios that the
automated vehicle must be able to navigate safely, is strongly reduced. This allows for a
cost-effective safety evaluation based on real-world testing. Driving on a certain portion of a
road for a few hundred meters or kilometers only when visibility conditions are excellent, is
an example of a highly limited driving domain. The safety approach also includes a certified
safety driver who may act instantly if the system makes a mistake. If the vehicle is deter-
mined to be safe in this driving domain, the domain can gradually be enlarged and possibly
the safety driver can be removed [148].
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This strategy might be useful for introducing Level 4 cars in a certain urban environment,
for example. However, according to the Society of Automotive Engineers (SAE) it is not
acceptable for the validation and certification of Level 5 systems in practice, because these
systems have a limitless driving domain by definition [157].

3.1.7 Traffic-Simulation-Based Approach

The idea of traffic simulation is to model not just one situation, but a whole road network
with hundreds of traffic participants (so-called agents). As a result, this technique is par-
ticularly well suited to determining the safety of automated vehicles at a macro level. It is
also possible to simulate and examine the effect of automated vehicles on human traffic par-
ticipants here. It may also be calculated how the chance of scenarios occurring varies as a
result of the introduction of automated vehicles, as well as the impact an increasing number
of automated vehicles has on total traffic.

Because the full ODD can be replicated in traffic simulation, the technique based on traf-
fic simulation may be utilized to improve the efficiency of the stepwise introduction of auto-
mated vehicles. This technique is no longer practicable for Level 5 systems, just as it is for
the phased introduction. [100, 156, 159] provide further information on this subject.

3.2 Scenario-Based Approach

In section 3.1 a brief overview of the seven different methods for the assessment of automated
vehicles was given. This work strongly focuses on the scenario-based approach, since it has
been found to be the most promising approach. Therefore, the scenario-based approach is
discussed in detail in this section.

3.2.1 Process Overview

The main challenge of the scenario-based approach is to identify a set of driving scenarios
that allow for an adequate safety assessment of automated vehicles. To achieve this it is key
to cover all possible driving scenario types. Ideally also variations of each scenario are in-
cluded in the test set [80]. Ponn [148] derives a workflow for the scenario-based approach
from existing literature and major research projects [16, 84]. The entire workflow is shown
in Figure 3.2.

The workflow consists of several stages that start with the acquisition of driving scenarios.
From there on the scenarios are classified into categories and stored in a scenario data-
base. The scenario data-base plays the central role in the process of evaluating automated
vehicles. Here all driving scenarios that can be utilized for testing purposes are collected.
New scenarios can be added to the data-base anytime and test cases can be formed from
the scenarios stored here. For the validation of automated vehicles, proper driving scenarios
are selected to form test cases. The test cases can then be executed in real-world traffic or
in a simulation environment. Finally after completing the test cases the performance of the
automated vehicle is evaluated. In the following sections each category of the workflow is
discussed in detail.
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Figure 3.2: Description of the workflow for the scenario-based approach (source: [148]).

3.2.2 Sources for Scenarios

There are two main sources for scenarios. These can be knowledge in various forms or data
driven. In the first case knowledge is usually referred to as expert knowledge of how a driv-
ing scenario is structured and which components must be included. However, also road and
traffic guidelines or experience from existing traffic statistics can be included [96].

The data driven sources for scenarios are usually detailed datasets created from real-
world traffic situations. To be able to use data driven sources for scenarios the availability of
such datasets is crucial. These can either be created independently or acquired from publicly
available sources [68]. In recent years, a number of institutions have made publicly accessi-
ble datasets available. [76, 98] provide a summary of the existing datasets. Zhu et al. [204]
also present an overview of datasets and seek to integrate them.

Krajewski et al. [108] show a new way for gathering real-world driving data. In their
approach a drone is used to record traffic, and computer vision techniques are then used
to extract the trajectories of individual road users. This technique has the main benefit of
requiring no costly and time-consuming test cars with complex sensor equipment to be set
up, as well as ensuring that the recording of data has no impact on traffic. A downside of the
approach is that only a limited road sector of 420 meter length is observed.

Similarly in the Providentia++ project traffic data is recorded from highway, rural, and
urban road areas. This is done by adding multiple sensor-systems composed of camera-,
LiDAR-, and radar-sensors to the road infrastructure. The sensor systems are mounted on
gantries or custom masts. A major benefit of this system is that once installed it records the
traffic 24 hours a day. This way it is more likely to record rare traffic events which again are
interesting scenarios for testing and validating automated vehicles [131].

3.2.3 Scenario Extraction and Generation

In the previous section 3.2.2 the two main sources for the creation of driving scenarios were
discussed. These are either knowledge based or data driven. Depending on the source dif-
ferent approaches for the generation and extraction of scenarios exist. These approaches are
visualized in Figure 3.3.
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Figure 3.3: Knowledge-based scenario generation and data-driven scenario extraction methods (source: [148]).
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3.2.3.1 Knowledge-Based

The systematic transfer of information into scenarios is the core principle of knowledge-based
scenario design. To put it another way, abstract data is utilized to create functional, logical
(with parameter ranges), or directly concrete situations.

As a knowledge base, things like road traffic legislation, regulations, accident data, con-
sumer testing, ethics guidelines, safety analysis methodologies, or expert information may be
utilized. Expert knowledge is frequently used to generate scenarios from existing knowledge-
based sources. Ontologies are often utilized to store and arrange expert knowledge in this
manner [23, 40, 71, 102, 123, 197].

3.2.3.2 Data-Driven

The data-driven creation of driving scenarios can be split in three main approaches. These
include the direct extraction, classification, and parametrization of driving scenarios. Often
but not exclusively these approaches rely on machine learning methods.

Recorded traffic data is used as a basis for the scenario extraction method. Hereby infor-
mation about vehicles and actors including their trajectories is extracted. This information
is then processed to form concrete driving scenarios based on real-world traffic situations.
Corner-case scenarios can then for example be found by detecting very unique features in
a scenario [113]. Alternatively, corner-case scenarios can also be determined based on the
difficulty of predicting the traffic participants’ behavior [31]. This method can also be used
to generate new concrete driving scenarios based on the recorded traffic data [88, 89, 109].

In order to categorize various driving scenarios clustering and classification methods are
often used. While for classification methods the scenario-categories are known in advance,
this is not the case for clustering methods. Classification methods usually build on super-
vised learning, while clustering is mainly done with unsupervised learning. Both methods
have their individual benefits and are generally used for different purposes. Since in cluster-
ing approaches the scenario-categories are not defined in advance the approach can be used
to find previously unknown scenario-categories. Classification approaches however have the
benefit that the correct scenario-class is directly assigned. This can reduce the manual effort
of labeling scenarios by their type.
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In the literature different clustering methods are found. These include the use of simi-
larity measures [111, 112], hierarchical agglomerative clustering [189], or procedures based
on Bayesian models [188]. However, the preferred approach in the literature is scenario clas-
sification. The approaches using this technique are based on various metrics. These include
the collision potential [191] or relative movement between two or more vehicles [56]. The
classification algorithms are based on various machine learning techniques such as support-
vector-machines, nearest-neighbors, or neural networks [22, 27, 51, 75].

As described in Section 3.2.3.1, logical scenarios are defined by various parameters. These
parameters are bounded either by a specific range or distribution. Logical scenarios can be
derived from real-world traffic recordings. For each scenario class the parameters to describe
the scenarios are determined from the traffic recordings. The parameter bounds for each
scenario class are then defined so that all scenarios of this class lie inside these bounds. In
other words, the most extreme scenarios of each class mark the parameter bounds.

3.2.3.3 Scenario Database

In the scenario-based approach many different test scenarios are used evaluate the capabil-
ities of an automated vehicle. Depending on the test cases different driving scenarios are
of interest. For efficient management and selection of the scenarios of interest a scenario
database is required. The scenario database represents the core element of the scenario-
based approach. Here all driving scenarios are stored and can be selected depending on the
user’s needs.

The PEGASUS! project [150] provides an interface for inserting various data sources and
processing them into a standardized format. Within this project a database for highway
scenarios is created [84, 150]. Another framework including a scenario database is the Com-
monroad project [13]. The framework uses driving scenarios to assess the performance of
trajectory planning algorithms.

3.2.3.4 Selection of Concrete Scenarios

Before the evaluation of an automated vehicle is possible, an adequate selection of concrete
driving scenarios must be made to form the test cases. These scenarios can be selected from
the scenario database and should validate the safety of the automated vehicle. One diffi-
culty is dealing with the large number of different driving scenarios each of which unlimited
variations exist. For a practical assessment however, only a manageable number of driving
scenarios can be included in the test cases. Ideally the operational safety is proved with the
minimal number of test cases. To achieve this, a technique for the proper selection of concrete
driving scenarios is necessary. In the literature two main approaches exist for the selection of
concrete driving scenarios. These are the testing-based and the falsification-based approach.
The two approaches follow individual strategies for guaranteeing the fulfillment of all re-
quirements. In the testing-based method the proper functionality of an automated vehicle is
validated if a subset of the driving scenarios is completed while fulfilling all requirements.
In contrast the falsification approach seeks to find specific driving scenarios where the auto-
mated vehicle does not fulfill all requirements.

IPEGASUS stands for: Projekt zur Etablierung von generell akzeptierten Giitekriterien, Werkzeugen und Meth-
oden sowie Szenarien und Situationen zur Freigabe hochautomatisierter Fahrfunktionen (PEGASUS)
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Testing-Based Selection

In testing-based approaches the driving scenarios are categorized and selected based on
different key performance indicators (KPIs). KPIs can be the occurrence of certain driving
maneuvers, accidents, criticality measures, or guidelines and standards. There are various
approaches to select a representative subset of driving scenarios from the scenario database.
The selection techniques follow two main goals:

1. High test case coverage of operational driving domain

The first goal of the sampling technique is to ensure that driving scenarios of all types
are adequately represented in the test set. This ensures that AVs are assessed in all kinds
of driving situations including rare ones like accidents. To ensure the safe operation of
the AV under assessment, it is important to include especially critical driving scenarios
in the test cases. Critical driving scenarios contain demanding traffic situations where
the AV is likely to fail. The identification and selection of such driving scenarios is one
of the key challenges in the selection process [22, 25, 65, 80, 138].

2. Representative statistical traffic safety evaluation

Another important goal of scenario-based testing is the creation of a representative sta-
tistical traffic safety evaluation of the assessed AV. A major difficulty is the correct se-
lection of certain driving scenario types in order to achieve a realistic safety evaluation
comparable to real-world testing. To achieve this the amount of driving scenarios of
each scenario type must be selected based on its probability of occurrence in real-world
traffic [17, 94, 97, 195].

Depending on the goal of the scenario selection strategy different approaches have already
been addressed.

Falsification-Based Selection

In contrast to testing-based selection the falsification-based approach tries to identify driv-
ing scenarios in the ODD where the assessed AV fails to meet all performance requirements.
To find such driving scenarios different approaches are found in the literature. They are
summarized in the following.

1. Accident Data

One approach to determine critical driving scenarios that an AV may fail is using scenar-
ios based on real-world traffic accidents [63, 169, 170]. Some approaches additionally
create variations of existing accident scenarios to achieve a higher test-case coverage
[59, 165]. The underlying assumption is that driving situations that are demanding for
human drivers are also demanding for AVs. This may be true for some cases. However,
AVs operate very differently to human drivers and therefore the assumption made is
likely not to hold for all accident scenarios. Additionally this approach does not cover
the ODD of the AV sufficiently as other non-accident driving scenarios are not included
in the testing process.

2. Critical driving scenarios

Another approach is based on the use of critical driving scenarios. These are scenar-
ios that especially incorporate relevant and demanding driving situations. In order to
obtain such scenarios, two main techniques are found in the literature. The first tech-
nique evaluates driving scenarios based on various parameters. These are usually the
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occurrence of certain driving maneuvers and other criticality measures like the distance
or the time to collision (TTC) to the lead vehicle. [145] follows this approach.

The second technique generates critical driving scenarios. Here scenarios are modified
to increase their criticality. This is achieved by applying an optimization algorithm to
the driving scenarios. The technique is applied in [14, 101].

3. Complex driving scenarios

Mining or creating complex driving scenarios is another popular approach to generate
test cases. Complexity is a measure that defines how difficult it is to navigate a driving
scenario safely. In general with a higher level complexity both human drivers and AVs
have more difficulties to complete the driving scenario. To determine such scenarios,
often general performance criteria are used [65, 199, 200]. These criteria determine
the complexity level of a scenario and include various factors like weather conditions,
illumination, road geometry, behavior of other traffic participants and more [76, 103].
Based on these factors and their extent the overall complexity of a driving scenario can
be determined.

4. Simulation-based falsification

The goal of simulation-based falsification is to efficiently find driving scenarios where
the AV fails by using an optimization strategy. For this the performance of the AV is
evaluated in driving scenarios based on various KPIs. The results of the KPIs are then
used to determine how close the AV is to failing the specific driving scenario. Based on
this information the next driving scenario is selected specifically to increase the chance
of the AV failing [148].

In the literature many different optimization strategies for simulation-based falsification
exist. In the following an overview is given.

(a) Reinforcement learning [45, 104, 118, 119]

(b) Differential evolution genetic optimization [26, 29]
(c) Particle swarm optimization [26, 29]

(d) Adaptive search-algorithms [134, 135]

(e) Bayesian optimization [64]

(f) Random forest models [138]

() Simulated annealing [6, 176-179]

(h) Gradient descent optimization [180]

(i) Forward / backward search [105]

3.2.3.5 Scenario Execution

When the test cases are determined the selected concrete driving scenarios are executed. This
can be done in various surroundings including real-world or simulation-based environments.
Real-world testing is typically conducted as field tests i.e., on public roads or as test site
tests. Simulation-based testing is done in a virtual environment that typically mimics the
physics of the real world including the automated vehicle and other traffic participants. Using
simulation environments for testing purposes has two main benefits. Firstly, the costs for
testing can be reduced drastically as no hardware such as a vehicle and sensor system are



30 3 Related Work

necessary. Secondly, no safety hazards can occur if the system does not behave as intended.
Various commercial simulation tools are available. Also, in the literature different simulation
frameworks are mentioned [5, 77, 99].

3.2.3.6 Automated Vehicle Assessment

The assessment of automated vehicles is done microscopically or macroscopically. The safety
of a vehicle however can be determined best in a microscopic test environment. For this it is
beneficial to use various gradual performance indicators rather than binary ones. A gradual
performance indicator for instance is the time-to-collision [81], which exists in various forms
[95, 160, 184]. It is a measure for the criticality of a maneuver based on the distance and
differences in velocity and acceleration of the automated vehicle to other vehicles. Other
criticality measures are compared in [127]. Binary performance indicators only indicate if
a driving scenario is completed successfully or not. A downside of binary performance in-
dicators is the lack of a detailed driving style analysis. For example, an automated driving
function could be regarded as safe because all driving scenarios are completed successfully.
However, the automated vehicle could complete the scenarios in an unsafe driving style. This
would not be reflected in the evaluation.

The microscopic assessment of an automated vehicle in critical driving scenarios can be
used to draw conclusions over the macroscopic behavior of the vehicle. In [94] the transition
from many microscopic to a macroscopic vehicle assessment is discussed.

The previously mentioned scenario selection methods testing- and falsification-based both
microscopically evaluate the safety in each of the driving scenarios. Hereby the testing-based
method seeks to achieve a high stochastic coverage of the automated vehicle’s driving do-
main. The falsification-based method concentrates on identifying corner case driving scenar-
ios, often with increased difficulty [148].

The macroscopic analysis aims to evaluate the compatibility of an automated vehicle with
the surrounding traffic situation. For this it is beneficial to cover a large number of scenarios
in the operational driving domain to draw further macroscopic conclusions. In return this
means that the testing-based approach is better suitable as it has a higher stochastic coverage
of the driving domain. In contrast the falsification-based approach mainly includes corner
cases therefore limiting the stochastic coverage of the driving domain [148].

3.2.3.7 Conclusion

The scenario-based approach shown in Figure 3.2 includes all major process steps for the
evaluation of automated vehicles. The assessment techniques build upon a suite of driv-
ing scenarios from which test cases are formed. The driving scenarios are stored inside the
database which represents the central element of the scenario-based approach. The main
tasks involved in the approach are the generation of concrete driving scenarios and the ap-
propriate selection of driving scenarios to form test cases and evaluate the system of the
automated vehicle. The generation process deals with filling the scenario database with a
large number of driving scenarios. It aims to form an exhaustive collection of driving scenar-
ios from which test cases can be derived. The scenario selection process is then applied to
reduce the number of driving scenarios in test cases while guaranteeing a complete assess-
ment of the automated vehicle. The goal of the selection process is to find a minimal set of
driving scenarios that covers all driving situations necessary to prove the correct functionality
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of the automated vehicle.

Testing of automated vehicles is mainly done in two environments. Either in the real-word
on test-tracks or as field tests on public roads or alternatively in a simulation environment.
Real-world testing is time-consuming, subject to high expenses, and can potentially lead to
safety hazards. For these reasons testing in a simulation environment is beneficial.

In total there are many promising solutions for each stage of the scenario-based approach.
Many of these however are limited to specific areas of the approach. A big challenge remains
the creation of a scalable implementation of the scenario-based approach.

3.3 Standards for Describing Driving Scenarios

In the following section the two standards OpenDRIVE (OD) [54] and OpenSCENARIO are
presented. Both standards are created and maintained by the Association for Standardiza-
tion of Automation and Measurement Systems (ASAM) [7] and are used for describing road
networks and dynamic content such as vehicles maneuvers. These standards are widely used
across the industry for developing and testing ADAS and AD [18]. The scenarios created as
part of this work are based on the two standards OpenDRIVE and OpenSCENARIO.

3.3.1 OpenDRIVE

OpenDRIVE created by the ASAM is a standardized format to describe road networks. An
OpenDRIVE file includes information about the geometry of roads, lanes, and objects. This
includes road markings and traffic signals [14].

OpenDRIVE provides a road network description for the use in simulation environments
to develop ADAS and automated driving functions. The main goal behind OpenDRIVE is to
create a standardized format that can be used by different simulators without costly conver-
sion steps. The road data can be created manually or originate from map data or scans of
real-world roads [130].

An OpenDRIVE network is mainly defined by a reference line which is the basis of every
road. Roads and lanes are both defined according to the reference line. Additionally, the
position of objects such as traffic signs can be defined either by an offset from the reference
line or by a set of coordinates in the global coordinate system of the road network. This is
illustrated in Figure 3.4 on the left side. The blue line in the middle of the road segment is
the reference line, and the lanes (blue and green) as well as the traffic signs are defined as
an offset from this line in the s/t-coordinate system [19].

Additionally, the dependencies between different road segments in a traffic network can
be defined. For example, two road segments that interconnect can be defined as a junction.
On the right side of Figure 3.4 an example of how a junction is defined in the OpenDRIVE
format is shown. The definition of dependencies between road segments can be important
for understanding the driving logic of other vehicles when planning a route. With this infor-
mation a vehicle knows when it is approaching an intersection or other critical road areas
and can act accordingly [19].
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Figure 3.4: Description of a road network defined by a reference line in the OpenDRIVE format (left). Example of
the junction definition in the OpenDRIVE format (right) (source: [136], [19]).

Finally, the lanes between road segments are also linked with each other corresponding
to the driving logic. This is especially important in junctions where the reference lines of
corresponding roads are not necessarily aligned with each other [19]. This is illustrated in
Figure 3.5.

Figure 3.5: lllustration of the road linkage across a junction in the OpenDRIVE format (source: [19]).

3.3.2 OpenSCENARIO

The OpenSCENARIO standard created by the ASAM is a file format meant for the description
of dynamic content in a driving scenario. This includes complex maneuvers that can include
multiple traffic participants such as vehicles, pedestrians, and others. There are two ways of
describing the movement of each participant. One way is to script the movement by adding
driver actions like performing a lane change or making a turn. Another possibility is to use
recorded trajectories that define the movement of each traffic participant over time. Other
components such as environment conditions, traffic, pedestrians, and more can also be spec-
ified [20].

The vehicle maneuvers are defined as stories that describe the driving maneuvers of a
single vehicle. A story can contain acts which tell a traffic participant to perform a certain
maneuver whenever a defined condition is met. Conditions can be, for example, exceeding
the allowed speed limit, approaching a leading vehicle at a certain distance, and others. The
use of sequences then allows multiple vehicles to perform maneuvers as a reaction to a con-
dition met [20].

The exact driving behavior is described by events and actions. Events refer to a maneuver
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which occurs, while actions define which kind of maneuver is carried out. Actions not only
include vehicle maneuvers such as accelerating, braking, or changing lanes, but also include
environment changes like a traffic light switching from red to green. Actions can also be
defined as routes or trajectories a traffic participant should follow [20].

ASAM has released two versions 1 and 2 of the OpenSCENARIO standard. Version 1 was
first released in the beginning of 2020 while version 2 was released in December 2021. Both
versions basically share the same features. The main difference of the two version lies in the
addition of a more detailed set of actions and attributes for the relevant simulation models.
This allows for a more comprehensive scenario description. Additionally, OpenSCENARIO
version 2 uses a domain specific language for the description of driving scenarios. In the
future ASAM plans to merge the two versions together. At the time of this work only Open-
SCENARIO version was released [20]. Therefore OpenSCENARIO files are generated in this
version and it is referred to version 1 when mentioning OpenSCENARIO.

3.4 CARLA Simulator

CARLA Simulator is an open-source simulator developed for performing research in the do-
main of autonomous driving. More precisely, it supports the development, training, and
validation of autonomous systems in urban environments. CARLA Simulator already pro-
vides some building blocks like cars, buildings, urban layouts, and more for creating realistic
driving scenarios. Also an autonomous vehicle can be simulated with different sensor suites
affecting what the vehicle perceives [53]. An example for a CARLA Simulator scenario from
the Providentia+ + test stretch is pictured in Figure 3.6.
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Figure 3.6: Example of a traffic scenario from the Providentia++ test stretch simulated with CARLA Simulator
(source: [136]).

In this work scenarios are generated according to the OpenSCENARIO standard and can
then be simulated with CARLA Simulator to achieve graphically realistic traffic scenarios.
These can then be used for training Deep Learning models on tasks like object detection,
image segmentation, and more.
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3.5 ScenarioGeneration

"ScenarioGeneration" [192] is a Python package designed to enable a simple creation of
OpenDRIVE and OpenSCENARIO files. The package contains the two modules "xodr" which
handles the creation of OpenDRIVE road networks and the "xosc" module for defining driving
scenarios in the OpenSCENARIO format. Since an OpenDRIVE map for the Providentia+ +
test stretch has already been created in previous works, only the driving scenarios are created
in this work. Therefore in the following only the "xosc" module is explained in detail.

The "xosc" module addresses the OpenSCENARIO related parts and covers all parts of
OpenSCENARIO version 1.0 and most of OpenSCENARIO version 1.1 The module is an
Extensible Markup Language (XML) file generator that allows the user to efficiently create a
complete OpenSCENARIO hierarchy without having to explicitly define all abstraction levels.

This module is intended to provide a better accessibility to the components of OpenSCE-
NARIO without confronting the user with all the XML levels that do not contain essential
information for the user. Therefore, some of the XML elements contained in the OpenSCE-
NARIO file do not appear in the class structure, but are compressed to a level where the user
can set the required parameters.

XML files for both versions 1.0 and 1.1 of OpenSCENARIO can be generated by the mod-
ule.

3.6 ScenarioRunner

The ScenarioRunner module allows to define traffic scenarios and their execution within
CARLA Simulator. To define scenarios, they can either be imported from the OpenSCENARIO
standard or created using a Python interface. Complex traffic scenarios can be created with
ScenarioRunner in order to test an autonomous driving agent before deployment in real-
world traffic [35].

To create a scenario from scratch with the Python interface, the ego vehicles and their
starting position, as well as the simulation world, must be initialized. All other vehicles and
their trajectories can be defined within an XML file and are then loaded into the scenario
[35].

3.7 Scenario Labeling

The proAnno? labeling tool is part of the Providentia+ + project and is utilized to annotate
data recordings with labels. The tool is specialized for the domain of autonomous driving
and the Providentia++ test stretch. With proAnno it is possible to label bounding boxes,
vehicle and road user types, vehicle IDs, and more [136]. An exhaustive list of label types
that can be annotated with proAnno is shown in Table 3.1. Figure 3.7 shows proAnno and
how bounding boxes are visualized by the tool.

ZproAnno is based on the 3D Bounding Box Annotation Toolbox [205]
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Label type

2D/3D bounding box

Explanation

A box that encloses an ob-

ject inside itself. Marks the
size and position of an ob-
ject in 2D or 3D, depending
on the bounding box type.
Additionally, to the object
position, the object orienta-
tion can also be defined.

35

Tasks for which label is
used

Object detection, Tracking,
Trajectory prediction

Road user

Type of road user. Exam-
ples are car, truck, pedes-
trian, bicycle, motorcycle,
van, special vehicle.

Object classification

Vehicle ID

An ID unique for the same
vehicle across multiple data
frames

Tracking, Trajectory predic-
tion

Table 3.1: Label types included in proAnno (source: [136]).

Figure 3.7: Image of the labeling tool proAnno (source: [136]).

In the above mentioned state, the tool can create labels for the training of Deep Learning
algorithms on the tasks of object detection and classification and trajectory prediction [136].
In the course of this work, proAnno was extended to support the creation of labels for seman-
tic scene understanding which refers to traffic scene understanding and maneuver prediction
in case of the Providentia+ + project.
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3.8 Knowledge Discovery in Databases (KDD)

Knowledge Discovery in Databases describes a non-trivial process in which potentially useful
information and insights can be discovered from collected data [62]. It consists of several
phases which are run through one after the other in order to ultimately achieve new insights
from the originally collected data. An overview of this is shown in Figure 3.8. The KDD
process can include numerous iterations and have loops between any two process steps [62].
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Figure 3.8: Overview of the KDD-process (source: [62]).

In the following, important steps of the KDD process according to Brachmann and Anand
[32] are described.

1. At the beginning of the process, it is important to generate an understanding of the
application area and the required prior knowledge. It is also important to identify the
goal of the KDD process from the end user’s point of view.

2. In the next step, the data utilized for the data analysis should be collected and arranged
into a dataset, which is the target data. The following steps of KDD are based on this
data.

3. In the third step, the pre-processing of the target data takes place. This phase is used
to remove data noise or outliers from the collected raw data. This process is also called
data cleansing. Furthermore, if necessary, strategies can be created and applied for the
treatment of missing elements in the dataset. These are, for example, the removal of
features or samples, if they have a high number of missing parts.

4. Feature selection is used to select the most relevant and useful features and reduce the
amount of data initially collected for a project. The associated reduction of the data
leads to an improvement in the accuracy of the results obtained later, since data that is



3.9 Cross Industry Standard Process for Data Mining (CRISP-DM) 37

irrelevant and potentially hindering the model building is sorted out at an early stage.
A further advantage is the reduction of the used data quantity since the programmed
algorithms must accomplish fewer computations and thus the program execution is ac-
celerated.

5. In the following step, data mining methods adapted to the goals of the project are se-
lected. Common applications are for example regression, classification, or clustering.

6. After the data mining method is defined, the algorithms and selection methods used for
the execution are selected. This includes a decision process, which models and param-
eterizations could be useful. In addition, it is necessary to consider the exact success
criteria of the KDD process during the selection process. For example, it may be more
interesting for a user to understand the basis on which a model makes decisions, rather
than just having high predictive accuracy.

7. The seventh step is the actual data mining step. The aim here is to look for interesting
patterns in the data or to better understand the approach of the applied model. For
example, the understanding of a classification model can be improved by uncovering
decision rules.

8. In the eighth step, the uncovered patterns are interpreted and evaluated. If necessary,
it is possible to return to phases 1 to 7 to extract further knowledge. This step also
includes visualization of the extracted patterns and models, or visualization of the data
read into the model.

9. The final step is to exploit the knowledge collected during the KDD process. This can be
the direct use of the collected knowledge, its integration into another system, or simply
its documentation and presentation to the interested parties.

3.9 Cross Industry Standard Process for Data Mining (CRISP-DM)

The Cross Industry Standard Process for Data Mining (CRISP-DM) was developed in 1996
with the support of the EU and several industry partners. It builds upon earlier attempts
to define the data mining process [8, 32, 62, 153]. The standard serves to standardize the
approach to data mining projects across the industry, thus providing more transparency for
customers and developers. The goals of the CRISP-DM approach are to increase the cost ef-
fectiveness, reliability, reproducibility, manageability, and efficiency of data mining projects
[196].

According to the CRISP-DM model, data mining projects are divided into six different
phases. These phases are to be seen as iterative, not unique. Depending on the requirements,
some phases or even blocks consisting of several steps can or must be repeated in order to
achieve the desired result. This can be the case, for example, if a targeted solution path turns
out to be unsuitable or only partially successful. In such a case, the data mining process must
be restarted in the phase in which the problem occurred. The repetition of certain phases is
almost unavoidable due to the complexity and unpredictability of data mining projects and
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usually occurs frequently. This is illustrated by the arrow directions in Figure 3.9 for the
CRISP-DM approach [196].

Data
Understanding

i Data {
I o Preparation I
! Deployment 3} o
Data Modeling !

Evaluation

Business
Understanding

Figure 3.9: lllustration of the different phases and their relationships in the CRISP-DM procedure (source:[46]).

In the following, a detailed explanation of the individual steps is provided [196]:

1.

The CRISP-DM process begins with the phase "Business Understanding". The main
objective here is to define the basic goals and requirements of the project. This is then
used to determine the rough approach and the exact task.

. In the second phase, "Data Understanding", the data used in the project are first col-

lected and an initial examination of its quality is carried out. It is important to identify
possible problems with the structure or quality of the data.

. In the following third phase, "Data Preparation”, the aim is to create a final dataset

from the collected data, which is adapted to the requirements of the models created.
On the one hand, corrections such as outliers or the elimination of missing parts in the
dataset are made. On the other hand, data that is not important for model building can
be removed. Usually this phase is the most time-consuming.

After all data has been brought into the desired form, the fourth phase, "Modeling",
begins. Data mining methods are used, which often, but not necessarily, involve the im-
plementation of several machine learning algorithms. Different approaches are tested,
so that eventually the model with the highest performance can be selected.

. In the fifth phase "Evaluation", the results of the different implemented models are

analyzed and evaluated. The model that best meets all the requirements is selected for
the final implementation of the project.

. The final phase of the data mining process is the "Deployment" phase. Now that the

results of the data mining are available, the models created can be integrated into sys-
tems or applications to perform tasks there. Furthermore, it is necessary to prepare and
document the obtained results, for example, to present them to the client that commis-
sioned the project.
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The phases "Business Understanding" and "Data Understanding" as well as "Data Prepara-
tion" and "Modeling", which are connected with opposite arrows in the diagram, each repre-
sent very closely interwoven process steps.

For example, if the goals or requirements of the project change in the "Business Under-
standing" phase, this has a direct impact on the "Data Understanding" phase, as new or
adapted data may need to be collected in order to achieve the new goals. How the data is to
be understood or interpreted may also change.

Similarly, between the "Data Preparation" and "Modeling" phases. For example, different
Machine Learning models may have different requirements for the data they read in. In prac-
tice, this may mean that some algorithms within a model can only produce useful results if
the input data has been previously normalized to values between 0 and 1. Other algorithms
can get by without such normalization. In other cases, certain features in a dataset may also
have a negative impact on the accuracy of a model. In such situations, depending on the
model, it makes sense to remove the features that are detrimental to performance from the
dataset [196].

From these examples it is obvious that in order to achieve the best possible performance
of a model, a precise model-specific adjustment of the data is necessary. Thus, the applied
dataset often has to be adjusted separately for each model [196].






Chapter 4

Solution Approach

In this section the solution approach is explained in detail for the contributions mentioned
in Section 1.3 of this work. The workflow consists of five main stages with a total of six
contributions until the final proScenario dataset is completed. These stages are visualized in
Figure 4.1.

Scenario Catalog

Collect Driving Scenario Types Relevant for Autonomous Driving Applications

Maneuver / Scenario Mining Scenario Generation

Scenario Generation
Framework:
' Synthetic Driving Scenario
Generation

Scenario Extraction

Data Preprocessing Drivingiscenarnos

Scenario Data Augmentation

Modelling /
Maneuver Detection
Scenario Simulation/Visualization

Scenario Statistics OpenScenario Writer

Scenario Database

Scenario Database including Rosbag files, JSON Labels, Scenario Statistics, and OpenScenario files

Figure 4.1: lllustration of the stages for the creation of the final proScenario dataset (source: own illustration).
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1. Scenario Catalog

In the first stage "Scenario Catalog" various sources are analyzed in order to find traffic
scenario types that are safety-critical and relevant for the development of automated
driving applications. These sources include documents from the National Highway Traf-
fic Safety Administration (NHTSA), Euro-NCAP, and UNECE. The goal of this analysis
is to find an exhaustive list of common driving situations and situations that lead to
accidents. These scenario types are then added to a shortlist, from which a catalog
specifically for the Providentia+ + test stretch is created.

After the shortlist is finalized, it is determined which of the scenario types occur on the
Providentia+ + test stretch. This is an important step as many scenario types, such as
entering a toll station or exiting a parking lot, cannot occur on the test stretch. Once
the scenario types for the test stretch are determined, the catalog is filled with them
and provides an extensive overview.

. Analysis of Recorded Data

In the next stage it is then analyzed which of the scenario types from the catalog can
actually be found in the recorded data. Many of the common scenarios such as a sig-
naled left turn or a lane change occur very frequently in the recorded data, while rare
scenarios such as an accident infrequently or never occur.

. Scenario Generation

In the "Scenario Generation" step scenarios that cannot be extracted because they do
not occur in the data recordings of the Providentia++ test stretch are generated arti-
ficially. This is done with the "Scenario Generation Framework", which is introduced
in this work. The framework enables an efficient creation of new driving scenarios tai-
lored to the user’s needs.

In practice, typically video footage of such scenario types is used for inspiration. This is
then adapted to the environment of the Providentia+ + test stretch. Using real-world
footage as a basis should ensure a realistic recreation with a very narrow simulation-

gap.

. Scenario Mining

Since algorithms for autonomous driving must be able to cope with all kinds of situa-
tions it is very important to cover all scenario types, including rare ones, in the dataset.
To reduce the labeling effort and to categorize various scenario types, easier data min-
ing techniques are used. These are described in Section 4.5. The section describes five
steps of data mining that are applied in order to detect and extract interesting types of
driving scenarios. The five steps are:

(a) Raw Recordings of Driving Data

In this step the data frames at each time step of the recording are extracted. Each
data frame represents one point in time and includes details about all vehicles and
their position at that specific time.
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(b) Data Pre-Processing

The extracted data frames are pre-processed in order to obtain the actors’ trajec-
tories, as well as all other scenario specific information.

(c) Scenario Data Augmentation

Here, both extracted and created scenarios are augmented, meaning that multiple
variations of one base scenario are created. This way, the number of scenarios is
artificially increased.

(d) Modelling / Maneuver Detection

In the next step various maneuvers of interest are "modelled". This means ma-
neuver detection algorithms are written that can automatically recognize these
maneuvers from the trajectory data provided in each scenario. The algorithms
detect important driving maneuvers directly from the provided driving scenarios
and helps to categorize them automatically. Also the detected driving maneuvers
are added to the data as labels. This helps reduce the labelling effort drastically.

(e) Scenario Statistics

Finally the driving maneuvers detected in the previous stage are used to calculate
an overall statistic for every driving scenario. This way the driving scenarios can
be classified and also later be searched for certain events or anomalies.

5. Scenario Simulation / Visualization

In order to simulate and visualize driving scenarios, they are translated to the OpenSCE-
NARIO file format. This is done automatically by the OpenSCENARIO writer created in
this work. The standardized OpenSCENARIO files can then be simulated and visualized
with compatible tools.

6. Scenario Database

In the last phase of the process a scenario database is created. For each driving scenario
in the database a Rosbag file including labeled driving maneuvers, labels in JavaScript
object notation (JSON) format, the scenario statistics, and an OpenSCENARIO file for
simulation and testing purposes is included.

Before diving into the details of each of these stages, the intermediate data format in
which both extracted and generated driving scenarios are stored is presented. This for-
mat represents a common basis in which scenarios from both data sources are transformed
into. This way, any further processing, augmentation, detection, classification, and simula-
tion tasks can be conducted more efficiently.

4.1 Scenario Description Format

The data used for the scenario mining step is the base data underlying driving scenarios in-
cluded in the developed scenario catalog. There are two data sources in order to acquire the
required data and to cover all test cases listed in the scenario catalog.
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The first one is to extract scenarios from the data recorded by the sensor systems on the
Providentia+ + test stretch. The second source is generating driving scenarios synthetically
as described earlier. This is done for scenario types that cannot be extracted from data record-
ings.

In order to have a basis from which both extracted and generated scenarios can be fur-
ther processed, a common data format is defined. This format is referred to as the "Scenario
Description Format". It includes all information and parameters necessary to fully describe a
driving scenario. The format follows a hierarchical order, which can be described as a tree
with a depth of four layers.

The first layer consists of the two nodes "scenario meta information" and "actors". The
node "scenario meta information" contains all information describing the environment con-
ditions. This node therefore contains the five child nodes "Number of Frame", "Frame Rate",
Timestamps seconds", "Timestamp nanoseconds", and "weather conditions". Hereby "Num-
ber of Frames" contains the amount of data frames the scenario contains in total and "Frame
Rate" describes the frequency at which data frames are sampled. For example a driving sce-
nario that is 60 seconds long and is sampled at a frame rate of 25 frames per second has total
number of 1500 frames. Therefore the value stored in the node "Number of Frames" is 1500
and the value stored in the node "Frame Rate" is 25. The node "Timestamps seconds" stores
the "unix" timestamp when each of the data frames included in the scenario are recorded.
The node "Timestamps nanseconds" additionally stores the exact nanoseconds when each of
the data frames are recorded. Finally, the weather conditions at the test stretch at the time
of the driving scenario are stored in the node "Weather Conditions".

The node "Actors" contains all actors included in the driving scenario. These can be vehi-
cles, pedestrians, cyclists, and other moving or static objects. Each actor contains child nodes
with information describing its properties and dynamics. An actor is divided into the child
nodes "ID", "Object Class", "Color", "Path", "Time Stamps", "Velocities", "Length", "Width", and
"Height". Here, in the node "ID" the actors unique identification number is stored. Each actor
has a unique ID number which is useful to identify an actor in throughout different data
processing steps. "Object Class" contains the type information of the actor i.g. if the actor is a
car, truck, cyclist, pedestrian, or other type. "Color" contains three integer numbers between
0 and 255. These numbers correspond to RGB values to describe the actor’s color. "Offset"
describes the time difference between the beginning of the driving scenario and the point in
time when the actor first appears in the scenario.

The node "Path" contains the ordered coordinates that define the path of the actor. "Time
Stamps" contains the timestamps for each of the data frames the actor appears in. "Velocity"
describes the longitudinal speed of the actor at each time step.

Practically, the information stored in the node "trajectory" and one of either nodes "veloc-
ity" or "time stamp" is enough to fully describe the actors’ movement over time. The reason
why both are stored is that there are different ways to describe the basic scenario information
in the OpenSCENARIO format. Depending on how this is done, either the information stored
in the node "velocity" or in the node "time stamp" can be more beneficial. This is discussed in
Section 4.6 in more detail.

Finally, the nodes "Lenght", "Width", and "Height" contain the dimensions of the actor. The
data format is visualized in Figure 4.2. This data representation of a driving scenario is the
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common base in which both extracted data and synthetically generated data is brought into.
From this base any further steps like the generation of OpenSCENARIO files or the automated
labeling of maneuvers and scenarios are carried out.
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Figure 4.2: lllustration of the data format in which the scenario information is stored (source: own illustration).

4.2 Scenario Catalog

The basis of this work is a scenario catalog that determines which scenario types are included
in the dataset. For this reason, it is crucial to define the catalog carefully, as it is mainly
responsible for the success of the dataset created in this work. The position of the scenario
catalog in the entire process model is highlighted in Figure 4.3.

In order to determine which features and scenario types should be included in the dataset,
an analysis of the most relevant and safety-critical traffic scenarios is made. This is done by
screening various sources that analyze causes of traffic incidents. These sources include
reports from the National Highway Traffic Safety Association (NHTSA), Euro-NCAP, and UN-
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Figure 4.3: lllustration of the Stages for the creation of the final proScenario dataset (source: own illustration).

ECE. In total, from these sources a shortlist of 132 different general scenario types is made,
which is then condensed to the final list of 86 scenario types included in the proScenario
dataset.

First, all scenario types that physically cannot occur on the test stretch are removed. Ex-
amples for this are scenarios like entering- and exiting a toll station or a roundabout because
both a toll station and a roundabout are not part of the Providentia+ + test stretch. Addition-
ally, some scenario types that are listed in the sources analyzed to create the initial shortlist
may occur on the test stretch, but are not relevant. These include scenario types like fol-
lowing vehicle changes lane and following vehicle stops. Those scenario types are irrelevant
because the situation does not require any further action from the vehicle, they are referring
to.

After removing all irrelevant scenario types from the shortlist, the resulting scenario types
are added to two different catalogs. One catalog contains all scenario types that occur on
highway while the other catalog contains scenarios that occur in urban and rural areas. Fig-
ure 4.4 shows some examples of scenario types included in the catalogs. The full catalogs are
shown in the appendix under 1 and 2.
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Traffic Scenario 01: Control loss
without previous action. The
ego-vehicle loses control due to
bad conditions on the road and
it must recover, coming back to
its original lane.

Traffic Scenario 06: Vehicle
passing dealing with oncoming
traffic. The ego-vehicle must go
around a blocking object using
the opposite lane, yielding to
oncoming traffic.

Traffic Scenario 02: Longitudinal
control after leading vehicle’s
brake. The leading vehicle
decelerates suddenly due to an
obstacle and the ego-vehicle
must perform an emergency
brake or an avoidance
maneuver.

Traffic Scenario 07: Crossing
traffic running a red light at an
intersection. The ego-vehicle is
going straight at an intersection
but a crossing vehicle runs a red
light, forcing the ego-vehicle to
avoid the collision.

Traffic Scenario 03: Obstacle
avoidance without prior action.
The ego-vehicle encounters an
obstacle / unexpected entity on
the road and must perform an
emergency brake or an
avoidance maneuver.

Traffic Scenario 08:
Unprotected left turn at
intersection with oncoming
traffic. The ego-vehicle is
performing an unprotected left
turn at an intersection, yielding
to oncoming traffic.

Traffic Scenario 04: Obstacle
avoidance with prior action.
While performing a maneuver,
the ego-vehicle finds an
obstacle on the road and must
perform an emergency brake or
an avoidance maneuver.

Traffic Scenario 09: Right turn
at an intersection with crossing
traffic. The ego-vehicle is
performing a right turn at an
intersection, yielding to crossing
traffic.

Traffic Scenario 05: Lane
changing to evade slow leading
vehicle. The ego-vehicle
performs a lane changing to
evade a leading vehicle, which is
moving too slowly.

Traffic Scenario 10: Crossing an
unsignalized intersection. The
ego-vehicle needs to negotiate
with other vehicles to cross an
unsignalized intersection. In this
situation it is assumed that the
first to enter the intersection
has priority.
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Figure 4.4: Examples of driving scenarios selected from the NHTSA pre-crash typology (source: [175]).

4.3 Analysis of Scenario Types that can be extracted from Data Record-
ings

In the previous section the creation of a catalog containing all scenario types that can occur
on the Providentia+ + test stretch has been addressed. With this exhaustive list as a refer-
ence, it is observed which of the scenario types can be extracted from data recorded on the
test stretch. There are two main motivations for extracting scenarios from the recorded data.
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First of all, data recorded from real-world traffic is 100 percent authentic and it can be
assured that the data is helpful for perception algorithms to be trained on. In contrast when
generating synthetic scenarios, it cannot be fully guaranteed that these reflect a traffic situa-
tion in a realistic manner.

The second reason for extracting scenarios is that the synthetic creation of new scenarios
is very time consuming and requires manual work. It should therefore be reduced to an ab-
solute minimum.

For these reasons, as many scenarios as possible will be extracted from data recordings of
the Providentia+ + test stretch using Data Mining techniques. The complete list of scenarios
extracted and those created synthetically can be found in the appendix under 1 and 2. Since
the Data Mining process is focused on extracting scenarios, it can be referred to as Scenario
Mining [190]. The further procedure is explained in the following sections.

4.4 Synthetic Scenario Generation

The scenario catalog developed as part of this work is meant to cover all possible traffic sit-
uations. This also means that it includes driving scenarios that generally occur very rarely
and have not occurred on the Providentia+ + test stretch. However, in order to properly
train algorithms for autonomous driving, an extensive suite of driving situations is required.
Relevant driving scenarios that have not occurred on the test stretch and can therefore not be
extracted are created synthetically. This is done with the "Scenario Generation Framework"
developed as part of this work.

This is important as it provides the possibility to train and validate autonomous driving
systems on all test cases, including very rare ones. Figure 4.5 highlights the role of synthetic
scenario generation in the entire process.
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Figure 4.5: lllustration of the Stages for the creation of the final proScenario dataset (source: own illustration).

In order to give the user maximum control for defining all details of a scenario, a frame-
work for creating synthetic driving scenarios is introduced as part of this work. The main goal
of this framework is to model the dynamics of each actor in the scenario accurately following
the user’s needs. This includes defining the actors’ paths and velocities.

The framework provides a simple yet efficient way to describe driving scenarios while
maintaining a high flexibility when describing the actor dynamics. The main building blocks
of the framework are a collection of approximate routes, velocity profiles, a trajectory calcu-
lator, and a visualization. In the following, these building blocks and the creation of a driving
scenario is explained in more detail.

1. Collection of Routes

When describing the motion of a vehicle or an actor in general, the most information
is contained in the actor’s path. It describes the positions that are run through, as well
as the movement direction and even the orientation when constraining it to the path.
Additionally, many maneuvers like turns or lane changes can be detected only by using
the path as an information source.
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For these reasons, the actors’ paths are the most important pieces of information when
describing a driving scenario. In the scenario creation framework proposed in this work
the user is given full control of designing routes for actors. This is done by creating a
set of coordinate points in correct order that define the route. The amount of coor-
dinate points can be chosen freely by the user, since the final trajectory is calculated
by an interpolation algorithm, which is described in step three. Due to the nature of
the interpolation algorithm, a route must be defined by at least four sets of coordinate
points. Depending on the number of coordinate points given by the user, the interpola-
tion algorithm is more or less constrained. All routes defined by the user are collected
in independent script, from which they can be imported to a driving scenario depend-
ing on the user needs. Figure 4.6 shows an example of how a complex route can be
defined by a set of seven coordinate points only.

Figure 4.6: Example of how a complex trajectory with multiple lane changes and a highway exit can be defined by
a small set of coordinate points in the coordinate system of the Providentia++ test stretch (source: own illustration,

(1)

2. Velocity Profiles

In order to fully define the position of an actor at each point in time, a path is not suffi-
cient. Additionally, to coordinate points a timestamp must be added when each of the
coordinate points along the path is reached by the actor. This combination of positional
and temporal information is the actor’s trajectory.

In theory, the trajectory of each actor could be defined by combing the actor’s path and
a matching timestamp for each coordinate point along the path. This may work well
for a computer system that can simply record the current time whenever it tracks the
position of a vehicle. However, when creating a trajectory synthetically, it may be more
intuitive for the user to provide the current vehicle velocity at each time step.

For this reason, the user can create an array of velocity values, where each value defines
the actor’s longitudinal speed at the corresponding point in time. The details of how a
complete trajectory is calculated from a simple route and the velocity at each time step
are explained in the following paragraph.

3. Trajectory Calculator
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The goal of the scenario generation framework is to make the creation of trajectories
for any kind of actor as intuitive as possible. Therefore, the user can obtain a complete
trajectory by simply passing a small set of coordinate points marking the path as well
as a set of velocities resembling the actors speed at each timestamp. These inputs are
passed to a module that calculates the trajectory in two main steps.

(@

(b)

In the first step, a function describing the path is obtained by performing a cubic
interpolation through the set of coordinate points given. The function is param-
eterized by the distance travelled along the path. This means that it takes the
distance travelled as an input and outputs the x- and y-coordinate after travelling
that distance. The resulting function can then be sampled at various distances to
obtain a set of coordinate points.

Up to this point an interpolation function is obtained that takes a certain distance
along the path as an input and outputs the corresponding coordinate points. De-
pending on the frame rate at which a scenario is sampled the time passed (time
step) between two time stamps varies. The relation between the sampling rate
and the time passed between two time stamps is inverse. A sampling rate of 25
Hertz equates to a time step of 40 milliseconds whereas a sampling rate of of 0.5
Hertz equates to a time step of 2 seconds. The relation between sampling rate and
time step is described by the following equation:

At=1/f
with At = timestep f = frequency (sampling rate),

In the course of the Providentia++ project, multiple datasets will be released.
They are intended to be sampled at frame rates of 2.5 and 10 or 12.5 Hertz. The
sampling rate of synthetic driving scenarios can easily be adapted by the corre-
sponding input parameter of the trajectory calculator. The general sampling pro-
cedure however remains the same.

Since the first release of the proScenario dataset is intended to have a sampling
rate of 2.5 Hertz it is crucial to know what distance the actor has travelled at every
time step which occurs every 400 milliseconds. Only if this is known the function
describing the actor’s path can be sampled appropriately to create a true trajectory.

This is where the velocity profile defined by the user comes into play. It describes
the actor’s velocity at each point in time. With this information, the distance trav-
elled between two time steps can be calculated through the following relation
between distance, time, and velocity:

d=vxt
with d = distance, v = velocity, t = time

Analogously, since the trajectories are described in discrete time steps the equation
can be written as follows:

Ad =v* At
with d = distance, v = velocity, t = time
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This shows that the distance travelled between two timestamps is simply the ve-
locity at this point in time multiplied with the time between the two time steps.
Since the data is sampled at 2.5 Hertz the time between two time steps is 400
milliseconds or 0.4 seconds. To get the absolute distance travelled at each time
step, the distances calculated are simply accumulated up to the specific time step.
An example of the procedure is shown in Figure 4.7.

Sampling Rate: 2.5 Hertz
Time between two time steps (At): 0.4 seconds

List of Velocities in meters per second at each Time Step

[- ]

Ad =v * At
> Ad =v *0.4s

List of Distance in meters covered between the two following Time Steps

{ ) e e o )

Timesteps: 01 12 23 34 45 56 67 78 89 910

Distances between the start (time step 0) and the current time step are accumulated to retrieve the distance
travelled at each time step.
At time step 0 no distance is travelled; At time step 1 the distance between time steps 0 and 1 is travelled which is 8
meters; At time step 4 all distances between time step 0 and 4 are accumulated which is 28 meters (8 + 8 + 8 + 4)

(o ][ J[ 6] [2eJ[28][s2][s6 ] [eo][as ][5 ]

[ List of Distance covered between at every Time Step ]

Figure 4.7: Visual representation of the steps to calculate the distance travelled at each time step (source: own

illustration).

Once the distance travelled at each time step is calculated, the function describing
the actor’s path is sampled at each of these distances. This generates a set of coor-
dinate points matching the timestamps, which in combination describe a complete
trajectory.

In Figure 4.8 an example of a trajectory with a specific velocity profile is visual-
ized. The profile is defined that the actor moves at a speed of five meters per
second for the first fifteen time steps, then moves at 30 meters per second for five
time steps before moving at ten meters per second for ten time steps. For the last
five time steps, the actor then moves at 20 meters per second. When looking at
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the coordinate points along the trajectory at each time step, it becomes clear that
the distance between two following points depends on the current longitudinal
velocity of the actor.

Velocity profile

EEEDEEEEEEEDEDEE

Figure 4.8: Visual representation of how different velocities at each time step affect the distance travelled at that
time step (source: own illustration, [1]).

Additional parameters the trajectory calculator takes as inputs are the actor ID
and type, the frame rate in which the scenario is sampled, the time offset from the
start of the scenario when the actor comes into play, and distance offset from the
beginning of a user defined path. This information is used to describe the actor’s
properties and behavior in more detail.

4. Visualization

For the user to control whether the defined driving scenario acts as intended, a visual-
ization is included in the framework. The visualization takes the scenario containing
the trajectories and creates a plot of all actors at each time step. Only those actors are
included in a plot when present in the scenario at that point in time. Actors that are
not present at the beginning of the scenario, for example are not included in the first
plots. The plots are then animated by playing them according to the sampling rate of
the data. In the background of each plot the Providentia++ test stretch is depicted
so that the user can also evaluate whether the position of the actors in the scenario is
correct at all times. An example showing multiple plots from a scenario is shown in
Figure 4.9.
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Figure 4.9: Visual representation of a driving scenario generated by the visualization script. The plots shown in
this figure are animated and stored as a GIF by the tool. The road network is right-handed (source: own illustration,

(1.
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5. Full Example of Scenario Generation

In the previous chapter the main building blocks of which the scenario generation
framework is composed of are explained. In this section, all steps involved in the gen-
eration of a synthetic driving scenario are explained upon an example scenario. The
general process for creating synthetic driving scenarios is pictured in Figure 4.10

Inputs

. Scenario
Trajectory Visualization Accepted

Profile Calculator (Validation) Driving Scenario

Scenario Idea Velocity

Velocity

Route

il Collection

Collection

Adjust Route and Velocity Profile

Figure 4.10: General process for creating synthetic driving scenarios. If the user wants to edit the initially created
scenario the route and velocity profiles can be adjusted (source: own illustration).

In a first step, the user defines the path for the actor to follow. This can be done by
defining a small set of at least four coordinate points. These do not have to match with
any of the timestamps, because they only operate as reference points for guiding the
path interpolation. In Figure 4.11 a simple lane change maneuver is defined with only
four reference points.

Figure 4.11: Example of how a lane change trajectory can be calculated by using only four reference points to
describe the actor’s path (source: own illustration, [1]).

Next, the user defines the velocity profile of the actor. In this case, each velocity in the
profile must match a time step. This defines the actor’s speed at each time step.
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With both the reference points for the path and the velocity profile, the trajectory cal-
culator creates the actor’s trajectory. To do so, first a spline function is created by
performing a cubic interpolation on the reference points passed from the user. Then
the distance travelled at each time step is calculated, as described in this chapter un-
der point 2. With this information, the spline function can be sampled correctly, and
produces the exact coordinate location of the actor at each time step in the scenario.
Finally, all additional information provided is processed to further describe the actor’s
behavior, as described at the end of point 3. The explained steps are visualized in Fig-
ure 4.12.

Inputs:

Reference coordinate points for path
interpolation

Other inputs such as ID, actor type,

pelociipitie time- and distance offset

Interpolate the reference coordinate points to obtain the spline function describing the actor’s path

Calculate the distance travelled at each time step by using the actor’s velocity profile. Then sample the spline function

accordingly to obtain the final trajectory

) \\\
N
L

Figure 4.12: Full Example of Scenario Generation (source: own illustration, [1]).

4.5 Maneuver Detection / Scenario Mining

The goal of the scenario mining step is to assign each scenario with appropriate labels in
an automated fashion. This is done by first automatically detecting vehicle maneuvers from
which conclusions about the scenario type can be drawn. By doing so the labor necessary for
manual labeling is reduced dramatically.

The detection and classification of relevant scenario types occurs on the basis of data min-
ing techniques. In order to solve the process of scenario mining in an adequate manner, a
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process model is used for guidance. Santos and Azevedo [21] outline that there are two most
relevant process models for Data Mining projects, the Knowledge Discovery in Databases
(KDD) and the Cross Industry Standard Process for Data Mining (CRISP-DM).

Both models are described in detail in the related work section of this work. Most of
the process stages are identical in both models. The main difference lies in the focus of the
CRISP-DM on the business case related to a Data Mining project [21, 196]. The KDD process
is more focused on the technical solution of the task [21, 62]. The central role of scenario
mining including its sub steps in this work is highlighted in Figure 4.13.
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Maneuver / Scenario Mining Scenario Generation

Scenario Generation
Framework:
v Synthetic Driving Scenario
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Scenario Data Augmentation
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Maneuver Detection
Scenario Simulation/Visualization

Scenario Statistics OpenScenario Writer

Scenario Database

Scenario Database including Rosbag files, JSON Labels, Scenario Statistics, and OpenScenario files

Figure 4.13: lllustration of the Stages for the creation of the final proScenario dataset (source: own illustration).

This work aims to create the basis for generating an open-source dataset for research pur-
poses and there is no underlying business case with the intention to create profits. Therefore,
the focus completely lies on the technical implementation. For this reason, the KDD process
model is considered as a better fit and is used to guide the Scenario Mining step.
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4.5.1 Scenario Extraction

The first step of the scenario mining process is the extraction of driving scenarios from
data recordings. Figure 4.14 highlights the position of scenario extraction step in the en-
tire scenario-based approach process model.

Scenario Catalog
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Scenario Statistics OpenScenario Writer

Scenario Database

Scenario Database including Rosbag files, JSON Labels, Scenario Statistics, and OpenScenario files

Figure 4.14: lllustration of the Stages for the creation of the final proScenario dataset (source: own illustration).

One method to create driving scenarios is to utilize the data recorded from the Providen-
tia++ test stretch. In multiple steps, the raw sensor data is extracted and transformed so it
fully describes a driving scenario.

The sensor recordings from the test stretch include camera, LiDAR, and radar data. In
various works part of the Providentia+ + project, techniques have been developed to extract
information from these data streams like object type, dimensions, position, and velocity. Ad-
ditionally, a tracking algorithm is applied that recognizes whether the same object (vehicle)
is present in multiple data frames and assigns the same unique ID for this object (vehicle) in
each of these data frames. Also, the date and time of the recording and a timestamp for each
data frame is added. All this information is then stored in a rosbag file.
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The extraction pipeline created as part of this work begins with two modules that trans-
form the processed sensor data into the "Scenario Description Format". The first module takes
the rosbag file created from the Providentia+ + sensor system as an input. The second mod-
ule takes JSON files containing similar information as the rosbags as an input. The JSON files
are used for manually labeling driving scenarios. For this reason it is important to be able to
transform both the rosbag files and the JSON files into the "Scenario Description Format".

The two extraction modules are very similar except for the first processing step. In the
first step, a Python script extracts the data stored inside the rosbag or JSON files. Since the
file format of rosbag and JSON files is different, individual scripts are necessary to extract
information from the two data formats. In both cases the extracted information is written
into the so called DataFrame format using the Python pandas library. After this point the
following steps for both extraction modules are identical.

The benefit of the tabular DataFrame structure is that information can be extracted in very
targeted manner by simply filtering the DataFrame by values one or more of the columns.
Each row of the DataFrame represents all information about a specific object at a certain
point in the data recording. This includes the timestamp, unique tracking ID, dimensions,
position, type, velocity, and other attributes of the object. In Table 4.1 the structure of the
DataFrame is depicted for better understanding.

timestamp category width y z velocity x ‘ velocity y ‘ velocity z
0.0 7853 CAR 1.9 4.7 1.45 92.930359 | -5.265621 0 31.247 0.016 0
1.0 7853 CAR 1.9 4.7 1.45 125.389847 | -5.303660 0 31.418 0.022 0
2.0 7853 CAR 1.9 4.7 1.45 158.329147 | -5.287288 0 31.473 0.013 0
3.0 7853 CAR 1.9 4.7 1.45 193.811325 | -5.048016 0 31.483 0.011 0
4.0 7853 CAR 1.9 4.7 1.45 229.728806 | -4.823170 0 31.436 0.012 0
5.0 7853 CAR 1.9 4.7 1.45 263.120880 | -5.039521 0 31.218 0.015 0
6.0 7853 CAR 1.9 4.7 1.45 297.389557 | -5.200200 0 30.917 0.012 0
7.0 7853 CAR 1.9 4.7 1.45 333.263947 | -5.339573 0 30.672 0.014 0
8.0 7853 CAR 1.9 4.7 1.45 367.479401 | -5.489977 0 30.456 0.014 0
9.0 7853 CAR 1.9 4.7 1.45 400.318573 | -5.680832 0 30.333 0.017 0
10.0 7853 CAR 1g 4.7 1.45 431.169769 | -6.057634 0 30.297 0.015 0
0.0 7859 CAR 1.9 4.7 1.45 257.644379 | -16.127937 | O 27.343 0.013 0
1.0 7859 CAR 1.9 4.7 1.45 283.190948 | -16.041351 | O 27.112 0.012 0
2.0 7859 CAR 1.9 4.7 1.45 311.745636 | -16.026731 | O 26.973 0.011 0
3.0 7859 CAR 1.9 4.7 1.45 340.246307 | -16.025745 | 0 26.427 0.010 0
4.0 7859 CAR 1.9 4.7 1.45 366.813110 | -16.133640 | O 26.045 0.014 0
5.0 7859 CAR 1.9 4.7 1.45 392.872742 | -16.281500 | O 26.084 0.018 0
6.0 7859 CAR 1.9 4.7 1.45 416.937653 | -16.383415 | 0 26.114 0.017 0
7.0 7859 CAR 1.9 4.7 1.45 442.191895 | -16.558998 | 0 26.237 0.019 0
6.0 7900 CAR 1.9 4.7 1.45 28.213936 | -8.864231 0 26.390 0.014 0
7.0 7900 CAR 1.9 4.7 1.45 63.442867 | -9.118527 0 26.516 0.013 0
8.0 7900 CAR 1.9 4.7 1.45 100.112740 | -9.298901 0 26.492 0.015 0
9.0 7900 CAR 1) 4.7 1.45 137.056656 | -9.281519 0 26.412 0.012 0
10.0 7900 CAR 1.9 4.7 1.45 177.466614 | -8.892739 0 26.378 0.011 0
11.0 7900 CAR i) 4.7 1.45 217.548218 | -8.453785 0 26.351 0.012 0
12.0 7900 CAR 1.9 4.7 1.45 259.275513 | -8.650146 0 26.329 0.014 0
13.0 7900 CAR 1.9 4.7 1.45 297.340485 | -8.772322 0 26.296 0.013 0
14.0 7900 CAR 1.9 4.7 1.45 334.646332 | -8.907867 0 26.374 0.014 0
15.0 7900 CAR 1.9 4.7 1.45 369.598969 | -8.930677 0 26.515 0.012 0
16.0 7900 CAR 1.9 4.7 1.45 404.133057 | -8.939241 0 26.746 0.011 0
17.0 7900 CAR 1.9 4.7 1.45 437.150818 | -9.254308 0 27.013 0.015 0

Table 4.1: Excerpt of the DataFrame from an extracted scenario (source: own illustration).

To obtain the properties and trajectory for each actor in a first step, all unique actor types
are collected in an actor list. Then for each actor type all unique IDs are collected in a list.
In a next step, the DataFrame is first filtered by one of the actor types and then by one of the
unique IDs.

After these two filters are applied, all information about one specific actor is filtered over
the time period it occurs in the recording. This data can then be sorted by the timestamps
available in each data row. Once the data is sorted chronologically, the position of the actor
at each timestamp is stored in a list in order to describe the actors’ path.
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Similarly, the timestamps and velocities are stored. The vehicle properties do not change
over time and therefore are only stored once.

The various information is then collected in a dictionary and appended to the overall
scenario. This is done for all unique actor types and IDs and results in the full description
of the scenario in the data format described in the previous chapter. The pseudo code and
visual description of the entire extraction process is shown in Figure 4.15.

JSON Labels

Individual Rosbag /
JSON information
extraction

At every time step extract tracking ID , position, velocity, dimensions , time stamp, and type of
each detected object and write the information to an individual dictionary for each object

All dictionairies are appended to a data list

After all information is appended to the data list it is transformed into the tabular DataFrame
format and all unnecessary information is removed

Common Filter DataFrame by unique object type and ID
processing steps

Save time stamps, coordinates, velocities in chronological order. Additionally save object type.
Store all information in a dictionary

Repeat the previous two steps with all available combinations of unique object types and
object IDs. Append each saved dictionary to a list describing the full driving scenario

Output Scenario description format

Figure 4.15: Description of the extraction pipeline steps from the raw data stored in rosbag or JSON files to the
scenario description data type (source: own illustration).

4.5.2 Data Pre-Processing

The next step of the scenario mining process following the scenario extraction is data pre-
processing. In this phase any data errors introduced in the extraction process are corrected.
Figure 4.16 highlights the position of scenario extraction step in the entire scenario-based
approach process model.
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Figure 4.16: lllustration of the Stages for the creation of the final proScenario dataset (source: own illustration).

The raw data recordings from the sensor suite on the Providentia+ + test stretch is pro-
cessed by an object detection and classification model. As a result, traffic participants are
assigned with bounding boxes and classified in a category such as car, truck, pedestrian,
bicycle, and others. Although the perception models detect a reasonable amount of traffic
participants correctly, errors in the exact size and position of the bounding boxes and also in
the type classification occur commonly.

To ensure a solid basis for training perception algorithms, the extracted scenarios must be
of high quality. For this, the raw data is pre-processed in multiple steps, which are described
in the following sections. The steps follow the KDD methodology.

4.5.2.1 Handling of Missing or Faulty Data

The defects that occur in the recorded data are mostly bounding boxes with imprecise posi-
tioning and size, missing bounding boxes, inconsistent IDs, and falsely classified traffic par-
ticipants. These errors all affect the trajectories of the traffic participants and must therefore
be eliminated to ensure high quality scenarios are extracted. The following section describes
how each of these defects is dealt with.
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The unprecise bounding boxes are manually corrected with the labeling tool proAnno.
Here the size, position, and orientation of the bounding boxes are adjusted. Analogously
for traffic participants that are not detected by the detection model new bounding boxes are
created. This step is especially important to ensure that no traffic participants that affect
the scenario are left out. Figure 4.17 shows a visualization of the bounding boxes within
proAnno.

Figure 4.17: Visualization of the bounding boxes within proAnno (source: [136]).

Another important requirement to ensure that a traffic scene is semantically accurate is
the correct classification of the traffic participants. If, for instance, a car is falsely classified
as an ambulance vehicle, this potentially changes the semantic meaning of a scenario.

In a realistic situation, the surrounding vehicles carry out certain maneuvers to ensure the
ambulance vehicle can pass them. In this case since the data is recorded from a real traffic
scene where a normal car is driving instead of the detected ambulance vehicle the surround-
ing vehicles don’t make any abnormal maneuvers.

If the scenario is interpreted semantically, this suggests that surrounding vehicles don’t
make any abnormal maneuvers when an ambulance vehicle is approaching them. In this
case the falsely detected ambulance vehicle may have a negative impact on the training pro-
cess of a trajectory prediction model that learns from this data.

ProAnno offers a selection menu where the type of traffic participants can be selected.
This is used to manually correct any misclassifications.

The last defect type occurring in the data is inconsistent or mixed-up traffic participant
IDs. The ID should be unique for each traffic participant and is initially determined by a
tracking algorithm. Unfortunately, frequently errors occur such as mixing up two vehicles
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with each other or not tracking a vehicle for some frames. This leads to the wrong assign-
ment of IDs, which affects the data quality and must be corrected.

Especially when interpreting the data in a temporal matter, a consistent assignment of
unique IDs for each traffic participant over all data frames is crucial. The unique IDs are re-
quired to allow an independent extraction of the trajectories of each traffic participant. This
is a premise in order to be able to extract trajectories from the data recordings, which even-
tually play a crucial role in detecting vehicle maneuvers and scenario types. Without tracking
vehicles over time the movement of each vehicle cannot be described as a trajectory. Without
knowledge about the movement over time maneuvers such as lane changes, cut-ins, tailgate
and more cannot be detected. Figure 4.18 illustrates the importance of object tracking for
the detection of driving maneuvers.

Again, proAnno offers a selection menu where each traffic participant can be assigned an
ID. The IDs are then created or corrected manually to ensure their uniqueness.

Figure 4.18: Examples illustrating the importance of object tracking for the detection of driving maneuvers. Each
of the plotted points stands for a vehicle position at a certain point in time. The color of the point indicates the
actors ID. The first plot shows the position of vehicles over time without tracking and therefore randomly sampled
track IDs at each point in time. The second plot in contrast shows the position of vehicles over time with tracking.
Here the points with same color belong to one specific vehicle. When examining each vehicles positions over time
the vehicles trajectory and thus driving maneuvers can clearly be identified (source: own illustration, [1]).

4.5.2.2 Trajectory-Data Pre-Processing

The Providentia++ infrastructure provides a data stream containing camera, radar, and Li-
DAR sensor data. The data recorded by the various sensors is then processed to determine the
position, orientation, size, and type of all traffic participants in each of the recorded frames.
For the purpose of recognizing maneuvers and classifying scenarios the positional informa-
tion is the most relevant, as it allows to analyze the movement of each traffic participant.
Since the data stream is analyzed by a tracking algorithm, each vehicle has an individual ID
which is consistent over all frames in which it appears. Therefore, with the individual ID
and positional information a trajectory can be extracted for each vehicle. Concerning the
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detection of maneuvers and scenario types, it is essential that the positional information is
very accurate in order to achieve good detection results.

As shown in Figure 4.19, trajectories without applying any pre-processing steps can be

inaccurate and contain missing values. To obtain trajectories of high quality two main pre-
processing steps are applied.

1. Remove Outliers

2. Interpolate Missing Values

In Figure 4.19 the raw trajectories extracted from a 60 seconds long recording are pic-
tured.

Figure 4.19: Plot showing raw vehicle trajectories on the Providentia++ test stretch over a time span of 60 seconds
(source: own illustration, [1]).

4.5.2.3 Outlier Detection

The data recordings from the Providentia+ + test stretch include some noise as well as out-
liers. In the data this is reflected in the recorded trajectories. Both paths and velocity profiles
frequently contain outliers which result in unwanted spikes. An example of outliers in the
velocity profile of one actor is shown in Figure 4.20.
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Figure 4.20: lllustration of how outliers affect the velocity profile of a vehicle recorded on the Providentia++ test
stretch (source: own illustration).
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In order to remove such outliers from a velocity profile a simple two-step outlier detection
algorithm is implemented. The first step calculates the so called "moving average" over the
entire velocity profile. The "moving average" is a filtering strategy typically used for noise
reduction. It recalculates each value of a time series by averaging over N neighboring values.
This reduces the fluctuations induced through noisy data. The affect of applying the "moving
average" to a noisy velocity profile is shown in Figure 4.21.
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Figure 4.21: Application of the "moving average" filter. The original velocity profile is shown in cyan while the
filtered profile is shown in green. (source: own illustration).

As seen in Figure 4.21 applying the "moving average" already leads to quite a good
smoothing result. Nonetheless, outliers still substantially influence the correctness of the
velocity profile. Therefore, in the second step of the outlier detection, the difference between
the filtered result and the raw velocity profile is calculated. The result is shown in Figure 4.22.
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Figure 4.22: Difference between the raw velocity profile and the one filtered with the "moving average" algorithm
(source: own illustration).

As seen in Figure 4.22 the filtered trajectory profile follows the original unfiltered profile
very tightly, unless a major spike occurs. For this reason, when calculating the difference
between filtered and unfiltered velocity profile, the result is mostly close to zero unless an
outlier appears. With this information, all points that lie above a defined threshold are de-
tected as outliers and removed from the data. In a last step, the outlier adjusted velocity
profile is interpolated to obtain the true velocities in the sections where outliers are detected.
Figure 4.23 shows an example of a raw-, filtered-, and final interpolated velocity profile.
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Figure 4.23: Visualization of the transition from the original velocity profile (cyan) to the filtered profile (green) to
the final smoothed velocity profile (red) (source: own illustration).

4.5.2.4 Discretization

The positional and temporal data describing each actor’s trajectory is given in the recordings
and synthetic scenarios as a set of coordinate points and a corresponding set of timestamps.
Here, the coordinate points describe the actor’s path, whereas the timestamps describe the
point in time when the actor reaches each of the coordinate points. Both features are already
provided in a discrete format by the data recordings from the Providentia++ test stretch.
Therefore, no additional discretization is necessary as part of the data pre-processing step.
The synthetically created driving scenarios are already generated in a discrete format. This
makes a discretization step obsolete.

4.5.2.5 Normalization

Data normalization is often beneficial when applying various machine learning algorithms
[164, 166]. In this work, however, the maneuver detection algorithm is modeled by con-
sidering the absolute positions of an actor at each time step and bring these positions into
context with several regions of interest along the Providentia+ + test stretch. This means that
both the vehicle trajectory as well as the position of each region of interest must be known in
absolute coordinates. A normalization step is not necessary in this case.

4.5.3 Scenario Data Augmentation

As described in Section 2.15, many success stories have occurred with the use of data aug-
mentation techniques. Usually, the outcome is a higher model performance [163, 193].

Especially in the area of autonomous driving, which is highly safety critical it is crucial
to cover as many scenario types and variations as possible. This ensures robust algorithms
can be trained on a set of driving scenarios that sufficiently cover the conditions in which the
automated vehicle is designed to operate.

In this section, a scenario augmentation framework is introduced and described. Its aim
is to enhance the set of available driving scenarios. The basic idea behind the augmenta-
tion framework is to create multiple stochastic variations of a base driving scenario. This way
only one example of each driving scenario is needed. All variations of this scenario that could
occur in reality are then generated by the scenario augmentation framework. The position
of the introduced augmentation framework in the entire scenario-based approach process
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model is highlighted in Figure 4.24.
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Figure 4.24: lllustration of the Stages for the creation of the final proScenario dataset (source: own illustration).

For the augmentation of vehicle trajectories, a stochastic sampling-based approach is used
to achieve nearly unlimited and highly realistic augmentation possibilities. In addition, the
stochastic sampling behavior is highly parametrizable and can be adjusted to the user’s needs.
The trajectory augmentation includes adjustments in the vehicle path and velocity at each
time step.

Other aspects of the driving scenarios, such as the vehicle type and color, weather condi-
tions, and time of day are sampled randomly from a discrete pool of combination possibilities.
An overview of the sampling pool is given in Table 4.2. In the following sections, both the
trajectory augmentation and the sampling of the remaining scenario features are explained.
Figure 4.25 illustrates the steps included in the augmentation framework.
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Category
Vehicle type

Format

Vehicle description in string
format

Example: 'Tesla Model S’

4 Solution Approach

Sampling Pool

All vehicle types currently
supported by the CARLA
simulator

Vehicle color

Three integer values defin-
ing a color on the RGB color
scale

Three integer values each
in the range between zero
and 255
Example: color red
(255,0,0)

Time of day

Time in the format hour-
minute-second (hh-mm-ss)

Three integer values where
the value defining the hour
must lie in the range zero to
24 whereas the values defin-
ing minute and second lie in
the range zero to 60

Weather conditions

Weather conditions descrip-
tion in string format
Example: ’sunny’

All weather conditions sup-
ported by the CARLA simu-
lator

Table 4.2: Overview of sampling pool for the augmentation parameters vehicle type and color, time of day, and
weather conditions (source: own illustration).

Input Base Driving Scenario

Stochastic Trajectory
Variation Framework

Random Sampling
Framework

Augment Paths and Velocities of Vehicle Trajectories

For each Trajectory assign a Vehicle Sampled from the Pool of Vehicle Types

Assign each Vehicle an Indiviual Randomly Sampled Color

Sample the Date and Time at Random

Sample the Weather Conditions at Random

Output Augmented Driving Scenario

Figure 4.25: lllustration of the steps included in the scenario augmentation process (sources: own illustration).

4.5.3.1 Trajectory Augmentation

The main idea of the trajectory augmentation framework is to take an existing trajectory as
an input and variate it inside certain boundaries so that the augmented trajectory still mirrors
a realistic driving behavior, but is yet different from the input. The base trajectory used as
input for the framework can for example be recorded from a real-world driving scenario or
generated synthetically based on realistic assumptions. Additionally, the level of variation
can be controlled by user-defined parameters. The results of different parameters are shown
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in Figures 4.26 and 4.27 where the same three trajectories are augmented with a high and
low degree of variation.

1

= Base Trajectory
= Augmented Trajectory

Figure 4.26: Example of three trajectories augmented with Gaussian noise of zero mean and 0.2 meters standard-
deviation (sources: own illustration, [1]).
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Figure 4.27: Example of three trajectories augmented with Gaussian noise of zero mean and 2 meters standard-
deviation (sources: own illustration, [1]).

Looking at the framework in detail it consists of four major variation steps:

1. Create Offset from Path

In the first variation step, the new trajectory is offset parallel to the base trajectory by a
value sampled from a normal distribution. The intuition behind this step is that, while
most drivers are likely to drive in the center of a lane, some may tend to drive closer to
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left or right bound of the lane. By sampling the offset value from a normal distribution,
this behavior is reflected since most trajectories are sampled close to the base trajectory
and fewer are sampled with large offsets. In other words, it is more likely to sample a
new trajectory with small offset to the base trajectory than one with a larger offset.

Add Gaussian Noise to Path

To further increase the realism of the path variations, in the second step normal-
distributed noise is added to the way points of the trajectory at each time step. This
way, the new trajectory does not have a constant offset from the base trajectory any-
more and, additionally, some swaying movement is added to the path. The mean and
standard deviation is parameterized and can be adjusted to the users demands. Since
the noise is sampled individually for each way point, interpolating the calculated way
points results in a zig-zag path with many sharp turns which is depicted in Figures 4.28
and 4.29.

e S

= Base Trajectory

= " Trajectory with Gaussian noise

Figure 4.28: Example of Gaussian noise with zero mean and 2 meters standard-deviation added to the way points
of the base trajectory (sources: own illustration, [1]).
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Figure 4.29: Example of a path with many sharp turns resulting from the addition of Gaussian noise to the base
trajectory (sources: own illustration, [1]).

This behavior is not intended simply because it does not mimic a natural driving be-
havior. More than this, it leads to a dilemma since adding normal distributed noise is
essential for creating some swaying movement but on the other side the new path could
contain sharp turns that physically cannot be completed by a vehicle. This problem is
addressed and solved in the next step.

. Smoothing

In order to remove the sharp turns that occur after adding noise to the path, a smooth-
ing algorithm is applied. The result is a path with gentle curves that mimics a more
realistic driving behavior. The benefit of this method is that the swaying movement
generated through the application of normal-distributed noise to the path is kept, while
removing all physically impossible sharp turns. Figure 4.30 shows an example of how
the smoothing algorithm affects the noisy path.
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Figure 4.30: Example of how the smoothing algorithm removes sharp turns from the noisy path but maintains the
swaying motion (sources: own illustration, [1]).

4. Velocity Augmentation

In the last step the velocity of the vehicle is varied at each time step. This is done by
once more adding normal-distributed noise to the velocities defining the base trajectory.
Again, a smoothing algorithm is applied to remove abrupt changes in vehicle speed and
maintain a realistic velocity profile.

4.5.3.2 Vehicle Type and -Color, Time of Day, and Weather Conditions Augmentation

Next to the vehicle trajectories, other factors with a strong influence on the scenario are the
vehicle type and color, time of day, as well as the weather conditions. To ensure a large
diversity of these factors within the collection of driving scenarios, they are all sampled at
random.

1. Vehicle Type

In practice, different vehicle types show different driving behaviors. This can be due
to the physics connected to the vehicle, but also due to the purpose of the vehicle. For
instance, a firetruck is usually a very heavy vehicle that generally drives slower than
a much more dynamic sports car. In certain situations however, like a fire emergency
the firetruck will speed up and possibly perform some abnormal maneuvers. For this
reason, an important task in autonomous driving is not only object detection, but also
classification so that the behavior can be predicted more accurately. To train an algo-
rithm appropriately for this task, all vehicle types must be represented in the training
data. How this is ensured in the augmenting driving scenarios, is explained as follows.

To select a random vehicle in a first step, the vehicle types included in Carla are all
stored in a list. A random integer is sampled in the range of the lists indices. The sam-
pled integer is then used as an index to select a vehicle from the list. For example, if
the list includes 10 vehicles, then an integer in the range zero to nine is sampled. Let’s
assume, for example, the number 7 is sampled. Then the vehicle in the list at position
7 is selected and returned as the output of the sampling process. The procedure is vi-
sualized in Figure 4.31.
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(e e e e e i e e )
2 4 7 8

Index: (0] 1 3 5 6

Index range from zero to eight = Sample number in this range at random
Example: If the number seven is sampled the output of the random vehicle type sampler will be ‘Car8’

Figure 4.31: Example of how a vehicle type is sampled at random (sources: own illustration).

2. Vehicle Color

For the computer vision task of object detection or in more specific vehicle detection,
it is beneficial to train an algorithm on vehicles with a large range of different colors.
This way, the algorithm learns to detect vehicles based on geometric features that may
appear differently depending on the vehicle color.

The vehicle color displayed by the Carla simulator is defined by an RGB color scale.
RGB colors are created by adding various intensities of the base colors red, blue, and
green to obtain the desired color. The intensity scale for each base color ranges from
zero to 255.

To ensure that all color combinations of the RGB scale can be achieved, three integer
numbers are sampled individually at random inside the range zero to 255. Each of
the values represents the intensity of either the 1, g, or b value. These values are then
passed on to the Carla simulator and define the vehicle color. The process is illustrated
in Figure 4.32.

Red (R) Green (G)
Range: 0...255 0...255

For each parameter R, G, and B sample value at random inside range zero to 255
The combination of the three sampled values for R, G, and B define the vehicle color

Example:

Sampled value for R: 145
Sampled value for G: 34
Sampled value for B: 207

Resulting color:

Figure 4.32: Example of how a vehicle color is sampled at random (sources: own illustration).

3. Sample Time-of-Day

In the real world, the perception of the environment can be very different depending
on the time-of-day. For instance, objects, lane markings, and other traffic participants
can be perceived differently during night time, dusk, or dawn. This is mostly due to the
different lighting conditions at these times compared to broad daylight.
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To reflect these conditions in the proScenario dataset, the date and time at which a
scenario takes place is sampled randomly. The sampling range lies between January
1st, 2020 at midnight and the current date and time when the sampling algorithm is
used.

4. Weather

Similar to the time-of-day, the weather conditions can have a strong influence on the
behavior of the actors in a scenario. For example, making a sharp turn at 30 kilometers
per hour may be possible in warm and dry conditions, but could lead to drifting off the
intended path if it is cold and the road is icy.

Weather conditions are therefore sampled randomly from the pool of weather types
supported by Carla and OpenSCENARIO, which are stored in a list. Analogously to the
sampling of the vehicle types, an integer is sampled in the range of list indices. The
list element at the index position of the sampled integer is then returned. This way
the weather conditions are sampled randomly. Figure 4.33 shows a driving scenario
simulated with the CARLA Simulator in four different weather conditions.

Figure 4.33: Driving scenario simulated with the CARLA Simulator in four different weather conditions (sources:
[53]).

4.5.4 Feature Selection

In this step the features that contain information relevant for the detection of maneuvers are
selected from all of the features that are included in the data recordings. Specifically those
which determine the actor’s positions and the timestamps. They define the trajectory as well
as the velocity profile of the actor while following his trajectory. Additionally, the feature
ID, containing each actor’s unique ID is selected for the purpose of matching each detected
maneuver to the corresponding actor.

Other features such as the actor’s orientation as well as the weather conditions are not
selected as the information stored inside these features is not relevant for detecting maneu-
vers.
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4.5.5 Feature Extraction

In order to detect certain driving maneuvers — for instance, a lane change - it is beneficial
- if not necessary - to extract additional features. A detailed description of which features
are extracted and how this is done is given in the following sections. The extraction of
new features is the last pre-processing step and fundamental for the automated detection of
driving maneuvers.

4.5.5.1 Feature: Lane ID

For the feature “Lane ID”, the position of an object in the traffic scene is labeled. This means,
that depending on where an object is located, it is assigned a label such as “lane 1”7, “lane 2”,
etc. if it is positioned inside one of the traffic lanes. If the object is not located on a road area,
the lane ID is labeled as "None". The bounding box of a traffic participant could lie either on
a single road segment or on multiple road segments, for example, “lane 1” and “lane 2” if it is
changing lanes. This would lead to unwanted ambiguity. Since it is desirable for the label to
be unambiguous, the center point of the object bounding box is used as the object position.
In general, this means that the lane ID of the road area where the object center is located on
is assigned.

To obtain the correct road position labels the different segments such as lanes or side-
walks are defined by polygons. The polygons create a hull which is an exact outline of the
lane or sidewalk. This works for both straight and curved road segments. After the polygons
are defined correctly, for each object it is tested whether the center point lies in one of the
polygons. This is done by an algorithm which tests whether a point lies inside the hull of a
polygon. Depending on which road segment the point falls into, it is labeled accordingly. The
procedure is visualized in Figure 4.34.

Lane ID: -
Lane ID: -
Lane ID: -
Lane ID: -
Lane ID: -

Lane ID: -

Lane ID: 1
Lane ID: 2
Lane ID: 3

Lane ID: 4

Lane ID: 5

Lane ID: 6

mw‘:"’"”"'—' DY, T ”~-g;,r:{§gé—mrfﬁ-;%zgwn“wrr‘-mwmm

Figure 4.34: Description of road lanes with polygons (sources: own illustration, [1]).
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4.5.5.2 Feature: Offset from Lane Center

Another extracted feature is the distance of a vehicle to the center of its current lane. The
distance is calculated for each vehicle at every time step. This information is valuable as it
allows to detect lane change maneuvers quite simply. Two main steps are taken to calculate
the lateral offset from the lane center.

1. First, it is checked on which lane each vehicle is driving at the current time step. This is
done by analyzing the result of the lane ID extraction, which already assigns the correct
lane ID for each vehicle.

2. With the information of the correct lane ID the corresponding lane center line can be
selected. Then simply the shortest distance between the vehicles center of mass and
the center line is calculated using the euclidean distance metric.

4.5.5.3 Feature: Distance to Leading / Following Vehicle

The last feature extracted is the distance of a vehicle to the closest leading vehicle and
the closest following vehicle. This is a quite challenging task as it requires two main pre-
requisites:

1. First, it must be determined on which lane each vehicle is driving and which other ve-
hicles are also driving on this lane. This is an important step as only vehicles driving on
the same lane can be considered as leading vehicles or following vehicles.

Algorithmically, this is done by iterating through all vehicles present in the scenario at
the specific time step and sorting them by their lane ID. Now, all vehicles driving on the
same lane are grouped.

2. Next, for each group of vehicles driving on the same lane, all pairwise combinations are
determined. For example, if vehicle (1,2,3) are driving on the same lane, the pairwise
combinations resulting are (1,2), (1,3), and (2,3). For each of these pairs, the distance
along the lane center line from the start of the lane to the corresponding vehicle is
calculated. Then the difference between the calculated distance of the first vehicle and
that of the second vehicle is calculated. If this distance is positive, the first vehicle of the
pair is driving in front of the second vehicle. If the calculated distance is negative, the
opposite is the case - the second vehicle leads the first vehicle. For the leading vehicle
the absolute value of the calculated distance is added to a list containing the distances
to all following vehicles. For the following vehicle, the absolute value of the calculated
distance is added to a list containing the distances to all leading vehicles. This process
is repeated for all pairwise combinations. As a result, each vehicle is assigned with a list
containing the distances to all leading vehicles and another list containing the distances
to all following vehicles. From each of these lists the minimum value is determined
which marks the distance to the closest leading and the closest following vehicle. If
there is no leading or following vehicle this is marked by setting the distance to -1.

The entire process is repeated for each driving lane and calculated at each time step of
the driving scenario. An Example is shown in Figure 4.35.
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Lane Center-Line Lane Start

Lane ID 4 -
Lane ID 3
Lane ID 2«
Lane ID 1+«

Sets of Vehicles per Lane: Pairwise Combinations of Vehicles per Lane:
Lane 1: [1,2,3,4] Lane 1: [(1,2); (1,3); (1,4); (2,3); (2,4); (3,4)]
Lane 2: [5] Lane 2: []

Lane 3: [7,6,8] Lane 3: [(6,7); (6,8); (7,8)]

Lane 4: [] Lane 4: []

Example Lane 1:
Pairs: [(1,2); (1,3); (1,4); (2,3); (2,4); (3,4)]
L1 =260m; L2 = 360m; L3 = 200m; L4 = 50

-> Distance (1,2) = 260m - 360m = -100m

-> Vehicle 1: Leading Vehicles [100m]; Following Vehicles []

-> Vehicle 2: Leading Vehicles []; Following Vehicles [100m] Iteration 1: Pair (1,2)
-> Vehicle 3: Leading Vehicles []; Following Vehicles []

-> Vehicle 4: Leading Vehicles []; Following Vehicles []

-> Distance (1,3) = 260m - 200m = 60m

-> Vehicle 1: Leading Vehicles [100m]; Following Vehicles [60m]

-> Vehicle 2: Leading Vehicles []; Following Vehicles [80m] Iteration 2: Pair (1,3)
- Vehicle 3: Leading Vehicles [60m]; Following Vehicles []

- Vehicle 4: Leading Vehicles []; Following Vehicles []

-> Distance (1,4) = 260m - 50m = 210m
- Vehicle 1: Leading Vehicles [100m]; Following Vehicles [60m, 210m]
-> Vehicle 2: Leading Vehicles []; Following Vehicles [100m] Iteration 3: Pair (1,4)

- Vehicle 3: Leading Vehicles [60m]; Following Vehicles []
- Vehicle 4: Leading Vehicles [210m]; Following Vehicles []

-> Distance (2,3) = 360m - 200m = 160m

- Vehicle 1: Leading Vehicles [100m]; Following Vehicles [60m, 210m]

-> Vehicle 2: Leading Vehicles []; Following Vehicles [100m, 160m] Iteration 4: Pair (2,3)
- Vehicle 3: Leading Vehicles [60m, 160m]; Following Vehicles []

-> Vehicle 4: Leading Vehicles [210m]; Following Vehicles []

-> Distance (2,4) = 360m - 50m = 310m

-> Vehicle 1: Leading Vehicles [100m]; Following Vehicles [60m, 210m]

-> Vehicle 2: Leading Vehicles []; Following Vehicles [100m, 160m, 310m] Iteration 5: Pair (2,4)
-> Vehicle 3: Leading Vehicles [60m, 160m]; Following Vehicles []

- Vehicle 4: Leading Vehicles [210m, 310m]; Following Vehicles []

-> Distance (3,4) = 200m - 50m = 150m

- Vehicle 1: Leading Vehicles [100m]; Following Vehicles [60m, 210m]

-> Vehicle 2: Leading Vehicles []; Following Vehicles [100m, 160m, 310m] Iteration 6: Pair (3,4)
- Vehicle 3: Leading Vehicles [60m, 160m]; Following Vehicles [150m]

-> Vehicle 4: Leading Vehicles [210m, 310m, 150m]; Following Vehicles []

AV %

Figure 4.35: Example of how the distances between vehicles along the road is calculated (own illustration).
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4.5.6 Modeling

The modeling phase deals with the detection of driving maneuvers. In this phase algorithms
are modeled that can detect driving maneuvers based on their trajectories as well as other
available information such as the road network. The position of the modeling phase in the
entire scenario-based approach process model is highlighted in Figure 4.36.

Scenario Catalog

Collect Driving Scenario Types Relevant for Autonomous Driving Applications

Maneuver / Scenario Mining Scenario Generation

Scenario Generation
Framework:
v Synthetic Driving Scenario
Generation

Scenario Extraction

Driving Scenarios

Data Preprocessing

Scenario Data Augmentation

Scenario Simulation/Visualization

Scenario Statistics OpenScenario Writer

Scenario Database

Scenario Database including Rosbag files, JSON Labels, Scenario Statistics, and OpenScenario files

Figure 4.36: lllustration of the Stages for the creation of the final proScenario dataset (source: own illustration).

To classify driving scenarios in a first step driving maneuvers occurring in the scenario
are detected. Based on detected maneuvers solely or in combination with additional factors,
such as traffic lights or signs, a traffic scenario can be determined. For this various detec-
tion models are implemented to recognize different maneuvers. The details concerning the
functionality and implementation of these models is explained in the following sections.

4.5.6.1 Overview of Detected Driving Maneuvers

In this section, an overview is provided over the driving maneuvers and scenario types that
are detected and labeled (Fig. 4.37). The reasoning for the inclusion and how driving ma-
neuvers are extracted is explained independently for each of the maneuvers and scenario
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types in Sections 4.5.6.2 to 4.5.6.9.

4 Solution Approach

Lane Change
Left

Lane Change
Right

Turn Left at
Crossing

Turn Right at
Crossing

Cut-In Left

Cut-In Right

Straight at
Crossing

U-Turn at
Crossing

Cut-Out Left

Cut-Out
Right

Lane Change
Left

Lane Change
Right

Highway
Enter

Highway

Exit Highway

Urban / Rural

Cut-In Left

Cut-In Right

Speeding
Vehicle

Standing
Vehicle

Cut-Out Left

Cut-Out
Right

Tailgate

Speeding
Vehicle

Standing
Vehicle

Tailgate

Figure 4.37: Overview of the detected driving maneuvers (source: own illustration).

4.5.6.2 Label: Lane Change

Lane changes are one of the most frequent traffic maneuvers and a large contributor to traffic
accidents [143]. This means it is very important for intelligent algorithms to predict lane
changes of surrounding vehicles as soon as possible in order to avoid potentially dangerous
situations. When performing a lane change, the vehicles trajectory typically has the shape
of an s-curve. Existing approaches to detect lane changes therefore take the s-curve of a
standard lane change as a basis [108]. Vehicle trajectories are then compared to this s-curve
and if the deviation to the base curve is below a certain threshold, a lane change is detected
[108]. This procedure works well on straight roads like highways, but tends to produce false
positives on roads that can have s-shape segments. This problem is depicted in Figure 4.38.

Figure 4.38: Example of two identical s-curve trajectories. On the top picture the trajectory simply follows the road
while on the lower picture three consecutive lane changes are completed (source: own illustration, [1]).



4.5 Maneuver Detection / Scenario Mining

79

In order to account for this problem, a method is developed that identifies lane changes
based on the offset to the center line of the lanes a vehicle is changing between. The details

of this method are explained in the following.

To label when a vehicle changes lanes a detection algorithm consisting of three main steps

is implemented:

1. In the first step, it is detected when the vehicle crosses a lane marking based on the lane

ID of a vehicle. This information can easily be extracted by iterating through the data
frames and checking if the lane ID of a vehicle changes in the following frame. This
is graphically illustrated in Figure 4.39. Since a vehicle must cross a lane marking in
order to perform a lane change this is already a fairly good indicator for detecting lane
changes. Using lane crossings as an indicator for lane changes all true positives and
true negatives and no false negatives are detected. Nevertheless, quite frequently false
positives are detected. Some reasons for this are vehicles crossing the lane marking
but not performing a lane change while swaying in their current lane or avoiding small
obstacles. An example of a vehicle crossing lanes but not performing a lane change is

given in Figure 4.40.

Vehicle sufficiently close  Vehicle insufficiently close
to center line of lane -2

to center line of lane -2 to center line of lane -3

Timestep: 8
Lane ID: -2

Timestep: 7 Timestep: 6
Lane ID: -2 Lane ID: -2

Timestep: 5
Lane ID: -3

W oAl Ty

Moment of lane crossing

Timestep: 4
Lane ID: -3

Vehicle insufficiently close

Center line
of lane -3

Vehicle sufficiently close
to center line of lane -3

Center line
of lane -2

Timestep: 2 Timestep: 1
Lane ID: -3 ne ID: -3

N

Timestep: 3
Lane ID: -3

Figure 4.39: Visualization of the lane crossing detection (sources: own illustration, [1]).

Timestep: 7 Timestep: 6 Timestep: 5
Lane ID: -3 Lane ID: -2 Lane |
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Timestep: 8
Lane ID: -3

Timestep: 4
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Lane Crossing

Vehicle Center Vehicle

Timestep: 2 Timestep: 1
Lane ID: -3 Lai
A

Timestep: 3
Lane ID: -3

Figure 4.40: Example of a vehicle crossing lanes multiple times but not performing a lane change (sources: own

illustration, [1]).

2. In order to eliminate the false positive detection of lane changes, a measure must be
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found that can differentiate whether or not a lane change is completed after a vehicle
crosses a lane marking.

To find such a measure first the characteristics of a lane change must be determined. It
can be observed that at the beginning and end of a lane change maneuver the vehicle is
located close to the middle line of the according lanes it is switching between. For the
lane change detection algorithm developed in this work a vehicle is defined as close to
the lane center if its lateral distance to the lane center is below one meter.

In order to perform a lane change the vehicle at some point by definition must lie out-
side the region that is considered close to the center line of a lane. This is the case
when crossing lane markings. Therefore, whenever a lane marking is crossed the last
time the vehicle was close to the lane center and the next time the vehicle is close to
the lane center is determined. In the following the lane id of the vehicle is checked at
both of these points. If the lane id is the same at both points then no lane change has
happened. If the lane id is different at both points this clearly indicates a lane change.
Also it can be determined if a lane change to the left or right is made depending on
the lane id at the beginning and end of the lane change. The explained procedure is
graphically illustrated in Figure 4.41.
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Timestep: 8 Timestep: 7 Timestep: 6 Timestep: 5 Timestep: 4 i Timestep: 2 Timestep: 1

Lane ID: -2 Lane ID: -2 Lane ID: -2 Lane ID: -3 Lane ID: -3 Lane ID: -3 Lane ID: -3
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Figure 4.41: Example of a lane change detection (sources: own illustration, [1]).
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4.5.6.3 Label: Cut-In/ Cut-Out

One of the most dangerous traffic maneuvers according to [57, 143] are cutting-in and
cutting-out. These maneuvers are basically the same as lane change maneuvers, but with
some additional specific characteristics.

A cut-in occurs when a vehicle performs a lane change in front of another vehicle, while
having a time-to-collision of less than two seconds between the following vehicle and itself.
A cut-out maneuver occurs when a vehicle already has a time-to-collision of less than two
seconds to the leading vehicle and then performs a lane change [57].

Time-to-collision (TTC) is a metric used to quantify the level of risk colliding with another
vehicle or object. It is defined by [140] as follows:

TTC =Av/Ad
with Av = velocity dif ference between following and leading vehicle and Ad = absolute

distance between following and leading vehicle

Examples of a cut-in and cut-out maneuver are shown in Figures 4.42 and 4.43.
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Figure 4.42: Example of a typical cut-in maneuver performed by the orange vehicle (sources: own illustration,

(-
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Figure 4.43: Example of a typical cut-out maneuver performed by the orange vehicle (sources: own illustration,

[1])-

Both cut-in and cut-out maneuvers are modeled and detected in this work. The detection
of these maneuvers occurs alongside to the detection of regular lane changes. Therefore,
the lane change information is combined with the information concerning the distance of a
vehicle to the closest leading and following vehicle.

Whenever the lane change detection algorithm described in the previous chapter recog-
nizes a lane change it is also checked if a cut-in or cut-out has occurred.

For a cut-in, the time span when the lane changing vehicle crosses the lane marking and
enters the new lane until the moment when the lane change is completed is analyzed. If the
TTC to the following vehicle is less than two seconds, a cut-in is detected.

Similarly, cut-outs are detected. Here, the time span between the lane change begins
until the moment when the lane changing vehicle crosses the lane marking and enters the
new lane is analyzed. If the TTC to the leading vehicle is less than two seconds before leaving
the lane, a cut-out is detected. Figures 4.44 and 4.45 provide an overview of the mentioned
metrics to detect cut-in and cut-out maneuvers.
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Completion of Vehicle Distance to Lead Vehicle Following
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Figure 4.44: Overview of the metrics used to detect cut-in maneuvers (sources: own illustration, [1]).
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Figure 4.45: Overview of the metrics used to detect cut-out maneuvers (sources: own illustration, [1]).

4.5.6.4 Label: Tailgate

When a vehicle is keeping an insufficient distance to its leading vehicle for a longer period of
time and does not immediately increase the distance, this is considered as tailgating [158].
Since this driving behavior is dangerous and is a cause of many accidents [143], it is modeled
and labeled in the proScenario dataset so prediction algorithms can be later trained on this
data to avoid such situations.

In the German traffic law specific rules exist that define when a vehicle is not keeping a
sufficient distance to its predecessor and when tailgating occurs [158].

In urban areas the distance in meters that must be kept to a leading vehicle is at least the
distance travelled in one second. This distance can be calculated by dividing the vehicle’s
velocity in kilometers per hour by 3.6. For example, if a vehicle is driving through an urban
area at a velocity of 36 kilometers per hour it must keep a distance of at least ten meters to
any leading vehicle [158].

Outside of urban areas, the distance in meters that must be kept to a leading vehicle is at
least the velocity in kilometers per hour divided by two. For example, if a vehicle is driving
through a non-urban area at a velocity of 120 kilometers per hour it must keep a distance of
at least 60 meters to any leading vehicle [158].

Additionally, if the minimum required distance is not held because another vehicle is
entering the driving lane ahead, the driver has three seconds time to restore the required
distance. Above speeds of 160 kilometers per hour, this time period is reduced to one second
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[158].

These rules are defined as follows:

.. i . . . v/2, in non—urban areas.
Minimum required Distance to leading vehicle = ) 4.1)
v/3.6, in urban areas.

The detection of tailgates is based on two pieces of information. These are the vehicles
velocity and its distance to the leading vehicle. The vehicle velocity is measured by the Prov-
identia+ + sensor system while the distance to the leading vehicle is calculated as shown in
Section 4.5.5.3. The minimum required distance to the leading vehicle is calculated by the
corresponding equations mentioned previously. The actual distance to the leading vehicle
is then subtracted from the calculated minimum required distance. If the resulting value is
negative a tailgate occurs otherwise the vehicle is keeping the required distance.

The detected tailgates are divided into the three categories minor tailgate, moderate tail-
gate, and severe tailgate. The category is determined by the degree to which the minimum
required distance is violated. Table 4.3 illustrates how the degree of violation is determined.
Figure 4.46 provides an example for each tailgate category at a velocity of 120 kilometers per
hour.

Tailgate Severity Definition

bimare e * Violation of the minimum required distance to the lead

vehicle at speeds of less than 80 km/h

* Keeping a distance to the lead vehicle of less than 100
percent and a minimum of 50 percent of the minimum
required distance at speeds of 80 km/h and above

Moderate Tailgate * Keeping a distance to the lead vehicle of less than 50 per-

cent of the minimum required distance at speeds between
80 km/h and 100 km/h

* Keeping a distance to the lead vehicle of less than 50 per-
cent and a minimum of 30 percent of the minimum re-
quired distance at speeds of 100 km/h and above

Sevee Tallzie * Keeping a distance to the lead vehicle of less than 30 per-

cent of the minimum required distance at speeds between
over 100 km/h

Table 4.3: Definition of minor, moderate, and sever tailgates (source: [158]).
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Velocity of orange vehicle: 120 km/h

Minimum required distance to leading vehicle (cyan): 120/2 = 60m

No tailgate: Distance to leading vehicle above 60m

Minor tailgate: Distance to leading vehicle below 60m and above 30m
Moderate tailgate: Distance to leading vehicle below 30m and above 18m
Major tailgate: Distance to leading vehicle below 18m

Distance 60m: No Tai[gate M

Distance 43m: Minor Tailgate

Distance 26m: Moderate Tailgate

Distance 7m: Major Tailgate

Figure 4.46: Example for each tailgate category at a velocity of 120 kilometers per hour (sources: own illustration,

(1)

4.5.6.5 Label: Speeding

The detection of speeding vehicles is done quite simply. All fixed speed-limits along the Prov-
identia+ + test stretch are known. Depending on which section of the test stretch a vehicle
is driving on, its velocity profile is compared with the applicable speed limit. For each time
step it is checked if the vehicle velocity lies above or below the speed limit. If it lies above
the limit, the vehicle is labeled as speeding for this time step.

On the highway section of the test stretch the speed limit is controlled electronically and
therefore subject to change. Since at the time of this work no live access to the speed limit
is available some approximations must be made. From experience it is known that the speed
limit is mostly 130 kilometers per hour in the south direction and unlimited in the northern
direction of the highway. Therefore these speed limits are assumed for detecting speeding
vehicles on the highway stretch.

4.5.6.6 Label: Standing Vehicle

The detection of standing vehicles is done quite similarly to that of speeding vehicles. At each
time step it is checked if the vehicle velocity is zero or not. If it is zero the vehicle is labeled
as standing for this time step.

4.5.6.7 Label: Weather

Certain weather conditions can lead to an increase of traffic incidents such as crashes or dan-
gerous situations [55, 128]. For the vast majority of the time the weather condition — from
a traffic safety perspective — does not have a large impact on the driveability of a vehicle or
on the traction the road surface provides. However, this implicitly means that the vehicle
operators are not used to the new driving situation that occurs due to bad weather condi-
tions and are therefore more prone to cause an accident [55]. A human driving a vehicle in
traffic already knows that in different weather conditions the vehicle and road will behave
differently. In other words, the same driving behavior can be safe or unsafe depending on
the weather conditions. The logical consequence is to take safety precautions when critical
weather situations arise, such as reducing speed or paying higher attention to the situation
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in general [128].

Thinking one step further, the ultimate goal of the dataset created in this work is to be
able to train Deep Learning algorithms that can detect and predict dangerous driving situa-
tions and act upon these in an intelligent manner. Various sources have shown that certain
weather conditions have lead to a higher risk of traffic accidents [55, 66, 128].

For this reason, information regarding weather conditions is regarded as relevant to im-
prove the prediction power of Deep Learning models trained for autonomous driving appli-
cations and will therefore be included in the proScenario dataset.

OpenWeatherMap [48] offers a global weather database including live weather informa-
tion. This information is also available for Garching-Hochbriick where the Providentia+ +
test stretch is located. As part of this work a script is created that calls the live weather data
at the test stretch location in 10 second intervals and adds the information to the sensor
recordings. The information includes the weather type (sunny, cloudy, thunderstorm, etc.),
temperature, windspeed, visibility, and cloudiness in percent.

4.5.6.8 Label: Right Turn / Left Turn /Straight at Crossing / U-Turn

According to the NHTSA 13 percent of traffic accidents occur while performing turn maneu-
vers at crossings [143]. Such maneuvers include protected and unprotected left- and right
turns as well as turns that cross pedestrian walkways and cycling lanes. Turn maneuvers oc-
cur very frequently in urban- and rural areas and are highly relevant for training automated
driving algorithms and ensuring their safe functioning [143].

Labeling turn maneuvers by hand is very time consuming due to the fact that they occur
very frequently and require a label for each vehicle in each data frame. In order to massively
reduce the resources necessary to label turn maneuvers, a framework is developed that cre-
ates the appropriate labels in an automated fashion. The functionality of this framework is
explained in the following section.

Classical sensor systems used in autonomous driving applications are mounted directly
on the vehicle they control [182, 183, 206]. Differently to these systems the sensor systems
used in the Providetia+ + project are mounted either on or alongside the road infrastructure.
The main difference between the two types of sensor systems is the location of the sensors
over time. Classical sensor systems will move with the vehicle they are mounted on, meaning
that at each time step a different road stretch is perceived. In contrast, the statically mounted
Providentia+ + sensor systems perceive the same road stretch at all times. This key property
necessary for the implementation is illustrated in Figure 4.47.
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Figure 4.47: Perceptive field of a vehicle with classical sensor system following a trajectory compared to the
perceptive field of the Providentia++ sensor system(sources: own illustration, [2]).

Because the sensor system always observes the same road section, an approach using
start and goal boxes is utilized. The main idea behind this approach is that multiple re-
gions of interest inside the road area are marked with boxes. Depending on which boxes
a vehicle drives through, it becomes clear what kind of maneuver the vehicle performs. In
Figure 4.48 the detection mechanism is illustrated. Here, different vehicle trajectories cross
different goal boxes, which results in different maneuvers being detected. For example when
looking at the turquoise trajectory in Figure 4.48, it becomes obvious for the observer that
the vehicle is performing a right turn at the crossing. While making a right turn, the vehicle
passes through boxes 1 and 2. Algorithmically, the right turn can be detected by applying a
simple if clause asking if the vehicle trajectory first passes through box 1 and at a later point
in time passes through box 2. If this is the case, the vehicle has clearly performed a right
turn. In order for the algorithm to know if and when a vehicle passes through a goal box,
for each point of the trajectory a test is performed whether it lies inside any of the goal boxes.

Analogously, the green trajectory passes through boxes 1 and 4 indicating that it is going
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straight and the red trajectory passes through boxes 1 and 8 indicating a left turn. Addition-
ally, U-turns are also detected if an actor passes through the goal box pairs 1 and 10, 3 and
2,5 and 4, or 9 and 8.
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Figure 4.48: lllustration of how turns are detected by analyzing the goal boxes passed by a vehicle (sources: own
illustration, [2]).

The data frames that lie between the point in time when the start box is exited until the
goal box is entered are labeled accordingly to the completed maneuver. For example when
looking at the turquoise trajectory, all frames starting from the point in time when box 1 is
exited until box 2 is entered are labeled as “turn right”. For the red trajectory all data frames
between the point in time when box 1 is exited and box 8 is entered are labeled as “turn left”.

This procedure can easily be exploited to other maneuver types which is shown in the
following sections.

4.5.6.9 Label: Enter Highway / Exit Highway

In the previous section the detection of turns, U-turns, and going straight at an intersection
with the goal box principle is explained. Similarly, vehicles entering or exiting the highway
on the Providentia+ + test stretch are detected. In this case, two goal polygons are used for
each of the enter or exit ramps. These are both larger and function in a slightly different way
as compared to the goal boxes used at intersections.

When detecting an exit, the first goal polygon covers the exit ramp from the beginning of
the ramp until the point where a vehicle can no longer return to the highway and is forced to
exit. The second goal polygon begins where the first goal polygon ends and goes on until the
end of the exit ramp. The placement of the two goal polygons is illustrated in Figure 4.49.
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Here goal polygon one detects the start and goal polygon two detects the end of the highway
exit maneuver. Because of the clever placement of the two goal polygons, a detected exit
maneuver starts as soon as the exiting vehicle enters the first goal polygon. This corresponds
to entering the exit ramp. The end of the maneuver is the last trajectory point of the vehicle
that lies inside the second goal polygon. The choice not to place the second goal polygon at
the end of the exit ramp, but rather extend it over a longer stretch is a large benefit. It means
that in case the driving scenario ends before the vehicle reaches the end of the exit ramp the
exit maneuver is still recognized, as long as the vehicle has reached the second goal polygon.

Highway entering maneuvers are detected quite similarly to the exit maneuvers. In this
case, the first goal polygon starts at the beginning of the on ramp and ends as soon as the
vehicle has no other option as to enter the highway. At this point, the second goal polygon
begins. It continues until the end of the on ramp when the ramp merges into the highway. An
example is shown in Figure 4.49. Here, goal polygon three detects the start and goal polygon
four detects the end of the highway enter maneuver.
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Figure 4.49: lllustration of how vehicles entering or exiting the highway are detected by analyzing the goal poly-
gons passed by the vehicles (sources: own illustration, [3]).

4.5.7 Scenario Statistics

After all driving maneuvers are detected a statistical summary of each driving scenario is
calculated. The statistics include the total number of each different driving maneuver as
well as the maximum number of lane changes performed by a single actor and the top speed
achieved by an actor throughout the scenario. The complete list of information included in
the statistics is shown in Table 4.4.
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Statistics Type

Total lane changes left
Total lane changes right
Total lane changes
Maximum lane changes

Total cut-ins left

Total cut-ins right

Total cut-ins

Total cut-outs left

Total cut-outs right
Total cut-outs

Total minor tail-gates
Total moderate tail-gates
Total severe tail-gates

Total speeding vehicles
Total standing vehicles

4 Solution Approach

Description

Sum of lane changes to the left committed by all vehicles
Sum of lane changes to the right committed by all vehicles
Sum of all types of lane changes committed by all vehicles
Maximum amount of lane changes committed by a single
vehicle

Sum of cut-ins to the left committed by all vehicles

Sum of cut-ins to the right committed by all vehicles

Sum of all types of cut-ins committed by all vehicles

Sum of cut-outs to the left committed by all vehicles

Sum of cut-outs to the right committed by all vehicles

Sum of all types of cut-outs committed by all vehicles

Sum of minor tail-gates committed by all vehicles

Sum of moderate tail-gates committed by all vehicles

Sum of severe tail-gates committed by all vehicles for the
duration of the driving scenario

Sum of vehicles exceeding the allowed speed limit

Sum of vehicles standing

Table 4.4: Overview of the statistics provided with every driving scenario (source: own illustration).

Additionally, a graphical overview of various driving maneuvers occurring throughout a

scenario is included in the dataset. The graphical overview contains plots over time showing
exactly when a vehicle performs certain driving maneuvers. The features included in the
graphical statistics overview are explained in Table 4.5. Figure 4.50 shows an example of the
graphical visualization of the statistics.
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Trajectories All vehicle trajectories in the driving scenario

Velocity profiles All vehicle velocity profiles over time throughout the driving
scenario

Lane IDs The driving lane each vehicle is using at every point in time
throughout the driving scenario

Lane changes left Point in time when a lane change to the left is committed by
a vehicle

Lane changes right Point in time when a lane change to the right is committed
by a vehicle

Cut-ins left Point in time when a cut-in to the left is committed by a
vehicle

Cut-ins right Point in time when a cut-in to the right is committed by a
vehicle

Cut-outs left Point in time when a cut-out to the left is committed by a
vehicle

Cut-outs right Point in time when a cut-out to the right is committed by a
vehicle

Tail-gates Point in time when a tail-gate is committed by a vehicle.

The numbers 1, 2, and 3 on the Y-axis indicate the severity
of the tail-gate maneuver. 1 indicates a minor tail-gate, 2 a
moderate tail-gate, and 3 a severe tail-gate.

Speeding Vehicles exceeding the allowed speed limit at each point in
time

Total vehicles speeding Total number of vehicles speeding at each point in time dur-
ing the driving scenario

Standing Standing vehicles at each point in time

Total vehicles standing Total number of vehicles standing at each point in time dur-

ing the driving scenario

Table 4.5: Overview of the graphical statistics provided with every driving scenario (source: own illustration).
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Figure 4.50: Graphical statistics overview showing the occurrence of various driving maneuvers over time (source:
own illustration).
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Figure 4.51: lllustration of the Stages for the creation of the final proScenario dataset (source: own illustration).

The main focus of the scenario-based approach is to extensively test AVs in a simulation
environment. For this a detailed representation of realistic driving scenarios is necessary. The
driving scenarios can then be executed in the simulation environment allowing the safety of
AVs to be assessed. The assessment process is based on two tasks - creating files that describe
the driving scenarios and executing the scenarios in a simulation environment.

1. In the first step, the vehicle and trajectory data is written into an OpenSCENARIO file.
This is beneficial as the OpenSCENARIO file format provides an industry standard and
is compatible with many simulation environments. It also provides a simple syntax that
is easy to understand.

2. In the second step the OpenSCENARIO files are simulated and visualized in CARLA
using the ScenarioRunner. The simulation allows to assess the safe operation of AVs.
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4.6.1 Creating OpenSCENARIO Files

In order to create OpenSCENARIO files in an automated fashion in this work, a scenario
writer is created. This file parser takes driving scenarios provided in the scenario description
format which is explained in Section 4.1 and automatically creates a corresponding Open-
SCENARIO file.

To do so the Python library "Scenario Generation" [192] is used. In total two scripts
are created that both define the OpenSCENARIO file in a different way due to the different
requirements of the simulators "ScenarioRunner" and "Esmini". In the following, first the def-
inition parameters in the OpenSCENARIO standard that are defined identically in both scripts
are described. Afterwards, the differences in describing the actors’ trajectories in each of the
two scripts are explained.

The initialization of the road network, actors, and environment conditions is identical in
both scripts. Here the "Scenario Generation" library provides various functionalities to define
these parameters. The road network is connected to the OpenSCENARIO file by adding the
relative path to the OpenDRIVE file corresponding to the road network. Listing 4.1 shows the
definition of the road network in an OpenSCENARIO file.

<RoadNetwork>
<LogicFile filepath="providentia_plus_plus_map_0_4_offset" />
</RoadNetwork>

Listing 4.1: Example of how road network is defined with the "RoadNetwork" feature of OpenSCENARIO (source:
own illustration).

Actors are defined by passing information about the type, dimensions, performance, kine-
matics, and color. Here, the type defines whether the actor is a pedestrian or what type of
vehicle it is. Performance measures indicate the maximum speed as well as the maximum
acceleration and deceleration capabilities of the actor. Finally, the kinematics define the po-
sition and dimensions of the driving axles as well as the maximum steering angle they are
capable of. The definition of a vehicle actor is shown in Listing 4.2.

<Entities>
<ScenarioObject name="CAR_8140">
<Vehicle name="vehicle.tesla.model3" vehicleCategory="car">
<ParameterDeclarations />
<BoundingBox>
<Center x="1.5" y="0" z="0.9" />
<Dimensions height="1.8" length="4.5" width="2.1" />
</BoundingBox>
<Performance maxAcceleration="10.0" maxDeceleration="10.0"
maxSpeed="69.444" />
<Axles>
<FrontAxle maxSteering="0.5" positionX="3.1" positionZ="0.3"
trackWidth="1.8" wheelDiameter="0.6" />
<RearAxle maxSteering="0" positionX="0" positionZ="0.3"
trackWidth="1.8" wheelDiameter="0.6" />
</Axles>
<Properties>
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<Property name="type" value="simulation" />
<Property name="color" value="0,0,255" />
</Properties>
</Vehicle>
</ScenarioQObject>
</Entities>

Listing 4.2: Example of how the environment conditions are defined with the "EnvironmentAction" feature of
OpenSCENARIO (source: own illustration).

The environment conditions are defined using the "EnvironmentAction" feature of the
"Scenario Generation" package. Here the date and time of day as well as the weather condi-
tions and road conditions are set. The weather conditions are composed of the cloud state,
sun, fog, and precipitation. The cloud state can either be cloudy or clear, whereas the sun
is defined by setting parameters for the intensity, azimuth, and elevation. Fog is defined by
the visual range, which is set in meters. The road conditions are simply defined by a friction
value ranging from zero to one. A friction value of zero means the road provides no grip at
all while a value of one relates to the maximum grip which typically occurs on a dry sunny
day. An example of how the environment conditions are defined in an OpenSCENARIO file is
shown in Listing 4.3.

<GlobalAction>
<EnvironmentAction>
<Environment name="Environment">
<Time0fDay animation="false" dateTime="2020-07-25T12:00:00" />
<Weather cloudState="free">
<Sun azimuth="0" elevation="1.31" intensity="0.85" />
<Fog visualRange="10000" />
<Precipitation intensity="0.0" precipitationType="dry" />
</Weather>
<RoadCondition frictionScaleFactor="1" />
</Environment>
</EnvironmentAction>
</GlobalAction>

Listing 4.3: Example of how the environment conditions are defined with the "EnvironmentAction" feature of
OpenSCENARIO (source: own illustration).

The last common step is the initialization of each actor. When initializing an actor, first
the speed and spawn location is defined. These parameters describe the actor’s state at the
start of the scenario. Here, the speed defines the actor’s longitudinal velocity whereas the
spawn location defines the initial position and orientation in coordinates and yaw angle. An
example for the initialization of an actor is shown in Listing 4.4.

<Init>
<Actions>
<Private entityRef="CAR_8140">
<PrivateAction>
<LongitudinalAction>
<SpeedAction>
<SpeedActionDynamics dynamicsDimension="time"
dynamicsShape="step" value="1000" />
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<SpeedActionTarget>
<AbsoluteTargetSpeed value="0" />
</SpeedActionTarget>
</SpeedAction>
</LongitudinalAction>
</PrivateAction>
<PrivateAction>
<TeleportAction>
<Position>
<WorldPosition h="-1.27" x="-138.72" y="1874.51" z="486.5" />
</Position>
</TeleportAction>
</PrivateAction>
</Private>

Listing 4.4: Example of how an actor is initialized in an OpenSCENARIO (source: own illustration).

For the Esmini player the OpenSCENARIO feature "FollowTrajectory" is used as a main
building block for creating the OpenSCENARIO file. This feature defines the complete move-
ment of an actor, by taking the trajectory information including positions and corresponding
timestamps as an input. The trajectory is then added to the story-line of the scenario. This
is done for each of the actors by iterating through the scenario provided in the intermediate
data format until all actors are included in the scenario. In Listing 4.5 an excerpt from an
OpenSCENARIO file showing the definition of an actor’s trajectory with the "FollowTrajec-
tory" feature is shown.

<Maneuver name="CAR_7850maneuver">
<Event maximumExecutionCount="1" name="CAR_7850event"
priority="overwrite">
<Action name="newspeed">
<PrivateAction>
<RoutingAction>
<FollowTrajectoryAction>
<TrajectoryRef>
<Trajectory closed="false" name="CAR_7850traj">
<ParameterDeclarations/>
<Shape>
<Polyline>
<Vertex time="0.0">
<Position>
<WorldPosition x="102.082" y="-8.901"/>
</Position>
</Vertex>
<Vertex time="0.04">
<Position>
<WorldPosition x="103.255" y="-8.907"/>
</Position>
</Vertex>
<Vertex time="0.08">
<Position>
<WorldPosition x="104.431" y="-8.912"/>
</Position>
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</Vertex>

<Vertex time="10.96">
<Position>
<WorldPosition x="450.958" y="-9.615"/>
</Position>
</Vertex>
<Vertex time="11.0">
<Position>
<WorldPosition x="452.150" y="-9.620"/>
</Position>
</Vertex>
</Polyline>
</Shape>
</Trajectory>
</TrajectoryRef>
<TimeReference>
<Timing domainAbsoluteRelative="absolute" offset="0"
scale="1"/>
</TimeReference>
<TrajectoryFollowingMode followingMode="follow"/>
</FollowTrajectoryAction>
</RoutingAction>
</PrivateAction>
</Action>
<StartTrigger>
<ConditionGroup>
<Condition conditionEdge="rising" delay="0"
name="starttrigger7850">
<ByValueCondition>
<SimulationTimeCondition rule="greaterThan" value="0.1"/>
</ByValueCondition>
</Condition>
</ConditionGroup>
</StartTrigger>
</Event>

Listing 4.5: Example of how an actor’s trajectory is defined with the "FollowTrajectory" feature of OpenSCENARIO
(source: own illustration).

When creating scenarios for use with the "ScenarioRunner", an actor’s trajectory must
be defined differently. This is due to lack of support for the "FollowTrajectory" feature of
OpenSCENARIO. Therefore, the actors’ trajectories are modeled by combining the two Open-
SCENARIO features "Route" and "SpeedAction". With the feature "Route" an actor’s path is
defined by passing a set of coordinate points. When running the final scenario, the actor then
follows these coordinate points in chronological order. In this work, the actor’s positions
which are included in the trajectory data are used to define the route. An example for a route
in the OpenSCENARIO format is shown in Listing 4.6.

<Action name="CAR_8140route">
<PrivateAction>
<RoutingAction>
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<AssignRouteAction>
<Route closed="false" name="CAR_8140route">
<ParameterDeclarations />
<Waypoint routeStrategy="shortest">
<Position>
<WorldPosition x="-138.72" y="1874.51"
</Position>
</Waypoint>
<Waypoint routeStrategy="shortest'">
<Position>
<WorldPosition x="-138.30" y="1873.09"
</Position>
</Waypoint>
<Waypoint routeStrategy="shortest">
<Position>
<WorldPosition x="-137.87" y="1871.66"
</Position>
</Waypoint>
<Waypoint routeStrategy="shortest">
<Position>
<WorldPosition x="-137.43" y="1870.22"
</Position>
</Waypoint>

<Waypoint routeStrategy="shortest">
<Position>

/>

/>

/>

/>

<WorldPosition x="-36.91" y="1532.83" />

</Position>

</Waypoint>

<Waypoint routeStrategy="shortest">
<Position>

<WorldPosition x="-36.91" y="1532.83" />

</Position>
</Waypoint>
</Route>
</AssignRouteAction>

</RoutingAction>

</PrivateAction>
</Action>

Listing 4.6: Example of how an actor’s route is defined with the "Route" feature of OpenSCENARIO (source: own
illustration).

4 Solution Approach

The defined route is followed by the actor with the velocity defined when initializing the

actor. In order to reflect a velocity profile that is not constant, the changes in velocity must
be reflected in the OpenSCENARIO file. This is done by defining a "SpeedAction" feature at
each time step. Here the actor’s speed is adjusted according to the velocity profile provided
with the scenario description format. An example of the defined "SpeedAction" feature for a
single actor is shown in Figure 4.7.

<Event maximumExecutionCount="1" name="CAR_81400" priority="overwrite">
<Action name="CAR_81400speed">
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<PrivateAction>
<LongitudinalAction>
<SpeedAction>
<SpeedActionDynamics dynamicsDimension="time"
dynamicsShape="step" value="1000" />
<SpeedActionTarget>
<AbsoluteTargetSpeed value="37.15" />
</SpeedActionTarget>
</SpeedAction>
</LongitudinalAction>
</PrivateAction>
</Action>
<StartTrigger>
<ConditionGroup>
<Condition conditionEdge="rising" delay="0.0"
name="CAR_8140starttrigger2">
<ByValueCondition>
<SimulationTimeCondition rule="greaterThan" value="0.0" />
</ByValueCondition>
</Condition>
</ConditionGroup>
</StartTrigger>
</Event>
<Event maximumExecutionCount="1" name="CAR_81401" priority="overwrite">
<Action name="CAR_81401speed">
<PrivateAction>
<LongitudinalAction>
<SpeedAction>
<SpeedActionDynamics dynamicsDimension="time"
dynamicsShape="step" value="1000" />
<SpeedActionTarget>
<AbsoluteTargetSpeed value="37.15" />
</SpeedActionTarget>
</SpeedAction>
</LongitudinalAction>
</PrivateAction>
</Action>
<StartTrigger>
<ConditionGroup>
<Condition conditionEdge="rising" delay="0.04"
name="CAR_8140starttrigger2">
<ByValueCondition>
<SimulationTimeCondition rule="greaterThan" value="0.0" />
</ByValueCondition>
</Condition>
</ConditionGroup>
</StartTrigger>
</Event>

<Event maximumExecutionCount="1" name="CAR_8140317"
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priority="overwrite">
<Action name="CAR_8140317speed">
<PrivateAction>
<LongitudinalAction>
<SpeedAction>
<SpeedActionDynamics dynamicsDimension="time"
dynamicsShape="step" value="1000" />
<SpeedActionTarget>
<AbsoluteTargetSpeed value="11.85" />
</SpeedActionTarget>
</SpeedAction>
</LongitudinalAction>
</PrivateAction>
</Action>
<StartTrigger>
<ConditionGroup>
<Condition conditionEdge="rising" delay="12.84"
name="CAR_8140starttrigger2">
<ByValueCondition>
<SimulationTimeCondition rule="greaterThan" value="0.0" />
</ByValueCondition>
</Condition>
</ConditionGroup>
</StartTrigger>
</Event>

Listing 4.7: Example of how an actor’s velocity is defined with the "SpeedAction” feature of OpenSCENARIO
(source: own illustration).

4.6.2 Scenario Database

The final phase in the process model deals with the creation of a driving scenario database.
(Figure 4.52) The database includes the achievements made throughout the previous pro-
cess phases. This includes a rosbag file of each driving scenario including labeled driving
maneuvers, JSON labels describing the driving scenario and maneuvers, a graphical and
non-graphical statistical overview, as well as an OpenSCENARIO file for simulation purposes.
The data included for each driving scenario is shown in Figure 4.53.

These files are provided with each driving scenario added to the database. The database
has the potential to grow very quickly due to the automated scenario processing pipeline
introduced in this work. The statistics provided with each driving scenario provide a detailed
characterization and allow to filter the database efficiently for specific types of scenarios.
Currently the database contains driving scenarios from 32 evaluated rosbags which are also
included in the proScenario dataset dataset. However, the database can easily be extended
by adding new rosbag files and processing them with the scenario-based approach pipeline.
Since the processing is fully automated hardly any manual labor is necessary to extend the
database.
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Figure 4.52: lllustration of the Stages for the creation of the final proScenario dataset (source: own illustration).
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Figure 4.53: Overview of the components included in the Providentia++ database (source: own illustration).

4.6.3 Summary of Codebase and Modules

In the previous sections of this chapter the implementation and execution of a pipeline to
automate the scenario based approach is explained in detail. For each step in the scenario
based approach a module is created and computer programs are written that automate the
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process. Figure 4.54 shows the modules and scripts included in the implementation of the
scenario based approach and illustrates their interactions within the processing pipeline.

Inputs JSON Labels Rosbag Knowledge
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Figure 4.54: Overview of the codebase and modules included in the implementation of the scenario based ap-
proach (source: own illustration).

The pipeline can process three types of inputs which all describe driving scenarios in a
different format. The input types include JSON labels, rosbags, and knowledge of driving
scenarios. JSON labels and rosbags are transformed to the "Scenario Description Format" by
the corresponding converter scripts. Knowledge is transformed into the "Scenario Description
Format" by using the "Scenario Generation Framework".

After the conversion step driving scenarios are available in the scenario description for-
mat. The scenarios are then augmented with the "Scenario Variation Framework". Afterwards
two scripts extract features from the driving scenarios. At this point the driving scenarios con-
tain all features necessary to detect driving maneuvers. The maneuvers are then detected by
five different detection scripts. Finally with all maneuvers detected a graphical and tabular
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scenario statistics is calculated. Additionally, OpenSCENARIO files describing the driving sce-
narios are generated by the "OpenSCENARIO Writer".

The outputs are added to the scenario database. They include detected scenario and
driving maneuvers which are added to JSON labels and optionally to a rosbag file. The
OpenSCENARIO file as well as graphical and tabular scenario statistics are also included.

All process steps included in the described pipeline are created as separate modules that
can easily be modified or exchanged. This allows for a high flexibility for enhancing or
adapting the pipeline in the future.






Chapter 5

Evaluation / Analysis

In this work, six main accomplishments are achieved. These include the creation of a sce-
nario catalog containing crucial driving scenarios, a scenario extraction pipeline, a scenario
generation framework, a scenario variation framework, a maneuver detection framework, as
well as the simulation and analysis of a scenario leading to an accident.

In this chapter, each accomplishment is analyzed and evaluated upon its potential to
automate or accelerate the process of training and evaluating algorithms for autonomous
driving.

5.1 Scenario Catalog

The scenario catalog created in this work is based on driving maneuvers described in publi-
cations of the National Highway Traffic Safety Association, Euro NCAP, and UNECE. The list
is meant to create an awareness of which driving scenarios can possibly occur on the Prov-
identia+ + test stretch. During the process of creating the catalog, more than 120 different
driving situations are collected. They are categorized in the road categories urban, rural,
and highway. With the categorization it is easier to determine, which driving scenarios are
relevant for a specific application.

For example, all three types of road areas — urban, rural, and highway — occur on the
Providentia+ + test stretch. With the categorization of driving scenarios, the training data
for training the algorithms on each of the sensor stations can be made more efficiently. This is
due to the fact that maneuvers or driving situations that cannot occur on the highway stretch
are left out of the training data for all highway sensor stations. This can both speed up the
training process and also lead to higher performance results as less “noise” is contained in
the data.

5.2 Scenario Extraction

Due to the large amount of driving scenarios needed for the meaningful evaluation of AVs
an efficient method for creating the test cases is needed. Therefore a method for the auto-
mated extraction of driving scenarios from sensor recordings is introduced in this work. The
scenario extraction process is designed as a modular pipeline that can handle various input
formats and generate two types of output formats.
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There are two types of input that can be processed by the extraction pipeline. The first
type is the processed sensor recording which includes information about the detected vehi-
cles such as position, velocity, vehicle type, size, and more. It is passed as a ROS object. The
second input type is labeled data in form of JSON files. These files are used by the proAnno
framework to correct or add new labels to the data generated through sensor recordings.

For each of the two input types an extraction module is created that translates the input
into the scenario description format. From here on various tasks such as automated maneuver
labeling, scenario variation, and statistics calculations can be conducted automatically.

5.3 Scenario Generation Framework

The scenario generation framework introduced in this work is designed to efficiently con-
struct new user defined driving scenarios. This is achieved by strongly reducing the com-
plexity of creating trajectories for each actor in a scenario, while still maintaining full control
of the scenario design. For this, a trajectory calculator is created that takes very few highly
intuitive inputs to automatically form a fully defined actor. In this section the time savings
potential by using the introduced trajectory calculator is explained and quantified. The re-
sults are based on experiments where the time effort of creating driving scenarios completely
manually is compared to creating them with the "Scenario Generation Framework".

Additionally, the path defined for an actor can be reused very efficiently. This is due to
the fact that the waypoints defining each path are created and collected in a Python file from
which they can be loaded into the trajectory calculator. Additionally, the trajectory calculator
offers the option to set both a time and distance offset for a path. This way, the starting
position along the path as well as the point in time when the actor enters the scenario, can be
determined. This means new trajectories can be calculated very quickly once the base path
to follow is defined.

Another factor for increasing efficiency is the available helper functions for defining the
velocity profile of an actor. The functions include a constant speed profile as well as an ac-
celeration profile calculator. These types of speed profiles can easily be combined in any way
that suits the users demands.

A constant speed profile is created by passing the desired velocity in meters per second
and the desired number of data frames for which the actor shall maintain this velocity as
inputs.

An acceleration profile is calculated by passing the velocities before and after the accel-
eration as well as the acceleration rate in meters per seconds squared. With these inputs a
velocity profile with constant acceleration or deceleration is calculated. Both helper functions
drastically reduce the effort of creating velocity profiles compared to defining them manu-
ally. Another factor to consider is the more intuitive and understandable nature of using
these helper functions. Finally, changes to the velocity profile can be made very efficiently by
changing very few parameters.

Lastly, the re-usability of the paths and easy modification lead to an extremely efficient
creation of many different driving scenarios.
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An overview of the savings potential of the scenario generation framework is given in
Figure 5.1.

Scenario Generation Framework Manual Scenario Creation Time Savings

Potential

Edit trajectory:
= Path can be adjusted by simply changing
the points it is defined by or adding new

Edit trajectory:
= Trajectory must be created completely
newly if a change in velocity or path at

ones
Set of velocities can be edited by
adjusting velocity at each time step
The trajectory calculator automatically
recalculates and updates the trajectory

any of the time steps occurs

Reuse trajectory:

= Once created, paths can be reused easily

= The same path can be paired with
different velocity profiles to obtain
different trajectories
An offset functionality allows the
trajectory to be calculated starting at any
point along the path

Reuse trajectory:

= Trajectory must be created completely
newly if a change in velocity or path at
any of the time steps occurs

Figure 5.1: Overview of the time savings potential when using the Scenario Generation Framework compared to
manually creating trajectories (source: own illustration).

5.4 Scenario Variation

Naturally, some driving scenarios occur more frequently than others. For example, vehicles
changing lanes is a very common driving scenario, while the avoidance of a construction zone
is a rather rare event. Having underrepresented driving scenario types is a large drawback
when using this data to train machine learning algorithms for autonomous driving. This is
due to the fact that an imbalanced data set results in the learning algorithm paying higher
attention to scenario types that occur more frequently in the data. This also means that ma-
neuvering through frequently occurring scenarios is learned better and the algorithm may
have trouble mastering rare events such as avoiding a construction zone.

To overcome this problem, a scenario variation framework is created as part of this work.
It gives the user the possibility to augment underrepresented scenario types in order to
achieve a balanced data set. The augmentation is achieved by varying the trajectory of each
actor in a scenario. The trajectory variation is done by multiple Gaussian distributed sam-
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pling algorithms. Each of these algorithms augments the trajectory in different ways. This
includes augmenting the path and velocity profile. The mean and standard deviation of the
Gaussian distribution can be set by the user to control the sampling behavior of the augmen-
tation algorithms.

Other aspects that are addressed, are the weather conditions, time of day, and vehicle
parameters such as color and type.

The number of augmented scenarios is defined by the user and is unlimited. Given the
stochastic nature of the framework, each of the augmented scenarios is unique. With an
increase of the number of augmentations, the variations become complete stochastically. This
implies all possible configurations inside the sampling range are achieved. Figures 5.2 and
5.3 illustrate how a simple scenario is augmented 500 times to achieve an extremely high
coverage of possible variations.

\

Figure 5.2: Trajectories of a non-augmented rural driving scenario (source: own illustration, [4]).
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Figure 5.3: Trajectories of 500 augmented variations of a rural driving scenario (source: own illustration, [4]).

5.5 Maneuver Detection

An important feature of the Providentia+ + dataset is the labeling of maneuvers. This is gen-
erally a manual process done by experts in the field. Since this process is very labor intensive,
one of the main goals of this work is to drastically reduce the effort needed for labeling ma-
neuvers. To accomplish this, a maneuver detection framework is created and introduced in
this work. The exact details of how this framework functions are explained in Section 4.5 of
this work.

With the use of the highly adjustable maneuver detection framework, the following ma-
neuvers can be detected automatically:

1. Turn left

Turn right
U-turn

Enter highway
Exit highway
Lane change left

Lane change right

® N o 9k Wb

Cut-in left
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9. Cut-in right

10. Cut-out left

11. Cut-out right
12. Tailgate

13. Speeding vehicle

14. Standing vehicle

The detection accuracy of these maneuvers highly depends on the results of the tracking
algorithm. This is due to the fact that tracking errors can lead to the extraction of incomplete
trajectories of the actors. Only if the actor’s trajectory passes through all of the required
boxes, a maneuver can be detected. When tracking errors occur, the trajectory often ends
before all of the detection boxes are reached, resulting in no maneuver being recognized.

However, when using synthetic data, all trajectories are complete. This is due to the na-
ture of how they are generated.

Since the maneuver detection framework highly depends on the quality of the trajecto-
ries, the accuracy is determined in two independent experiments.

The first experiment determines the detection rate based on synthetic data, while the sec-
ond experiment uses data extracted from the test stretch.

Both experiments are additionally carried out with augmented data. In this case, the
base scenarios are augmented by the scenario augmentation framework before the maneuver
detection algorithms are applied. The augmentation leads to a higher amount of test data
and also reduces the statistical variance in the determined detection rates. The results of the
experiments are shown and explained in more detail in the following two sections.

5.5.1 Maneuver Detection with Synthetic Data

In this section the achieved detection results based on augmented and non-augmented syn-
thetically generated driving scenarios are presented and explained.

When using synthetically created driving scenarios with no further augmentation, the

77

detection rate lies at 100 percent for all vehicle maneuvers. These include “turn left”, “turn

7« 7«

right”, “straight at intersection”, “U-turn”, “lane change left”, “lane change right”, “enter high-
way”, “exit highway”, and “speeding”. The results are achieved based on 17 different driving
scenarios containing 2345 trajectories. Additionally to the 100 percent maneuver detection
rate, no false positives occur. This means not a single detection is made when no maneuver

occurs and also no maneuvers are misclassified.

The faultless detection rate is the result of two main factors.
One is the very robust nature and carefully chosen design of the detection algorithms.

Another factor that potentially could be beneficial is the synthetically generated data.
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The generated trajectories are based on realistic driving maneuvers, but potentially may
not contain driving maneuvers that are carried out in a non-typical way. This could be, for
example, a vehicle taking an exceptionally wide right turn.

To reduce the chances of missing some of these special cases, the stochastic scenario aug-
mentation framework is applied to the previously tested scenarios. This way, a high number
of scenario variations is achieved, including special cases as mentioned above.

An overview of the maneuver detection rate based on synthetically created driving scenar-
ios is given in Tables 5.1 and 5.2. Here a distinction between augmented and non-augmented
test data is made.

Maneuver Type Ground Truth Detected Precision Recall
Occurrences Occurrences
Turn Left 15 15 100 100
Turn Right 18 18 100 100
Straight 30 30 100 100
U-turn 12 12 100 100
Lane Chang Left 11 11 100 100
Lane Change Right | 17 17 100 100
Cut-in Left 10 10 100 100
Cut-in Right 6 6 100 100
Cut-out Left 8 8 100 100
Cut-out Right 6 6 100 100
Enter Highway 15 15 100 100
Exit Highway 10 10 100 100
Minor Tailgate 39 39 100 100
Moderate Tailgate | 21 21 100 100
Severe Tailgate 15 15 100 100
Speeding 106 106 100 100
Standing 7 7 100 100

Table 5.1: Maneuver detection results categorized by maneuver type based on synthetically created driving tra-
jectories without augmentation (source: own illustration).
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Maneuver Type Ground Truth Detected Precision Recall
Occurrences Occurrences
Turn Left 303 303 100 100
Turn Right 303 303 100 100
Straight 404 404 100 100
U-turn 202 202 100 100
Lane Chang Left 121 121 100 100
Lane Change Right | 185 185 100 100
Cut-in Left 110 110 100 100
Cut-in Right 47 47 100 100
Cut-out Left 71 71 100 100
Cut-out Right 68 68 100 100
Enter Highway 165 165 100 100
Exit Highway 110 110 100 100
Minor Tailgate 394 394 100 100
Moderate Tailgate | 213 213 100 100
Severe Tailgate 138 138 100 100
Speeding 1156 1156 100 100
Standing 7 7 100 100

Table 5.2: Maneuver detection results categorized by maneuver type based on synthetically created driving tra-
jectories with augmentation (source: own illustration).

5.5.2 Maneuver Detection with recorded real-world Data

In a second test series, the detection of driving maneuvers is tested with real-world driving
scenarios recorded on the Providentia+ + test stretch. Before going into further detail, it must
be stated that at the time this work is created real-world driving data can only be extracted
from the highway section of the Providentia+ + test stretch. This consequently implies that
only highway maneuvers can be detected from the real-world data recordings. These include
lane changes, exiting the highway, as well as detecting standing vehicles.

In order to obtain driving scenarios from the recorded sensor data, some pre-processing
steps are necessary. One of the main steps is forming trajectories and assigning them to the
correct actor.

All vehicles and other actors recorded on the test stretch are tracked by an algorithm.
This algorithm recognizes if the same actor appears in multiple data frames and assigns the
same unique ID for this actor in each of these frames. The ID is then stored together with
all the other information describing the actor, such as position, orientation, timestamp, and
more. To create the trajectory for each actor, the data is first filtered by an ID. This way, all
information describing a single actor at multiple time steps is obtained. Next, the positional
information of the actor, which is provided in each data frame is sorted by the time steps,
which are also provided in each frame. This way, the positional information of the actor at
different points in time is brought into a chronological order and now represents a true tra-
jectory.

In theory, with this strategy the trajectory of each actor can be obtained quite simply. In
practice, however, a few problems occur. For example, if the tracking algorithm fails to rec-
ognize the same vehicle over multiple data frames, it assigns a new ID in each of these data
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frames. In this case the trajectory of the actor cannot be obtained. Due to the varying IDs the
positional information is mapped to multiple actors although in reality it may belong to one
actor. This behavior is illustrated in Figures 5.4 and 5.5.
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Figure 5.4: Ground truth trajectory of a single vehicle driving on the Providentia++ test stretch (source: own
illustration, [1]).
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Figure 5.5: Tracking result of a single vehicle driving on the Providentia++ test stretch. Instead of one complete
trajectory the tracking algorithm detects five independent ones (source: own illustration, [1]).

Another tracking error that occurs, is not detecting a vehicle or actor at all. This can have
multiple reasons, although two are most common. These are either the actor is occluded by
other actors, or he is carrying out very abrupt movements. The latter error especially often
occurs when the actor’s orientation changes significantly in a very short period of time.

The results of the previously described tracking errors are either an incomplete trajectory
or the detection of multiple actors instead of a single one. The maneuver detection algorithms
developed in this work, however, heavily rely on trajectory data. To ensure all maneuvers of
an actor can be detected, the trajectory must be complete over the entire test stretch without
any gaps. Additionally, the trajectory must be correctly assigned to a single actor. This means
that previously described incomplete trajectories are not acceptable. The trajectory of an
actor must cannot be split into multiple actors as it currently can occur. An actor must com-
pletely be tracked as the same object throughout the entire test field leading to a complete
trajectory. Unfortunately, this is only true for roughly 73.8 percent of the vehicles and actors
tracked in the data recordings.

Since the tracking algorithm is not part of this work, the main goal is to test the perfor-
mance of the maneuver detection algorithm. Therefore, the experiment is split into two parts.
One experiment is based on all trajectories extracted from the recordings. This includes both
complete and incomplete trajectories as well as other previously explained tracking errors. A
trajectory is considered as complete if it starts at one of the entry areas of the Providentia+ +
test stretch and ends at one of the exit areas. Trajectories that end before one of the exit
areas of the test stretch are reached or begin after one of the entry areas of the test stretch
are considered as incomplete. This is illustrated in Figures 5.6 and 5.7.
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The second experiment only uses trajectories that are complete and correctly assigned to
an actor. Similarly to the previously described tests with synthetic data, both experiments are
carried out once without and once with augmented data.
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Figure 5.6: Example of a vehicle trajectory considered as complete based on the entry and exit areas of the
Providentia++ test stretch. The complete trajectory starts in one of the entry areas of the test stretch and ends in
one of the exit areas of the test stretch. (source: own illustration, [1]).
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Figure 5.7: Example of multiple vehicle trajectories considered as incomplete based on the entry and exit areas
of the Providentia++ test stretch. The incomplete trajectories either start outside the entry areas of the test stretch
or end outside of the exit areas of the test stretch or both. (source: own illustration, [1]).

The distinction between testing with all trajectories versus testing with only complete and
correctly assigned trajectories provides the opportunity to draw two main conclusions. First,
when testing only with complete and correctly assigned trajectories, the correct detection
rate of the maneuver recognition algorithms is obtained. This test procedure solely focuses
on determining the quality of the detection algorithm because it only uses high-quality tra-
jectory data.

In contrast, when testing with all trajectories the imperfections of the Providentia+ +
detection and tracking system are reflected in the data. The resulting maneuver detection
rate cannot be higher compared to the maneuver detection rate when only using complete
trajectories. Therefore, in this test procedure the detection rate of the maneuver detection
algorithms is tested based on data including errors that are introduced through other com-
ponents of the Providentia++ system. In other words the overall maneuver detection rate of
the entire Providentia+ + system is tested.

First, the results of the maneuver detection with complete trajectories are presented. Not
much surprisingly, lane changes are detected with an accuracy of 100 percent. Also standing
vehicles are recognized with 100 percent accuracy. Only the detection of vehicles exiting the
highway fails completely, achieving a zero percent detection rate. However, this result must
be brought into the right context. As seen in the tests with synthetic data, the detection of
vehicles exiting the highway works very effectively. The reason for the poor results with real-
world data is also very simple. The exit ramp of the highway lies mostly outside the view field
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of the Providentia+ + sensor station. This means that vehicles exiting the highway exit the
sensor stations field of view before completing the exit maneuver. Therefore, it is impossible
to detect exit maneuvers until further improvements on the sensor station are made.

When augmenting the real-world driving data the exact same results are achieved. Lane
changes and standing vehicles are detected 100 percent, while exit maneuvers are again not
detected. This lies in the nature of the augmentation framework, which only augments each
driving trajectory within a small stochastic range. Tables 5.3 and 5.4 show the maneuver
detection results for corrected and uncorrected trajectories without applying data augmenta-
tion.

Maneuver Type Ground Truth Detected Precision Recall
Occurrences Occurrences

Lane Change Left 14 14 100 100
Lane Change Right | 55 55 100 100
Cut-in Left 6 6 100 100
Cut-in Right 2 2 100 100
Cut-out Left 1 1 100 100
Cut-out Right 2 2 100 100
Exit Highway 17 0 0 0
Minor Tailgate 139 139 100 100
Moderate Tailgate | 26 26 100 100
Severe Tailgate 10 10 100 100
Speeding Vehicle 103 103 100 100
Standing Vehicle 1 1 100 100

Table 5.3: Maneuver detection results categorized by maneuver type based on corrected real-world driving trajec-
tories without augmentation (source: own illustration).

Maneuver Type Ground Truth Detected Precision Recall
Occurrences Occurrences

Lane Change Left 16 87.5 100
Lane Change Right | 55 77 71.4 100
Cut-in Left 6 13 46.2 100
Cut-in Right 2 5 40.0 100
Cut-out Left 1 1 100 100
Cut-out Right 2 5 40.0 100
Exit Highway 17 0 0 0
Minor Tailgate 139 229 60.7 100
Moderate Tailgate | 26 64 40.6 100
Severe Tailgate 10 45 22.2 100
Speeding Vehicle 103 144 71.5 100
Standing Vehicle 1 1 100 100

Table 5.4: Maneuver detection results categorized by maneuver type based on non-corrected real-world driving

trajectories without augmentation (source: own illustration).
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Finally, the same tests are carried out with all available trajectories from the data record-
ings. This includes both complete and incomplete trajectories. Without data augmentation
lane changes are detected with 74.2 percent precision and 100 percent recall whereas stand-
ing vehicles are detected with 100 percent precision and 100 percent recall. Again vehicles
exiting the highway are not detected at all.

With augmented data, the results are very similar. Again, standing vehicles are detected
with 100 percent. Lane changes are detected with 74.2 percent accuracy and 100 percent
recall, whereas exit maneuvers are not detected at all. Tables 5.5 and 5.6 show the maneuver
detection results for corrected and uncorrected trajectories with data augmentation.

Maneuver Type Ground Truth Detected Precision Recall
Occurrences Occurrences

Lane Change Left 135 135 100 100
Lane Change Right | 521 521 100 100
Cut-in Left 60 60 100 100
Cut-in Right 20 20 100 100
Cut-out Left 10 10 100 100
Cut-out Right 20 20 100 100
Exit Highway 170 0 0 0
Minor Tailgate 1431 1431 100 100
Moderate Tailgate | 263 263 100 100
Severe Tailgate 105 105 100 100
Speeding Vehicle 1030 1030 100 100
Standing Vehicle 10 10 100 100

Table 5.5: Maneuver detection results categorized by maneuver type based on corrected real-world driving trajec-
tories with augmentation (source: own illustration).

Ground Truth Detected Precision Recall
Occurrences Occurrences

Maneuver Type

Lane Change Left 135 156 86.5 100
Lane Change Right | 521 687 75.8 100
Cut-in Left 60 163 36.8 100
Cut-in Right 20 46 43.5 100
Cut-out Left 10 17 58.8 100
Cut-out Right 20 31 64.5 100
Exit Highway 170 0 0 0

Minor Tailgate 1431 2529 56.6 100
Moderate Tailgate | 263 639 41.2 100
Severe Tailgate 105 423 24.8 100
Speeding Vehicle 1030 1030 100 100
Standing Vehicle 10 10 100 100

Table 5.6: Maneuver detection results categorized by maneuver type based on non-corrected real-world driving

trajectories with augmentation (source: own illustration).
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5.6 OpenSCENARIO Writer

Another important accomplishment of this work is the visualization and simulation of driving
scenarios. For simulation purposes, a script is created that automatically generates OpenSCE-
NARIO files based on the scenario parameters given as an input. The OpenSCENARIO files
can then again be run using the open source tools ScenarioRunner or Esmini player. The
OpenSCENARIO writer is compatible with scenarios given in the scenario description format,
which is explained in Section 4.6.

The scenario description format is created when extracting real world scenarios or gener-
ating synthetic scenarios. This implies both, outputs from the scenario extraction pipeline and
the scenario generation framework can be used as an input for the OpenSCENARIO writer.
This is highly beneficial because it allows for both real world and synthetic driving scenarios
to be simulated and provides a solid basis for evaluating autonomous agents.

The main benefit of the OpenSCENARIO writer is the automation of the generation of
OpenSCENARIO files. Of course, these files can also be written manually, but with an increase
of actors and maneuvers this becomes quite cumbersome. Through the automation of this
process large time savings are made.

5.7 Dataset

The final contribution made in this work is a complete dataset for conducting further research
in the field of autonomous driving. In this section the components, format, and overall
characteristics of the dataset are presented.

5.7.1 Dataset Components

The dataset includes numerous driving scenarios. Each of these scenarios is composed of four
different data sources. These include image data from each of the cameras installed on the
Providentia+ + test stretch, sensor recordings including labels in the rosbag format, scenario
environment and actor data including labels in JSON format, as well as a statistical overview
of the driving scenario. The components included in the dataset are visualized in Figure 5.8.
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Figure 5.8: Overview of the components included in the Providentia++ dataset (source: own illustration).



118

5 Evaluation / Analysis

. Image data

The image data contains the images recorded from each of the four cameras on the test
stretch at the time of the driving scenario. The images are recorded at a frame rate of
25 Hz. This means for a 60 seconds long driving scenario 1500 images are recorded by
each of the four cameras and included in the dataset.

. Rosbag data

Before the data recorded on the test stretch is stored, it is first preprocessed. This is
done by multiple preprocessing scripts. Additionally, objects and their attributes (posi-
tion, velocity, size, etc.) are identified. The processed data is then stored in rosbag files.
The information stored in these files contain environmental information such as the
time of day and the weather conditions, as well as object specific information including
the position, velocity, size, type, and more.

. JSON data

Another data format found in the Providentia+ + dataset is JSON. For each data frame
of a driving scenario a JSON file is generated. This JSON file contains the same infor-
mation as the rosbag file at each time step of the scenario. The JSON files are created
at a frequency of 25 Hz - the same frequency as the sensor recordings.

Statistical overview

The final element included in the dataset is a statistical overview of each driving sce-
nario. This includes the number of speeding or standing vehicles at each time step, as
well as the number of maneuvers of lane changes, cut-ins, cut-outs, tailgates, and more.
The complete list of information included in the statistics is shown in Table 5.7.

Additionally, a graphical overview of various driving maneuvers occurring throughout
a scenario is included in the dataset. The graphical overview contains plots over time
showing exactly when a vehicle performs certain driving maneuvers. The features in-
cluded in the graphical statistics overview are explained in Table 5.8. Figure 5.9 shows
an example of the graphical visualization of the statistics.



5.7 Dataset

Statistics Type

Total lane changes left
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Description
Sum of lane changes to the left committed by all vehicles
throughout the duration of the driving scenario

Total lane changes right

Sum of lane changes to the right committed by all vehicles
throughout the duration of the driving scenario

Total lane changes

Sum of all types of lane changes committed by all vehicles
throughout the duration of the driving scenario

Maximum lane changes

Maximum amount of lane changes committed by a single
vehicle throughout the duration of the driving scenario

Total cut-ins left

Sum of cut-ins to the left committed by all vehicles through-
out the duration of the driving scenario

Total cut-ins right

Sum of cut-ins to the right committed by all vehicles
throughout the duration of the driving scenario

Total cut-ins

Sum of all types of cut-ins committed by all vehicles
throughout the duration of the driving scenario

Total cut-outs left

Sum of cut-outs to the left committed by all vehicles
throughout the duration of the driving scenario

Total cut-outs right

Sum of cut-outs to the right committed by all vehicles
throughout the duration of the driving scenario

Total cut-outs

Sum of all types of cut-outs committed by all vehicles
throughout the duration of the driving scenario

Total minor tailgates

Sum of minor tailgates committed by all vehicles throughout
the duration of the driving scenario

Total moderate tailgates

Sum of moderate tailgates committed by all vehicles
throughout the duration of the driving scenario

Total severe tailgates

Sum of severe tailgates committed by all vehicles for the
duration of the driving scenario

Total speeding vehicles

Sum of vehicles exceeding the allowed speed limit through-
out the duration of the driving scenario

Total standing vehicles

Sum of vehicles standing throughout the duration of the
driving scenario

Table 5.7: Overview of the statistics provided with every driving scenario (source: own illustration).
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Statistics Type Description

Trajectories Visualization of all vehicle trajectories in the driving sce-
nario

Velocity profiles Visualization of all vehicle velocity profiles over time
throughout the driving scenario

Lane IDs Visualization of the driving lane each vehicle is using at ev-

ery point in time throughout the driving scenario

Lane changes left

Visualization of point in time when a lane change to the left
is committed by a vehicle throughout the duration of the
driving scenario

Lane changes right

Visualization of point in time when a lane change to the
right is committed by a vehicle throughout the duration of
the driving scenario

Cut-ins left

Visualization of point in time when a cut-in to the left is
committed by a vehicle throughout the duration of the driv-
ing scenario

Cut-ins right

Visualization of point in time when a cut-in to the right is
committed by a vehicle throughout the duration of the driv-
ing scenario

Cut-outs left

Visualization of point in time when a cut-out to the left is
committed by a vehicle throughout the duration of the driv-
ing scenario

Cut-outs right

Visualization of point in time when a cut-out to the right
is committed by a vehicle throughout the duration of the
driving scenario

Tailgates

Visualization of point in time when a tailgate is committed
by a vehicle throughout the duration of the driving scenario.
The numbers 1, 2, and 3 on the Y-axis indicate the severity
of the tailgate maneuver. 1 indicates a minor tailgate, 2 a
moderate tailgate, and 3 a severe tailgate.

Speeding

Visualization of vehicles exceeding the allowed speed limit
at each point in time throughout the duration of the driving
scenario

Total vehicles speeding

Total number of vehicles speeding at each point in time dur-
ing the driving scenario

Standing

Visualization of standing vehicles at each point in time
throughout the duration of the driving scenario

Total vehicles standing

Total number of vehicles standing at each point in time dur-
ing the driving scenario

Table 5.8: Overview of the graphical statistics provided with every driving scenario (source: own illustration).
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Figure 5.9: Graphical statistics overview showing the occurrence of various driving maneuvers over time (source:

own illustration).
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5.7.2 Dataset Characteristics

In this section the overall characteristics of the Providentia++ dataset are described. In total
32 different data recordings each with a length of one minute are included in the dataset.
The dataset characteristics are composed of the driving maneuvers detected in the scenar-
ios. These include the total number of lane changes, cut-ins, cut-outs, tailgates, speeding,
and standing vehicles. Additionally the maximum number of lane changes committed by a
single vehicle, the top speed, and the total number of vehicle trajectories are included in the
statistics. Figure 5.10 shows the exact details of the dataset characteristics.
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Chapter 6

Summary

The efforts made in this work deal with parts of the scenario-based approach for the assess-
ment of automated vehicles. This approach is chosen due to the fact that it is regarded as the
most promising approach for guaranteeing an extensive safety assessment while maintaining
sufficient efficiency. Hereby the following research questions are answered:

1. “Which driving scenarios are relevant for the assessment of automated vehicles capa-
bilities?”

2. “How can an extensive collection of driving scenarios be created?”

3. “How can driving scenarios be carried out to assess the safety of automated vehicles?”

Each of the three research questions addresses a different task within the scenario-based
approach. The research questions are first solved independently and later integrated into a
processing pipeline covering the full scenario-based approach. In total seven main contribu-
tions are made. These include a scenario catalog as well as software frameworks for creating,
augmenting, labeling, detecting, classifying, and visualizing driving scenarios. With the in-
tegration of these accomplishments into a processing pipeline the scenario-based approach
is fully automated. The output of the processing pipeline is a database composed of driving
scenarios with labeled driving maneuvers in rosbag and JSON format, statistics characteriz-
ing the scenario, and corresponding OpenSCENARIO files for simulation purposes.

In a first step a novel process model for the scenario-based approach is derived. Inspira-
tion is taken from [148], however in this work the process structure is significantly different.
In the newly derived process different elements play a key role and the overall model is con-
densed to reduce complexity. Additional efforts are made into designing the process highly
modular, providing the opportunity of enhancing or exchanging process steps with new ap-
proaches.

The focus of this work lies in automating and simplifying the scenario-based approach by
automating the process steps where possible. Tasks inside the process that necessarily require
manual work are facilitated by introducing various software frameworks. All components are
then integrated into a processing pipeline to streamline the process of creating driving sce-
narios, datasets, and simulation-based test scripts.
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Due to the high variety of data generated with the scenario-based processing pipeline nu-
merous problems can be solved. The generated test scripts are used for the safety assessment
of automated vehicles. The datasets are used for the training of deep learning algorithms, for
tasks such as trajectory prediction, maneuver classification and more. Additionally, traffic, or
accident studies can be conducted based on the datasets.

In the following it is first described how each of the research questions is solved indepen-
dently. Afterwards the functionality of the resulting processing pipeline for automating the
scenario-based approach is outlined.

1. “Which driving scenarios are relevant for the assessment of automated vehicles capa-
bilities?”

Various sources are investigated in order to discover traffic scenario types that are both
safety critical and relevant for the development of autonomous driving applications.
Among these sources are documents from government agencies, such as the National
Highway Traffic Safety Administration (NHTSA), Euro-NCAP, UNECE, and others. The
goal of this inquiry is to find a reasonable balance between regular driving practices
and situations that often cause accidents.

These scenario types are then added to a shortlist, and a catalog specific to the Provi-
dentia++ test stretch is created from there. Following the conclusion of the selection,
the scenario types that will appear on the Providentia++ test stretch are determined.
Because some scenario types, such as entering a toll station or exiting a parking lot, are
not conceivable on the test stretch because they do not exist, this is a vital step. As a
consequence, they may go unnoticed. Once the Providentia+ + test stretch’s required
scenario types have been established, they are added to the catalog, which provides a
thorough overview of scenarios.

2. How can an extensive collection of driving scenarios be created?

To achieve an extensive collection of driving scenarios, two accomplishments are made.
First, the driving scenarios are created as a representation of objects and their position
over time within the road network. Secondly, it must be ensured that all driving scenar-
ios listed in the scenario catalog are also included in the collection of concrete driving
scenarios.

For creating driving scenarios that cannot be extracted from the Providentia+ + test
stretch, the “Scenario Generation Framework" is introduced in this work. This frame-
work enables the creation of synthetic driving scenarios. This applies frequently in the
case of unusual occurrences, such as car accidents or vehicle breakdowns. Thanks to
the generation framework, new driving scenarios may be designed rapidly and accu-
rately to meet the demands of the user. Using the “Scenario Generation Framework" a
total of 26 different driving scenarios are created and added to the database.

For the automated creation of driving scenarios, a scenario extraction pipeline is imple-
mented in this work. As an input it takes the data recordings from the Providentia+ +
test stretch which contain information about all detected vehicles and objects at each
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point in time. The pipeline is referred to as the "Scenario Extraction Pipeline" in this
work. It utilizes the sensor recordings to characterize the actors and their trajectories
as well as the environment conditions. This information is then transferred into a for-
mat that formally describes concrete driving scenarios. Using the scenario extraction
pipeline a total of 31 different driving scenarios are created and added to the database.

To accommodate for underrepresented scenario types the "Scenario Augmentation Frame-
work" is introduced. This framework allows for a simple yet very effective variation of
driving scenarios to increase the number of scenarios. The variations are created in a
stochastic sampling-based approach. Hereby the paths and velocity profiles of all actors
are varied. The user can control the stochastic sampling behavior by defining the sam-
pling ranges. In this work the scenario augmentation framework is used for increasing
the total amount of driving scenarios.

At this point driving scenarios are created either by extracting them from real-world
data or synthetically generating them. The scenarios are additionally augmented to
increase the total number of driving scenarios. Finally, the scenarios are classified de-
pending on the driving patterns found in each scenario. With the classification of all
extracted and generated scenarios it can be ensured that every scenario type listed in
the scenario catalog is also included in the data collection of driving scenarios. The
classification is done in two steps:

(a) Maneuver Detector
Many driving maneuvers that follow a deterministic behavior are modeled by rule-
based algorithms. These driving maneuvers are then automatically be detected
in driving scenarios and labeled in the data accordingly. Among the determinis-
tic driving maneuvers for example are lane changes, cut-ins, cut-outs, speeding,
among others.

More complex driving maneuvers, such as ones causing an accident, are labeled
manually. All labels are then combined yielding a set of driving scenarios with
fully labeled driving maneuvers.

(b) Scenario Statistics
Finally on the basis of the detected driving maneuvers, statistics describing the
entire scenario are calculated. These include a summation of each maneuver type
and extreme values such as the top speed or maximum number of lane changes
committed by a single vehicle. Based on the statistics driving scenarios can be
classified into a category.

3. How can driving scenarios be carried out to assess the safety of automated vehicles?

The assessment of automated vehicles in a simulation environment has benefits con-
cerning reducing costs and avoiding safety hazards. Therefor this approach is chosen
to execute driving scenarios for testing purposes.

To make use of various simulation software, a tool called "Scenario Writer" is created.
It parses both extracted or synthetically generated driving scenarios into the OpenSCE-
NARIO format. The OpenSCENARIO files can then be read by many simulation and
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visualization tools for testing purposes. With driving scenarios in the OpenSCENARIO
format test-series can then be automated.

After addressing and solving all research questions, the developed software components
are integrated into pipeline. With this pipeline the scenario-based approach is streamlined
and automated.



Chapter 7

Outlook

Six major milestones have been realized as a result of this work. These include the establish-
ment of a scenario catalog with critical driving situations, a scenario extraction pipeline, a
scenario generation framework, a scenario variation framework, a maneuver detection frame-
work, and the automatic creation of OpenSCENARIO files for the simulation and analysis of
scenarios. All these achievements are integrated into a pipeline that handles the scenario-
based approach.

In this chapter an outlook is given on how the software components and pipeline created
in this work can be used productively for introducing the scenario-based approach on the
Providentia+ + test stretch. First, the use cases for each individual achievement are pointed
out. Finally, an additional use case concerning the pipeline resulting from these achievements
is presented.

7.1 Scenario Catalog

The scenario catalog created in this work contains 86 different driving situations. These are
categorized in the road categories urban, rural, and highway. With the categorization it is
easier to determine which driving scenarios are relevant for a specific application.

In general, the scenario catalog can be used as an orientation which driving scenarios
must be extracted or generated in order to cover all test cases required for a meaningful as-

sessment of automated vehicles.

In the future this catalog can be continuously improved and expanded with additional
driving situations which will make automated vehicles even more safe.

7.2 Scenario-Based Approach Pipeline

The pipeline created by combining the scenario extraction pipeline, scenario generation
framework, scenario variation framework, maneuver detection framework, and the Open-
SCENARIO writer has two main use cases. These use cases are outlined in the following.

1. Database Creation
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The first use case is the automated creation of a scenario database. For this both
data recordings from the Providentia++ test stretch, or generated driving scenarios
are taken as input. Extracted driving scenarios are first pre-processed, while synthetic
driving scenarios are created with the scenario generation framework. Depending on
the user needs they can then be augmented in an automated procedure. Finally, ma-
neuvers are detected, and statistics summarizing the driving scenarios are calculated.
This means that an arbitrary driving scenario can be given as an input. Automatically
it is then characterized and an OpenSCENARIO file is created for simulation purposes.
This way a database for carrying out the scenario-based approach can be created very
efficiently. Based on their statistics the driving scenarios can be classified and selected
for testing purposes.

. Driving Scenario Detection

The second use case is the automated detection of relevant driving scenarios from the
Providentia+ + test stretch. For this the scenario extraction pipeline and the scenario
classification algorithm only are used.

Data recordings of the live traffic from the test stretch are generated by the sensor
infrastructure continuously. Hereby each of the recordings covers a time span of one
minute. For the detection of driving scenarios every produced data recording is ex-
tracted, maneuvers are then extracted, and finally the driving situation is classified.
This way it is continuously determined what kind of traffic situation is occurring and if
the situation is classified as relevant for the scenario-based approach. If a traffic situa-
tion is of interest, it is then stored into the database. The process is illustrated in Figure
7.1.

Live Traffic on Providentia++ Teststretch Object-Detection + Object Tracking Data Stream

Data stream including object
positions, characteristics, and track
ID

Image-, LIDAR-, and Radar- Object detection and tracking based
Recordings of Live Traffic at 25 Hz on image-, LIDAR-, and Radar-data

A

Scenario Classification

Maneuver Detection

Feature Extraction

Scenario classification based on the
driving maneuvers detected in the
scenario

Extraction of features based on the WENCIE G ED e CID M

incoming data stream

extracted features and features in
from the data stream

/

Figure 7.1: lllustration of the live detection of driving scenarios on the Providentia++ test stretch (source: own
illustration).

In the past the driving scenario types that are included in the data recordings from the
test stretch have been determined manually. This is done by re-watching each of the
recordings and manually classifying the scenario type. With the ability of detecting rel-
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evant driving scenarios automatically all manual labor becomes abundant.

Additionally, the labeling of driving maneuvers is automated to a large extent. Under
the premise of 100 percent correctly tracked vehicles a maneuver detection rate of
100 percent including correct labeling is achieved. In practice due to the non-flawless
vehicle tracking not all driving maneuvers are detected correctly. A maneuver detection
rate of 100 percent is achieved excluding highway exit maneuvers. However, many
false positives are generated due to errors in the vehicle tracking data. Therefore, a
precision of only 60.72 percent on average over all maneuver classes can be achieved.
This means that 60.72 percent of the detected maneuvers are labeled correctly. This
reduces the effort of manual labeling for these maneuvers by roughly 40 percent. Data
labeling is considered as labor intensive and the reduction of manual labeling efforts
therefore has a high potential for cost-savings [72]. This indicates a development that
the cost to provide automated vehicles will decrease in the future.






Chapter 8

Conclusion

The main goal of this work is to enable the assessment of AVs concerning their safety inside
the environment of the Providentia+ + project. For this inspiration is drawn from the SBA
with a high focus on automating and simplifying each of the process components. Thereby
the following tasks are solved:

1.

2.

3.

N o ok

Determination of relevant driving scenarios
Extraction of driving scenarios

Synthetic generation of driving scenarios
Variation of driving scenarios

Classification of driving scenarios
Simulation of driving scenarios

Creation of a driving scenario database

In the following the additional value, as well as room for improvements, is highlighted
for each of the solutions developed for the above mentioned tasks.

1.

Determination of relevant driving scenarios

The goal of the scenario catalog created in this work is to produce an extensive list of
driving scenarios describing the operational design domain of AVs. The catalog is heav-
ily based on the accident report published by the NHTSA and enhanced by a number
of scenarios from other sources. The resulting catalog is meant to include all driving
scenarios that can occur on the Providentia+ + test stretch. However, although the cat-
alog is believed to be complete this can not be guaranteed for the future as new types of
driving scenarios may arise. This can be due to changes in the vehicle operation, traffic
laws, or road network. Therefore the scenario catalog must be consistently updated in
the future.

. Extraction of driving scenarios

The extraction of driving scenarios is completely automated by the introduction of the
scenario extraction pipeline. This means no manual work is necessary for the extraction
process. In the future changes or updates to the pipeline may be necessary if the format
of the sensor recordings changes. Also further efforts could be invested in the efficiency
of the feature extraction. To achieve faster execution times of the feature extraction
scripts a switch to an efficiency oriented programming language like C++ should be
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considered. Also the effort of creating a lane ID extractor or creating goal boxes for the
detection of driving maneuvers could be optimized for new road segments. Instead of
manually defining polygonal hulls for each driving lane and goal box or goal polygon
the features of the OpenDRIVE HD-map could be used. The information of each lane’s
boundaries and lane ID could be used to automatically create polygons for the extrac-
tion of the actor’s lane ID. Similarly polygons defining goal boxes could be created.
With the lane linkage information in intersections the detection rules for the goal box
principle could also be assigned automatically. This would further simplify the feature
extraction and make it scalable to new road segments.

. Synthetic generation of driving scenarios

The scenario generation framework introduced in this work drastically simplifies the
process of generating synthetic driving scenarios. In the future new functionalities
such as speed limits or generative scenario types could be added to further increase
efficiency when creating new driving scenarios. Additionally, a graphical user interface
could be created to provide a more detailed visual feedback while defining the actor’s
trajectories. This would make the process of generating and editing synthetic driving
scenarios even more intuitive and efficient.

4. Variation of driving scenarios

The scenario variation framework created as part of this work creates stochastic varia-
tions of existing driving scenarios. It can be used to easily create a stochastic complete
variations of a driving scenario. In the future the framework could be extended to au-
tomatically sample completely new driving scenarios instead of stochastic variations of
existing driving scenarios. This would further increase the test case coverage in the
operational driving domain and account for the lack of recorded driving scenarios.

. Classification of driving scenarios

The classification of driving scenarios is based on the maneuvers detected inside the
scenario. This can be useful for quickly identifying scenarios relevant for specific test
suites. In the future the maneuver types detected in the driving scenarios can be further
enhanced. This would allow for a more precise classification and increase the selection
possibilities.

Additionally, the current maneuver detection algorithms have a detection rate of 100
percent. In practice, a maneuver detection rate of 100 percent is achieved excluding
highway exit maneuvers. However, many false positives are generated due to errors in
the vehicle tracking data. Therefore, a precision of only 60.72 percent on average over
all maneuver classes can be achieved. With the increase of tracking accuracy to 100
percent an effective maneuver detection rate of 100 percent is achieved. Therefore, in
the future, further efforts should be invested in the quality of the tracking algorithm.

Another way to increase the amount of detected driving scenarios in the urban and
rural environment is to enhance the goal box detection. The existing framework could
be used to detect ghost drivers, violations of traffic signs or rules, illegal turning ma-
neuvers, or pedestrians crossing the road. These and more scenarios can be detected
by using the existing or adding new goal boxes as well as defining new detection rules
for each of the added scenarios. Also the placement of the goal polygons for detecting
highway enter and exit maneuvers should be reconsidered. With a better positioning
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the detection rate of zero percent for highway enter and exit maneuvers could be dras-
tically increased.

To further enhance the number of driving maneuvers that can be detected and labeled
the addition of new methods to the existing approach is highly recommended. The cur-
rent approach deals very well with the detection of maneuvers that can be modeled by
rule-based algorithms. However, it is limited concerning the detection of highly com-
plex maneuvers such as an accident trajectory. In such a case the use of an Long-Short-
Term Memory network could potentially bring good detection results. Reasons for this
are the capability of the LSTM network to learn how to classify driving maneuvers cor-
rectly based on sequential data such as trajectories. This means detection models that
are too complex to be modeled explicitly can simply be learned by the LSTM network.
Finally, the introduction of a detection algorithm based on a Convolutional Neural Net-
work could be well suited for detecting driving scenarios that are visually distinctive.
Throughout this work it has been observed that most driving scenarios are prominent
either due to their visuals or their trajectory. Therefore, a combination of both LSTM
networks and Convolutional Neural Networks could be a promising approach to in-
crease the number of detected maneuvers and driving scenarios.

Besides detecting new driving scenarios some enhancements can be made to existing
ones. Similar to the detection of tailgates, cut-ins and cut-outs could be split into
categories depending on the risk induced by executing the maneuver.

. Creation of a driving scenario database

The driving scenario database established in this work enables a fast identification of
relevant test cases for various applications. Every driving scenario includes a statistic
file summarizing the main characteristics of the scenario. This can be used to easily
filter the driving scenarios necessary for certain test suites. In the future the statistics
can be further enhanced by adding more parameters, such as new maneuver types or
actor attributes. Additionally the database could be created with SQL [137], Influx
[49], or MongoDB [132]. This would make it easier to scale the database or retrieve
analytics from the stored data.
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Appendix 1

Scenario Catalogs

Scenario Catalog Highway

Scenario Catalog Highway
Lane change

Lane change: 2 vehicles going straight and 1 vehicle en-
croaching in same lane

Lane change: 2 vehicles going straight and 1 vehicle en-
croaching into another lane

Lane change: 1 vehicle going straight and another chang-
ing lane

Lane change: 1 vehicle going straight and another pass-
ing

Lane change: vehicle changing lane in absence of other
vehicles

Strong acceleration /

Strong acceleration

deceleration Strong deceleration
Road geometry Widening road
Merging road
Exit highway

Merge into highway

Lead vehicle maneuver

Lead vehicle strong acceleration

Lead vehicle strong deceleration

Lead vehicle moving at much lower constant speed

Lead vehicle stopped

Lead vehicle changing lanes

Lead vehicle cutting-in

Lead vehicle cutting-out

Violating traffic laws

Speeding

Overtaking right side

Irrational driving (swerving etc.)

Insufficient distance to leading vehicle (tailgate)

Ghost driver

Emergency vehicle on duty passing

Avoiding maneuvers

Avoiding road user blocking road

Avoiding obstacles blocking road

Avoiding construction zone

Dynamic object avoidance

Continued on next page
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Appendix 1

Table 1 - continued from previous page

Scenario Catalog Highway

Animal: vehicle going straight and animal in road

Animal: vehicle negotiating a curve and animal in road

Evasive action with prior vehicle maneuver

Evasive action without prior vehicle maneuver

Accident scenarios

Accident

Animal crash with prior vehicle maneuver

Animal crash without prior vehicle maneuver

Vehicle failure

Control loss with prior vehicle action

Control loss Without prior vehicle action

Road edge departure with prior vehicle maneuver

Road edge departure without prior vehicle maneuver

Vehicle(s) drifting — same direction

Object crash with prior vehicle maneuver

Object crash without prior vehicle maneuver

Cyclist

Cyclist crossing road

Cyclist: vehicle going straight on crossing paths

Cyclist: vehicle going straight on parallel paths

Cyclist: vehicle starting in traffic lane on crossing paths

Cyclist crash with prior vehicle maneuver

Cyclist crash without prior vehicle maneuver

Pedestrian

Pedestrian crossing road

Driving through pedestrian crowd

Pedestrian: vehicle backing

Pedestrian: vehicle going straight and pedestrian cross-
ing road

Pedestrian: vehicle going straight and pedestrian darting
onto road

Pedestrian: vehicle going straight and pedestrian playing
/ working on Road

Pedestrian: vehicle going straight and pedestrian walking
along road

Pedestrian crash with prior vehicle maneuver

Pedestrian crash without prior vehicle maneuver

Table 1: Scenario catalog highway (source: own illustration)
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Scenario Catalog Urban / Rural

Lane change

Lane change: 2 vehicles going straight and 1 vehicle en-
croaching in same lane

Lane change: 2 vehicles going straight and 1 vehicle en-
croaching into another lane

Lane change: 1 vehicle going straight and another chang-
ing lane

Lane change: 1 vehicle going straight and another pass-
ing

Lane change: 1 vehicle going straight and another enter-
ing or leaving parking position

Lane change: 1 vehicle going straight and another turn-
ing

Lane change: 1 vehicle passing and another turning

Lane change: Vehicle changing lane in absence of other
vehicles

Strong acceleration /

Strong acceleration

deceleration Strong deceleration
Protected turn / road Protected left turn
crossing Protected right turn

Protected road crossing

Unprotected turn / road
crossing

Unprotected left turn

Unprotected right turn

Unprotected road crossing

Protected turn while
pedestrian / cyclist crossing
road

Protected left turn with pedestrian / cyclist crossing road

Protected right turn with pedestrian / cyclist crossing
road

Unprotected turn while
pedestrian / cyclist crossing
road

Unprotected left turn with pedestrian / cyclist crossing
road

Unprotected right turn with pedestrian / cyclist crossing
road

Pedestrian / cyclist / animal /
etc. crossing road

Pedestrian / cyclist / animal / etc. crossing road

Road geometry

Widening road

Merging road

Exit highway

Merge into highway

Lead vehicle maneuver

Lead vehicle strong acceleration

Lead vehicle strong deceleration

Lead vehicle moving at much lower constant speed

Lead vehicle stopped

Lead vehicle changing lanes

Lead vehicle cutting-in

Lead vehicle cutting-out

Violating traffic laws

Speeding

Running stop sign

Continued on next page
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Table 2 - continued from previous page

Scenario Catalog Urban / Rural

Hit red light

Violating traffic signs

Irrational driving (swerving etc.)

Insufficient distance to leading vehicle (tailgate)

Ghost driver

Emergency vehicle on duty passing

Avoiding maneuvers

Avoiding road user blocking road

Avoiding obstacles blocking road

Avoiding construction zone

Dynamic object avoidance

Animal: vehicle going straight and animal in road

Animal: vehicle negotiating a curve and animal in road

Evasive action with prior vehicle maneuver

Evasive action without prior vehicle maneuver

Avoiding pedestrian: vehicle backing

Avoiding pedestrian: vehicle going straight and pedes-
trian crossing road

Avoiding pedestrian: vehicle going straight and pedes-
trian darting onto road

Avoiding pedestrian: vehicle going straight and pedes-
trian playing / working on Road

Avoiding pedestrian: vehicle going straight and pedes-
trian walking along road

Driving through pedestrian crowd

Avoiding cyclist: vehicle going straight on crossing paths

Avoiding cyclist: vehicle going straight on parallel paths

Avoiding cyclist: vehicle starting in traffic lane on cross-
ing paths

Avoiding cyclist: vehicle turning left on crossing paths

Avoiding cyclist: vehicle turning left on parallel paths

Avoiding cyclist: vehicle turning right on crossing paths

Avoiding cyclist: vehicle turning right on parallel paths

Accident scenarios

Accident

Animal crash with prior vehicle maneuver

Animal crash without prior vehicle maneuver

Pedestrian crash with prior vehicle maneuver

Pedestrian crash without prior vehicle maneuver

Cyclist crash with prior vehicle maneuver

Cyclist crash without prior vehicle maneuver

Object crash with prior vehicle maneuver

Object crash without prior vehicle maneuver

Backing up into another vehicle

Vehicle failure

Control loss with prior vehicle action

Control loss without prior vehicle action

Road edge departure with prior vehicle maneuver

Road edge departure without prior vehicle maneuver

Continued on next page
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Table 2 - continued from previous page
Scenario Catalog Urban / Rural
Vehicle(s) drifting — same direction
Backing: at intersections
Crossing paths: left turn across path from lateral direc-
tion
Crossing paths: left turn across path from opposite direc-
tion
Crossing paths: left turn into path
Crossing paths: right turn across path from lateral direc-
tion
Crossing paths: right turn into path
Crossing paths: straight crossing paths
Crossing paths: other/unknown

Table 2: Scenario catalog urban / rural (source: own illustration)
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