
Department of Informatics
Technical University of Munich

Master’s Thesis in Informatics

Monocular 3D Object Detection Using HD
Maps
Monokulare 3D Objekterkennung mit HD-Karten

Supervisor Prof. Dr.-Ing. habil. Alois C. Knoll

Advisor Walter Zimmer, M.Sc.

Author Joseph Birkner

Date May 15, 2023 in Garching

Disclaimer

I confirm that this Master’s Thesis is my own work and I have documented all sources and
material used.

Garching, May 15, 2023 (Joseph Birkner)

Abstract

Due to their low cost and high output information density, monocular RGB cameras are a
popular sensor choice for many perception tasks, including 3D object detection. The low cost
of the sensor is especially important for the large-scale deployment of road-side infrastruc-
ture, as envisioned by the Providentia project. Prior work within the project determined that
a two-stage detection approach using the bottom contour of 2D instance masks is viable in
a highway setting. However, the applicability of the 2D → 3D lifting approach via the mask
in urban settings has been unclear. In this work, we propose an augmented L-Shape fitting
algorithm which solves the monocular 3D object detection task for urban settings. The algo-
rithm is augmented using HD maps to inform likely heading values, and tracking, to further
improve the heading value selection. We evaluate our algorithm on the Providentia Intersec-
tion Scenario dataset. The augmented algorithm improves over basic L-Shape fitting by 22%
in mAP, 8.36% in IoU, and reaches 5.37◦ of orientation error and 0.9m in translation error.
We conclude that the approach is useful for real-time application in road-side infrastructure
sensing tasks.

Zusammenfassung

Aufgrund ihrer geringen Kosten und hohen Informationsdichte sind monokulare RGB-
Kameras eine beliebte Sensorwahl für viele Wahrnehmungsaufgaben, einschließlich der
3D-Objekterkennung. Die niedrigen Kosten des Sensors sind besonders wichtig für den
großflächigen Ausbau von straßenseitiger Infrastruktur, wie er im Rahmen des Providentia-
Projektes vorgesehen ist. Frühere Arbeiten im Rahmen des Projekts ergaben, dass ein
zweistufiger Erkennungsansatz, der die untere Kontur von 2D-Objektinstanzmasken verwen-
det, für den Einsatz an Autobahnen geeignet ist. Unklar blieb jedoch die Anwendbarkeit
dieses 2D → 3D Lifting-Ansatzes in städtischen Szenarien. In dieser Arbeit schlagen wir
einen erweiterten L-Shape-Fitting Algorithmus vor, der die Aufgabe der monokularen
3D-Objekterkennung auch in diesen Szenarien löst. Der Algorithmus wird durch HD-Karten
erweitert, um wahrscheinliche Ausrichtungswinkel zu ermitteln, und durch Tracking, um die
Selektion der Ausrichtungswinkel weiter zu verbessern. Wir evaluieren unseren Algorithmus
anhand des urbanen Providentia Kreuzungs-Szenario-Datensatzes. Der erweiterte Algo-
rithmus verbessert das grundlegende L-Shape-Fitting um 22% in mAP, 8.36% in IoU, und
erreicht sowohl 5.37◦ Rotationsfehler als auch 0.9m Positionsfehler. Wir kommen zu dem
Schluss, dass der Ansatz für die Echtzeitanwendung für 3D-Sensoren an der straßenseitigen
Infrastruktur geeignet ist.

Contents

1 Introduction 3
1.1 The Providentia++ Project . 3
1.2 The A9 Testfield . 4
1.3 The Providentia Intersection Scenario Dataset . 5
1.4 Monocular 3D Object Detection . 6

1.4.1 Variables to Estimate . 6
1.4.2 Two-Stage Detection . 6
1.4.3 Use of Neural Networks . 8

1.5 Relevance of HD Maps . 8
1.6 Tracking Enters the Picture . 9

1.6.1 Screen-Space Tracking . 9
1.6.2 Birds-Eye-View Tracking . 10

1.7 Inherent Functional Limitations . 10
1.8 Research Objective . 10
1.9 Contributions . 11

2 Related Work 13
2.1 Earlier Work Within the Providentia Project . 13
2.2 Detection of Vehicles in Cooperative Vehicle Infrastructure Systems 14
2.3 The L-Shape Fitting Method for Vehicle Pose Detection 14
2.4 TrafficNet . 15
2.5 UrbanNet: Urban Maps for Long Range 3D Object Detection 16
2.6 Cooperative Roadside Vision Systems in Complex Scenarios 17
2.7 Survey Studies . 17

3 Technical Foundations 19
3.1 The YOLACT Instance Segmentation Model . 19
3.2 The YOLOv7 Instance Segmentation Model . 21
3.3 Map Data Formats . 21
3.4 The Robot Operating System . 22
3.5 SORT Object Tracking . 23
3.6 The DBSCAN Algorithm . 24
3.7 The L-Shape Fitting Algorithm . 25
3.8 Evaluation Metrics . 26

4 System Design 29
4.1 Distributed Architecture . 29
4.2 The 2D Object Detector . 30
4.3 The 3D Object Detector . 31
4.4 Bottom Contour Extraction and Filtering . 32
4.5 Detection of Vulnerable Road Users . 33

vi Contents

4.6 Bottom Contour L-Shape Fitting . 33
4.7 HD Map Lookup Grids . 34

4.7.1 Lane Tesselation . 34
4.7.2 Lane Rasterization . 35

4.8 HD-Map-Augmented L-Shape Fitting . 37
4.9 Tracking-Augmented L-Shape Fitting . 38
4.10 Joint Height and Position Estimation . 39
4.11 Late HD Map Lookup . 41
4.12 3D SORT Tracking . 41

5 Evaluation 43
5.1 Qualitative Results . 43
5.2 Runtime Performance . 45
5.3 Quantitative Evaluation Strategy . 45
5.4 Overall Quantitative Results . 47
5.5 Influence of Late HD Map Lookup . 48
5.6 Effects of YOLOv7 and Image Resolution . 49
5.7 Impact of Filters . 51
5.8 Contribution of L-Shape-Fitting Augmentations . 52

5.8.1 Impact of HD Map Augmentation . 53
5.8.2 Impact of Screen-Space Tracking Augmentation 53

5.9 Significance of 3D Tracking . 54
5.10 Implications of LiDAR Label Shifting . 55
5.11 Challenges of Night-time Conditions . 55
5.12 Perspective-Dependent Detector Performance . 56

6 Conclusion 59

7 Future Work 61
7.1 Improved Non-Maximum Suppression (NMS) . 61
7.2 Substituting HD Maps . 61
7.3 Extended use of Kalman Filters . 61
7.4 Improving Pedestrian/Cyclist Detection . 61
7.5 Neural Keypoint Estimation . 62
7.6 Amodal Instance Segmentation . 62

Bibliography 63

Acknowledgements

I would like to thank my thesis advisor Walter Zimmer for his relentless pursuit of perfection
for our monocular perception algorithms, as well as Suren Sritharan, wo completed some
essential groundwork towards adopting SORT and L-Shape-Fitting into our codebase.

Chapter 1

Introduction

1.1 The Providentia++ Project

The Providentia Project [Krä+22] aims to create a large-scale Intelligent Infrastructure Sys-
tem (IIS) that can provide autonomous vehicles and traditional vehicles with complementary
information about each road user and the overall traffic situation. By observing and detect-
ing all road users from multiple perspectives, an IIS can greatly extend a vehicle’s perception
range, enabling it to plan its maneuvers more safely and proactively. The primary goal of
Providentia is to improve the safety and comfort of autonomous vehicles by reducing their
reliance on on-board sensors and providing them with a better and spatially extended under-
standing of their surrounding scene.

There are several related projects in the field of IIS, including the Test Area Autonomous
Driving Baden-Württemberg, the MEC-View project, and the local highway operator in Aus-
tria’s road operator system [CK21]. While these projects have similar goals, they are smaller
in scale than Providentia and use different sensor types. Additionally, many research contri-
butions propose methods of making algorithmic use of the information provided by an IIS or
optimizing their function.

Providentia uses a combination of multimodal sensors, including radars, LiDARs, and
cameras. The radars and LiDARs provide distance measurements and can detect objects
that are out of the camera’s field of view. The cameras capture a more distant environment
than the LiDARs, but objects that are too far away appear small on the image and cannot
be reliably detected. The combination of these sensors provides redundant road coverage
with overlapping field of views, accurate calibration, and robust detection and data fusion
algorithms.

The RGB camera sensor captures visual information about the environment, which is
used to generate the digital twin. It can capture a more distant environment than the LiDARs
but is prone to severe occlusions due to its low perspective. The RGB camera sensor is
essential for fusing multiple sensor perspectives and updating the digital twin, which includes
information such as position, velocity, vehicle type, and a unique identifier for every observed
vehicle. By providing this digital twin to an autonomous driving research vehicle, Providentia
demonstrates that it can be used to extend the limits of the vehicle’s perception far beyond
its on-board sensors. The update rate for the digital twin depends on the fusion-setup and
the type of the used object detection network, and it can vary between 13.1Hz to 24.6Hz
depending on the sensor setup.

4 1 Introduction

Figure 1.1: Overview of the Providentia A9 Test Stretch (Graphic produced using Google Earth).

1.2 The A9 Testfield

At the heart of the Providentia Project is an expansive test area with multiple sensor stations.
The sensor stations are each equipped with RGB Camera, LiDAR and RADAR sensors. These
are used to test the sensor calibration-, road user detection-, sensor-fusion-, tracking-, and
communication-solutions that are developed as part of the project. An overview of the test
area along the A9 highway near Garching Hochbrück, Germany is provided in Figure 1.1.

This work focuses on the RGB Camera sensors, which are installed at the designated
stations. The goal of this work is to develop a perception algorithm which can calculate a
three-dimensional digital twin of any visible road user from the two-dimensional RGB cam-
era input frames. Previous work on the Monocular 3D Object Detection (Mono3D) task in
the scope of Providentia focused on solving this task for the sensor stations along the A9
highway [Blu22]: S40 and S50. In this work, we aim to generalize the Mono3D solution to
cover the more urban sensor stations, in particular the cameras which are installed at the
S110 intersection. This urban intersection setting is more challenging because it does not
allow for a fixed orientation of road users to be assumed by the monocular detector. Instead,
the detector must induce a contextual bias for each road user to determine their orientation
angle.

Crucially, a high-definition (HD) map of the test area was also developed as part of the
Providentia project using the OpenDRIVE format [DSG10]. An overview of the map with a
more detailed view of the S110 intersection is provided in Figure 1.2. Within this project,
we aim to explore how the HD map of the test area can serve as auxiliary sensory input to
monocular detector. We hypothesize that the highly detailed map might provide the monoc-
ular detector with information about viable road user orientations.

For the demonstration purpose of this work, we focus our efforts on two cameras which
are installed at the S110 sensor station: S110-S1 and S110-S2. Both cameras have a native
resolution of 1920x1200 pixels and run at 60 Hz. However, the S110-S2 camera has a much

1.3 The Providentia Intersection Scenario Dataset 5

longer detection range, as it is angled towards the horizon, whereas the S110-S1 camera is
focused downwards onto the intersection.

1 km 100 m

S110 Gantry Bridge

S110 S2 Camera

S110 S1 Camera

Figure 1.2: Overview of the OpenDRIVE map of the Providentia test area, with zoomed in cut-out of the S110
intersection with its S1 and S2 cameras.

1.3 The Providentia Intersection Scenario Dataset

To evaluate any object detection method, labeled data are required. For this purpose, the
Providentia Intersection Scenario dataset was developed under the umbrella of Providentia.
The dataset annotates both LiDAR point-clouds with categorized 3D object bounding boxes,
and RGB Camera frames with 2D cuboid labels. Specifically, four scenes in the dataset provide
the crucial combination of 3D LiDAR bounding box labels for 2D camera frames. This labeling
pair allows us to evaluate our monocular 3D object detector. The four scenes in the dataset
which do provide this required annotation mode are listed in Table 1.1.

Table 1.1: Intersection Scenario dataset scenes which provide camera frames annotated with 3D detection bound-
ing boxes from LiDAR labels.

Scene Perspective #Frames #Detections Weather Time of Day

Scene 4 S110 Camera S1 300 2918 Sunny Daytime
Scene 4 S110 Camera S2 300 2810 Sunny Daytime

Scene 5 S110 Camera S1 300 2958 Sunny Daytime
Scene 5 S110 Camera S2 300 2302 Sunny Daytime

Scene 8 S110 Camera S1 1200 8661 Sunny Daytime
Scene 8 S110 Camera S2 1200 11064 Sunny Daytime

Scene 9 S110 Camera S1 619 2327 Rain Night
Scene 9 S110 Camera S2 619 4668 Rain Night

6 1 Introduction

The dataset frame-rate is 10 Hz. The combination of 3D LiDAR Labels and RGB camera
frames introduces an additional challenge in the form of synchronization delay —there may
be up to 200 ms of difference between the 2D RGB frame and the 3D LiDAR annotation
timestamps. We will discuss this problem in more detail in Chapter 5. Each road user is also
annotated with a category; one of CAR, BUS, TRUCK, TRAILER, VAN, MOTORCYCLE, BICYCLE,
PEDESTRIAN, EMERGENCY_VEHICLE, or OTHER.

2D Detection 3D Detection RGB Input Frame (Highway S40 Camera)RGB Input Frame (S110 S2)

position (x,y,z)

heading/
yaw (θ)

length
width

height

Figure 1.3: On the left: General dataflow in the Monocular 3D Object Detection task. For each instance of
a recognized object in the RGB input frame, the detector must estimate a 3D pose parameter-set. The more
variables the detector must estimate, the harder the task becomes. For example, elevation (i.e., the position z
component) may be omitted. On the right: Figure 4.4 from [Blu22]. Frame of a highway scene. In such a
scenario, the detector may also omit the calculation of the heading (yaw) orientation angle and assume a fixed
value.

1.4 Monocular 3D Object Detection

1.4.1 Variables to Estimate

Monocular 3D Object Detection (Mono3D) is the process of detecting three-dimensional ob-
jects from a single two-dimensional RGB camera output frame. However, the term 3D Object
Detection might be misleading in the context of this work. The number of variables which
a “3D” object detector may derive for an object far surpasses three, as can be seen in the
following Table 1.2.

We observe that a minimal 3D Object Detector should actually estimate six dimensions per
object: Birds-eye-view (BEV) positions X/Y , BEV size L/W , heading angle θ and category C .
Earlier work on the Mono3D task for the Providentia project [Blu22] focused on solving this
task for the highway scenario. On top of the minimum six variables, this early detector also
calculated the object height. However, as the early detector focused on the highway scenario,
it was able to assume a fixed value for the θ variable. This is illustrated on the right side of
Figure 1.3. As this work strives to generalize the Mono3D solution beyond the highway, it
must treat the θ value as non-fixed. Interestingly, we facilitate this task by also estimating the
identity I variable, which then also allows us to estimate the planar speed δX/δY variables.
So, we will end up with a 10-D detector in this work (although we do not make an attempt
to evaluate the speed estimates).

1.4.2 Two-Stage Detection

While many approaches are viable, the earlier Providentia Mono3D detector by [Blu22] used
a so-called two-stage detection model. As this work builds on top of [Blu22], we use the same

1.4 Monocular 3D Object Detection 7

Table 1.2: Parameterization options for the output of a Monocular 3D Object Detector per object.

Variable Description Optional

X/Y Position along the longitudinal/lateral axes. No

L/W Extent (length/width) along the longitudinal/lateral axes. No

δX/δY /δZ Speed. Derivatives of the position/elevation variables. Yes

Z The elevation of the object over the road surface. Yes

H The height of the object. Yes

θ Yaw (heading) angle, determines travel direction. No

φ/γ Tilt/Roll angles, e.g. terrain slope or crash scenarios. Yes

I Identifier for the object across multiple frames. Yes

C Category of the object, e.g. CAR or PEDESTRIAN. No

approach. Generally, the two-stage detector splits the detection task into two separate steps:
a 2D instance segmentation step, and a 3D lifting step. There are again many implementation
options for these individual steps. The steps are illustrated in Figure 1.4

Figure 1.4: Two-stage detection from camera image (left) via instance segmentation (middle) and 2D→ 3D lifting
via the instance mask bottom contour (right). Graphic from [Blu22].

Within the taxonomy provided by [Ma+22], these are also called Result-based Lifting
Methods. The primary advantage of this idea is that the 3D detector can benefit from
highly polished, interchangeable, off-the-shelf instance segmentation models. For example,
the [Blu22] detector exchanged Mask-RCNN [He+17] in favor of Yolact-Edge [Liu+21] in
the first stage for performance reasons. In this work we switch again, from Yolact-Edge
to YOLOv7 [WBL22] to improve the detection quality. Another benefit is that stage two,
the 2D → 3D lifting stage, can be independently optimized, as the problem shifts from
identifying the image areas occupied by relevant objects to estimating the three-dimensional
properties of these objects. The method proposed by [Blu22] of lifting the 2D mask into 3D
space via a 3D back-projection of the instance mask’s bottom contour is applied and refined
in this work.

The biggest hurdle towards a correct 3D vehicle pose estimation in an urban setting
was identified by [Blu22] as the θ (heading/orientation) value calculation. The process
by which an orientation angle can be estimated from the bottom contour is called L-Shape-
Fitting [Zha+17]. The vehicle bottom contour, which we want to use as an input to this
calculation, can be quite noisy for many reasons, such as visual obstructions, upstream in-
stance mask detection errors, or cropping at the image border (just to name a few). Hence,
an additional contextual bias is required for each object to correctly estimate its orientation
angle.

8 1 Introduction

1.4.3 Use of Neural Networks

A Neural Network would most likely be a great choice for an algorithm to estimate not just
the vehicle orientation θ , but to perform the whole 2D→ 3D lifting stage. For example, Ur-
banNet [CW21] implemented this approach with a Neural Network trained on synthetic data.
For this work, we are staying with a “rule-based”, non-neural approach for three reasons:

1. Research continuity: The bottom-contour-based two-stage approach proposed
by [Blu22] is undoubtedly viable, there is no obvious reason to change the research
direction.

2. Explainability, Extendability, Maintainability: The “rule-based” approach allows for di-
agnosing and fixing particular failure modes. This is much harder with a neural net-
work.

3. Performance: A neural network estimator would most certainly require GPU resources
to perform adequately in a real-time setting as required by the Providentia IIS. On the
other hand, the non-neural approach can function purely on the CPU, leaving the sparse
GPU resources to other tasks.

For these reasons, this work explores exclusively non-neural “Software 1.0” 1 solutions for
the 2D→ 3D lifting stage.

1.5 Relevance of HD Maps

High-definition (HD) maps model the road network down to the detail of individual driving
lane geometries. In this work, we hypothesize that the HD map can serve as a useful ad-
ditional sensor to the Mono3D detector. In particular, we explore whether the HD map can
serve as a viable source of vehicle orientation (heading) values. In the first step, we devel-
oped a method to derive the likely heading value at a particular position on the road surface
from the geometry of the enclosing lane boundaries. This method is described with more
detail in Chapter 4.7. By converting the calculated −−→x yz heading vectors at each position to
RGB colors, we can proof the general idea. This is visualized in Figure 1.5.

Figure 1.5: Visualisation of heading vectors as RGB values, smoothly interpolated from the lane boundary geom-
etry. Left: Colored heading overlays for the S110-S2 camera perspective. In the bottom-right corner, there are
four overlapping lanes. Middle: RGB heading visualization for the whole S110 intersection. Right: RGB heading
visualization for a roundabout.

From this proof-of-concept visualization of the heading vectors, it becomes apparent that
the map-derived headings may serve well as an additional per-pixel feature for the Mono3D

1https://karpathy.medium.com/software-2-0-a64152b37c35

1.6 Tracking Enters the Picture 9

detector. But it also becomes apparent, that there may always be many possible overlapping
heading options provided by the HD map, as there may always be many overlapping lanes
—especially in the context of urban intersection scenarios. The left-most image of Figure 1.5
illustrates this problem quite well. Here we see color-coded headings overlaid on top of a
frame from the S110-S2 camera. Towards the bottom-right corner of the image, there are
locations with up to four overlapping lanes, which provide four distinct heading options!
Therefore, an additional information source is needed to resolve ambiguities among multiple
heading options.

1.6 Tracking Enters the Picture

1.6.1 Screen-Space Tracking

In face of the mentioned uncertainties when deciding between ambiguous heading options,
it might be useful to consider previously known spatial orientations of a vehicle. Consider a
scene such as the one shown in Figure 1.6.

P₀

P₁

θ₁

P₂
θ₂M

C

Figure 1.6: Visualization of a Mono3D detection scenario where tracking resolves a heading ambiguity.

In this scene, the Mono3D detector C observes the instance mask of vehicle M . Through
the screen-space bounding box of M , the detector can associate this instance mask with
detections from previous frames —P0 and P1. The mask M also allows for the calculation of
the 3D position P2. The detector then performs a lookup for θ (heading) options at location
P2 and obtains two possible headings: θ1 and θ2. As the detector must now pick one of these
heading options, it may use the given knowledge of previous historical positions (P0 and P1)
for M to bias towards θ1 as the more likely orientation. This is because the detector assumes
that vehicles move in a continuous direction more often than not, and erratic turns are less
likely than forward motion.

To express this intuition formally, given a detection M at time t which is associated with

10 1 Introduction

a set of historical positions P = {pt , . . . , pt−T }, we wish to pick θ (M) such that

δ=T
∑

δ=1

|θ (M)− atan2(pt − pt−δ)|

is minimal. In this work, the storage and retrieval of historical positions for the screen-
space bounding box of a detection is accomplished using the SORT [Bew+16] object tracking
algorithm.

1.6.2 Birds-Eye-View Tracking

We use screen-space tracking to aid in the ranking of heading options. However, the same
tracking algorithm can also be used at a later stage for a different purpose: In Birds-Eye-View
(BEV) tracking, objects are tracked in 3D space on the X/Y axes rather than in camera image
space. This is where the Kalman-Filters [WB+95] which are at the heart of the SORT tracking
algorithm really develop their potential as denoisers of physical measurements. Fully imple-
mented, they could denoise every variable of a tracked detection. However, in this work, we
will only use them to stabilize position and speed estimates.

1.7 Inherent Functional Limitations

As the origins, goals and methods of this work are now introduced, we can already identify
functional limitations which are going to be inherent to our approach. These limitations must
be tackled by future work (see Chapter 7).

1. Bad detection quality for road users with highly cropped or obstructed instance
masks: Both the bottom-contour based L-Shape-Fitting algorithm, and the estimation
of the vehicle position from the instance mask require an unobstructed full view of the
road user to function optimally. Any obstruction of the view will degrade the estimation
quality. Such an obstruction may be a stationary object in front of the road user, another
road user, a weather condition like snow/rain/fog, or simply the field-of-view (FOV)
limit of the sensor.

2. Bad detection quality for road users in legal or physical peril: Our Mono3D detec-
tion approach assumes that road users do not fly, do not lie on their side, do not move
sideways, and are always aligned with a legal traffic flow direction as parsed from the
HD map. Therefore, the 3D pose estimation for any road user which violates one of
these assumptions will be as bad as the the day this road user is probably experiencing.

1.8 Research Objective

In summary, the research objective for this work is to address the truthfulness of the following
hypothesis: A two-stage Mono3D detector with an instance-mask bottom-contour based estima-
tor in the second stage can function well within an urban intersection setting if the estimator is
assisted by additional information from an HD map.

1.9 Contributions 11

1.9 Contributions

This work presents the following research contributions:

1. An augmented L-Shape-Fitting algorithm which supports tracking and HD Map confi-
dence inputs.

2. A lookup strategy for vehicle bottom contours within the HD Map to derive yaw options
histograms with associated confidence values.

3. An HD map rasterization algorithm to support fast bulk lookup of heading options for
a vehicle bottom contour.

4. A formula to derive the plausibility of a yaw hypothesis for a detected vehicle from a
series of historical positions for the same vehicle.

5. An algorithm to calculate the physical position and height of a vehicle, given the in-
stance mask height, physical width/length, and predicted orientation angle.

6. An algorithm to calculate 3D bounding boxes for Vulnerable Road Users (Pedestrians
and Bicycles) from their Instance Mask Bottom Contour.

Chapter 2

Related Work

2.1 Earlier Work Within the Providentia Project

This work is deeply rooted in the earlier groundwork which was laid out for the Mono3D task
in highway scenarios [Blu22] in the scope of the Providentia project. Our earlier work took
inspiration from the Cooperative Vehicle Infrastructure System [Guo+21] in the design and
implementation of the two-stage detector based on the bottom contour of the vehicle instance
mask, but also differs in key aspects. The detection flow of our early Mono3D highway
detector is illustrated in Figure 2.1.

Instance Segmentation

Bottom Contour Extraction

2D BBox Estimation

Height Estimation

Category Correction

Frame

Predictions

Figure 2.1: Figure 4.1 from [Blu22], illustrating the stages of the monocular 3D detection process for highway
scenes.

Note, that while this work adopts the first two elements of the detection flow —Instance
Segmentation and Bottom Contour Extraction —we have completely reengineered all subse-
quent processes. This earlier detector works well on highways because it assumes a fixed
orientation for all vehicles. This also allows for a very straight-forward linear equation to
solve for vehicle heights given their distance from the camera, as well as their instance mask
heights. In this work, the vehicle orientation is dynamically derived from the HD map and
the vehicle’s positional history. The height estimation algorithm is revised accordingly.

14 2 Related Work

2.2 Detection of Vehicles in Cooperative Vehicle Infrastructure Systems

The earlier Providentia highway detector was inspired by the Cooperative Vehicle Infrastruc-
ture System (CVIS) [Guo+21], which also uses a two-stage detector with a 2D → 3D lifting
stage based on the vehicle bottom contour. Their approach is illustrated in Figure 2.2.

Figure 2.2: Figure 1 from [Guo+21], illustrating their approach to keypoint estimation based on two lines which are
regressed to the vehicle bottom contour: (a) RGB image; (b) vehicle segmentation mask; (c) the contour point of
the bottom edge of the vehicle and the contact points between vehicle and ground are represented by white dots
and red circles.

While their approach has provided the basis for our research on Mono3d in the Providentia
project, it exhibits some flaws which we are hoping to have overcome (to some extent) in this
work:

1. Previous frames are not considered when a vehicle pose is estimated, potentially leading
to bad yaw angle choices in ambiguous situations.

2. They do not mention the effects of shadows or noise due to obstructions or weather on
their bottom contour line regression algorithm. The L-Shape-Fitting algorithm which
is used in this work might be more robust in such situations, especially since we also
apply DBSCAN-based outlier filtering on the bottom contour.

3. Their height estimation solution assumes that the closest vehicle top corner and bottom
corner share the same distance from the camera, which leads to leaning boxes in traffic
monitoring situations where the camera is stationed highly above the vehicles.

4. They do not consider non-vehicle Vulnerable Road Users (VRUs) in their detector, such
as bicyclists or pedestrians. This work is also detecting VRUs.

Finally, no code was published alongside their approach. This inherently necessitates
research to reproduce their results.

2.3 The L-Shape Fitting Method for Vehicle Pose Detection

Branching off CVIS, this work (like [Blu22]) makes use of L-Shape-Fitting (LSF) to estimate
vehicle size and orientation from the instance mask bottom contour. This approach can
also be interpreted as a pseudo-lidar [Ma+22] approach because the back-projection of the
instance mask bottom contour yields a (very flat) point-cloud. Underlining the “LiDAR-esque”
origins of the LSF algorithm is the fact that it was introduced in the scope of an object

2.4 TrafficNet 15

x (m)
-11 -10 -9 -8

y
(m

)

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

(a)

x (m)
-9 -8 -7 -6 -5 -4

y
(m

)

17

18

19

20

21

22

23

24

25

(c)

Theta (deg)
0 30 60 89

N
or

m
al

iz
ed

 c
rit

er
ia

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Area
Closeness
Variance

(b)
Theta (deg)

0 30 60 89

N
or

m
al

iz
ed

 c
rit

er
ia

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 2.3: Figure 2 from [Zha+17]. In (a) and (c), the grey dots represent the laser range scan points and
the rectangles in green, red, and blue are the fitted rectangles by using criteria area minimization, closeness
maximization, and variance minimization. The normalized scores for the three criteria over the searched directions
are plotted in (b) and (d), respectively. In example (a), the fitting results from the three criteria are very similar,
and the maxima of the three curves in (b) are very close (marked by arrows and achieved at 88�, 89�, and 0�,
respectively). In example (b), the fitting result from the area criteria is different from the other two, and its maximum
in (d) is away from the other two (achieved at 69�, 1�, and 86�, respectively).

detection method from LiDAR measurements, in the work The L-Shape Fitting Method for
Vehicle Pose Detection from LiDAR [Zha+17]. Their method is illustrated in Figure 2.3.

By regressing a rectangular shape to the bottom contour, the LSF algorithm can estimate
orientation, BEV position and BEV size simultaneously. The regression is performed by max-
imizing one of three error criteria: Area, Closeness or Variance. The algorithm and the
criteria are explained in section 3.7. In this work, we further adapt and develop this approach
to stabilize size and heading estimates in complex traffic observation scenarios using tracking
and the HD map.

2.4 TrafficNet

The TrafficNet detector [RAM21] is a very thorough two-stage monocular traffic monitoring
solution, encompassing both vehicle and VRU detection, tracking, speed estimation, and even
road geometry prediction from satellite images. This is illustrated in Figure 2.4.

As can be seen from the right side of Figure 2.4, they make use of road curb geometry
which is extracted from a satellite image to make estimates of vehicle headings, substituting
the role of the HD map in this work. Note that heading estimation via the most proximate
curb would not be applicable in this work, as curbs within a complex intersection with many
overlapping lanes are not a good indicator of orientation. However, their approach alleviates
the need for rather hard-to-source high-definition maps, which is a point of weakness in this
work. Another strong point of TrafficNet is their extensive use of Kalman Filters [WB+95] to
de-noise the vehicle poses and category estimations. They also fine-tuned a custom instance
mask segmentation model in the first detector stage based on YOLOv5 [Joc+20]. This is
done both to detect additional object categories, and to speed up inference by removing
convolutions which are only needed to detect large objects. One weak point of their work
is the extensive use of “magic values” in the second detector stage: They make use of pre-
defined sizes based on vehicle categories and calculate 3D object height based on a pre-
calculated factor of 0.6 from the instance mask height. Also, unfortunately, no code is publicly

16 2 Related Work

Figure 2.4: Figures 12 and 13(c) from [RAM21], illustrating their approach to heading estimation based on the
geometry of proximate road curbs which have been extracted from sattelite imagery. This is analogous to our use
of the HD map in this work (to some extent).

available for TrafficNet.

2.5 UrbanNet: Urban Maps for Long Range 3D Object Detection

Another case of a two-stage object detector which uses Urban maps to augment the perfor-
mance of the 2D → 3D lifting-stage is UrbanNet [CW21]. This solution is unique, because
it applies the HD map as an auxiliary feature to a small Feed-Forward Neural Network. The
architecture is illustrated in Figure 2.5.

Figure 2.5: Figure 2 from [CW21], describing how the Urban HD map assists the 3D object descriptor estimation
model. Center-lines are painted as a per-pixel feature into the 3D object descriptor network’s single input image.

This approach provides an interesting way to remediate some of the shortcomings of
L-Shape-Fitting in the second detector stage. The neural network can learn to recognize ob-
structed road user poses, or even highly uncommon poses, such as a car laying on its side
in a crash scenario. This is not possible with a bottom-contour based detector. Furthermore,
the runtime performance of this approach might be overall better than ours, as there is no
requirement for the first detector stage to output and compute expensive per-instance image
masks. Notably, they also incorporate slope estimation into their prediction, which is espe-

2.6 Cooperative Roadside Vision Systems in Complex Scenarios 17

cially useful for long-range vision in mountainous terrain. The bottleneck in this case is the
availability of training data, something which is solved in UrbanNet by training and testing
exclusively on artificial computer-generated road scenes.

2.6 Cooperative Roadside Vision Systems in Complex Scenarios

Finally, the Complex Scenario Cooperative Roadside Vision System [Mas+21] is related as prior
work due to its two-stage monocular 3D object detection architecture and usage of HD maps
in all stages of the detection processes.

Figure 2.6: Figures 2 and 3 from [Mas+21], describing how the HD map is used for calibration (left) and how the
vehicle size is calculated from its 2D bounding box (right).

Their system uses the HD map for calibration (as illustrated in Figure 2.6), heading cal-
culation, and tracking. On the other hand, their paper is not clear on when and how exactly
they make use of the HD map for heading estimation. In some or most cases, they fall back
to a projection of the 2D screen-space bounding box onto the 3D ground plane, from which a
vehicle’s BEV width/length and heading may be calculated. They do not make any attempts
at calculating vehicle heights or detecting VRUs.

2.7 Survey Studies

In the conclusion of this related work study, several survey papers were consulted, some
of which shall be highlighted here for reference. First, the survey 3D Object Detection from
Images for Autonomous Driving [Ma+22] was a great resource to learn a taxonomy for the
multitude of architectural approaches towards the Mono3d task. Furthermore, the survey
on Object Detection in Traffic Videos provides an in-depth overview of the spectrum of tech-
niques which are used in 2D object detection neural networks, such as YOLO [WBL22].
Research on Infrastructure-Based Object Detection and Tracking for Cooperative Driving Au-
tomation [Bai+22] is very connected to this work, and the cited survey includes many of the
previously mentioned related works. Finally, the Review on Cooperative Perception and Control
Supported Infrastructure-Vehicle Systems [Yu+22] is the only survey which mentions HD maps
as an auxiliary data source and shared spatial reference frame for cooperating autonomous
vehicles.

Chapter 3

Technical Foundations

This chapter provides additional technical details for specific algorithms and techniques that
are later referenced in our System Design (Chapter 4). Feel free to skip this chapter if you
are roughly familiar with the following methods: 2D object instance segmentation, the Open-
DRIVE and Lanelet2 map data formats, the Robot Operating System (ROS), the DBSCAN point
clustering algorithm, the SORT object tracking algorithm, the L-Shape-Fitting algorithm (as
previously mentioned in Section 2.3), and common object detection evaluation metrics, such
as mAP and IoU.

3.1 The YOLACT Instance Segmentation Model

YOLACT (You Only Look at Coefficients) [Bol+19] is a real-time instance segmentation method
that focuses on processing static images. It simplifies the instance segmentation problem by
separating it into two parallel tasks, enabling faster processing while maintaining competitive
accuracy. The functionality of YOLACT can be described in three main steps (as illustrated in
Figure 3.1):

1. Generating Prototype Masks: YOLACT employs a fully convolutional network called
ProtoNet to generate a fixed set of K prototype masks, which are used as the base for
constructing the final object instance masks. These prototype masks are shared across
all object instances in the image.

2. Predicting Per-instance Mask Coefficients and Bounding Boxes: In parallel to gen-
erating prototype masks, YOLACT predicts per-instance mask coefficients and bounding
boxes for potential objects using an anchor-based approach. Each anchor is associated
with a mask coefficient vector, which has the same length as the number of prototype
masks (K). Additionally, the model predicts the class probabilities and bounding box
coordinates for each anchor.

3. Assembling Final Instance Masks: To obtain the final instance masks, YOLACT linearly
combines the prototype masks using the predicted mask coefficients. The model selects
the top scoring instances based on their class probabilities and applies a non-maximum
suppression (NMS) algorithm to remove duplicate detections. The result is a set of
instance masks, each associated with a specific object class and bounding box.

YOLACT’s architecture consists of a feature backbone (e.g., ResNet [TAL16] or Mo-
bileNet [How+17]), a Feature Pyramid Network (FPN) for multiscale feature extraction, and
separate prediction heads for class, bounding box, and mask coefficients. This architecture

20 3 Technical Foundations

allows it to achieve real-time instance segmentation on static images, with a good balance
between speed and accuracy. However, it is designed for large GPUs, such as the TitanX or
RTX-2080-Ti, and its performance on lower-power edge devices is limited without further
optimization or adaptations, which is where YolactEdge [Liu+21] comes in to address these
limitations.

+ + - =+

+ - + =- Detection
2

Detection
1

Protonet

Prediction
Head NMS

Crop Threshold

Prototypes

Mask Coefficients

-

+

Person

Detection 1

-

+

Racket

Detection 2

Assembly

Feature Backbone

Feature Pyramid

Figure 3.1: Figure 2 from YOLACT. The figure shows how generated prototype masks are combined with instance-
specific coefficients to produce the final instance masks.

YolactEdge is a real-time instance segmentation method designed for edge devices, focus-
ing on video processing. Its functionality can be broken down into two main improvements
over the original YOLACT method:

1. TensorRT Optimization: YolactEdge utilizes NVIDIA’s TensorRT [Van16] inference en-
gine to optimize the neural network. TensorRT provides mixed-precision support, opti-
mal tensor layout, layer fusion, and kernel specializations. It quantizes model weights
to INT8 or FP16 precision, which can speed up the processing while preserving accu-
racy. YolactEdge explores the optimal mix between INT8 and FP16 weights for different
model components, maximizing speed without significant degradation in accuracy. The
TensorRT optimization results in around a 4x improvement in speed when working with
static images.

2. Exploiting Temporal Redundancy in Video: YolactEdge takes advantage of the
temporal redundancy in videos, which means that neighboring frames in a video
sequence are often highly correlated. Instead of computing expensive backbone
features for every frame, YolactEdge divides the frames into two groups: keyframes
and non-keyframes. For keyframes, the model computes all backbone and pyramid
features. For non-keyframes, only a subset of features is computed, while the rest are
transformed from the temporally closest previous keyframe.

By combining TensorRT optimization and exploiting temporal redundancy, YolactEdge can
achieve real-time instance segmentation on edge devices such as Jetson AGX Xavier with a
high frame rate and competitive accuracy. This makes it an ideal solution for applications
like robotics, autonomous driving, security, and augmented reality that require real-time
processing and low latency.

3.2 The YOLOv7 Instance Segmentation Model 21

3.2 The YOLOv7 Instance Segmentation Model

YOLOv7 [WBL22], as a state-of-the-art real-time object detection model, demonstrates sig-
nificant quantitative improvements in object detection performance. It not only excels in this
primary task but also showcases its adaptability and effectiveness in related computer vision
tasks, such as instance segmentation.

To achieve high-performance real-time instance segmentation, YOLOv7 is integrated with
BlendMask, a technique introduced in the paper “BlendMask: Top-Down Meets Bottom-Up
for Instance Segmentation”. BlendMask builds upon the foundation laid by YOLACT, but
with a key difference in its approach to blending masks within bounding boxes. While
YOLACT predicts a single scalar coefficient for each prototype mask, BlendMask predicts a
low-resolution (7 ∗ 7) attention map for the same purpose, as described in Figure 3.2.

(a) Bottom-Level Bases (b) Top-Level attentions

Figure 3.2: Figure 3 from BlendMask, showcasing how it replaces YOLACT’s Prototype Masks with Bottom-Level
Bases which are combined using per-instance Top-Level Attention maps rather than coefficients.

This attention map, which functions as a high-dimensional feature, is attached to each
bounding box. The blending of masks using the attention map results in a more precise
and refined instance segmentation. To leverage YOLOv7 for instance segmentation, the
YOLOv7 object detection model is fine-tuned on the MS COCO [Lin+14] instance segmenta-
tion dataset. The resulting YOLOv7-mask model achieves a Mask AP (average precision) of
43.1%, while YOLACT achieves a Mask AP of 35.4% when using a ResNet-101 backbone. The
architecture of YOLOv7-mask, as well as some of the qualitative corresponding results, are
illustrated in Figure 3.2.

3.3 Map Data Formats

This work depends on HD maps to inform viable heading choices for road user detections. As
map data formats for this task, both the OpenDRIVE [DSG10; AUK18] and Lanelet2 [Pog+18]
map data formats are considered. In both OpenDRIVE and Lanelet2 formats, lane geometry
representation is crucial for accurate road modeling and navigation. OpenDRIVE is an XML-
based data format that describes road networks hierarchically. It consists of roads, lanes,
junctions, objects, and signals, with each road having a unique identifier and geometric in-
formation. Lanes are classified into driving lanes, sidewalks, and shoulders, while junctions
define connections between roads. Lanelet2, on the other hand, uses a combination of XML
and OSM formats for data representation. It is based on the concept of “lanelets”, which

22 3 Technical Foundations

are individual driving lanes with associated traffic rules. Lanelet2 includes left and right
boundaries, regulatory elements, and routing graphs.

In OpenDRIVE, lane geometry is represented using a combination of planar and lateral
geometric information. The geometry of a road is defined by a reference line, which is a
parametric curve. This curve is specified using a series of points and can be described by dif-
ferent types of geometry, such as straight lines, spirals, arcs, and clothoids. The reference line
represents the road’s centerline, and the lanes are defined relative to it. Lanes in OpenDRIVE
are divided into three categories: driving lanes, sidewalks, and shoulders. Each lane has
attributes such as width, type, and road marks. The lateral position of a lane is described by
a set of functions, which determine the lane’s width as a function of its longitudinal position
along the road. This information, along with the road’s reference line, is used to compute the
geometry of individual lanes.

Lanelet2 uses a simpler approach for representing lane geometry. It employs polygons,
with each lanelet defined as a drivable polygon consisting of left and right boundaries. The
boundaries are sequences of nodes (points with longitude and latitude), which form linear
or curved segments. The nodes are ordered along the lanelet’s direction, and the shape of
the lanelet is derived by connecting corresponding nodes from the left and right boundaries.
Lane boundaries in Lanelet2 can be solid or dashed lines, indicating whether lane changes
are allowed. Unlike OpenDRIVE, which uses parametric curves for defining road geometry,
Lanelet2 uses a more straightforward representation based on sequences of points. This ap-
proach can be less accurate in some cases, but it simplifies map data handling and provides
better compatibility with OpenStreetMap data.

section 1

section 2

section 3

2

1

-1
-2

-3
-2

-1

1
2

-3

-2

-1

1

2

reference
path

right boundleft bound
lanelet

end
points

start
points

driving
direction

point of
polyline

lanelet2

lanelet1

Figure 3.3: Figures 2 and 3 from [AUK18]. The left-hand-side image shows a typical OpenDRIVE-based model
with multiple lane-sections based on a common continuous reference line. The left-hand-side image shows the
simpler modeling approach of Lanelet2, where lanes are based on self-contained pre-triangulated shapes.

In summary, OpenDRIVE represents lane geometry using parametric curves and a refer-
ence line, while Lanelet2 uses polygonal shapes defined by sequences of nodes. OpenDRIVE
offers more accurate road geometry, but Lanelet2’s simpler representation can be easier to
work with and integrate with other mapping data sources like OpenStreetMap. This mod-
eling difference is also highlighted in Figure 3.3. In this work, we are compelled to use
OpenDRIVE as the input format for the HD map, as this format was used by Providentia’s map
data supplier. However, the Lanelet2 format would be more suitable, as their approach to
lane modeling is directly compatible with our heading interpolation algorithm, as described
in Section 4.7.

3.4 The Robot Operating System

The Robot Operating System (ROS) [Qui+09] is a flexible software framework for developing
robotic applications. Its main goal is to simplify the creation of complex and robust robot

3.5 SORT Object Tracking 23

behavior across various platforms.
ROS follows a graph architecture, where modular components called nodes communicate

with one another through a publish-subscribe messaging model. Nodes are single-purpose
components responsible for specific tasks, such as controlling a sensor or processing data.
They exchange information by sending messages over named channels called topics. Another
central component in ROS is the Master, which manages the entire system by allowing nodes
to find each other, register topics and services, and maintain a list of active nodes.

The framework provides several advantages for robotics applications, including hardware
abstraction, low-level device control, efficient message passing, package management, and a
rich ecosystem of tools and libraries. These features make it easier for developers to build
distributed robotics applications and promote modularity and code reusability. In our case,
we divide separate detector stages into different nodes, as described in Section 4.1.

3.5 SORT Object Tracking

The Simple Online and Realtime Tracking (SORT) [Bew+16] algorithm is an object tracking
method that is specifically designed for tracking multiple objects in real-time. It employs
a combination of detection and tracking to maintain the identity of objects as they move
across video frames. SORT is lightweight and computationally efficient, making it suitable
for real-time applications.

At the core of the SORT algorithm is the Kalman Filter [WB+95], a recursive estimation
technique that helps to predict the state of a dynamic system over time, even in the presence
of noise. In the context of object tracking, the Kalman Filter is used to estimate the position,
velocity, and other parameters of objects in the video frames.

Here is a step-by-step description of the SORT algorithm and its use of Kalman Filters:

1. Object Detection: First, an object detection algorithm, such as YOLO (You Only Look
Once) or Faster R-CNN, is applied to the input video frames to identify objects of interest
and generate bounding box coordinates for each detected object.

2. Initialization: For each detected object, a Kalman Filter is initialized with the bounding
box coordinates as the initial state. The state vector typically includes the position (x , y)
and velocity (vx , v y) of the object’s center. Additionally, a unique ID is assigned to each
object.

3. Prediction: For each object, the Kalman Filter predicts its state in the next frame. This
is done by applying a state transition model to the current state, which usually involves
updating the position based on the velocity.

4. Data Association: In the subsequent frame, the newly detected objects are matched
with the predicted states of the existing tracked objects. This association is achieved
using a distance metric, typically the Intersection over Union (IoU) or the Ma-
halanobis distance. A bipartite graph matching algorithm, such as the Hungarian
algorithm [Kuh55], is employed to find the optimal assignment between detections
and tracked objects.

5. Update: Once the data association is completed, the Kalman Filter is updated with
the new measurements (bounding box coordinates) of the associated detected objects.
This step incorporates the new observations into the existing state estimate, considering
both the prediction and the measurement uncertainties.

24 3 Technical Foundations

6. Handling Occlusions and New Objects: If a tracked object is not detected in the new
frame, its Kalman Filter’s state is still updated based on the prediction alone. If an object
is missing for a certain number of consecutive frames, it is removed from the tracking
list. Conversely, if a new object is detected, a new Kalman Filter is initialized and added
to the tracking list.

7. Output: The final output of the SORT algorithm is a list of tracked objects, each with a
unique ID and an updated bounding box for each frame.

In summary, the SORT algorithm uses Kalman Filters to predict and update the state of
objects in a video sequence, maintaining their identities while tracking their positions and
velocities over time. The data association step ensures that the correct detections are matched
with the corresponding tracked objects, making the tracking robust and efficient.

3.6 The DBSCAN Algorithm

DBSCAN, which stands for Density-Based Spatial Clustering of Applications with Noise [Sch+17],
is a popular unsupervised machine learning algorithm designed for cluster analysis. It works
by identifying dense regions in the input data, separating them into distinct clusters, and
treating low-density regions as noise.

DBSCAN has the following key functionalities:

1. Density-based clustering: The algorithm groups data points based on their density in
the feature space. A dense region is defined as an area with a high concentration of
data points, while a low-density region has fewer data points.

2. Automatic detection of the number of clusters: Unlike some other clustering al-
gorithms, like K-means, DBSCAN does not require the user to specify the number of
clusters beforehand. The algorithm automatically determines the number of clusters
based on the input data.

3. Robustness to noise: DBSCAN can identify and separate noise from the data. Noise is
defined as data points that do not belong to any dense region and are not part of any
cluster.

4. Handling arbitrary shapes: DBSCAN can identify and create clusters with varying
shapes and sizes, unlike some other clustering algorithms that assume clusters have a
spherical or circular shape.

The DBSCAN algorithm works in the following steps:

1. Initialize: Two main parameters need to be defined: ε, which is the radius around a
data point, and Nmin, the minimum number of data points required to form a dense
region.

2. Iterate through the data points: For each unvisited data point in the dataset, perform
the following steps:

Mark the current data point as visited.

Find all neighboring data points within the ε radius.

3.7 The L-Shape Fitting Algorithm 25

If the number of neighbors is greater than or equal to Nmin, mark the current data
point as a core point and create a new cluster. Recursively add all the connected neigh-
bors (directly or indirectly) to the cluster using a depth-first search approach.

If the number of neighbors is less than Nmin, mark the current data point as noise.

3. Cluster assignment: Assign data points to their respective clusters. Core points are
assigned to a specific cluster, border points are assigned to the nearest core point’s
cluster, and noise points are not assigned to any cluster.

The DBSCAN algorithm is particularly useful for datasets with spatial or geographical
data, as well as for datasets with complex structures and noise. In the case of this work, the
DBSCAN algorithm is applied to denoise vehicle bottom contours which have been projected
out from the vehicle’s instance mask into 3D space. This is further explained in Section 4.4.

3.7 The L-Shape Fitting Algorithm

The L-Shape-Fitting algorithm is used to find the best-fitting rectangle for a segmented cluster
of points. The algorithm assumes that the vehicle being tracked can be approximated by an
L-Shape rectangle model, which consists of two perpendicular lines that intersect at a corner.
The goal is to find the optimal disjunction of the m points into two sets (P and Q) and the
optimal parameters (θ , c1, c2) for the two perpendicular lines corresponding to the points in
P and Q, respectively.

Algorithm 2 Search-Based Rectangle Fitting

Input: range data points X ∈ Rn×2

Output: rectangle edges {aix+ bix = ci|i = 1, 2, 3, 4}
1: Q← ∅
2: for θ = 0 to π/2− δ step δ do
3: ê1 ← (cos θ, sin θ) . rectangle edge direction vector
4: ê2 ← (− sin θ, cos θ)
5: C1 ← X · êT1 . projection on to the edge
6: C2 ← X · êT2
7: q ← CalculatecriterionX(C1, C2)
8: insert q into Q with key (θ)
9: end for

10: select key (θ∗) from Q with maximum value
11: C∗1 ← X · (cos θ∗, sin θ∗)T , C∗2 ← X · (− sin θ∗, cos θ∗)T

12: a1 ← cos θ∗, b1 ← sin θ∗, c1 ← min{C∗1}
13: a2 ← − sin θ∗, b2 ← cos θ∗, c2 ← min{C∗2}
14: a3 ← cos θ∗, b3 ← sin θ∗, c3 ← max{C∗1}
15: a4 ← − sin θ∗, b4 ← cos θ∗, c4 ← max{C∗2}

Algorithm 3 Area Criterion.
1: function CalculateArea(C1, C2)
2: cmax

1 ← max{C1} , cmin
1 ← min{C1}

3: cmax
2 ← max{C2} , cmin

2 ← min{C2}
4: α← −(cmax

1 − cmin
1) · (cmax

2 − cmin
2)

5: return α
6: end function

Algorithm 4 Closeness Criterion.

Parameter: d0
1: function CalculateCloseness(C1, C2)
2: cmax

1 ← max{C1} , cmin
1 ← min{C1}

3: cmax
2 ← max{C2} , cmin

2 ← min{C2}
4: D1 ← arg minv∈{cmax

1 −C1,C1−cmin
1 } ||v||l2

5: D2 ← arg minv∈{cmax
2 −C2,C2−cmin

2 } ||v||l2
6: β ← 0
7: for i = 1 to length(D1) step 1 do
8: d← max{min{D1(i), D2(i)}, d0}
9: β ← β + 1/d

10: end for
11: return β
12: end function

Algorithm 5 Variance Criterion.
1: function CalculateVariance(C1, C2)
2: cmax

1 ← max{C1} , cmin
1 ← min{C1}

3: cmax
2 ← max{C2} , cmin

2 ← min{C2}
4: D1 ← arg minv∈{cmax

1 −C1,C1−cmin
1 } ||v||l2

5: D2 ← arg minv∈{cmax
2 −C2,C2−cmin

2 } ||v||l2
6: E1 ← {D1(i)|D1(i) < D2(i)}
7: E2 ← {D2(i)|D2(i) < D1(i)}
8: γ ← − variance{E1}− variance{E2}
9: return γ

10: end function

Figure 3.4: Algorithms 2-5 from L-Shape-Fitting [Zha+17]. Algorithm 2 shows the main theta search loop, while
Algorithms 3-5 are possible implementations of the CalculateCriterionX function.

The algorithm uses a search-based approach (see Algorithm 2 of Figure 3.4) to find the
best-fit rectangle approximately. It iterates through all possible directions of the rectangle and
for each direction, it calculates the distances of all the points to the rectangle’s four edges.
Based on these distances, the points are split into P and Q, and the corresponding errors

26 3 Technical Foundations

are calculated as the objective function. After iterating through all directions, the algorithm
selects the optimal direction which achieves the smallest error, and fits the rectangle based
on that direction.

The algorithm offers three different criteria for selecting the best-fitting rectangle:
rectangle area minimization, points-to-edges closeness maximization, and points-to-
edges squared error minimization. Each criterion can be chosen to play the role of the
CalculateCriterionX function in the algorithm provided in Figure 3.4. The choice of
criterion depends on the specific requirements of the application.

The experimental results show that the algorithm is highly accurate and efficient, with a
small mean and standard deviation of the estimation error. Albeit computationally the most
expensive, the variance criterion achieves the highest correctness, while the area minimiza-
tion criterion sometimes fails to estimate the correct heading.

However, the algorithm may not always achieve perfect results. For instance, the algo-
rithm may fail to estimate the correct heading if the scan points are too sparse, or if there are
points outside or inside of the L-Shape model. This is where the previously mentioned (see
Section 3.6) DBSCAN [Sch+17] algorithm comes in to denoise the bottom contour points.
Nevertheless, the impact of such imperfect cases on vehicle tracking can be minimized by bi-
asing the algorithm’s search space towards correct solutions using tracking and the HD map,
as is done in this work.

3.8 Evaluation Metrics

Like in 2D object detection, the Average Precision (AP) is also used as the main evaluation
metric in 3D object detection. The predictions are first assigned to their corresponding ground
truths according to a specific similarity measure to compute AP. The most used similarity
measure is the Intersection over Union (IoU), which is the geometric overlap between the
ground truth 3D bounding box A and the estimated 3D bounding box B. IoU is defined like
this:

IoU(A, B) =
|A∩ B|
|A∪ B|

The IoU measure is used to judge a matched prediction as a True Positive (TP) or a False
Positive (FP) by comparing it with a certain threshold. Then, the recall r and precision p can
be computed from the ranked detection results according to the following (FN denotes False
Negatives):

r =
TP

TP+ FN
, p =

TP
TP+ FP

The precision can be regarded as a function of recall, i.e., p(r): As recall approaches zero,
the precision will rise, as there are fewer and fewer False Positives in the denominator. Con-
versely, a rising recall is usually associated with a drop in precision, as the reduced number of
False Negatives leads to new False Positives. The interpolated precision values across a range
of recall values is defined as AP:

AP=
1
R

∑

r∈R
p(r)

,
where the set R refers to a discrete set of values in practice. The mean of this value across

all object classes is called mAP. The AP metric is commonly used to evaluate object detection

3.8 Evaluation Metrics 27

performance, but it only considers the localization of objects and does not account for other
factors such as dimension and orientation. To address this limitation, nuScenes [Cae+20]
proposed a set of True Positive (TP) metrics that measure other prediction errors from the
true positives.

The five TP metrics are defined as positive scalars, including the Average Translation Error
(ATE), Average Scale Error (ASE), Average Orientation Error (AOE), Average Velocity Error
(AVE), and Average Attribute Error (AAE). The ATE measures the Euclidean distance between
the object center on the 2D ground plane in meters. The ASE is the 3D Intersection over Union
(IoU) error after aligning orientation and translation. The AOE is the smallest yaw angle
difference between the predictions and ground truths in radians. The AVE is the absolute
velocity error as the L2 norm of the velocity differences in 2D in meters per second. Finally,
the AAE is defined as 1 minus attribute classification accuracy (1− acc).

To obtain a single scalar score, nuScenes [Cae+20] computes the mean TP metric (mTP)
over all object categories C for each TP metric using the following equation:

mTPk =
1
C

∑

c∈C
TPk,c

where TPk,c denotes the k-th TP metric (e.g., k = 1 means the ATE) for category c. To inte-
grate all the mentioned metrics into a scalar score, nuScenes proposes the nuScenes Detection
Score (NDS) equation that combines the mAP and mTPk scores. The NDS is calculated using
the following equation:

NDS=
1
10

�

5 ∗AP+
5
∑

k=1

(1−min(1,mTPk))

�

where AP is the mean average precision defined previously. The term 1−min(1,mTPk) is
used to ensure that each TP metric contributes to the score positively, and the division by 10
is used to ensure that the score is in the range [0,1].

Chapter 4

System Design

4.1 Distributed Architecture

In this chapter, we are going to present technical details of our Mono3d solution. We will
start by laying out the high-level architecture, as displayed in Figure 4.1.

Instance Segmentation Node

Camera Node S110 South1/South2

Monocular Detection Node

Shared Memory ROS Topic ROS Topic

D
ow

nstream
 A

pplication

GPU Affinity

CPU Affinity

Figure 4.1: High-level sketch of the implemented Mono3d solution. The Camera Driver Node publishes camera
frames to Shared Memory. They are picked up from there by the 2D Instance Segmentation node, which requires
a machine with strong GPU resources. The detected instances, including their instance masks, are published for
each frame via ROS, and received by the 3D detector node, which does not require a GPU.

We have divided our Mono3d architecture into three independent process nodes. A cam-
era driver node, a 2D instance segmentation node, and a 3D detection node. The camera
driver node publishes full-resolution 1920p RGB image frames at 60Hz, requiring a through-
put of (roughly) 360MiB per second. This makes shared memory a good transport medium.
For our solution, we make use of the Eclipse eCAL shared memory library 1 to facilitate the
communication of camera frames. The frames are continuously received by the the 2D In-
stance Segmentation node, which is bottlenecked by the performance of the used GPU. From
there, the instance masks of detected objects are published to downstream processes via ROS.
In this setup, the second stage our two-stage monocular 3D detector is just another consumer
of the detected 2D instances —many other consumers may exist for different purposes. In

1https://eclipse-ecal.github.io/ecal/index.html

30 4 System Design

the second detector stage (the 2D→ 3D lifting stage), 2D instance detections are received via
ROS and annotated with hypotheses regarding their 3D pose. Again, via ROS, these 3D de-
tections are then broadcast to downstream applications, such as sensor fusion, visualization,
or an autonomous vehicle. This separation of the detection pipeline into multiple concurrent,
networked processes offers numerous advantages:

1. Increased robustness: A distributed multi-process solution enhances system robust-
ness by enabling fault tolerance and redundancy. When a process fails or encounters
an error, other processes in the system can continue to function, minimizing the impact
of the failure. This capability to recover and adapt to faults makes the overall system
more reliable, preventing single points of failure from causing widespread disruptions.

2. Separation of functional concerns: In a distributed system, each process can focus
on a specific functionality, promoting modularity and maintainability. This separation
of concerns simplifies the design and development of the system, making it easier to
understand, debug, and extend. It also facilitates reusability, as individual components
can be easily replaced or integrated into other systems without affecting the overall
system’s functionality.

3. Improved assignment of hardware: The networked solution allows for better re-
source allocation and hardware utilization. By spreading tasks across multiple processes
and physical machines, the system can allocate specific resources, such as GPUs, to each
process based on its requirements. This flexibility enables more efficient use of available
hardware, reducing resource contention and potential bottlenecks, while also providing
the opportunity to optimize cost and energy consumption.

4. Increased performance: The asynchronous process collaboration enables parallelism,
allowing multiple tasks to be executed concurrently. This parallel execution can signif-
icantly improve the overall performance and throughput of the system. By leveraging
the processing capabilities of multiple machines, distributed systems can handle larger
workloads and scale more effectively than a single-process system. Additionally, this ar-
chitecture allows for load balancing, which can help distribute work evenly and prevent
overloading individual components.

Natural tradeoffs of this architecture are increased complexity and a nonzero communica-
tion overhead, as data must be serialized and deserialized into discrete messages. However,
the advantages of the distributed approach tend to outweigh the negatives, especially where
scalability is a concern.

4.2 The 2D Object Detector

The 2D Object Detector receives camera input frames from a camera driver node via shared
memory. It uses an off-the-shelf Object Recognition and Instance Segmentation solution (cur-
rently YOLOv7/Blendmask [WBL22; Che+20]) to detect 2D bounding boxes and pixel masks
of Vehicles and Vulnerable Road Users (VRUs). As the performance of such an object detec-
tion solution inversely scales to the square of the input image resolution, the 2D object detec-
tor may also downsize the incoming frames from 1920 ∗1200 to 1280 ∗800 or even 640 ∗400
using OpenCV [Bra00]. The performance impact of this downscaling is further explored in
Section 5.2. As the instance masks of detected objects must be efficiently passed via ROS
messages, bit packing [BBB59] is used to efficiently serialize the pixel mask arrays for each

4.3 The 3D Object Detector 31

instance. Earlier work within Providentia [Blu22] went so far as to conclude that the through-
put demands of the instance masks is far too high for a distributed solution to be viable, but
this turned out to be overly pessimistic. Each detected instance consists of a pixel mask, a 2D
screen-space bounding box, and an assigned object category. As we are currently using the
YOLOv7 detector, which was trained on the MS COCO dataset, our 2D object detector is able
to distinguish between six different object classes: CAR, BUS, TRUCK, MOTORCYCLE, BICYCLE,
PEDESTRIAN. The VAN, EMERGENCY_VEHICLE, and OTHER classes from the A9 Dataset cannot
yet be recognized.

4.3 The 3D Object Detector

In the second stage of our Mono3d solution, 2D object detections are received as an array
D2D

t of detection triplets for each frame:

D2D
t = {(categoryn,

−−−→
bbox2D

n ,maskn)
n<N
n=0 }

The per-frame detection array is received in a single ROS topic update message from the
upstream 2D object recognition node. Now, the task of the receiving 3D object detector is
to generate a best-effort physical pose hypothesis for each 2D detection. The estimated 3D
pose must include the objects bottom-center −−→xyz position, its length, width, and height in
meters, and its yaw heading angle. The full process of estimating these pose parameters from
a 2D detection triplet is illustrated in Figure 4.2.

The high-level process which turns the instance mask and category inputs into a 3D pose
hypothesis for each 2D detection is summarized in the following: First, the instance mask
is filtered to extract its bottom contour (see Section 4.4). This yields a line of 2D pixel
coordinates {−→uv i}i<N

i=0 . These are projected back into 3D map space using a simple ray-cast,
whereas the z (altitude) coordinate is assumed to be 0. The resulting 3D point cloud {−→xyzi}i<N

i=0
is optionally filtered using the DBSCAN algorithm to remove outlier points. If the category of
the detected object is that of a Vulnerable Road User such as a pedestrian or bicycle, the bottom
contour will be converted to a 3D pose estimation with a special algorithm as explained
in Section 4.5. Otherwise, the HD Map Lookup Grids (see Section 4.7) are queried at the
positions of the 3D points. This query provides a set of {(lane_idk,θk)}k<K

k=0 for each point
where the bottom contour touches a particular lane’s surface. These tuples are averaged
and aggregated into a histogram per unique lane_id (see Section 4.8). This histogram
provides θk values with associated confidences Scoremap(θk) derived from the number of
bottom contour points which touch the associated lane.

Thereafter, for each yaw option θk, the L-Shape-Fitting (LSF) algorithm is used to calcu-
late the physical length and width of the given bottom contour assuming the given θk. LSF
also returns an error score Scorelsf(θk) indicating p(θk|{

−→xyz0≤i<N}) (see Section 4.6). The
proposed length and width values are also sanity-checked against limits per the detected ob-
ject category. Using these assumed spatial extents, the spatial position and height can be
regressed from the 2D instance bounding box (see Section 4.10).

Finally, the 2D instance bounding box is also matched against historical detections
via SORT object tracking to find previous detections of the same vehicle. According to
the historical vehicle trajectory, a θk proposal also receives a historical plausibility/fitness
score Scoretrack(θk) (see Section 4.9). Multiplied together, the three scores Scoremap(θk),
Scorelsf(θk) and Scoremap(θk) yield the final Score(θk). Now, for the object in question, we
hypothesize that the best θk yaw choice (and associated pose parameters) is the one which
finally receives the highest score. This is calculated for every detected 2D object to perform
the 2D→ 3D lifting operation.

32 4 System Design

Frame at Time t

Detected Instance n

Map- and Tracking-Guided L-Shape Fitting (LSF)

Bottom Contour Extraction and 3D Projection

Yaw Proposal ?k

argmax(Score(?k))

Outlier Filtering

Remember detected object

3D Bottom Contour

YOLOv7 Instance SegmentationCamera Input Image HD Map Heading Lookup Grids

2D Bounding Box

Pixel Mask

Category

Height and Position Regression

Map Grid Lookup

Yaw Option Histogram

Detected 3D
Object n

Historical Plausibility Scoring

?k

*

Scoremap(?k)

L-Shape-Fitting and BEV Dimension Filter

Match to tracked objects

Score(?k)

Width Length

ScoreLSF(?k)

Height

Scoretracking(?k)

Position

Tracked Objects
...

...

VRU
Detection

Figure 4.2: Low-level illustration of our Mono3d pipeline. To determine a 3D pose for a non-VRU 2D object
instance, its associated pixel mask and category are passed through six processing steps: (1) Bottom Contour
Projection, (2) Outlier Filtering, (3) Map Grid Yaw Option Lookup, (4) L-Shape-Fitting, (5) Height and Position
Regression, (6) Historical Plausibility Scoring. Legend: Blue boxes mark normal I/O data, red boxes mark I/O
variables which are primary components of a final pose hypothesis. Yellow boxes mark processes. Green boxes
with dashed arrows mark auxiliary data flow which is not restricted to the scope of the current frame.

The following sections of this chapter serve to explain each step in detail.

4.4 Bottom Contour Extraction and Filtering

In the first processing step for each 2D detection, the detection’s pixel mask is converted to
a 3D bottom contour. We can express the image mask for detection n as a function Mask :
N2→ B, as it maps uv pixel coordinates to a boolean value which indicates whether the object
occupies the given pixel. The pixel coordinates are modeled as −→uv vectors with u indicating
the pixel column, v indicating the pixel row, and

−→
00 as the top-left image corner. In this

model, the 2D bottom contour points Bn
2D are extracted as follows:

Bn
2D = {

−→uv|Maskn(
−→uv)∧¬Maskn(

�

u
v + 1

�

)}

In practice, the operation is realized using a numpy [Har+20] argmax call. Successively,
the 2D bottom contour points are projected into 3D map space via a raycast operation. We
assume that the ground plane is located at z = 0, P is the camera’s intrinsic (projection) ma-
trix, R is the camera’s spatial rotation and T =

�

Tx Ty Tz
�

is the camera’s spatial translation
relative to the ground plane. Therefore, the bottom contour 3D ground points Bn

3D,ground are
calculated as follows:

4.5 Detection of Vulnerable Road Users 33

Bn
3D,init =
⋃

−→uv∈Bn
2D

{−→xyz|−→xyz= RT ∗ P−1 ∗
−−→
uv1}

Bn
3D,ground =
⋃

−→xyz∈Bn
3D,init

{−−−−−−→xyzground|
−−−−−−→xyzground = T +−→xyz ∗ −Tz/z}

This point set is then filtered using the DBSCAN [Sch+17] algorithm to get rid of outlier
points which do not belong to the true 3D bottom outline.

4.5 Detection of Vulnerable Road Users

Vulnerable Road Users (VRUs), such as pedestrians or bicyclists, receive special treatment in
our Mono3d pipeline. This is, because several assumptions which are made for optimized
road vehicle detection are not valid for VRUs:

1. Legal Heading Assumption: For road vehicles, the monocular detector makes use of
the HD map to derive yaw options from legal traffic flow directions. This is not possible
for bicyclists or pedestrians, as these often move along unmapped territory beyond the
road, and perpendicular to normal traffic directions on mapped vehicle lanes.

2. Box Shape Assumption: Cars, trucks and other motorized road users usually exhibit
an instance mask bottom contour shape which indicates the occupied ground area of
the object, and therefore allows for L-Shape-Fitting as an effective algorithm to derive
the object’s length and width. This is usually not the case for pedestrians and bicycles,
which might have major errors in their back-projected bottom contours (see Figure 4.3).

For these reasons, we have implemented a simplified detection flow for VRUs: We do not
attempt to detect their orientation, instead they are always assigned θ = 0. Furthermore,
their dimensions are set to fixed values. The only variables which remain to be estimated
are the VRU’s BEV coordinates. This is done by averaging the positions of 10 percent of the
road user’s bottom contour Bn

3D,ground points, which are closest to the camera from the BEV
perspective.

The reasoning for this strategy is illustrated in Figure 4.3: The camera C detects pedes-
trian A and cyclist B. The projection of their instance mask bottom contour (highlighted in
red) to the ground is highlighted in blue. Points on the 3D bottom contour which are close
to the camera BEV position and therefore considered to estimate the position of A and B are
respectively shown.

4.6 Bottom Contour L-Shape Fitting

The process of estimating θ , width and length for motorized road vehicles is realized using
the L-Shape-Fitting (LSF) algorithm [Zha+17] with an augmented score calculation function.
From the standard LSF implementation, we use the Variance criterion, as it was demonstrated
to perform the best in the original paper. The value of the LSF variance score VarianceLSF(θk)
is in the range of [−∞, 0]. We normalize this value to the range of [0,1] as Scorelsf(θk) =
1/(1− VarianceLSF(θk)). Now, we combine it using multiplication with the map confidence

34 4 System Design

C

B

A

a1

a2

b1

b2

Figure 4.3: Illustration of our proposed solution for VRU detection. Camera C observes pedestrian A and cylist
B. Their 2D bottom contour outline is highlighted in red, the projection of the outline to the ground is highlighted in
dashed blue lines. Only the highlighted points on the respective bottom contour projections which remain close to
the camera may be considered to estimate the position of A/B.

score (see Section 4.8) and the historical plausibility score (see Section 4.9), to arrive at the
final Score(θk). Unlike in the original LSF algorithm, we constrain the choice of θk to values
which are derived from the HD map.

4.7 HD Map Lookup Grids

In this work, we propose to select the θ heading value for each 3D vehicle detection from
a traffic flow direction that is derived from the HD map. However, so far it has been left
up to the reader to imagine how the HD map is exactly queried to produce heading options.
The following two sections explain this step in more detail. First and foremost, we pro-
pose a spatial grid lookup structure for heading options at fixed planar increments, covering
the field-of-view (FOV) of each sensor. This approach allows us to pre-compute the heading
options for a discrete subset of representative map locations, and the subsequent real-time
lookup becomes computationally trivial.

4.7.1 Lane Tesselation

The precise mechanic of rendering the previously outlined heading lookup buffers begins by
converting the OpenDRIVE [DSG10] map lane surfaces into triangles. This process is called
tesselation. An OpenDRIVE Road is defined as a sequence of Lane Sections along a reference
(center-)line. A Lane Section is a bundle of adjacent lanes. In the OpenDRIVE format, a Lane is
enclosed between an inner and an outer boundary line. A Lane Section is therefore a sequence

4.7 HD Map Lookup Grids 35

of M +1 lane boundary lines which enclose M parallel lanes. We make use of the OpenDRIVE
Converter Tool 2 to sample the OpenDRIVE lane boundaries from Bezier Curves into polylines.
The tool discretizes the lane boundaries as an array of −→xyz coordinates at an interval of one
meter.

r₀

b₁

v₁

v₂

v₃

v₄

v₆

v₅

v₇

v₈

v₉

v₁₀b₂

Figure 4.4: Illustration of our lane tesselation algorithm for a single lane section. The OpenDRIVE lane boundary
lines are sampled at constant intervals to convert them to polylines. Orientations are calculated for each derived
poly-line vertex. For each lane, the enclosing polylines are then “zipped” together with a triangle-strip.

As illustrated in Figure 4.4, the result of the lane section point sampling is a matrix
V ∈ R(M+1)×N×4, with N being the number of points sampled along each boundary line.
Each vertex v(m,n) ∈ V has four scalar components: Three spatial dimensions for its loca-
tion, and one extra dimension θ to indicate the heading at its location. In Figure 4.4, the
heading at the vertex position is indicated with a red arrow. It is calculated as θ (v(m,n)) =
arctan2(v(m,n+1)− v(m,n)). The last vertex assumes the theta value of the second-to-last. Each
lane lm ∈ {l1, . . . , lM} is then tessellated as a triangle strip via a sliding window of three
vertices over the sequence {v(m,1), v(m+1,1), . . . , v(m,N), v(m+1,N)} ⊆ V . This results in 2(N − 1)
triangles covering the surface of each lane.

4.7.2 Lane Rasterization

As lanes are converted into batches of triangles, it is possible to use fast rasterization algo-
rithms to “paint” them into grid buffers. Rasterization is the process of converting a vector
representation of a shape into a pixel or voxel representation. Both representations have
distinct advantages. A vector representation is usually the most efficient for storage. But it
is comparatively slow to determine whether it contains a specific point, and how that point
is situated in relation to the vertices of the geometry. This is where a pixel or grid-based
representation has a lot of potential. The grid can store which locations are covered by the
geometry and can also serve as a cache for vertex attributes of the geometry at each grid cell
location. In case of the lane surfaces, each grid cell stores the heading value of the lane at the
grid cell location. To account for overlapping lanes, we instantiate one grid per OpenDRIVE
road. Only lane sections which belong to the same road are rendered into the same grid.

The spatial coverage of each heading lookup grid for a camera is determined by iterating
through the available lane sections, and selecting those which are both in view of the camera
and not further than 200 meters away. Each cell in each grid then covers a 10∗10 cm square.
This yields a grid resolution of 898 ∗ 1140 cells for the South-1 camera, and 1436 ∗ 1224

2https://github.com/Brucknem-TUMProjects/OpenDRIVE

36 4 System Design

C

G

L

w1 w2

w3

Figure 4.5: Illustration of lane heading rasterization using barycentric coordinates. Lane L is rasterized into grid
G, and the barycentric coordinates w1, w2 and w3 are shown for one specific gric-cell center point C .

cells for the South-2 camera. For the highway, we extend the grid range to 1000 meters and
increase the grid cell size to 50 ∗ 50 cm.

In detail, the process of rasterization means to loop over every “pixel” (grid cell) and
determine if it lies inside one of the triangles of the tessellated lane sections for the road of
the tested grid. If it does, we use the barycentric coordinates of the grid cell with respect to
the triangle to interpolate the corresponding heading value for the point inside the triangle.
This process is also illustrated in Figure 4.5.

The algorithm involves the following steps:

1. Given a triangle with vertices v1, v2, and v3, and a grid with width w and height h, loop
over every cell which is within the bounding box of the triangle.

2. For each candidate cell C = (x , y), compute the barycentric coordinates (w1, w2, w3) of
the cell with respect to the triangle using the following formulas:

v1v2 = v2 − v1

v1v3 = v3 − v1

v1c = C − v1

w1 =
v1v3 × v1c
v1v3 × v1v2

w2 =
v1c × v1v2

v1v3 × v1v2

w3 = 1−w1 −w2

Note that the order of the vertices in the cross product determines the winding order
of the triangle. If the winding order of the triangle is reversed, the signs of the cross
products will also be reversed.

3. If all three barycentric coordinates are non-negative, the pixel lies inside the triangle.
We can then use the barycentric coordinates to interpolate the corresponding heading
value θC of the grid cell C inside the triangle using the following formula:

θC = w1θ (v1) +w2θ v2 +w3θ (v3)

4.8 HD-Map-Augmented L-Shape Fitting 37

where θ (v) is the heading for a boundary vertex as described in Section 4.7.1.

4. Repeat steps 1–3 for every grid cell of every road grid.

In practice, we have implemented this algorithm in numpy, which allows the parallel
execution of all grid cell tests for one triangle. A triangle covers 99.85 cells on average. This
makes the process of rendering the heading lookup grids quite fast, with an average wall-time
of 1.48s to render 6812 triangles on a Ryzen 5600 processor. This process can be comfortably
executed during the startup of the 3D detector process. At an average of 25 OpenDRIVE
roads per camera view on the S110 intersection, and five bytes stored per cell, the final grid-
set for one camera occupies 165.78MiB of RAM on average. The resulting heading fields are
visualized in Figure 4.6.

Figure 4.6: Derived heading values rendered on top of the S110-S2 camera perspective (left) and the S110-S1
camera perspective (right).

4.8 HD-Map-Augmented L-Shape Fitting

The previously outlined heading lookup grids, which are rendered from the HD map, can
improve the basic LSF algorithm in two ways:

1. The grid may be used to calculate possible heading values which are to be evaluated by
LSF, rather than using the basic approach of iterating over [0,π] at fixed increments.

2. The grid can also yield a confidence value Scoremap(θk) for each heading option θk,
given how many bottom contour points support the respective option.

In general, the heading lookup grids G1, . . . , G|R| for each road r ∈ R are queried using the

bottom contour Bn
3D of vehicle detection n, which is a series of 3D points

−−→
xyzn

1, . . . ,
−−→
xyzn

k. We
define the grid lookup operator Gr(

−→x y) as a function R2 → B × R which delivers a boolean
flag and a heading value given an arbitrary planar bottom contour position. The boolean
flag indicates whether the road r covers the position −→x y at all. The two return values of the
operator are referenced as Gr(

−→x y)B and Gr(
−→x y)θ , respectively.

Now, the confidence of the map that a particular road grid Gr provides the correct heading

for detection n may be expressed through the absolute count of bottom contour points
−→
xyn

i ∈
Bn

3D for which Gr(
−→x yn

i)B is true. We call this count the lookup histogram value h(Gr , Bn
3D) for

the road grid Gr and the bottom contour Bn
3D. The heading option θr provided by Gr will

then be the average({Gr(
−→x yn

i)θ |Gr(
−→x yn

i)B}
i≤k
i=1). Finally, the lookup histogram value must be

38 4 System Design

converted to a range of [0, 1] to become a score which can be used as a factor. To this end,
we normalize h(Gr , Bn

3D) as Scoremap(θr , Bn
3D):

Scoremap(θr , Bn
3D) =

h(Gr , Bn
3D)

maxs∈R h(Gs, Bn
3D)

This process is illustrated in Figure 4.7. There are three grids G1, G2 G3 for three over-
lapping roads. The bottom contour of vehicle V as observed by camera C is shown with 11
points. Now, the lookup histogram values for each grid are shown in the bar-chart on the
right side of the figure. For grid G1, all 11 points match to a nonempty cell. For grid G2, six
points match. For grid G3, only five points match. These absolute histogram values are then
converted to relative confidence score values, by dividing each over the maximum histogram
value, which is 11.

C

G₁
G₂
G₃

V

h(G₁,V) h(G₃,V)h(G₂,V)

ScoreMap(G₁,V) = 11/11 = 1.0

ScoreMap(G₂,V) = 6/11 = 0.545

ScoreMap(G₃,V) = 5/11 = 0.454

11 6 5

Figure 4.7: Illustration of a map heading histogram lookup for the bottom contour of vehicle V . The map lookup
grid-set provides grids for three roads G1, G2 and G3. The histogram values h(G, V) per road, as well as the
respective normalized scores which are calculated from the histogram, are shown on the right.

4.9 Tracking-Augmented L-Shape Fitting

In the example from Figure 4.7, the vehicle is conveniently positioned such that the correct
heading option clearly wins the highest confidence score. However, it is easily possible to
imagine V in a position slightly further upwards, where the map confidence scores would not
be so unambiguous. For such cases, the raw LSF variance criterion score may help. However,
we hypothesize that the vehicle’s positional history, as described all the way back in the Intro-
duction Section 1.6.1 may provide an additional historical plausibility score Scoretrack(θk, V)
for vehicle V and heading candidate θk.

This is calculated as follows: Using a screen-space SORT tracker [Bew+16], we match
a detected object’s bounding box to detections from previous frames. For a successfully
matched detection, historical 3D position values L = {lt−1, . . . , lt−T } are retrieved. Given
the historical positions L and a position hypothesis lt(θt), the historical plausibility score
Scoretrack(θk, V) for a yaw hypothesis θk is calculated as in the following equation:

Scoretrack(θk, V) =
δt≤T
∏

δt=1

π/2−∆∠(|θt − atan2(lt(θt)− lt−δt
)| mod π)

4.10 Joint Height and Position Estimation 39

The Delta-Angle function ∆∠ : [0,π) → [0,π/2) converts the passed raw angular differ-
ence, which is already less than π, into a value less than π/2 by returning angular deltas
δ>π/2 larger than π/2 as π−δ>π/2. This ensures that a yaw hypothesis, which is parallel, yet
opposed to a historical orientation, is not erroneously punished. In practice, we have imple-
mented a threshold of six historical positions that are evaluated to determine the plausibility
of a yaw hypothesis.

4.10 Joint Height and Position Estimation

As an estimate for a detected vehicle’s width and length is made using our augmented L-
Shape-Fitting algorithm, two critical values remain to be established for a fully defined 3D
bounding box: The vehicle position and the vehicle height. Also, our tests showed that the
LSF-based BEV dimension hypothesis must often be corrected due to errors in the bottom
contour (see Sections 5.7 and 5.7). Because of this, we need to clamp the BEV width/length
dimensions to category-based minimum and maximum values. In this case, the vehicle’s
bounding box needs to grow or shrink in some direction, and the position hypothesis of the
LSF algorithm becomes uncertain.

C

R

Box(R,θ,w,l,hgt)

Box(R,θ,w,l,hlarge)

Box(R,θ,w,l,hsmall)

V

hlarge
1
2

hgt
hsmall

AABB(C,Box(R,θ,w,l,hgt))
= AABB(InstanceMask)

AABB(C,Box(R,θ,w,l,hlarge))

AABB(C,Box(R,θ,w,l,hsmall))

1
2 1

2

Figure 4.8: Illustration of a joint 3D height and location for vehicle V. Initially, camera C observes only the screen-
space bounding box AABB(InstanceMaskV). We now search for the vehicle height h based on a value along
the ray R, which is cast from C through the 2D AABB center. Only for the correct hgt will the 2D AABB of the
predicted 3D box AABB(C ,Box(R, w, l,θ , hgt)) be equal to AABB(InstanceMaskV).

There is however a strong criterion towards the position of the 3D bounding box, which
we can use to estimate it: It is desirable to position a vehicle’s 3D bounding box such that it
covers the 2D instance mask of the same vehicle when projected to screen-space. This also
means, that the screen-space-projected center of the 3D bounding box should coincide with
the center of the 2D bounding box. So we know, that the center of the 3D bounding box
must be somewhere along a 3D ray which is cast from the camera through the center of the
instance mask. Because a camera mounted from the infrastructure perspective also generally
looks down, the position along the ray also dictates the height (more specifically half of the
height) of the vehicle. Now, as the bounding box height changes, so does the height of its

40 4 System Design

2D screen-space projection. Therefore, we can simultaneously optimize both the height of
the 3D box and its position, with the goal to match the screen-space bounding box of the
estimated 3D bounding box to the instance mask bounding box.

Algorithm 1 RegressHeightAndLocation

Require: width,length,theta,bbox_2d,cam,min_height,mean_height,max_height
Ensure: height,location

1: x0, y0, x1, y1← bbox_2d
2: detection_img_height← y1− y0
3: height← mean_height ▷ Initially estimate height by mean for category
4: jump_size← max_height− mean_height
5: mask_center←

�

x0+ (x1− x0)//2 y0+ (y1− y0)//2
�

6: location←
�

0 0 0
�

7: for i← 0 to 9 do ▷ Binary search for correct height/position, 10 iterations max.
8: location← cam.project_to_ground(mask_center,height× 0.5)
9: location[2]← 0

10: box← get_box(theta, width, length, location)
11: box← box⊕ (box+

�

0 0 height
�

)
12: all_corners_projected← cam.project_to_image(box⊤)
13: min_img_y←min(all_corners_projected[1])
14: max_img_y←max(all_corners_projected[1])
15: estimated_img_height← max_img_y− min_img_y
16: img_height_delta← detection_img_height− estimated_img_height
17: if |img_height_delta|< 1.0 then ▷ Less than one px difference. We are done.
18: break
19: end if
20: if i> 0 and sign(img_height_delta) ̸= sign(jump_size) then
21: jump_size← jump_size× 0.5 ▷ Halve the step size on direction change.
22: end if
23: jump_size← sign(img_height_delta)× |jump_size|
24: prev_height← height
25: height← height+ jump_size
26: height←max(min(height,max_height),min_height) ▷ Respect limits.
27: if height= prev_height then ▷We’ve hit a limit, no need to continue iterating.
28: break
29: end if
30: end for
31: return height,location

In practice, we have implemented this joint height and position regression using binary
search over the 3D height value, as described in Algorithm 1. As the optimization goal, it is
sufficient to match the image space box height. We limit the number of optimization steps to
10, but observe that the algorithm converges on average after five steps. We also add a sanity
check to abort iteration, if the optimization cannot progress because the estimated height is
growing below or beyond sanity limits. This can occur when the pixel mask for the detected
instance is highly erroneous or obscured. The approach is also illustrated in Figure 4.8.
Initially, camera C observes only the screen-space bounding box AABB(InstanceMaskV). We
now search for the vehicle height h based on a value along the ray R, which is cast from C
through the 2D AABB center. Only for the correct hgt will the 2D AABB of the predicted 3D
box AABB(C ,Box(R, w, l,θ , hgt)) be equal to AABB(InstanceMaskV).

4.11 Late HD Map Lookup 41

4.11 Late HD Map Lookup

In the rest of this chapter, two optional design elements are explained which do not neces-
sarily improve our system, but answer some questions in our evaluation study. Feel free to
skip ahead to the next chapter if you are only interested in the best version of the system.

First, as an alternative to the rather complex “early” HD map lookup for all bottom contour
points (with a derived confidence histogram which feeds into L-Shape-Fitting), we initially
also implemented much a simpler “late lookup” approach.

Here, we only query the HD map for heading options at the current vehicle position.
Then we pick the heading option which is most in line with the vehicle’s historic positions, or
merely the option closest to the LSF-based proposal, if tracking is turned off.

The drawbacks of this approach are manifold: L-Shape-Fitting has already settled on
a heading value prior to the map lookup, so the width and length will not be corrected.
Furthermore, the vehicle position at this point is already very disconnected from the ground-
truth sensor input. So, a lot of positional information is discarded before the HD map lookup
is made. Finally, the joint position-height regression algorithm relies on established values
for width, length and θ , so correcting θ afterwards is logically not optimal.

4.12 3D SORT Tracking

Another “questionable idea” (in hindsight) which we tested was to use SORT in 3D bird’s-eye-
view (BEV). In conjunction with 2D screen-space tracking, which is required to calculate the
historical plausibility score for L-Shape-Fitting, we have also applied the SORT algorithm to
track detections in 3D BEV space. This is supposed to stabilize 3D position estimates through
the Kalman Filters which are used by SORT. Because SORT does not support a heading value
in the bounding box state, we feed BEV detections as squares of size ((l + w)/2)2 into the
algorithm. This is immediately obvious as a drawback of using SORT for 3D tracking, and
we do not expect this application of SORT to improve our results. Instead, a more capable
Kalman Filter detection is needed which also takes vehicle heading into account.

Chapter 5

Evaluation

5.1 Qualitative Results

To acquire a first impression of the strengths and weaknesses of our fully implemented HD
map-assisted monocular 3D object detector, some sample detection frames are presented here
which showcase particular situations.

Figure 5.1: Hand-picked frames to showcase the qualitative performance of our implemented monocular 3D object
detector during daytime.

First off, Figure 5.1 shows representative frames with predicted vehicle bounding boxes,
where the implemented system performs quite well. The frames in the left column are from
the South-2 camera, which has a greater detection range, as it is angled more towards the
horizon. The two frames for this camera show that the implemented system can correctly
detect the 3D shapes of many overlapping vehicles, which are oriented opposed or perpen-
dicular to each other. The top-left frame showcases the good performance of the screen-space
SORT tracker, which tracks CAR 896 throughout its whole left turn. The bottom-left image
shows the usefulness of the DBSCAN-based bottom contour filter in the case of BUS 375. The

44 5 Evaluation

detection of this bus is split into two parts by the pole of the overhead gantry bridge. This
introduces a lot of noise into this detection’s bottom contour, as highlighted in yellow. How-
ever, the detected 3D bounding box is unaffected by this noise. This frame also showcases
the performance of our Vulnerable Road User (VRU) detection. Both present pedestrians and
bicycles in the image are correctly localized.

The frames in the right column are from the South-1 camera, which has a shorter detec-
tion range, as it is angled more towards the ground. Both images in the right column again
show generally good vehicle tracking and orientation estimation capabilities.

Figure 5.2: Selected frames to showcase problems of our implemented monocular 3D object detector.

Figure 5.2 highlights particular weaknesses of the implemented monocular detector. The
image on the left highlights three problems. First, the length estimation of TRUCK 42 is bad,
most likely due to over-eager bottom-contour filtering1. Second, only one of the two pedes-
trians is detected —PEDESTRIAN 4 is standing next to another one. Third, the system detects
the rider of a bicycle as a separate entity, as in the case of BICYCLE 9 and PEDESTRIAN 81.
This points to a need for more fine-tuned non-maximum suppression (NMS) of 3D detec-
tions. The image on the right shows a single problem: Our detector (more specifically the
used Yolov7 instance segmentation model) frequently has problems with detecting the in-
stance masks of large objects near the camera. In this case, both the big white truck in front
of the camera, and the bus, which is a bit further away, are not detected.

Figure 5.3: A selection of frames to showcase the qualitative performance of our implemented monocular 3D
object detector at night.

Finally, Figure 5.3 displays how the system performs at night. Naturally, the detection
performance of a system which is based on an RGB camera which operates in the human
visible light spectrum will be worse at night, due to the reduced visibility. However, the

1This could be fixed by tweaking the ε (maximum point distance) and min_samples (minimum cluster size)
hyper-parameters for the DBSCAN algorithm. We have set ε= 0.5m and min_samples= 5

5.2 Runtime Performance 45

used Yolov7 instance segmentation model still works to some degree at night. The predicted
instance masks are generally noisier, and there are more false positives (such as PEDESTRIAN
13) and false negatives (such as the truck on the top-left in the right image).

5.2 Runtime Performance

The runtime performance of the monocular detection architecture is limited by the compu-
tational capabilities of the GPU. In our evaluation, we used an RTX-3090 GPU to assess the
frame rates achieved by various models. Table 5.1 presents the frame-rates of the different
models:

Table 5.1: Model performance on RTX-3090 GPU

Model Frame Rate (FPS)
Yolact Edge (5502 px) 60
Yolov7 (6402 px) 52
Yolov7 (12802 px) 22
Yolov7 (19202 px) 12

As shown in Table 5.1, both Yolact Edge and Yolov7-640 models achieve frame-rates be-
tween 55 and 60 FPS on the RTX-3090 GPU, indicating that they are suitable for real-time
applications. However, as the input resolution increases, the runtime performance of the
models decreases. For instance, Yolov7-1280 achieves 22 FPS, and Yolov7-1920 reaches only
12 FPS. This analysis highlights the importance of considering the GPU constraints when de-
signing and implementing two-stage monocular 3D object detection models, particularly for
real-time applications.

5.3 Quantitative Evaluation Strategy

For an objective understanding of the performance of our Mono3D solution, we performed
a thorough ablative quantitative evaluation. For this purpose, we use the Providentia Inter-
section Scenario dataset, as previously mentioned in the Introduction (see Chapter 1.3). As
stated, the dataset provides 3D lidar labels for two camera perspectives onto the urban S110
road intersections. For each camera, four scenes of varying length (between 300 and 1200
frames) are available. The combination of two camera perspectives and four scenes yields
eight frame sequences on which we evaluate our detector. For each frame sequence, the de-
tector is run in different configurations to evaluate the effect of various design choices on the
final performance. The detector is configured along four major components:

1. Instance Segmentation: In the first detector stage, we can employ the Yolact [Liu+21]
instance segmentation model (running on 550x550 input frames), or the YoloV7 [WBL22]
detector in 640x640, 1280x180, or 1920x1920 px resolution mode. We respectively
designate these modes as I550

YOL, I640
Yv7 , I1280

Yv7 , and I1920
Yv7 .

2. Tracking: This component concerns the usage of SORT tracking [Bew+16] in our de-
tector. We can apply tracking in 2D screen-space to assist the LSF algorithm, or in 3D
space to stabilize vehicle position estimates, or both in 2D and 3D, or not at all. We
respectively designate these modes as T2D, T3D, T2D

3D , and T0.

46 5 Evaluation

3. HD Map Usage: In this aspect, we consider whether to use heading information from
the HD map as an early input to the LSF algorithm, as a late single-position lookup
correction, or not at all. These modes are designated as MLSF, M1 and M0.

4. Filtering: Finally, we can switch two crucial filters on or off: The DBSCAN [Sch+17]
bottom contour point filter, and the output vehicle size filter. These modes will be sym-
bolized as FCont, FSize, FSize

Cont, or F0 (if no filter is used).

In summary, each detector configuration is some combination of I , T , M and F . For ex-
ample,
�

I640
Yv7 T2D

3D MLSFFSize
�

would be the detector running with 640x640 px Yolov7 instance
segmentation, both 2D and 3D tracking, L-Shape-Fitting Map Input, and vehicle size filtering
(but no bottom-contour filtering). The combinatorial expansion yields 192 possible detector
configurations, which are executed on each of the 8 LiDAR-labeled camera frame sequences.
This results in 1536 prediction sequences.

Furthermore, we evaluate the impact which emerges from the sensor delay between the
camera and the LiDAR sensor frames. This delay is roughly 18.54 ms on average. This
synchronization error is important, because we evaluate the 3D camera detections on labeled
LiDAR sensor measurements. These LiDAR labels will contain an inherent offset towards
the camera detections due to the synchronization error. We check whether the error can
be reduced by estimating the spatial velocity of the LiDAR detections using SORT, and then
correcting the label position based on the velocity and the known synchronization error time
delta.

We evaluate both the time-shifted and the original LiDAR labels with each prediction
sequence. We call these two label modes L0 (original) and L↑ (shifted). The label mode is
appended to the detector configuration combination. For each of the 3072 sequence-detector-
label combinations and each road user class, we calculate the following metrics:

1. The average orientation error (AOE) (= TP0).

2. The average translation error (ATE) (= TP1.

3. The average length error (ALE) (= TP2).

4. The average width error (AWE) (= TP3).

5. The average height error (AHE) (= TP4).

6. The average precision at 10% minimum IoU3D (AP@10).

7. The average 3D intersection-over-union (IoU3D)

In the following, the values for these metrics are presented in relation to particular
detector- and labeling-configurations. To judge the overall performance of a configuration,
we aggregate these metrics into a single “Providentia Detection Score” (PDS), similar to the
nuScenes Detection Score (see Section 3.8):

PDS=
1

10

�

5 ∗mAP+
5
∑

k=1

(1−min(1,mTPk))

�

The score is calculated for each configuration, by averaging the per-class metrics of
the configuration across all perspectives of all dataset scenes. A chart of all calculated
Scores is shown in Figure 5.4. We consider the following object classes: CAR, BUS, TRUCK,
MOTORCYCLE, BICYCLE, PEDESTRIAN. Additionally, the A9 dataset contains annotations for
VAN, EMERGENCY_VEHICLE, TRAILER and OTHER. However, these categories are not supported

5.4 Overall Quantitative Results 47

by our instance segmentation models, which will usually label these special vehicles as trucks
or cars. To gain a better understanding of our model’s raw shape-estimation performance, we
also evaluate using the VEHICLE super-class. With the super-class, a VAN labeled as a TRUCK
will still be considered as a True Positive detection. Note that we skip the AOE metric for the
pedestrians and bicycles, as we do not attempt to estimate their heading.

5.4 Overall Quantitative Results

10

20

30

40

Model:
�

I550
YOL T2D

3D M1 F0 L↑
�

: 11.50

Model:
�

I550
YOL T0 M0 F0 L0

�

: 15.31 Model:
�

I1920
Yv7 T2D MLSF FSize

Cont L↑
�

: 40.29

Sc
or

e

Figure 5.4: Overview for the Providentia Detection Score (PDS) values of all possible 384 detector configuration-
label combinations, with arrows pointing out the best, baseline, and worst combination.

To establish the veracity of our score metric, we plotted the score values for all possi-
ble 384 detector configuration-label combinations into a single chart. This plot is shown in
Figure 5.4. In this plot, the Scores of the worst-performing- (

�

I550
YOLT2D

3D M1F0 L↑
�

), baseline-
(
�

I550
YOLT0M0F0 L0

�

), and best-performing (
�

I1920
Yv7 T2DMLSFFSize

Cont L↑
�

) model-configurations are
also highlighted. The baseline model works with pure L-Shape-Fitting that does not use any
HD map, tracking, or bottom-contour/size filtering augmentations. Table 5.2 shows the per-
formance of this model in greater detail. Of particular interest is the large AOE of 52.19◦.
This means, that the predicted orientation of bounding boxes in this model is completely
disconnected from the ground truth. Picking a random orientation would yield the same
result.

Model:
�

I550
YOLT0M0F0 L0

�

PDS: 15.31%

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Car 57.39◦ 1.10 m 0.49 m 1.03 m 0.69 m 21.80% 47.60% 40.57% 46.85%
Truck 34.61◦ 2.17 m 0.77 m 4.15 m 1.31 m 20.31% 3.55% 1.67% 2.86%
Motorcycle 71.98◦ 0.63 m 0.76 m 1.31 m 0.13 m 14.72% 31.14% 22.98% 30.68%
Bus 44.76◦ 1.85 m 1.47 m 3.07 m 1.55 m 22.47% 17.47% 10.51% 16.19%
Pedestrian — 0.38 m 0.25 m 0.18 m 0.07 m 21.62% 0.88% 0.10% 0.65%
Bicycle — 0.34 m 0.65 m 0.46 m 0.10 m 20.46% 0.92% 0.17% 0.67%
Mean 52.19◦ 1.08 m 0.73 m 1.70 m 0.64 m 20.23% 16.93% 12.67% 16.31%

Table 5.2: Baseline model results.

This stands in contrast to the performance metrics for the best-performing model, which
are shown in Table 5.3. Additionally, Table 5.4 shows the results for the best vehicle-only

48 5 Evaluation

model. In the following sections, we will discuss in detail how specific model configurations
improve (or worsen) specific metrics for different road user classes.

Model:
�

I1920
Yv7 T2DMLSFFSize

Cont L↑
�

PDS: 40.29% (+24.98%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Car 3.13◦ 0.85 m 0.25 m 0.89 m 0.35 m 39.19% 72.76% 73.19% 72.26%
Truck 4.16◦ 1.69 m 0.62 m 2.52 m 0.58 m 17.67% 23.47% 28.83% 22.84%
Motorcycle 3.85◦ 0.78 m 0.31 m 0.63 m 0.14 m 26.91% 34.22% 30.43% 33.88%
Bus 10.35◦ 1.15 m 0.55 m 2.93 m 1.08 m 33.55% 51.71% 35.50% 50.74%
Pedestrian — 0.38 m 0.28 m 0.20 m 0.07 m 32.26% 20.84% 13.55% 20.45%
Bicycle — 0.56 m 1.22 m 0.69 m 0.08 m 21.99% 33.75% 35.33% 33.49%
Mean 5.37◦ 0.90 m 0.54 m 1.31 m 0.38 m 28.59% 39.46% 36.14% 38.94%
∆ Baseline −46.81◦ −0.18 m −0.19 m −0.39 m −0.26 m +8.36% +22.53% +23.47% +22.63%

Table 5.3: Best model results, with improvements towards the baseline highlighted in green for each metric.

Model:
�

I1920
Yv7 T2DMLSFFSize

Cont L↑
�

PDS: 50.07% (+26.40%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.47◦ 0.96 m 0.33 m 1.30 m 0.44 m 36.79% 56.72% 48.18% 55.90%
∆ Baseline −52.79◦ −0.25 m −0.35 m −0.27 m −0.36 m +15.41% +19.22% +21.32% +19.36%

Table 5.4: Best model results focusing on the Vehicle super-category, with improvements towards the vehicle-
only baseline highlighted in green for each metric.

5.5 Influence of Late HD Map Lookup

In this section, we present the evaluation of the “Late HD Map Lookup” technique, a simpler
alternative to the “early” HD map lookup. As mentioned in Section 4.11, this approach
has several drawbacks which are expected to negatively impact the system’s performance.
The purpose of this evaluation is to provide a clear understanding of the limitations and
consequences of using the late lookup approach. This was the first approach we tried to
improve upon the baseline detector. The metrics of a Yolact-based detector which simply
adds late HD map-lookup-based heading correction are presented in Table 5.5.

Model:
�

I550
YOLT0M1F0 L0

�

PDS: 19.56% (+4.25%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Car 45.15◦ 1.13 m 0.48 m 1.10 m 0.68 m 27.26% 46.89% 39.65% 46.12%
Truck 50.81◦ 2.47 m 0.88 m 4.90 m 1.18 m 18.93% 4.27% 2.59% 3.55%
Motorcycle 13.04◦ 0.40 m 0.49 m 0.95 m 0.05 m 11.14% 36.05% 27.21% 35.77%
Bus 36.76◦ 1.81 m 1.32 m 3.63 m 1.62 m 25.44% 21.03% 14.67% 19.80%
Pedestrian — 0.38 m 0.25 m 0.18 m 0.07 m 21.52% 0.88% 0.10% 0.65%
Bicycle — 0.34 m 0.65 m 0.46 m 0.10 m 20.43% 0.92% 0.17% 0.67%
Mean 36.44◦ 1.09 m 0.68 m 1.87 m 0.62 m 20.78% 18.34% 14.07% 17.76%
∆ Baseline −15.75◦ +0.01 m −0.05 m +0.17 m −0.02 m +0.55% +1.41% +1.40% +1.44%

Table 5.5: Results for the simplest possible late map lookup detector, with differences towards the baseline high-
lighted in red and green.

5.6 Effects of YOLOv7 and Image Resolution 49

One of the main issues with the late HD map lookup is that it takes place after the L-
Shape-Fitting has already determined a heading value. This means that the heading infor-
mation from the HD map cannot be used to guide or correct the LSF-based size , leading to
inaccuracies in the width and length estimation. This is also shown in the results, as none of
the size or translation metrics are significantly improved.

Another significant drawback of the late HD map lookup is that it discards a lot of the
positional information from the ground truth sensor input. By querying the HD map only
for heading options at the predicted vehicle position, the system loses the ability to take
advantage of the more accurate and granular bottom contour data from the sensor inputs.
This loss of information is reflected in the barely improved orientation error.

5.6 Effects of YOLOv7 and Image Resolution

Average Results Using Yolact-Edge PDS: 32.51%

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 32.92◦ 1.05 m 0.48 m 1.52 m 0.62 m 30.66% 49.16% 39.74% 48.29%
Pedestrian — 0.38 m 0.25 m 0.17 m 0.07 m 20.91% 0.85% 0.10% 0.63%
Bicycle — 0.26 m 0.65 m 0.46 m 0.10 m 22.55% 0.92% 0.17% 0.67%
Mean 32.92◦ 0.56 m 0.46 m 0.72 m 0.26 m 24.71% 16.97% 13.33% 16.53%

Average Results Using Yolov7 (640x640) PDS: 31.65% (−0.86%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 32.89◦ 1.07 m 0.57 m 1.82 m 0.59 m 29.09% 48.00% 39.40% 47.11%
Pedestrian — 0.33 m 0.22 m 0.17 m 0.07 m 24.41% 6.81% 1.23% 6.05%
Bicycle — 0.52 m 1.09 m 0.62 m 0.10 m 27.09% 15.10% 6.40% 14.36%
Mean 32.89◦ 0.64 m 0.63 m 0.87 m 0.25 m 26.86% 23.30% 15.68% 22.51%
∆ Previous −0.03◦ +0.07 m +0.17 m +0.15 m −0.01 m +2.16% +6.33% +2.34% +5.98%

Average Results Using Yolov7 (1280x1280) PDS: 35.38% (+3.73%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 32.91◦ 1.09 m 0.52 m 1.65 m 0.59 m 30.08% 48.22% 40.13% 47.27%
Pedestrian — 0.26 m 0.22 m 0.17 m 0.06 m 28.98% 13.53% 7.38% 13.01%
Bicycle — 0.66 m 1.20 m 0.64 m 0.08 m 21.87% 29.59% 32.15% 29.25%
Mean 32.91◦ 0.67 m 0.64 m 0.82 m 0.24 m 26.98% 30.45% 26.55% 29.84%
∆ Previous +0.02◦ +0.03 m +0.02 m −0.05 m −0.01 m +0.12% +7.14% +10.88% +7.34%

Average Results Using Yolov7 (1920x1920) PDS: 36.72% (+1.33%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 33.15◦ 1.08 m 0.49 m 1.52 m 0.59 m 30.67% 46.79% 39.09% 45.90%
Pedestrian — 0.37 m 0.28 m 0.21 m 0.07 m 32.28% 20.77% 13.58% 20.38%
Bicycle — 0.58 m 1.20 m 0.65 m 0.08 m 22.65% 31.45% 31.95% 31.13%
Mean 33.15◦ 0.68 m 0.66 m 0.79 m 0.25 m 28.53% 33.00% 28.21% 32.47%
∆ Previous +0.25◦ +0.01 m +0.01 m −0.03 m ±0.00 m +1.55% +2.55% +1.65% +2.63%

Table 5.6: Average results for different instance segmentation models, with differences in the resulting metrics
shown towards the previous model’s average values.

The comparison of the average performance of detectors using different instance segmen-
tation models highlights some interesting points, as shown in Table 5.6. Comparing the per-
formance of the Yolact-Edge model with the Yolov7 models at different resolutions, we can see

50 5 Evaluation

that the Yolov7 models generally outperform the Yolact-Edge model. The Yolov7 (640x640)
model shows an mAP improvement of 5.98% compared to the Yolact-Edge model, albeit there
is a small decrease in the score 0.86% due to slightly worse TP metric performance. Similarly,
Yolov7 (1280x1280) has a score improvement of 3.73% compared to Yolov7 (640x640), and
a higher mean AP of +7.34%.

The Yolov7 (1920x1920) again outperforms the Yolov7 (1280x1280) model on average,
as it has a slightly higher overall score by 1.33%. Most notably, the pedestrian detection
performance is greatly improved by the Yolov7 (1920x1920) model, as its AP for pedestrian
detection is at 20.38%, compared to 13.01% in the Yolov7 (640x640) model and only 0.63%
in the Yolact-Edge model.

The results indicate that higher-resolution input may not always result in better overall
performance but can significantly improve the detection of specific object classes like pedes-
trians. This suggests that for certain applications or scenarios, focusing on higher resolutions
could be beneficial, but not true for every use-case.

In summary, Yolov7 (1920x1920) shows the overall best performance, but its improve-
ment over Yolov7 (1280x1280) mainly comes from improved pedestrian detection. The
Yolov7 models also generally outperform the Yolact-Edge model. For reference, Table 5.7
towards the end of this chapter also shows the results for the best model in each instance
segmentation configuration.

Best w/ Yolact-Edge:
�

I550
YOLT2DMLSFFSize

Cont L↑
�

PDS: 41.97% (−4.04%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.46◦ 0.87 m 0.33 m 1.31 m 0.46 m 37.73% 58.32% 47.92% 57.56%
Pedestrian — 0.38 m 0.25 m 0.14 m 0.06 m 20.16% 0.81% 0.09% 0.61%
Bicycle — 0.17 m 0.65 m 0.46 m 0.10 m 24.25% 0.92% 0.17% 0.67%
Mean 3.46◦ 0.48 m 0.41 m 0.63 m 0.20 m 27.38% 20.02% 16.06% 19.61%
∆ Best −0.01◦ −0.16 m −0.20 m −0.10 m +0.01 m −2.97% −17.09% −16.29% −17.00%

Best w/ Yolov7 (6402):
�

I640
Yv7 T0MLSFFSize L0

�

PDS: 41.17% (−4.83%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.80◦ 1.09 m 0.32 m 1.42 m 0.58 m 36.32% 59.87% 49.65% 59.11%
Pedestrian — 0.34 m 0.22 m 0.19 m 0.07 m 23.67% 7.04% 1.27% 6.26%
Bicycle — 0.51 m 1.07 m 0.57 m 0.10 m 28.97% 15.88% 7.07% 15.17%
Mean 3.80◦ 0.65 m 0.54 m 0.73 m 0.25 m 29.65% 27.60% 19.33% 26.85%
∆ Best +0.33◦ +0.02 m −0.07 m −0.01 m +0.05 m −0.70% −9.50% −13.02% −9.76%

Best w/ Yolov7 (12802):
�

I1280
Yv7 T2DMLSFFSize L0

�

PDS: 44.29% (−1.72%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.51◦ 1.15 m 0.26 m 1.46 m 0.55 m 36.84% 58.89% 50.57% 58.09%
Pedestrian — 0.26 m 0.22 m 0.18 m 0.06 m 28.96% 13.95% 7.45% 13.42%
Bicycle — 0.67 m 1.18 m 0.59 m 0.08 m 22.68% 31.57% 36.26% 31.27%
Mean 3.51◦ 0.70 m 0.55 m 0.74 m 0.23 m 29.49% 34.80% 31.43% 34.26%
∆ Best +0.04◦ +0.06 m −0.06 m +0.01 m +0.04 m −0.86% −2.30% −0.92% −2.35%

Table 5.7: Best results for different instance segmentation models, with differences in the resulting metrics shown
towards the overall best model’s values, which are those of I1920

Yv7 .

5.7 Impact of Filters 51

5.7 Impact of Filters

Furthermore, we evaluate the impact of DBSCAN-based bottom-contour filtering and size fil-
tering on the detector performance. The results presented in Table 5.8 show the impact of
different filter types on the 3D object detection task. Three different filter types are con-
sidered for comparison: no filters, contour filters, and size filters. For each filter type, the
performance of the best-performing model is compared with a model that is equivalent but
lacking one or both filters. The following conclusions can be drawn for these configurations:

The best model without any filters yields an overall score of 40.95%, which is the lowest
among the three variations. All the metrics exhibit worse performance compared to the best
model. This indicates that filters are essential for improving the model’s performance.

When only contour filters are applied, the overall score increases to 44.26%. This is
because vehicle sizes are harder to estimate from a filtered bottom contour. Nonetheless, the
contour filters help to enhance the overall performance of the model.

Applying size filters results in an even higher overall score of 45.61%, which is only 0.40%
lower than the score of the best model. The size filter leads to improvements in AWE, IoU,
Precision, Recall and AP, while causing slight regressions in AOE, ATE, ALE, and AHE. The
size filter demonstrates the most significant impact on the model’s performance.

In summary, using filters in the 3D object detection task can substantially improve the
model’s performance. Among the different filter types, size filters show the greatest positive
impact on the overall score, while bottom contour filters also provide a noticeable improve-
ment.

Best w/o Filters (
�

I1920
Yv7 T2DMLSFF0 L0

�

) PDS: 40.95% (−5.06%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.50◦ 1.29 m 0.62 m 1.44 m 0.78 m 28.67% 45.86% 36.45% 44.93%
Pedestrian — 0.37 m 0.29 m 0.22 m 0.07 m 32.68% 20.98% 13.55% 20.59%
Bicycle — 0.61 m 1.18 m 0.60 m 0.08 m 22.89% 34.75% 36.78% 34.49%
Mean 3.50◦ 0.76 m 0.69 m 0.75 m 0.31 m 28.08% 33.86% 28.93% 33.34%
∆ Best +0.03◦ +0.12 m +0.08 m +0.02 m +0.11 m −2.27% −3.24% −3.43% −3.28%

Best w/ Contour Filter (
�

I1920
Yv7 T0MLSFFCont L0

�

) PDS: 44.26% (−1.74%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.47◦ 0.95 m 0.46 m 1.39 m 0.54 m 32.65% 50.24% 41.41% 49.36%
Pedestrian — 0.37 m 0.29 m 0.21 m 0.07 m 32.43% 20.76% 13.39% 20.38%
Bicycle — 0.61 m 1.18 m 0.60 m 0.08 m 22.89% 34.72% 36.78% 34.46%
Mean 3.47◦ 0.64 m 0.64 m 0.73 m 0.23 m 29.32% 35.24% 30.53% 34.74%
∆ Best ±0.00◦ +0.01 m +0.03 m ±0.00 m +0.04 m −1.02% −1.86% −1.83% −1.88%

Best w/ Size Filter (
�

I1920
Yv7 T2DMLSFFSize L0

�

) PDS: 45.61% (−0.40%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.51◦ 1.09 m 0.25 m 1.46 m 0.51 m 38.24% 57.50% 49.23% 56.71%
Pedestrian — 0.37 m 0.29 m 0.22 m 0.07 m 32.68% 20.98% 13.55% 20.59%
Bicycle — 0.61 m 1.18 m 0.60 m 0.08 m 22.89% 34.75% 36.78% 34.49%
Mean 3.51◦ 0.69 m 0.57 m 0.76 m 0.22 m 31.27% 37.74% 33.18% 37.26%
∆ Best +0.04◦ +0.06 m −0.04 m +0.02 m +0.03 m +0.92% +0.64% +0.83% +0.65%

Table 5.8: Ablated results for models which use at most one of the DBSCAN-based bottom contour filter or size
filter, compared with the best model which uses both filters. It is apparent, that the filtering mostly has a positive
effect across all metrics, and the filters also synergize with each other, as none of the ablated model beats the
model which uses all filters.

52 5 Evaluation

5.8 Contribution of L-Shape-Fitting Augmentations

In this section, we will discuss the impact of different LSF augmentations on the detector’s
performance. Two augmentations are tested: HD Map Input and Screen-Space Tracking
(Historical Plausibility). We will analyze the results of these augmentations and compare
them with the best performance achieved without LSF Augments. As an initial overview,
Figure 5.6 provides a qualitative impression of these different configurations. Furthermore,
Figure 5.5 provides a rough indication for the score distribution of different augmentation
configurations.

10

20

30

40

Sc
or

e

Figure 5.5: Overview for model performances across different LSF augmentation configurations. The bars for a
model is color-coded by their usage of Raw LSF without Augmentation (green), LSF with screen-space tracking
(blue), LSF with HD map augmentation (red), or LSF with both augmentations (violet).

Figure 5.6: Comparison of the same frame from our best model (
�

I1920
Yv7 T2D MLSFFSize

Cont

�

) (bottom-right), vs. the
same model except with disabled LSF augmentations (top-left), disabled map augmentation (top-right), or disabled
tracking augmentation (bottom-left).

5.8 Contribution of L-Shape-Fitting Augmentations 53

Best w/o LSF Augments (
�

I1920
Yv7 T0M0FSize

Cont L↑
�

) PDS: 36.34% (−9.67%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 59.54◦ 0.94 m 0.40 m 1.26 m 0.43 m 28.60% 55.02% 46.65% 54.24%
Pedestrian — 0.38 m 0.28 m 0.20 m 0.07 m 32.26% 20.82% 13.55% 20.44%
Bicycle — 0.56 m 1.22 m 0.69 m 0.08 m 21.99% 33.73% 35.33% 33.46%
Mean 59.54◦ 0.63 m 0.63 m 0.72 m 0.19 m 27.62% 36.52% 31.84% 36.05%
∆ Best +56.08◦ −0.01 m +0.02 m −0.01 m ±0.00 m −2.73% −0.58% −0.51% −0.56%

Best w/ LSF Tracking-Aug. (
�

I1920
Yv7 T2DM0FSize

Cont L↑
�

) PDS: 38.02% (−7.99%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 48.41◦ 0.95 m 0.37 m 1.28 m 0.45 m 33.83% 56.27% 47.76% 55.44%
Pedestrian — 0.38 m 0.28 m 0.20 m 0.07 m 32.26% 20.84% 13.55% 20.45%
Bicycle — 0.56 m 1.22 m 0.69 m 0.08 m 21.99% 33.75% 35.33% 33.49%
Mean 48.41◦ 0.63 m 0.62 m 0.73 m 0.20 m 29.36% 36.95% 32.21% 36.46%
∆ Best +44.94◦ ±0.00 m +0.01 m −0.01 m ±0.00 m −0.99% −0.15% −0.14% −0.15%

Best w/ LSF Map-Aug. (
�

I1920
Yv7 T0MLSFFSize

Cont L↑
�

) PDS: 45.98% (−0.03%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.63◦ 0.96 m 0.33 m 1.30 m 0.44 m 36.77% 56.72% 48.21% 55.90%
Pedestrian — 0.38 m 0.28 m 0.20 m 0.07 m 32.26% 20.82% 13.55% 20.44%
Bicycle — 0.56 m 1.22 m 0.69 m 0.08 m 21.99% 33.73% 35.33% 33.46%
Mean 3.63◦ 0.63 m 0.61 m 0.73 m 0.19 m 30.34% 37.09% 32.36% 36.60%
∆ Best +0.16◦ ±0.00 m ±0.00 m ±0.00 m ±0.00 m −0.01% −0.01% +0.01% −0.01%

Table 5.9: Ablation study for the best model
�

I1920
Yv7 T2D MLSFFSize

Cont

�

, when none or just one of the Screen-Space-
Tracking or HD-Map-Lookup Augmentations for the L-Shape-Fitting (LSF) algorithm is used.

5.8.1 Impact of HD Map Augmentation

Table 5.9 provides ablated performance metrics for the best-performing model. First off,
when no augmentations are used, the same model’s performance drops by 9.67%. When
only the HD map augmentation is used, the model reaches a Score of 40.11%, which is only
0.06% lower than that of the best model, which uses both LSF Augments. The mean Average
Orientation Error (AOE) is significantly reduced to 3.63 ◦, which is still below the best’s
performance by 0.16 ◦. Overall, the HD-map-input LSF augmentation demonstrates a very
positive impact on the detector’s performance, but it alone does not beat the top model.

5.8.2 Impact of Screen-Space Tracking Augmentation

When the best-performing uses only the Screen-Space Tracking LSF augmentation it reaches
a Score of 38.02%, which is 7.99% lower than the best model. Compared to the best
un-augmented model, the mean AOE is slightly improved to 48.41◦. Overall, the sole screen-
space-tracking LSF augmentation shows some improvements towards the un-augmented
model but does not reach the best’s performance. We can conclude that Tracking alone is
insufficient as a bias for vehicle orientation estimation. However, the final best model still
uses this augmentation in conjunction with the HD map, and thereby manages to reach the
highest score.

54 5 Evaluation

5.9 Significance of 3D Tracking

In this section, we discuss the evaluation results for the 3D SORT tracking technique, as
described in Section 4.12 and presented in Table 5.10.

The results demonstrate that the 3D SORT tracking approach led to a decrease in overall
performance compared to the best configuration without 3D tracking. Although there were
some minor improvements in certain aspects, such as a decrease in Absolute Translation Error
(ATE) by 0.04 m, the overall score dropped by 1.07%, with reductions in Precision, Recall,
and mAP. In conclusion, the 3D SORT tracking technique, as implemented in this study, did
not improve the overall performance. As mentioned in Section 4.12, a more capable Kalman
Filter that takes vehicle heading into account is needed for better performance in 3D tracking.

Best w/ 3D Tracking (
�

I1920
Yv7 T3DMLSFFSize

Cont L↑
�

) PDS: 39.22% (−1.07%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Car 3.46◦ 0.85 m 0.29 m 1.19 m 0.35 m 36.12% 71.35% 72.39% 70.85%
Truck 4.14◦ 1.47 m 0.74 m 2.03 m 0.68 m 18.44% 17.87% 22.40% 17.30%
Motorcycle 4.04◦ 0.78 m 0.35 m 0.62 m 0.14 m 24.26% 33.61% 30.23% 33.28%
Bus 7.29◦ 1.14 m 0.51 m 1.99 m 1.23 m 36.89% 48.12% 31.80% 47.09%
Pedestrian — 0.38 m 0.28 m 0.20 m 0.06 m 32.06% 20.93% 13.70% 20.54%
Bicycle — 0.55 m 1.22 m 0.69 m 0.08 m 22.22% 33.77% 35.44% 33.52%
Mean 4.73◦ 0.86 m 0.56 m 1.12 m 0.42 m 28.33% 37.61% 34.33% 37.10%
∆ Best −0.64◦ −0.04 m +0.02 m −0.19 m +0.04 m −0.26% −1.85% −1.81% −1.85%

Table 5.10: Best result for model which uses 3D Tracking, compared with the best model.

Average Results Using Original Labels PDS: 28.13%

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Car 32.47◦ 0.92 m 0.39 m 1.09 m 0.45 m 31.27% 60.24% 58.87% 59.61%
Truck 29.86◦ 2.08 m 0.78 m 4.34 m 0.82 m 18.59% 12.91% 13.27% 12.26%
Motorcycle 34.00◦ 0.63 m 0.35 m 0.63 m 0.12 m 23.75% 34.79% 27.87% 34.35%
Bus 29.55◦ 1.48 m 0.93 m 2.99 m 1.21 m 27.65% 38.20% 25.15% 37.15%
Pedestrian — 0.34 m 0.24 m 0.20 m 0.07 m 26.39% 10.52% 5.55% 10.05%
Bicycle — 0.53 m 1.02 m 0.55 m 0.09 m 23.87% 19.50% 17.97% 19.09%
Mean 31.47◦ 1.00 m 0.62 m 1.63 m 0.46 m 25.25% 29.36% 24.78% 28.75%

Average Results Using Time-Shifted Labels PDS: 28.16% (+0.02%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Car 32.44◦ 0.90 m 0.39 m 1.08 m 0.45 m 31.50% 61.02% 59.71% 60.38%
Truck 30.03◦ 2.10 m 0.78 m 4.35 m 0.83 m 17.98% 12.64% 13.29% 12.09%
Motorcycle 33.93◦ 0.62 m 0.35 m 0.65 m 0.15 m 23.23% 35.59% 28.06% 35.15%
Bus 29.60◦ 1.41 m 0.98 m 3.01 m 1.25 m 27.62% 38.14% 25.14% 37.09%
Pedestrian — 0.33 m 0.24 m 0.17 m 0.06 m 26.91% 10.45% 5.58% 9.99%
Bicycle — 0.47 m 1.05 m 0.63 m 0.09 m 23.21% 19.03% 17.37% 18.62%
Mean 31.50◦ 0.97 m 0.63 m 1.65 m 0.47 m 25.08% 29.48% 24.86% 28.89%
∆ Previous +0.03◦ −0.02 m +0.01 m +0.01 m +0.01 m −0.18% +0.12% +0.08% +0.14%

Table 5.11: Average results for evaluations with time-shifted labels compared to the original unsynchronized LiDAR
labels.

5.10 Implications of LiDAR Label Shifting 55

5.10 Implications of LiDAR Label Shifting

In this section, we discuss the evaluation results of the LiDAR label shifting technique, as
described in Section 5.3 and presented in Table 5.11.

The results indicate that using time-shifted LiDAR labels (L↑) led to a minor improvement
in the overall performance compared to using original LiDAR labels (L0). The overall score
increased by 0.02%, with small improvements in Precision, Recall, and mAP.

Overall, the LiDAR label shifting technique using SORT for estimating spatial velocity
and correcting label positions based on the known synchronization error time delta led to
a slight improvement in overall performance. Although the improvements are minor, they
demonstrate that accounting for sensor delay between camera and LiDAR sensor frames can
help reduce the inherent offset in the LiDAR labels and improve evaluation accuracy.

5.11 Challenges of Night-time Conditions

As discussed in the qualitative analysis, the detection performance of a system that relies on
an RGB camera operating within the human visible light spectrum is expected to be worse
at night due to the reduced visibility. The results in Table 5.12 quantitatively confirm this
expectation, showing that both Yolact-Edge and Yolov7 models exhibit degraded performance
under night-time conditions.

Average Night-Time Results Using Yolact-Edge PDS: 21.13%

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Car 40.07◦ 0.94 m 0.32 m 1.29 m 0.54 m 31.57% 39.74% 26.44% 38.55%
Truck 22.71◦ 2.33 m 0.38 m 3.93 m 1.31 m 18.70% 0.65% 0.19% 0.44%
Motorcycle — — — — — — — — —
Bus 30.01◦ 1.22 m 0.83 m 2.16 m 1.48 m 29.71% 31.99% 18.15% 30.76%
Pedestrian — — — — — — — — —
Bicycle — — — — — — — — —
Mean 30.93◦ 1.50 m 0.51 m 2.46 m 1.11 m 26.66% 24.12% 14.93% 23.25%

Average Night-Time Results Using Yolov7 PDS: 24.99% (+3.86%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Car 34.38◦ 0.96 m 0.38 m 1.20 m 0.48 m 29.62% 45.17% 37.03% 44.20%
Truck 24.64◦ 1.46 m 0.41 m 2.69 m 0.58 m 11.80% 3.82% 2.25% 3.34%
Motorcycle — — — — — — — — —
Bus 26.71◦ 1.28 m 0.92 m 2.54 m 1.07 m 28.34% 30.36% 15.65% 29.16%
Pedestrian — — — — — — — — —
Bicycle — — — — — — — — —
Mean 28.58◦ 1.23 m 0.57 m 2.14 m 0.71 m 23.25% 26.45% 18.31% 25.57%
∆ Previous −2.35◦ −0.27 m +0.06 m −0.31 m −0.40 m −3.41% +2.33% +3.38% +2.32%

Table 5.12: Average results for evaluations on the night-time scene of the A9 dataset with Yolact-Edge and Yolov7
models.

When comparing the night-time results, it is evident that the Yolov7 model outperforms
the Yolact-Edge model in most of the considered evaluation metrics. The overall score for
the Yolov7 model is 24.99%, which is an improvement of 3.86% compared to the Yolact-Edge
model. This improvement can be primarily attributed to the higher precision and recall rates,
as well as a reduced average translation error (ATE) and average length error (ALE).

56 5 Evaluation

Despite the degraded performance at night, the Yolov7 instance segmentation model still
demonstrates a reasonable level of detection accuracy for certain object classes, such as cars
and buses. However, for some classes like trucks, the average precision drops significantly,
indicating a higher rate of false positives and false negatives.

It is also important to note that the performance for certain object classes like motorcycles,
pedestrians, and bicycles is not reported in the night-time evaluation. This is due to a lack of
evaluation samples for these classes in the night-time dataset scene.

In summary, the quantitative evaluation confirms the expected reduction in detection per-
formance under night-time conditions. While the Yolov7 model demonstrates better perfor-
mance compared to the Yolact-Edge model, further research and development are necessary
to improve the overall performance of instance segmentation models in low-light and night-
time environments.

5.12 Perspective-Dependent Detector Performance

The detection performance can be significantly influenced by the camera perspective. In this
work, we analyze the impact of two different camera perspectives from the A9 test field:
S110-S1 and S110-S2. The S110-S1 camera is focused downwards onto the intersection,
whereas the S110-S2 camera has a longer detection range and is angled towards the horizon.
In this section, we provide a quantitative comparison of the best-performing models for each
perspective, focusing on the vehicle super-category, which emphasizes the shape detection
performance rather than the object classification aspect.

Table 5.13 shows the quantitative results for the best-performing vehicle-only models for
each camera perspective.

Best for S110-S1 Perspective:
�

I550
YOLT0MLSFFSize

Cont L0

�

PDS: 55.60% (+5.53%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.90◦ 1.04 m 0.31 m 1.34 m 0.34 m 39.90% 66.05% 55.82% 65.54%
∆ Best +0.43◦ +0.08 m −0.02 m +0.03 m −0.10 m +3.11% +9.33% +7.64% +9.64%

Best for S110-S2 Perspective:
�

I640
Yv7 T2D

3D MLSFFSize L0

�

PDS: 50.90% (+0.83%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.43◦ 0.93 m 0.29 m 1.49 m 0.66 m 35.52% 61.39% 51.79% 60.69%
∆ Best −0.04◦ −0.02 m −0.04 m +0.19 m +0.22 m −1.27% +4.67% +3.62% +4.79%

Table 5.13: Quantitative results for the best-performing vehicle-only models for each camera perspective.

For the S110-S1 perspective, the best vehicle-only model achieves a score of 55.60%,
which is an improvement of 5.53% over the best model for both perspectives. Most interest-
ingly, this best model uses Yolact-Edge. But as Table 5.14 shows, this model does not transfer
its performance to S110-S2.

For the S110-S2 perspective, the best vehicle-only model obtains a score of 50.90%, with
a performance improvement of 0.83% over the generally best model. Although the improve-
ments in the performance metrics are not as significant as for the S110-S1 perspective, the
model still outperforms the best general model for this camera perspective.

In conclusion, the choice of camera perspective plays a crucial role in the detection perfor-
mance of a model. In our case, the best-performing models for each perspective individually
beat the best-performing general model. Therefore, it is essential to consider the camera
perspective when designing and evaluating object detection models, as it can significantly
impact the overall performance.

5.12 Perspective-Dependent Detector Performance 57

Performance of
�

I550
YOLT0MLSFFSize

ContL0

�

on S110-S2 PDS: 48.63% (−1.44%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.48◦ 0.79 m 0.33 m 1.32 m 0.51 m 35.28% 52.28% 41.90% 51.32%
∆ Best +0.02◦ −0.17 m ±0.00 m +0.01 m +0.08 m −1.51% −4.44% −6.28% −4.57%

Performance of
�

I640
Yv7T2D

3D MLSFFSizeL0

�

on S110-S1 PDS: 49.77% (−0.30%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 4.31◦ 1.23 m 0.35 m 1.37 m 0.50 m 37.04% 58.70% 47.35% 57.89%
∆ Best +0.84◦ +0.27 m +0.02 m +0.07 m +0.06 m +0.25% +1.99% −0.83% +2.00%

Performance of
�

I1920
Yv7 T2DMLSFFSize

ContL↑
�

on S110-S1 PDS: 50.86% (+0.79%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.71◦ 1.10 m 0.30 m 1.24 m 0.37 m 38.39% 57.09% 48.27% 56.32%
∆ Best +0.24◦ +0.14 m −0.03 m −0.06 m −0.07 m +1.60% +0.38% +0.10% +0.43%

Performance of
�

I1920
Yv7 T2DMLSFFSize

ContL↑
�

on S110-S2 PDS: 50.30% (+0.23%)

Class AOE ATE AWE ALE AHE IoU3D Precision Recall AP@10
Vehicle 3.23◦ 0.82 m 0.36 m 1.36 m 0.51 m 35.19% 56.34% 48.08% 55.47%
∆ Best −0.24◦ −0.14 m +0.03 m +0.06 m +0.07 m −1.60% −0.38% −0.10% −0.43%

Table 5.14: Results for perspective-specific best models on the respective other perspective.

Chapter 6

Conclusion

In the previous chapter, we evaluated various aspects of our proposed two-stage monocular
infrastructure traffic object detection architecture, MonoDet3d. We analyzed the performance
of different models on the Providentia Intersection Scenario dataset, using both detailed ob-
ject categories and the vehicle super-category. Focusing on vehicles, the best model for the
S110-S1 perspective achieves a score of 55.60% (65.54% mAP), while for the S110-S2 per-
spective, the best model scores 50.90% (60.69% mAP). The best model across all object cate-
gories and scenes exhibits a score of 40.29% (38.94% mAP).

Moreover, we provided a thorough ablation study of the architecture across all possible
configuration regimes. This covered the impact of different L-Shape-Fitting augmentations,
bottom-contour/size filters, different instance segmentation models, and various filter types.
We also accounted for the synchronization lag between the camera frames and the LiDAR-
sensor-based labels.

Despite the comprehensive evaluation, there are some shortcomings that can be ad-
dressed. Firstly, the early version of the A9R1 dataset used in the evaluation has some issues,
as some LiDAR labels are inaccurate, potentially affecting the model performance assess-
ment. This might also explain the ceiling of 40% IoU, which we seemingly cannot overcome.
Secondly, ablation studies for the VRU detection algorithm and the position-height regres-
sion algorithm are missing, which could provide more valuable insights into the system’s
performance and help identify areas for improvement.

In summary, our evaluation offers a thorough understanding of the system’s performance,
its limitations, and the challenges that arise from different camera perspectives and com-
putational constraints. It may now be concluded without a doubt, that the HD map as an
auxiliary bias for the L-Shape-Fitting algorithm offers a very significant improvement, guid-
ing the proposed architecture into the realm of production-readiness. Without the HD map,
the detector does not reach an acceptable orientation error. Therefore, the research hypoth-
esis is confirmed insofar as concluding, that tracking alone does not substitute the HD map
as a bias for deciding vehicle orientations. However, additional analysis and improvements
can be made by addressing the mentioned shortcomings, to ultimately enhance the system’s
performance and reliability even further.

“Begin at the beginning," the King said gravely, “and
go on till you come to the end: then stop."

— Lewis Carroll, Alice in Wonderland

Chapter 7

Future Work

In this chapter, we outline potential avenues for future work to further enhance the perfor-
mance, capabilities, and robustness of our monocular 3d object detection system.

7.1 Improved Non-Maximum Suppression (NMS)

A common issue encountered in our system is the overlapping of bounding boxes, particularly
for pedestrians inside bicycles, pedestrians inside vehicles, or vans inside trucks. To address
this problem, we can explore more advanced non-maximum suppression (NMS) techniques
that better handle these cases and suppress overlapping boxes, thus improving the system’s
overall accuracy and robustness.

7.2 Substituting HD Maps

Instead of relying solely on HD maps for obtaining heading information, we can explore
deriving this information directly from the optical flow. This approach could offer a more
adaptive and flexible solution to changing environments and potentially improve the system’s
performance in situations where the HD maps are unavailable or inaccurate.

7.3 Extended use of Kalman Filters

The current implementation of Kalman filters in our system does not include heading in-
formation in the state. This omission renders the current approach non-viable for accurate
tracking and prediction de-noising. Extending the Kalman filter to include heading infor-
mation would significantly improve its effectiveness in estimating the state of the tracked
objects.

7.4 Improving Pedestrian/Cyclist Detection

The current solution for pedestrian and cyclist (VRU) detection is highly unoptimized, as the
focus of this work was mostly directed towards road vehicle pose estimation. Future work
should focus on optimizing and refining the detection algorithm, increasing its accuracy and
robustness, and attempting to predict VRU orientations.

62 7 Future Work

7.5 Neural Keypoint Estimation

The long tail robustness of our system can be improved by incorporating neural keypoint
estimation techniques. This approach would help to better handle obstructions, occlusions,
and unusual vehicle orientations, ultimately enhancing the system’s performance in complex
and dynamic traffic scenarios. It could also unify the VRU/Vehicle detection pipelines, and
further improve the system’s runtime performance. This presents itself as a very promising
research direction.

7.6 Amodal Instance Segmentation

Amodal instance segmentation is a way if predicting instance masks while also completing
masks where the detection is cut off or obstructed. This may be a viable alternative to key-
points for object detection and segmentation, as it would be a less intrusive architectural
change. While it may not be as robust as key-points in some cases, it might still present
a valid approach to improve our system’s overall performance. By investigating amodal in-
stance segmentation techniques, we can potentially enhance the system’s ability to detect and
segment objects in challenging traffic scenarios.

“Optimism is a strategy for making a better future.
Because unless you believe that the future can be
better, you are unlikely to step up and take
responsibility for making it so."

— Noam Chomsky

Bibliography

[AUK18] Althoff, M., Urban, S., and Koschi, M. “Automatic conversion of road networks
from opendrive to lanelets”. In: 2018 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI). IEEE. 2018, pp. 157–162.

[Bai+22] Bai, Z., Wu, G., Qi, X., Liu, Y., Oguchi, K., and Barth, M. J. “Infrastructure-based
object detection and tracking for cooperative driving automation: A survey”. In:
2022 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2022, pp. 1366–1373.

[Bew+16] Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. “Simple online and real-
time tracking”. In: 2016 IEEE international conference on image processing (ICIP).
IEEE. 2016, pp. 3464–3468.

[Blu22] Blumenthal, L. “Real-Time Monocular 3D Object Detection to Support Au-
tonomous Driving”. Bachelors Thesis. Technische Universität München, 2022.

[Bol+19] Bolya, D., Zhou, C., Xiao, F., and Lee, Y. J. “Yolact: Real-time instance segmen-
tation”. In: Proceedings of the IEEE/CVF international conference on computer
vision. 2019, pp. 9157–9166.

[Bra00] Bradski, G. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

[BBB59] Brooks, F. P., Blaauw, G. A., and Buchholz, W. “Processing Data in Bits and
Pieces”. In: IRE Transactions on Electronic Computers EC-8.2 (1959), pp. 118–
124. DOI: 10.1109/TEC.1959.5219512.

[Cae+20] Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan,
A., Pan, Y., Baldan, G., and Beijbom, O. “nuscenes: A multimodal dataset for
autonomous driving”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 11621–11631.

[CW21] Carrillo, J. and Waslander, S. “Urbannet: Leveraging urban maps for long range
3d object detection”. In: 2021 IEEE International Intelligent Transportation Sys-
tems Conference (ITSC). IEEE. 2021, pp. 3799–3806.

[Che+20] Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., and Yan, Y. “Blendmask:
Top-down meets bottom-up for instance segmentation”. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2020,
pp. 8573–8581.

[CK21] Creß, C. and Knoll, A. C. “Intelligent Transportation Systems With The Use of
External Infrastructure: A Literature Survey”. In: CoRR abs/2112.05615 (2021).
arXiv: 2112.05615. URL: https://arxiv.org/abs/2112.05615.

[DSG10] Dupuis, M., Strobl, M., and Grezlikowski, H. “Opendrive 2010 and beyond–
status and future of the de facto standard for the description of road networks”.
In: Proc. of the Driving Simulation Conference Europe. 2010, pp. 231–242.

https://doi.org/10.1109/TEC.1959.5219512
https://arxiv.org/abs/2112.05615
https://arxiv.org/abs/2112.05615

64 Bibliography

[Guo+21] Guo, E., Chen, Z., Rahardja, S., and Yang, J. “3D Detection and Pose Estima-
tion of Vehicle in Cooperative Vehicle Infrastructure System”. In: IEEE Sensors
Journal 21.19 (2021), pp. 21759–21771. DOI: 10.1109/JSEN.2021.3101497.

[Har+20] Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M.,
Hoyer, S., Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe,
M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W.,
Abbasi, H., Gohlke, C., and Oliphant, T. E. “Array programming with NumPy”.
In: Nature 585.7825 (Sept. 2020), pp. 357–362. DOI: 10.1038/s41586-020-
2649-2. URL: https://doi.org/10.1038/s41586-020-2649-2.

[He+17] He, K., Gkioxari, G., Dollár, P., and Girshick, R. “Mask r-cnn”. In: Proceedings of
the IEEE international conference on computer vision. 2017, pp. 2961–2969.

[How+17] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., and Adam, H. “Mobilenets: Efficient convolutional neural networks
for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

[Joc+20] Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN, Changyu,
L., Laughing, tkianai, Hogan, A., lorenzomammana, yxNONG, AlexWang1900,
Diaconu, L., Marc, wanghaoyang0106, ml5ah, Doug, Ingham, F., Frederik, Guil-
hen, Hatovix, Poznanski, J., Fang, J., Yu, L., changyu98, Wang, M., Gupta, N.,
Akhtar, O., PetrDvoracek, and Rai, P. ultralytics/yolov5. Version v3.1. Oct. 2020.
DOI: 10 . 5281 / zenodo . 4154370. URL: https : / / doi . org / 10 . 5281 / zenodo .
4154370.

[Krä+22] Krämmer, A., Schöller, C., Gulati, D., Lakshminarasimhan, V., Kurz, F., Rosen-
baum, D., Lenz, C., and Knoll, A. “Providentia-A Large-Scale Sensor System for
the Assistance of Autonomous Vehicles and Its Evaluation”. In: Journal of Field
Robotics (2022), pp. 1156–1176.

[Kuh55] Kuhn, H. W. “The Hungarian method for the assignment problem”. In: Naval
research logistics quarterly 2.1-2 (1955), pp. 83–97.

[Lin+14] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
and Zitnick, C. L. “Microsoft coco: Common objects in context”. In: Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13. Springer. 2014, pp. 740–755.

[Liu+21] Liu, H., Soto, R. A. R., Xiao, F., and Lee, Y. J. “Yolactedge: Real-time instance
segmentation on the edge”. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2021, pp. 9579–9585.

[Ma+22] Ma, X., Ouyang, W., Simonelli, A., and Ricci, E. “3d object detection from images
for autonomous driving: a survey”. In: arXiv preprint arXiv:2202.02980 (2022).

[Mas+21] Masi, S., Xu, P., Bonnifait, P., and Ieng, S.-S. “Augmented perception with coop-
erative roadside vision systems for autonomous driving in complex scenarios”.
In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).
IEEE. 2021, pp. 1140–1146.

[Pog+18] Poggenhans, F., Pauls, J.-H., Janosovits, J., Orf, S., Naumann, M., Kuhnt, F., and
Mayr, M. “Lanelet2: A high-definition map framework for the future of auto-
mated driving”. In: 2018 21st International Conference on Intelligent Transporta-
tion Systems (ITSC). IEEE. 2018, pp. 1672–1679.

https://doi.org/10.1109/JSEN.2021.3101497
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.4154370
https://doi.org/10.5281/zenodo.4154370
https://doi.org/10.5281/zenodo.4154370

Bibliography 65

[Qui+09] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng,
A. Y., et al. “ROS: an open-source Robot Operating System”. In: ICRA workshop
on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[RAM21] Rezaei, M., Azarmi, M., and Mir, F. M. P. “Traffic-Net: 3D traffic monitoring
using a single camera”. In: arXiv preprint arXiv:2109.09165 (2021).

[Sch+17] Schubert, E., Sander, J., Ester, M., Kriegel, H. P., and Xu, X. “DBSCAN revisited,
revisited: why and how you should (still) use DBSCAN”. In: ACM Transactions
on Database Systems (TODS) 42.3 (2017), pp. 1–21.

[TAL16] Targ, S., Almeida, D., and Lyman, K. “Resnet in resnet: Generalizing residual
architectures”. In: arXiv preprint arXiv:1603.08029 (2016).

[Van16] Vanholder, H. “Efficient inference with tensorrt”. In: GPU Technology Conference.
Vol. 1. 2016, p. 2.

[WBL22] Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. “YOLOv7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors”. In: arXiv
preprint arXiv:2207.02696 (2022).

[WB+95] Welch, G., Bishop, G., et al. “An introduction to the Kalman filter”. In: (1995).

[Yu+22] Yu, G., Li, H., Wang, Y., Chen, P., and Zhou, B. “A Review on Cooperative Per-
ception and Control Supported Infrastructure-Vehicle System”. In: Green Energy
and Intelligent Transportation (2022), p. 100023.

[Zha+17] Zhang, X., Xu, W., Dong, C., and Dolan, J. M. “Efficient L-shape fitting for vehicle
detection using laser scanners”. In: 2017 IEEE Intelligent Vehicles Symposium
(IV). 2017, pp. 54–59. DOI: 10.1109/IVS.2017.7995698.

https://doi.org/10.1109/IVS.2017.7995698

List of Figures

1.1 Overview of the Providentia A9 Test Stretch (Graphic produced using Google
Earth). 4

1.2 Overview of the OpenDRIVE map of the Providentia test area, with zoomed in
cut-out of the S110 intersection with its S1 and S2 cameras. 5

1.3 On the left: General dataflow in the Monocular 3D Object Detection task. For
each instance of a recognized object in the RGB input frame, the detector must
estimate a 3D pose parameter-set. The more variables the detector must esti-
mate, the harder the task becomes. For example, elevation (i.e., the position z
component) may be omitted. On the right: Figure 4.4 from [Blu22]. Frame of
a highway scene. In such a scenario, the detector may also omit the calculation
of the heading (yaw) orientation angle and assume a fixed value. 6

1.4 Two-stage detection from camera image (left) via instance segmentation
(middle) and 2D → 3D lifting via the instance mask bottom contour (right).
Graphic from [Blu22]. 7

1.5 Visualisation of heading vectors as RGB values, smoothly interpolated from
the lane boundary geometry. Left: Colored heading overlays for the S110-
S2 camera perspective. In the bottom-right corner, there are four overlapping
lanes. Middle: RGB heading visualization for the whole S110 intersection.
Right: RGB heading visualization for a roundabout. 8

1.6 Visualization of a Mono3D detection scenario where tracking resolves a head-
ing ambiguity. 9

2.1 Figure 4.1 from [Blu22], illustrating the stages of the monocular 3D detection
process for highway scenes. 13

2.2 Figure 1 from [Guo+21], illustrating their approach to keypoint estimation
based on two lines which are regressed to the vehicle bottom contour: (a) RGB
image; (b) vehicle segmentation mask; (c) the contour point of the bottom
edge of the vehicle and the contact points between vehicle and ground are
represented by white dots and red circles. 14

2.3 Figure 2 from [Zha+17]. In (a) and (c), the grey dots represent the laser
range scan points and the rectangles in green, red, and blue are the fitted
rectangles by using criteria area minimization, closeness maximization, and
variance minimization. The normalized scores for the three criteria over the
searched directions are plotted in (b) and (d), respectively. In example (a), the
fitting results from the three criteria are very similar, and the maxima of the
three curves in (b) are very close (marked by arrows and achieved at 88�, 89�,
and 0�, respectively). In example (b), the fitting result from the area criteria
is different from the other two, and its maximum in (d) is away from the other
two (achieved at 69�, 1�, and 86�, respectively). 15

68 List of Figures

2.4 Figures 12 and 13(c) from [RAM21], illustrating their approach to heading
estimation based on the geometry of proximate road curbs which have been
extracted from sattelite imagery. This is analogous to our use of the HD map
in this work (to some extent). 16

2.5 Figure 2 from [CW21], describing how the Urban HD map assists the 3D object
descriptor estimation model. Center-lines are painted as a per-pixel feature
into the 3D object descriptor network’s single input image. 16

2.6 Figures 2 and 3 from [Mas+21], describing how the HD map is used for cali-
bration (left) and how the vehicle size is calculated from its 2D bounding box
(right). 17

3.1 Figure 2 from YOLACT. The figure shows how generated prototype masks are
combined with instance-specific coefficients to produce the final instance masks. 20

3.2 Figure 3 from BlendMask, showcasing how it replaces YOLACT’s Prototype
Masks with Bottom-Level Bases which are combined using per-instance Top-
Level Attention maps rather than coefficients. 21

3.3 Figures 2 and 3 from [AUK18]. The left-hand-side image shows a typical Open-
DRIVE-based model with multiple lane-sections based on a common continu-
ous reference line. The left-hand-side image shows the simpler modeling ap-
proach of Lanelet2, where lanes are based on self-contained pre-triangulated
shapes. 22

3.4 Algorithms 2-5 from L-Shape-Fitting [Zha+17]. Algorithm 2 shows the main
theta search loop, while Algorithms 3-5 are possible implementations of the
CalculateCriterionX function. 25

4.1 High-level sketch of the implemented Mono3d solution. The Camera Driver
Node publishes camera frames to Shared Memory. They are picked up from
there by the 2D Instance Segmentation node, which requires a machine with
strong GPU resources. The detected instances, including their instance masks,
are published for each frame via ROS, and received by the 3D detector node,
which does not require a GPU. 29

4.2 Low-level illustration of our Mono3d pipeline. To determine a 3D pose for a
non-VRU 2D object instance, its associated pixel mask and category are passed
through six processing steps: (1) Bottom Contour Projection, (2) Outlier Filter-
ing, (3) Map Grid Yaw Option Lookup, (4) L-Shape-Fitting, (5) Height and Po-
sition Regression, (6) Historical Plausibility Scoring. Legend: Blue boxes mark
normal I/O data, red boxes mark I/O variables which are primary components
of a final pose hypothesis. Yellow boxes mark processes. Green boxes with
dashed arrows mark auxiliary data flow which is not restricted to the scope of
the current frame. 32

4.3 Illustration of our proposed solution for VRU detection. Camera C observes
pedestrian A and cylist B. Their 2D bottom contour outline is highlighted in
red, the projection of the outline to the ground is highlighted in dashed blue
lines. Only the highlighted points on the respective bottom contour projections
which remain close to the camera may be considered to estimate the position
of A/B. 34

4.4 Illustration of our lane tesselation algorithm for a single lane section. The
OpenDRIVE lane boundary lines are sampled at constant intervals to convert
them to polylines. Orientations are calculated for each derived poly-line ver-
tex. For each lane, the enclosing polylines are then “zipped” together with a
triangle-strip. 35

List of Figures 69

4.5 Illustration of lane heading rasterization using barycentric coordinates. Lane
L is rasterized into grid G, and the barycentric coordinates w1, w2 and w3 are
shown for one specific gric-cell center point C . 36

4.6 Derived heading values rendered on top of the S110-S2 camera perspective
(left) and the S110-S1 camera perspective (right). 37

4.7 Illustration of a map heading histogram lookup for the bottom contour of ve-
hicle V . The map lookup grid-set provides grids for three roads G1, G2 and G3.
The histogram values h(G, V) per road, as well as the respective normalized
scores which are calculated from the histogram, are shown on the right. 38

4.8 Illustration of a joint 3D height and location for vehicle V. Initially, camera
C observes only the screen-space bounding box AABB(InstanceMaskV). We
now search for the vehicle height h based on a value along the ray R, which
is cast from C through the 2D AABB center. Only for the correct hgt will
the 2D AABB of the predicted 3D box AABB(C ,Box(R, w, l,θ , hgt)) be equal to
AABB(InstanceMaskV). 39

5.1 Hand-picked frames to showcase the qualitative performance of our imple-
mented monocular 3D object detector during daytime. 43

5.2 Selected frames to showcase problems of our implemented monocular 3D ob-
ject detector. 44

5.3 A selection of frames to showcase the qualitative performance of our imple-
mented monocular 3D object detector at night. 44

5.4 Overview for the Providentia Detection Score (PDS) values of all possible 384
detector configuration-label combinations, with arrows pointing out the best,
baseline, and worst combination. 47

5.5 Overview for model performances across different LSF augmentation configu-
rations. The bars for a model is color-coded by their usage of Raw LSF without
Augmentation (green), LSF with screen-space tracking (blue), LSF with HD
map augmentation (red), or LSF with both augmentations (violet). 52

5.6 Comparison of the same frame from our best model (
�

I1920
Yv7 T2DMLSFFSize

Cont

�

)
(bottom-right), vs. the same model except with disabled LSF augmentations
(top-left), disabled map augmentation (top-right), or disabled tracking aug-
mentation (bottom-left). 52

List of Tables

1.1 Intersection Scenario dataset scenes which provide camera frames annotated
with 3D detection bounding boxes from LiDAR labels. 5

1.2 Parameterization options for the output of a Monocular 3D Object Detector
per object. 7

5.1 Model performance on RTX-3090 GPU . 45
5.2 Baseline model results. 47
5.3 Best model results, with improvements towards the baseline highlighted in

green for each metric. 48
5.4 Best model results focusing on the Vehicle super-category, with improve-

ments towards the vehicle-only baseline highlighted in green for each metric. 48
5.5 Results for the simplest possible late map lookup detector, with differences

towards the baseline highlighted in red and green. 48
5.6 Average results for different instance segmentation models, with differences

in the resulting metrics shown towards the previous model’s average values. . 49
5.7 Best results for different instance segmentation models, with differences in

the resulting metrics shown towards the overall best model’s values, which are
those of I1920

Yv7 . 50
5.8 Ablated results for models which use at most one of the DBSCAN-based bottom

contour filter or size filter, compared with the best model which uses both
filters. It is apparent, that the filtering mostly has a positive effect across all
metrics, and the filters also synergize with each other, as none of the ablated
model beats the model which uses all filters. 51

5.9 Ablation study for the best model
�

I1920
Yv7 T2DMLSFFSize

Cont

�

, when none or just one
of the Screen-Space-Tracking or HD-Map-Lookup Augmentations for the L-
Shape-Fitting (LSF) algorithm is used. 53

5.10 Best result for model which uses 3D Tracking, compared with the best model. 54
5.11 Average results for evaluations with time-shifted labels compared to the origi-

nal unsynchronized LiDAR labels. 54
5.12 Average results for evaluations on the night-time scene of the A9 dataset with

Yolact-Edge and Yolov7 models. 55
5.13 Quantitative results for the best-performing vehicle-only models for each cam-

era perspective. 56
5.14 Results for perspective-specific best models on the respective other perspective. 57

	Introduction
	The Providentia++ Project
	The A9 Testfield
	The Providentia Intersection Scenario Dataset
	Monocular 3D Object Detection
	Variables to Estimate
	Two-Stage Detection
	Use of Neural Networks

	Relevance of HD Maps
	Tracking Enters the Picture
	Screen-Space Tracking
	Birds-Eye-View Tracking

	Inherent Functional Limitations
	Research Objective
	Contributions

	Related Work
	Earlier Work Within the Providentia Project
	Detection of Vehicles in Cooperative Vehicle Infrastructure Systems
	The L-Shape Fitting Method for Vehicle Pose Detection
	TrafficNet
	UrbanNet: Urban Maps for Long Range 3D Object Detection
	Cooperative Roadside Vision Systems in Complex Scenarios
	Survey Studies

	Technical Foundations
	The YOLACT Instance Segmentation Model
	The YOLOv7 Instance Segmentation Model
	Map Data Formats
	The Robot Operating System
	SORT Object Tracking
	The DBSCAN Algorithm
	The L-Shape Fitting Algorithm
	Evaluation Metrics

	System Design
	Distributed Architecture
	The 2D Object Detector
	The 3D Object Detector
	Bottom Contour Extraction and Filtering
	Detection of Vulnerable Road Users
	Bottom Contour L-Shape Fitting
	HD Map Lookup Grids
	Lane Tesselation
	Lane Rasterization

	HD-Map-Augmented L-Shape Fitting
	Tracking-Augmented L-Shape Fitting
	Joint Height and Position Estimation
	Late HD Map Lookup
	3D SORT Tracking

	Evaluation
	Qualitative Results
	Runtime Performance
	Quantitative Evaluation Strategy
	Overall Quantitative Results
	Influence of Late HD Map Lookup
	Effects of YOLOv7 and Image Resolution
	Impact of Filters
	Contribution of L-Shape-Fitting Augmentations
	Impact of HD Map Augmentation
	Impact of Screen-Space Tracking Augmentation

	Significance of 3D Tracking
	Implications of LiDAR Label Shifting
	Challenges of Night-time Conditions
	Perspective-Dependent Detector Performance

	Conclusion
	Future Work
	Improved Non-Maximum Suppression (NMS)
	Substituting HD Maps
	Extended use of Kalman Filters
	Improving Pedestrian/Cyclist Detection
	Neural Keypoint Estimation
	Amodal Instance Segmentation

	Bibliography

