
Department of Informatics
Technical University of Munich

Bachelor’s Thesis in Informatics

Real-Time Monocular 3D Object Detection to
Support Autonomous Driving
Echtzeitfähige und Kamera-basierte 3D Objektdetek-
tion für die Unterstützung des Autonomen Fahrens

Supervisor Prof. Dr.-Ing. habil. Alois C. Knoll

Advisor Walter Zimmer, M.Sc.

Author Leon Blumenthal

Date February 15, 2022 in Garching

Disclaimer

I confirm that this Bachelor’s Thesis is my own work and I have documented all sources and
material used.

Garching, February 15, 2022 (Leon Blumenthal)

Abstract

Autonomous driving is one of the most influential technologies of our time. It will decrease
accidents on the road and save countless lives. However, intelligent infrastructure systems
are needed to aid self-driving cars by providing crucial information from outside the limited
range of vehicle-mounted sensors. The 3D detection of vehicles on the road is one of the
use cases. In contrast to costly LiDAR sensors which are commonly used for this, cameras
can pose a cost-effective alternative, however, they only capture 2D information. Therefore,
intelligent algorithms are essential to overcome this issue.

This thesis proposes a real-time approach to estimate 3D bounding boxes for vehicles
within the Providentia++ test stretch, which contains straight highway segments and pre-
cisely calibrated cameras. Leveraging these constraints, the method projects the bottom
contour of instance masks, generated with existing instance segmentation models, from the
image onto the ground plane. These should approximate exactly two bottom edges of the
ideal 3D bounding boxes and are therefore used to estimate the location and dimensions of
the vehicles. Additionally, the heights are estimated based on a simple geometric argument
involving the instance mask the heights and the viewing angle of the camera. The proposed
approach is also evaluated on the A9-Dataset and produces results that surpass the previously
evaluated methods for monocular 3D object detection.

Zusammenfassung

Autonomes Fahren ist eine der einflussreichsten Technologien in der heutigen Zeit. Es wird
die Zahl der Autounfälle vermindern und unzählige Leben retten. Jedoch wird hierfür eben-
falls intelligente Verkehrsinfrastruktur benötigt, welche die selbstfahrenden Fahrzeuge mit
Daten unterstützen, die von außerhalb der Sensorreichweiten stammen. Einer dieser An-
wendungsfälle ist die 3D Objektdetektion von Straßenfahrzeugen. Im Gegensatz zu Li-
DAR-Sensoren sind Kameras eine kostengünstige Alternative, welche aber nur 2D Daten
aufnehmen. Um dieses Problem zu lösen, sind intelligente Algorithmen essenziell.

In dieser Arbeit wird eine echtzeitfähige Methode vorgeschlagen, welche 3D Bounding-
Boxen von Fahrzeugen innerhalb der Providentia++-Teststrecke erkennen kann. Die Test-
strecke beinhaltet gerade Autobahnabschnitte mit präzise kalibrierten Kameras. Mithilfe
dieser können die unteren Konturen einer Maske, welche von einem Instance-Segementation-
Modell erstellt wurde, vom Kamerabild auf die Straßenebene projiziert werden. Diese sollten
dann genau zwei untere Kanten der idealen 3D-Bounding-Boxen approximieren und können
so genutzt werden, um die Abmessungen und Positionen der Fahrzeuge zu bestimmen. Zusät-
zlich werden die Fahrzeughöhen mit einem einfachen geometrischen Argument, welches die
Maskenhöhen und den Kamerawinkel miteinbezieht, bestimmt. Die Methode wird ebenfalls
auf dem A9-Dataset evaluiert und liefert bessere Erbenisse als zuvor getestete Ansätze.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contribution . 2

2 Background 5
2.1 Instance Segmentation . 5

2.1.1 COCO Dataset . 5
2.1.2 Cityscapes Dataset . 5

2.2 3D Object Detection of Vehicles . 6
2.2.1 KITTI Dataset . 6
2.2.2 Large-Scale Datasets . 6

2.3 Pinhole Camera Model . 7
2.4 Metrics . 8

2.4.1 Binary Classification . 8
2.4.2 Object Detection . 9
2.4.3 3D Object detection . 9

2.5 Robot Operating System . 10
2.6 Providentia++ A9-Dataset . 10

3 Related Work 13
3.1 Instance Segmentation . 13

3.1.1 Mask R-CNN . 13
3.1.2 YolactEdge . 13

3.2 3D Object Detection of Vehicles . 14
3.2.1 Keypoint Estimation . 14
3.2.2 Depth Estimation . 15
3.2.3 Road-Side Approaches . 15

4 Approach 17
4.1 Instance Segmentation . 17
4.2 Bottom Mask Contour Extraction . 18
4.3 2D Bounding Box Estimation . 19
4.4 Height Estimation . 20
4.5 Category Correction . 20
4.6 Providentia++ Toolchain Integration . 22

5 Evaluation 23
5.1 Instance Segmentation . 23

5.1.1 Inference Time . 23
5.1.2 Qualitative Results . 24

vi Contents

5.1.3 Limitations . 24
5.2 3D Bounding Box Estimation . 26

5.2.1 A9-Dataset . 26
5.2.2 Data Association . 26
5.2.3 Metrics . 27
5.2.4 Hyperparameter Optimization . 27
5.2.5 Test Set Evaluation . 28
5.2.6 Qualitative Results . 30

6 Future Work 33
6.1 Dynamic Orientation . 33
6.2 Combining Multiple Perspectives . 34
6.3 Transfer Learning . 34

7 Conclusion 35

Bibliography 37

List of Figures

2.1 An example image from the KITTI dataset . 6
2.2 The geometric structure of the Pinhole Camera Model 7
2.3 An overview of the Providentia++ test stretch . 10
2.4 Example images from all four cameras in the A9-Dataset. 11

3.1 Results of the RTM3D model on an image of the Providentia++ test stretch. . 15

4.1 The steps of the proposed approach from an original image to final predictions. 17
4.2 Instance segmentation masks on an image including 2D bounding boxes from

a Mask R-CNN trained on the COCO dataset. 18
4.3 Image, instance mask, and bottom contour of a vehicle. 19
4.4 2D hyperplane, including the normal vector, in red and orientation of the ve-

hicles in green. 20
4.5 Comparison of naive and improved 2D bounding boxes (blue) calculated from

projected bottom contours (red) compared to labels (green). 21
4.6 The geometric configuration of a camera and the vehicle, which is used for

estimating the height. 21
4.7 Distribution of vehicle heights grouped by category for the A9-Dataset. 22

5.1 Comparison of mask quality between pre-trained Mask R-CNN R-50-FPN and
YolactEdge R-101-FPN models . 24

5.2 Instance masks and 2D bounding boxes for partially and fully occluded vehicles. 25
5.3 Instance masks generated by a YolactEdge R-101-FPN model on an image with

rainy weather and unfavorable lighting conditions. 25
5.4 Confusion matrix for categories from labels (columns) to predictions (rows). . 29
5.5 Qualitative results of the fixed orientation approach with YolactEdge R-101-FPN

from all four perspectives of the A9-Dataset. 30
5.6 Qualitative instance segmentation results of pre-trained (COCO, *Cityscapes)

Mask R-CNN and YOLACT models above a 0.7 score. 31
5.7 MAE values for location, length, width, and height grouped by distance to the

camera of matched vehicles in the test set. 32

6.1 A frame of an intersection at the S110 measurement point of the extended
Providentia++ test stretch. 33

6.2 The ground contours and a 2D bounding box estimation for vehicles on a frame
of an intersection at the S110 measurement point of the extended Providen-
tia++ test stretch. 34

List of Tables

2.1 Confusion matrix for binary classification. 8
2.2 Number of labels per category in the camera part of the A9-Dataset. 11
2.3 Number of frames and labels per camera in the A9-Dataset. 11

5.1 Comparison of pre-trained Mask R-CNN and YOLACT models. 24
5.2 Mapping of vehicle categories to length, width, and height values calculated

on a subset of the A9-Dataset. 27
5.3 Optimal hyperparameters for the proposed approach per instance segmenta-

tion model. 28
5.4 Comparison of MAE values of the predictions on the test set using the fixed

orientation approach per instance segmentation model. 29
5.5 MAE values and number of matched vehicles grouped by labeled category. . . 30
5.6 MAE values and number of matched vehicles grouped by the camera. 30

Chapter 1

Introduction

1.1 Motivation

Autonomous driving is one of the most exciting technologies that is being developed in our
time. It will decrease the number of accidents on the road by removing human error, which in
turn will save countless lives. Additionally, traffic will be more efficient due to intercommuni-
cation between vehicles and road infrastructure. Also, humans can be more productive since
less time is being spent steering a vehicle. Furthermore, multiple users can share vehicles,
which reduces the demand for producing new vehicles and decreases the total number of ve-
hicles in a city. Therefore, fewer parking spaces are required, which allows for more natural
space. However, technology in this domain is still in its infancy, yet it is a very active field of
research. Autonomous vehicles (AVs) have multiple sensors onboard (e.g. LiDAR, radar, and
cameras). These can perceive their local environment and based on that, intelligent decisions
can be made. This is generally called the vehicle-side or ego perspective.

However, especially on highways, the limited range of vehicle-mounted sensors, which
can only capture information in a small area around them, is not enough. For example,
the vehicle directly in front occludes all other vehicles ahead in the same lane. This limita-
tion can be overcome by intelligent infrastructure systems, that aid the vehicles by providing
additional information about the current traffic situation and possible hazards. Generally,
capturing information from outside a vehicle at a fixed location is called the road-side per-
spective. With a single infrastructure system, that all vehicles on the same road segment
communicate with, it is also possible to connect the different vehicles, such that they can
act as a symbiotic system and therefore cause fewer disruptions to the traffic flow, decrease
congestion, and improved efficiency in general.

Exactly such an intelligent infrastructure system is studied in the research project Prov-
identia++ [Kra+]. Multiple sensors of different types were installed at various locations,
mainly gantry bridges and masts, on a test stretch of the A9 highway near Munich. The goal
of the project is to detect all vehicles of different types on the test stretch with various sensors
and combine them all into a digital twin of the traffic on the road. This data can then be sent
back to the individual vehicles. As the next part of the project, adding urban areas to the
digital twin is researched.

Regardless of ego or road-side perspective, the first step is generally to get an accurate
representation of the current state of the environment. This is commonly called Perception.
The accuracy of it is of crucial importance because all errors will be transferred into the next
steps, which cannot compromise them. Therefore it is the foundation of any use case in
this domain. Generally, vehicles are the most important object to perceive, since they are
normally the only moving entities on the road. 3D object detection is the task that estimates
their locations and dimensions. Multiple types of sensors can be employed for this, commonly

2 1 Introduction

LiDAR sensors are used because they are very accurate and can capture the required 3D
information directly in form of 3D point clouds. However, they are very costly, which is why
cameras can pose a cost-effective alternative to them. But, they only capture 2D information
(i.e. images), therefore, additional intelligent algorithms are required to overcome this issue.

1.2 Problem Statement

The monocular 3D object detection of vehicles from the ego perspective is the issue solved
in this thesis. That means only a single image from a single camera is used. However,
there are additional constraints that simplify the task: Only straight highway segments of the
Providentia++ test stretch with precisely calibrated cameras are discussed.

The main challenge of extracting 3D information from 2D images is the lack of depth
information. A single pixel on the image plane corresponds to an infinite number of points in
3D space that lie on a straight line. That means, without any additional information, it is not
possible to make predictions for vehicles poses. However, due to the fact that vehicles drive
on the ground, leveraging the calibration data of the camera, the previously mentioned issue
can be compensated. Essentially, an object is on the ground can be located by calculating the
intersection of the 3D line that corresponds to the pixel and the ground plane. The size of
an object can also be an indicator for its distance to the camera, although, it is not reliable
due to varying sizes of vehicles (e.g. a truck far away can have the same size as a closer
vehicle on an image). The pose of vehicles also includes the orientation. In 3D space, the can
be generally described with three degrees of freedom, though, vehicles on the ground are
constrained and can be described with only one (i.e rotation around the normal vector of the
ground plane). Because only straight highway segments are contained in the Providentia++
test stretch, the orientation of a vehicle is also predetermined by the side of the road it is
driving on. Technically, the orientation of vehicle changing lines is slightly different from the
road direction, however, this small deviation is negligible. All these facts can be combined to
estimate 3D bounding boxes with sufficient accuracy.

Also, this entire method should run as part of the Providentia++ toolchain. This entails
that the entire computation (from an input image to 3D bounding boxes) is required to run in
real-time. Hence, the number of frames per second (FPS), which can be handled continuously,
should be larger than 30. This ensures that a live video from the test stretch can be processed
without missing any frames. The detected 3D bounding boxes are then further processed in
the toolchain, mainly in the tracking and data fusion steps. Lastly, the digital twin is created.

1.3 Contribution

My contributions in this thesis are the following:

• The evaluation of two different instance segmentation models for detecting vehicles on
a highway within the Providentia++ test stretch

• A method to estimate 3D bounding boxes for vehicles with different categories on a
straight road from only a single 2D image and additional calibration data of the camera

• An evaluation of this method based on the A9-Dataset created as part of the Providen-
tia++ project

• The real-time implementation of this method

1.3 Contribution 3

• The integration into the existing Providentia++ toolchain

First, important concepts, terms, and datasets are explained. Next, related work in the
field of monocular 3D object detection is presented. Then, my approach is described in detail.
Afterward, the approach is evaluated on the A9-Dataset. After that, limitations and possible
improvements of my work in the future are presented. In the conclusion, the general results
and findings are discussed.

Chapter 2

Background

This chapter deals with practical and theoretical background information, which is used in the
following chapters. First, a general description of instance segmentation and popular datasets
for it is given. Next, 3D object detection of vehicles is presented, also including prominent
datasets for it. Then, the model for transformations between 2D image and 3D space is
explained. Following, applicable metrics for instance segmentation and object detection are
described. After that, general principles of the Robot Operating System ROS and its advantages
are highlighted. Lastly, the A9-Dataset and the structure of the Providentia++ test stretch are
discussed.

2.1 Instance Segmentation

Instance segmentation is the task of detecting multiple objects in an image and their instance
masks. Typical models also output a 2D bounding box, a class label of the object, and a
confidence score. It is a very active field of research and in recent years, many promising
approaches were developed. This also entailed the creation of standardized datasets for
producing comparable evaluation results.

2.1.1 COCO Dataset

The most popular one, Common Object in Context (COCO) [Lin+15], which is also used for
standard object detection, features over 123,000 images with more than 886,000 instances
from 80 object categories in its most recent version1. The categories are tailored for a diverse
set of objects in their common environments, however, models trained on it can still be useful
for detecting road vehicles due to the included categories: CAR, TRUCK, and BUS.

2.1.2 Cityscapes Dataset

Another large-scale dataset is Cityscapes [Cor+16], which was created for image segmen-
tation and instance segmentation on images from urban environments. It contains 5,000
images with fine annotations and 20,000 with coarse ones from 50 German cities featuring
objects from 30 classes. Eight of these are vehicles, which makes the dataset potentially very
applicable to the task of this thesis.

1https://cocodataset.org/#explore

https://cocodataset.org/#explore

6 2 Background

2.2 3D Object Detection of Vehicles

The task of detecting 3D bounding boxes (location, length, width, and height) for vehicles in
the 3D world relative to a specified coordinate frame based on multiple kinds of sensor data,
even combinations of them, is a very prominent field of research, especially in the last years
with the increasing interest in self-driving cars. However, autonomous vehicles (AVs) directly
are not the only possible application for it. For instance, intelligent infrastructure systems can
also benefit from it. The difference between these two tasks is mainly the perspective: one
is from inside the vehicle, the ego perspective, while the other one (road-side perspective) is
from a fixed point of view without a relation to a specific vehicle. The latter one is relevant
to this thesis. Similar to instance segmentation, there are standard datasets for evaluating
approaches.

2.2.1 KITTI Dataset

Are we ready for Autonomous Driving?
The KITTI Vision Benchmark Suite

Andreas Geiger and Philip Lenz
Karlsruhe Institute of Technology

{geiger,lenz}@kit.edu

Raquel Urtasun
Toyota Technological Institute at Chicago

rurtasun@ttic.edu

Abstract

Today, visual recognition systems are still rarely em-
ployed in robotics applications. Perhaps one of the main
reasons for this is the lack of demanding benchmarks that
mimic such scenarios. In this paper, we take advantage
of our autonomous driving platform to develop novel chal-
lenging benchmarks for the tasks of stereo, optical flow, vi-
sual odometry / SLAM and 3D object detection. Our record-
ing platform is equipped with four high resolution video
cameras, a Velodyne laser scanner and a state-of-the-art
localization system. Our benchmarks comprise 389 stereo
and optical flow image pairs, stereo visual odometry se-
quences of 39.2 km length, and more than 200k 3D ob-
ject annotations captured in cluttered scenarios (up to 15
cars and 30 pedestrians are visible per image). Results
from state-of-the-art algorithms reveal that methods rank-
ing high on established datasets such as Middlebury per-
form below average when being moved outside the labora-
tory to the real world. Our goal is to reduce this bias by
providing challenging benchmarks with novel difficulties to
the computer vision community. Our benchmarks are avail-
able online at: www.cvlibs.net/datasets/kitti

1. Introduction

Developing autonomous systems that are able to assist
humans in everyday tasks is one of the grand challenges in
modern computer science. One example are autonomous
driving systems which can help decrease fatalities caused
by traffic accidents. While a variety of novel sensors have
been used in the past few years for tasks such as recognition,
navigation and manipulation of objects, visual sensors are
rarely exploited in robotics applications: Autonomous driv-
ing systems rely mostly on GPS, laser range finders, radar
as well as very accurate maps of the environment.

In the past few years an increasing number of bench-
marks have been developed to push forward the perfor-
mance of visual recognitions systems, e.g., Caltech-101

Figure 1. Recording platform with sensors (top-left), trajectory
from our visual odometry benchmark (top-center), disparity and
optical flow map (top-right) and 3D object labels (bottom).

[17], Middlebury for stereo [41] and optical flow [2] evalu-
ation. However, most of these datasets are simplistic, e.g.,
are taken in a controlled environment. A notable exception
is the PASCAL VOC challenge [16] for detection and seg-
mentation.

In this paper, we take advantage of our autonomous driv-
ing platform to develop novel challenging benchmarks for
stereo, optical flow, visual odometry / SLAM and 3D object
detection. Our benchmarks are captured by driving around a
mid-size city, in rural areas and on highways. Our recording
platform is equipped with two high resolution stereo cam-
era systems (grayscale and color), a Velodyne HDL-64E
laser scanner that produces more than one million 3D points
per second and a state-of-the-art OXTS RT 3003 localiza-
tion system which combines GPS, GLONASS, an IMU and
RTK correction signals. The cameras, laser scanner and lo-
calization system are calibrated and synchronized, provid-
ing us with accurate ground truth. Table 1 summarizes our
benchmarks and provides a comparison to existing datasets.

Our stereo matching and optical flow estimation bench-
mark comprises 194 training and 195 test image pairs at
a resolution of 1240 × 376 pixels after rectification with
semi-dense (50%) ground truth. Compared to previous
datasets [41, 2, 30, 29], this is the first one with realis-
tic non-synthetic imagery and accurate ground truth. Dif-

1

Figure 2.1: An example image from the KITTI dataset [GLU12].

The most popular multi-modal dataset, KITTI [GLU12], features videos recorded from a
vehicle with additional LiDAR and GPS data. Multiple benchmarks for different tasks are pro-
vided by the authors, including 2D and 3D object detection, depth estimation, segmentation,
and more2. The 3D object detection task is composed of approximately 7,500 training and
test stereo images with additional point clouds. In total, they include over 80,000 labeled 3D
objects. An example frame is shown in Figure 2.1.

Note, the Cityscapes dataset also contains a 3D object detection task3.

2.2.2 Large-Scale Datasets

While KITTI was the pioneering dataset in this field, the focus shifted to a larger scale in
recent years. An impressive dataset is the Waymo Open dataset [Sun+20], which contains
1,150 scenes, each 20 seconds long. It consists of camera and LiDAR data, annotated with
2D and 3D bounding boxes respectively. The goal of it is to bridge the gap between research
and real-world use. A similar dataset, called nuScenes [Cae+20], also has radar and images
with 360-degree views. It contains 1,000 scenes, also 20 seconds long, with 23 classes.

This is not an exhaustive list, nonetheless, all the mentioned datasets are focused on the
ego perspective. To my knowledge, there is no dataset tailored to the road-side perspective

2http://www.cvlibs.net/datasets/kitti/index.php
3https://www.cityscapes-dataset.com/benchmarks/#3d-vehicle-detection-task

http://www.cvlibs.net/datasets/kitti/index.php
https://www.cityscapes-dataset.com/benchmarks/#3d-vehicle-detection-task

2.3 Pinhole Camera Model 7

with similar scale and popularity. However, this does not mean that they cannot be potentially
helpful for it.

2.3 Pinhole Camera Model

Figure 2.2: The geometric structure of the Pinhole Camera Model. It is used to project coordinates from the 3D
world into the 2D image plane. (https://hedivision.github.io/Pinhole.html)

Transforming coordinates from the 3D world onto an image can be explained with the
Pinhole Camera Model [HZ04], which is illustrated in Figure 2.3. The camera center C is the
origin of the camera coordinate frame, in which the image plane is orthogonal to the z-axis
and has a distance of f to the origin. Now, every 3D point in the camera coordinate system
(xc , yc , zc)T corresponds to a 2D point on the image plane as follows:





xc
yc
zc



 −→

� f xc
zc

f yc
zc

�

=

�

xp
yp

�

(2.1)

where xp and yp are the pixel coordinates. This transformation can also be expressed
with a linear matrix multiplication:





xpz
ypz
z



=





f xc
f yc
zc



=





f 0 0
0 f 0
0 0 1









xc
yc
zc



 (2.2)

To get the pixel coordinates, the x and y values are divided by z. This can also be
described with the intrinsic matrix K, which includes more parameters to compromise the
imperfect internal geometry of the camera. It is defined like this:

K =





fx 0 px
0 f y py
0 0 1



 (2.3)

Together with a homogeneous transformation matrix, composed of a rotation matrix R
and a translation vector t with respect to the world coordinate system, called the extrinsic
matrix, a 3D point in world coordinates (xw, yw, zw)T can be projected to image coordinates
with the following equation. Note, the two matrices together, are also called the projection
matrix.

https://hedivision.github.io/Pinhole.html

8 2 Background





xpz
ypz
z



= K
�

R t
�







xw
yw
zw
1






(2.4)

Due to the projection from 3D to 2D, information is lost, however, a single point on the
image plane corresponds to a line in the 3D camera coordinate system, which spans from the
origin to the image coordinates. This allows projecting a point from the image to a 3D point
on the ground, e.g. the road, by computing the intersection of the line and the ground plane.
Assuming the ground plane is defined as z = 0, the transformation can be split into simple
steps:

1. Re-project the pixel coordinates into the 3D camera coordinate system using K−1

2. Rotate the points back into the world rotation with R−1 (R−1 = RT)

3. Divide the new x and y values by z

4. Multiply with the negative height of the camera

5. Add the translation vector of the camera position

Afterward, the z value is zero and the x and y coordinates correspond to the location on
the ground.

2.4 Metrics

2.4.1 Binary Classification

For a binary classification with N number of samples and labels, the output of a model can
be partitioned into four categories, as shown in Table 2.1. This is generally known as the
confusion matrix.

Output True Output False
Label True True Positive (TP) False Negative (FN)
Label False False Positive (FP) True Negative (TN)

Table 2.1: Confusion matrix for binary classification.

These can then be combined to form additional metrics with more complex meanings.
The most common metric is Accuracy, it is defined as:

accurac y =
TP+ TN

N
(2.5)

It describes the percentage of correctly classified examples. However, this loses meaning
when the number of samples per class is imbalanced. For example, a trivial model, that
always predicts True, would achieve an accuracy of 95 % on a dataset with 95 True samples
and 5 False samples. To assess such a situation better, different metrics are needed. Two
popular ones are Precision and Recall:

precision=
TP

FP+ TP
(2.6)

2.4 Metrics 9

recal l =
TP

TP+ FN
(2.7)

Precision gives a value on how many samples, that are predicted as True, are actually True.
In contrast, Recall describes how many samples, that are actually True, are predicted as True.
Both can also be combined:

f 1= 2 ∗
recal l ∗ precision
recal l + precision

(2.8)

The F1-Score is the harmonic mean of Precision and Recall and is a great indicator of
overall model performance.

2.4.2 Object Detection

The previously explained metrics can also be used for object detection, though, detections
and labels have to be associated with each other first. This is often done by calculating the
ratio of intersection and union for the 2D bounding boxes (IoU). Detections and labels are
matched if they have an IoU above a specified threshold value (e.g. 0.7). Then, the number
of detected objects is TP, the number of undetected objects is FN, and the number of invalid
detections is FP. The notion of TN is not defined here, however, Precision, Recall, and F1-Score
do not require TN anyway.

There are two main ways to compute these metrics on an entire dataset of images. One
is called Macro-Average, first, the metrics are computed per image individually and then
averaged over all of the images. The other one is called Micro-Average and works the other
way around, TP, FP, and FN are computed for each image and then combined into three
values for the entire dataset. Then the metric is computed with three dataset-wide values.

In the domain of object detection, there exists another popular metric called AP, which is
the area under the curve of Precision per Recall for all IoU threshold values. This is normally
approximated with e.g. 11 fixed IoU values. Technically, this metric is computed per class,
and averaging them is called mAP, however, sometimes there is no distinction between them
(e.g. in the COCO dataset mAP is called AP).

2.4.3 3D Object detection

For 3D object detection, the metrics based on binary classification are not sufficient to eval-
uate the performance of a model. This is because the error of the 3D bounding box is also
very important. One way to do this is called Mean Absolute Error (MAE). It can be calculated
element-wise (i.e. per x-location, length, etc. individually) as follows:

MAE =
1
N
∗

N
∑

i=1

|yi − ŷi| (2.9)

where yi is the actual e.g. length value and ŷi is the predicted value for a single vehicle.
To compute this metric for an entire dataset, Macro-Average, where the MAE values are com-
puted per image and then averaged, or Micro-Average, where a single MAE value is calculated
over all vehicles from all datasets, can also be used.

There are other metrics, such as Root Mean Squared Error (RMSE), which work with
squared errors instead of absolute values. However, MAE can be interpreted as: "How wrong
are the values on average?", hence it is very useful for an evaluation that produces an intuitive
understanding of the error values.

10 2 Background

2.5 Robot Operating System

The Robot Operating System (ROS)4 is an open-source middleware software framework for
robot applications. However, it is not a real operating system and the term robot can be
widely interpreted.

Its main intent is to provide a standard way of combining multiple processes, that work
together on a task, and their communication between each other. This should not introduce
much overhead and act as a thin layer above the original source code. A single process is
called Node and it can communicate with other processes using messages. This is done with
Topics, where each Node can send messages to a chosen Topic and another Node can subscribe
(i.e. listen to it) and receive the messages. The form and type of each message are also
specified.

Software is partitioned into Packages and can be written in multiple programming lan-
guages. Multiple Packages can also be combined. Additionally, multiple tools and software
packages are available to facilitate a multitude of tasks, irrelevant to the thesis.

2.6 Providentia++ A9-Dataset

intersections. Since large-scale setups like the Providentia++
system are laborious and costly to construct, we want to
share the data with the automotive perception research
community. It is intended for improving the robustness of
vehicle detection models in general and for increasing the
perception performance of intelligent infrastructure systems
in particular.

II. RELATED WORK

There exist numerous autonomous driving datasets focus-
ing on the on-board sensor data collection. One of the earliest
and most famous is the KITTI dataset [1] published almost
a decade ago. It has had a great impact on autonomous
driving research with more than 13,000 academic citations
since its release. Apart from that, Lyft Level 5 [2] is one
of the largest autonomous driving datasets in the industry
containing over 1,000 hours of data and 170,000 scenes.
Meanwhile, being considered as the first dataset to carry the
full autonomous vehicle sensor suite, nuScenes [3] comprises
1,000 scenes annotated with 3D bounding boxes. It has 7
times the number of annotations and 100 times the number
of images as the pioneering KITTI dataset. The Argoverse
open-source dataset [4] is dedicated to 3D tracking and
motion forecasting. It comprises 3D tracking annotations
for 113 scenes and additionally 324,557 interesting vehicle
trajectories extracted from over 1,000 driving hours. In
addition, the Waymo open dataset was recently released. It
is organized into a perception dataset [5] with over 100,000
scenes and a motion dataset [6] with 1,150 scenes containing
2D and 3D annotations captured across a range of urban and
suburban roads.

Data recorded from an aerial perspective is considered
to be valuable for fostering autonomous driving and traffic
simulation research. With this intention, the Next Genera-
tion SIMulation (NGSIM) dataset [7], [8] was released in
2006. Here, the traffic was recorded by cameras mounted to
surrounding buildings and processed to naturalistic vehicle
trajectories. However, many errors concerning vehicle dy-
namics have been found in the data [9], all of which harm
the trust in analyses based on it. Furthermore, since 2005,
camera-equipped drones have been used for aerial traffic
monitoring [10]. The highD dataset [11] is considered to be
the first public traffic dataset recorded by camera drones. The
large-scale dataset was recorded at six different locations of
the German autobahn and contains trajectories from 110,500
vehicles. It was recently supplemented by the datasets inD
[12] and rounD [13] that offer data from intersections and
roundabouts, respectively.

While especially the highD dataset lays a sound ground-
work for developments concerning aerial traffic monitoring,
we want to complement the available data. The A9-Dataset
not only extends the data with the unique perspective of
stationary infrastructure-mounted sensors, but moreover, our
multi-modal sensor setup allows us to provide diverse and
rich data of the traffic.

III. SENSOR SETUP

We recorded the A9-Dataset on the test bed Providentia++.
This section gives an insight into the test bed as well as the
sensors that we used.

S110

M90

M80

S60

M70

S50

S40

Backend

Fig. 2: Overview of the test bed Providentia++ (Graphics
made with Google).

A. Test bed

Based on the real world Intelligent Transportation System
(ITS) Providentia [14], [15], [16], we have extended the test
bed into urban areas in the follow-up project Providentia++.
On a total length of 3.5 km, the ITS is located at the autobahn
A9 as well as the highway B471 near Munich. Therefore, the
ITS covers with 7 measurement points the complete range of
possible traffic scenarios: freeway, highway, roundabout and
intersection in urban areas with pedestrians and bicycles. The
main purpose of the ITS is the creation of digital twins of all
traffic participants in real-time. Figure 2 shows a complete
overview of the Providentia++ test bed.

Fig. 3: Camera perspective of the S50 camera in southern
direction.

The presented dataset is based on the sensors of the
measurement points S40 and S50 mounted on overhead
gantry bridges along the A9 autobahn. The S40 sensor station
contains one near field camera with 16 mm focal length,
one far field camera with 50 mm focal length, and two
Radars in north and south direction. Additionally, the S40
has two event-based cameras in north direction. On sensor
station S50, the same camera and radar setup as on S40 is

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 267 submitted to 2022 33rd IEEE Intelligent Vehicles Symposium (IV).

Received February 2, 2022.

Figure 2.3: An overview of the Providentia++ test stretch from [Cre+22].

The A9-Dataset [Cre+22] is a multi-modal dataset recorded on the Providentia++ test
stretch near Munich. It consists of 1098 labeled frames, while 642 of those frames were
recorded with cameras, the remaining part was captured using LiDAR sensors. In the follow-
ing, only the camera part of the A9-Dataset is discussed.

The images were captured from the two measurement points S40 and S50, which are
displayed in Figure 2.3. The distance between S40 and S50 is less than 500 meters. There
are two cameras at each measurement point. One camera has a narrow field of view with a
focal length of 50 mm and the other camera has a wider field of view with a focal length of
16 mm. The cameras at both measurement points face the same road segment from opposite
sides. In Figure 2.4, an example image for each camera is shown.

All images contain a total number of 11,353 labeled 3D objects from nine different cat-
egories. The categories and number of labels per category are displayed in Table 2.2. The

4https://www.ros.org/

https://www.ros.org/

2.6 Providentia++ A9-Dataset 11

Category #Labels

CAR 8156
VAN 1174
TRAILER 1048
TRUCK 853
BUS 59
MOTORCYCLE 33
PEDESTRIAN 20
SPECIAL_VEHICLE 9
BICYCLE 1

Table 2.2: Number of labels per category in the camera part of the A9-Dataset.

majority of the vehicles are cars, trucks, trailers, and vans. In Table 2.3, the number of frames
and vehicles are grouped per camera.

Camera #Frames #Labels Avg. #Labels per Frame

S40 North 50 mm 179 5484 30.64
S40 North 16 mm 174 2109 12.12
S50 South 50 mm 174 2848 16.37
S50 South 16 mm 114 912 8.00

Table 2.3: Number of frames and labels per camera in the A9-Dataset.

The labels for each frame are saved as JSON files, which contain the 3D locations and
dimensions for all labeled vehicles. For each camera, calibration data (i.e. intrinsic and
extrinsic camera matrices) is also provided.

(a) S40 North 16 mm (b) S40 North 50 mm

(c) S50 South 16 mm (d) S50 South 50 mm

Figure 2.4: Example images from all four cameras in the A9-Dataset.

Chapter 3

Related Work

In this chapter, related work is presented, which either supports the proposed method or
aims to solve the same or a similar task. First, two different instance segmentation models
are presented. Then, different methods for 3D object detection of vehicles are addressed.

3.1 Instance Segmentation

There is an abundance of different architectures for instance segmentation available, often
the implementation is also provided by researchers. These models are evaluated and com-
pared on standard datasets like COCO or Cityscapes, as presented in Subsections 2.1.1 and
2.1.2. Additionally to the implementation, pre-trained weights based on these datasets are
also frequently provided. In the following two different approaches are described. Note,
there are even more sophisticated architectures with better performance, that make use of
Transformers e.g. [Che+21], yet, they neither perform real-time nor is a more detailed mask
required for the approach presented in this thesis. The latter is explained later in Subsection
4.2.

3.1.1 Mask R-CNN

One popular model is called Mask R-CNN [He+18], is an extension of a model for object
detection called Faster R-CNN [Gir15] and consists of two stages. First, a Region Proposal Net-
work (RPN), which includes a backbone for feature extraction from an image, proposes 2D
bounding boxes for potential objects. Second, three heads use them for producing instance
masks, categories, and refined 2D bounding boxes. Multiple variants with different back-
bones are available, implemented with Detectron2 [Wu+19], including pre-trained weights
on COCO and Cityscapes as part of the their Model Zoo1. It helped to experiment and develop
the approach because of its excellent usability, though, it is not practical for real-time use
due to its considerable inference time, even with the smallest backbone, as later presented in
Subsection 5.1.1.

3.1.2 YolactEdge

A different model for instance segmentation, YolactEdge [Liu+21a], also known as just YOLACT,
aims to explicitly solve the real-time issue. Moreover, it accomplishes this task for images

1https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md

https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md

14 3 Related Work

(with a resolution of 550x550) on edge devices (i.e. computers close to their use case and
generally with less computation power). It leverages TensorRT2, which greatly improves in-
ference time with certain optimizations. This also enables real-time inference for images
with higher resolution on regular devices with a descent GPU. In contrast to Mask R-CNN,
which is an extension of the two-stage model Faster R-CNN, it consists of a single stage and
similarly is an extension of a one-stage object detection model like YOLO [Red+16]. The
single stage performs two parallel tasks at once: one produces general instance masks for the
whole image, called prototype masks, while the other detects objects (single-stage) and their
relation to the prototype masks. At last, both results are combined for the finished instance
masks. The authors also provide an open source implementation with pre-trained weights3

on COCO, though not on the Cityscapes dataset. This model allows the proposed method to
run in real-time and is therefore used in the final implementation.

3.2 3D Object Detection of Vehicles

While there is a multitude of approaches, for 3D object detection of vehicles, using other
sensors than cameras, this thesis only focuses on images from a single camera (monocular
3D object detection). Therefore, only those approaches, which work based on single images
are explored here. This is a particularly interesting case because missing information from
2D to 3D has to be inferred, as described in Section 1.2. Similar to the datasets for monocular
3D object detection, as described in 2.2, the approaches are primarily designed for AVs, i.e.
the ego perspective, but that does not mean that they cannot potentially perform on tasks
from a road-side perspective. In the following, some approaches from two prominent types
are shown. Lastly, methods developed for the road-side perspective are presented.

3.2.1 Keypoint Estimation

A keypoint is a point of interest in the image, which is directly estimated. All of the following
methods use this technique to some degree.

A popular approach, which outperformed all other monocular methods on the KITTI
dataset, is called SMOKE. It is a single-stage detector, which estimates the center of the
3D bounding box, projected onto the image, as described in 2.3, as a keypoint and simulta-
neously regresses variables for the dimensions and orientation of it. Then, both results are
combined for a single prediction.

Another method, named RTM3D [Li+20], directly estimates nine keypoints, the center
and all eight corners of the projected 3D bounding box, on the image plane. Afterward, the
keypoints are used to estimate the real 3D bounding box using geometric constraints, such
that the reprojection error of the estimated corners, with respect to the 2D corners (i.e. the
estimated keypoints), is minimized.

In contrast to the two previously mentioned methods, MonoEF [Zho+], specifically ad-
dresses the problem of extrinsic perturbations due to e.g. potholes or slope of the road. The
method also detects the horizon change and vanishing point to predict the extrinsic camera
parameters. Otherwise, the approach follows a similar approach like SMOKE.

At last, AutoShape [Liu+21b] uses another interesting idea and does not share the as-
sumption, that each vehicle is a cuboid. Instead, CAD models of vehicles are used to learn
meaningful keypoints based on them.

2https://developer.nvidia.com/tensorrt
3https://github.com/haotian-liu/yolact_edge

https://developer.nvidia.com/tensorrt
https://github.com/haotian-liu/yolact_edge

3.2 3D Object Detection of Vehicles 15

There are many more approaches, however, they are all designed for the ego-perspective,
which does not make them inherently useless, however, SMOKE and RTM3D were tested on
my task but did not produce satisfying results. In Figure 3.1, the results of the RTM3D on an
image of the Providentia++ test stretch are presented. Generally, these methods often lack
the ability to work with full-height images.

Figure 3.1: Results of the RTM3D model on an image of the Providentia++ test stretch.

3.2.2 Depth Estimation

Another family of approaches tries to predict the missing depth information directly and infer
vehicle poses from that. Wang et al. [Wan+18] propose a method to create image-based
depth maps and convert them to pseudo-LiDAR representations. These mimic the output of
regular LiDAR sensors, i.e. 3D point clouds. Therefore, existing 3D object detection methods
for point points clouds can be used. Contrary, Park et al. [Par+21] argue that end-to-end
methods perform better. They propose single-stage model, called DD3D, that achieves state-
of-the-art results on the datasets KITTI and nuScenes.

Both of these approaches are focused on the ego perspective and do not make use of the
fixed camera position and the straight highway segments. They were not tested on the vast
range of depth in the A9-Dataset.

3.2.3 Road-Side Approaches

Guo et al. proposed a method [Guo+21], which is explicitly designed for road-side per-
spectives, nonetheless, it can also be employed for ego perspectives. They use a pre-trained
instance segmentation model that produces an instance mask for each vehicle in the image
as backbone. Then, two lines are fitted to the bottom contour of the mask, using K-Means
clustering with K = 2 and lines instead of centroids. With these, three points, which are fur-
thest away and should resemble wheels, are selected as the corners of the 3D bounding box.
Unfortunately, this step is not clearly explained, especially how to infer three points from
two lines and how the situation, when these do not enclose a 90 degree angle on the ground
plane, is handled. Also, the assumption, that these points are the wheels is not validated.
Next, the vehicle dimensions and location are estimated from the three corners, also using
the Pinhole Camera Model to project points from the image onto the ground, as explained
in Section 2.3. At last, they introduce a post-processing step, using a Maximum a Posteriori
Estimation (MAP), to improve the 3D bounding box based on the 2D bounding box produced
by the instance segmentation model. An implementation is not provided, therefore it is not
clear, how the authors handled the mentioned issues. However, the idea to use the bottom

16 3 Related Work

contour of instance masks as an approximation of the edges of the vehicle, that contact the
ground, is the main inspiration for the method proposed in this thesis.

Another compelling approach, published by Clausse et al. [CBL19], was designed to
extract vehicle trajectories from videos for creating a dataset. For each frame, vehicle poses
are detected and then later combined. The detection part also uses instance segmentation
as the first step and then estimates a 3D bounding box on the ground by maximizing the
overlap from the mask and the area of a box projected onto the image. A limitation is that
pre-defined dimensions are used and not individually estimated per vehicle. The part for the
3D object detection is less complex than other methods, however, this is due to the focus of
tracking. There, estimates can be greatly improved by combining information from the same
vehicle in multiple frames, e.g. the orientation should be similar to the direction of motion.
Because of this, it is not directly applicable.

The Traffic-Net [RAM21] approach is designed to be a complete traffic monitoring so-
lution, i.e. vehicle detection, tracking, speed estimation, and congestion detection. This
allows, similar to the previously mentioned method, to support the 3D box estimation with
information from tracking. For the dimensions, pre-defined values are also used here. This is
therefore also not applicable for my task.

Zhu et al. [Zhu+22] published a procedure with a completely different idea. They project
the complete image onto the ground plane and detect rectangular 2D bounding boxes there.
Nonetheless, they do not predict height values. On the contrary to other methods, they do
not rely on intrinsic- and extrinsic camera parameters.

Note, this is not an exhaustive list. However, to my knowledge, there does not exist a
method, which focuses on highly calibrated cameras only for highway scenarios (i.e. only
two directions with vehicles facing the opposite orientation), which is the case for the A9-
Dataset created within the Providentia++[Cre+22] project. Therefore, the custom approach
proposed in this thesis is exactly tailored for this.

Chapter 4

Approach

The proposed approach for estimating 3D bounding boxes from a single image consists of five
main steps, shown in Figure 4.1. First, an already pre-trained instance segmentation model
is used to detect vehicles, especially their instance masks are important. Then, the bottom
contour for each mask is determined and afterward, projected onto the ground plane, based
on the exact calibration of the camera. Next, the projected contours are used to estimate 2D
bounding boxes on the ground, which are aligned to the direction of the road. This is tailored
for the highway scenarios, as contained in the A9-Dataset, and therefore heavily relies on the
stationary and calibrated camera perspectives. Afterward, the observed mask heights are
used to estimate the real height of each vehicle. At last, these estimations are used to correct
potentially wrong vehicle categories.

Instance Segmentation

Bottom Contour Extraction

2D BBox Estimation

Height Estimation

Category Correction

Frame

Predictions

Figure 4.1: The steps of the proposed approach from an original image to final predictions.

The hyperparameters for each step are also described, though, no explicit values are given
here because they depend on the chosen model for instance segmentation. In Subsection
5.2.4, they are determined for multiple models as part of the evaluation on the A9-Dataset.
In the following, each step is explained in detail.

4.1 Instance Segmentation

The backbone of the approach is an instance segmentation model, of which many implemen-
tations exist, as described in Section 2.1. It is not required that they are specifically trained

18 4 Approach

on a dataset for vehicles, nonetheless, it is advantageous if they generalize well enough and
can predict more than a single class for vehicles.

For each detection, a binary instance mask, 2D bounding box, class label, and score are
produced, which are all used in later steps. Depending on the particular dataset, on which the
model was trained, class labels need to be converted to categories used in the A9-Dataset, as
presented in Section 2.6. Detections with class labels, that do not have a corresponding cat-
egory, are removed. These depend on the dataset, that was used for training the model (e.g.
only classes "car", "truck", "bus" are relevant in the COCO dataset). Furthermore, predictions
with a score below a specified threshold value are also filtered out.

If specified, instance masks, that are closer to the image edges than a specified threshold
value, can also be removed. The reason for that is, that these potentially belong to truncated
vehicles, which leads to wrong results because of an incomplete mask, not covering the entire
vehicle. Additionally, instance masks with an approximated width, which is the square root of
the area (i.e. sum of the binary instance mask), below a specified value can also be deleted.
A visualization of produced instance masks and 2D bounding boxes on an image is shown in
Figure 4.2.

The hyperparameters summarized for this step are a score threshold, an approximated
mask width threshold, a minimum margin to image edges, and a mapping from possible
class labels to categories.

Figure 4.2: Instance segmentation masks on an image including 2D bounding boxes from a Mask R-CNN trained
on the COCO dataset.

4.2 Bottom Mask Contour Extraction

The bottom contour is determined for each instance mask. This is done by iterating over all
pixel-columns, where at least one pixel is part of the mask, and selecting the lowest one. An
illustration of a vehicle, the corresponding mask, and the resulting bottom contour is shown
in Figure 4.3.

The reasoning for using this contour is the following. Each vehicle is approximated as a
cuboid on the ground. That means that there are four edges contacting the ground, which
together form the 2D outline of the vehicle, including length and width. With the exception
of five viewing angles (facing exactly one of the sides or the roof), there are always two
of the edges on the ground visible. The bottom contour of the instance mask of such a

4.3 2D Bounding Box Estimation 19

(a) Image (b) Instance Mask (c) Bottom Contour

Figure 4.3: Image, instance mask, and bottom contour of a vehicle.

perfect cuboid, projected onto the ground plane, as explained in Section 2.3, would exactly
represent these two edges, which are theoretically sufficient to infer the 2D box, including
location and dimensions. However, vehicles are not ideal cuboids and instance masks are
not perfect. Nonetheless, the contour should resemble an L-shape, when projected onto the
ground. Based on this, the orientation, location, and dimensions can be estimated.

Due to ground clearance of vehicles and poor mask quality, the instance masks can be a
bit too high, as visible in Figure 5.1. This can be corrected by shifting all contours a fixed
number of pixels down, which is the only hyperparameter of this step.

4.3 2D Bounding Box Estimation

The bottom contours from an image of an intersection resemble an L-shape, as shown in
Figure 6.2. However, for those on the highway, as part of the A9-Dataset, it is not that clear
because only a small portion of a side edge is visible for many vehicles. Furthermore, small
errors of the masks are amplified due to the projection on the ground. Though, all camera
perspectives in the A9 dataset observe straight highway segments, as shown in Figure 2.3.
Therefore, the orientation of the perceived vehicles is fixed (modulo 180 degrees). This
information should be used, i.e. the orientation of the L-shape is known. Therefore, only the
dimensions and the location have to be estimated.

The direction of the road can be specified as a 2D hyperplane in the road coordinate
frame. On the positive side of it, the vehicles point to the left and on the other side the
other way. This allows to fully specify the correct orientations for a highway segment with
opposing lanes. To simplify the next calculations, the ground contours and camera positions
are rotated into a coordinate frame with the x-axis along the hyperplane (road direction and
car lengths). The y-axis is aligned with the normal vector (car widths). The orientation can
now be inferred using the sign of the y coordinate. An example of the 2D hyperplane and the
orientation and direction of vehicles is displayed in Figure 4.4.

In the rotated frame, a naive bounding box can be constructed by calculating the min-
imum and maximum values for x and y coordinates of the ground contour. However, due
to the missing side and errors of the contour, this leads to wrong and enlarged bounding
boxes. Note, as shown in 4.5, the corner nearest to the camera position is most accurate.
Intuitively, this makes sense, since the corner is definitely very close to the ground and com-
pletely visible (if not occluded or truncated). To correct the enlarged length and height,
the location of the corner is fixed and length and width values are corrected according to
maximum and minimum values based on the category of the detection. If one dimension is
clearly not visible (e.g. length of a car is estimated as 1 m), the mean length value for the
category is selected. This procedure leads to fitting 2D dimensions for the detected vehicles
as shown in 4.5. From the fixed corner, width, and length, the center location can be calcu-

20 4 Approach

Figure 4.4: 2D hyperplane, including the normal vector, in red and orientation of the vehicles in green. On the
positive side of the 2D hyperplane, the vehicles drive to the left relative to the normal vector.

lated. The maximum, minimum, and mean values per dimension for each vehicle category
are additional hyperparameters for this step. In Subsection 5.2.4 in the evaluation, they are
computed based on all labeled vehicles in a subset of the A9-Dataset.

4.4 Height Estimation

The ground contour is by design not useful for estimating the height of the vehicles. A simple
improvement would be to use the detection category and set height based on per-category
means. Still, using the constraint, that the camera view is roughly aligned with the road
direction in highway scenarios, the mask height can be used to estimate the height. If a
vehicle is far enough away and only the front or back is visible, not the roof, the pixel height
is inverse-proportional to the distance to the camera. This relationship is defined by the focal
length of the camera i.e. d ∗m = f y where d is the distance to the camera, m is the observed
pixel height, and f y is the focal length.

Though, the observed mask height is not the real height, especially for vehicles closer to
the camera where the roof is visible. The fact, that the distance from the camera and camera
height is known, can be used to estimate the real height with the Equations 4.1 and 4.2,
where zc is the height of the camera, lv the mean length, and hv the mean width for the
vehicle category. It is derived from a simplified geometric configuration illustrated in 4.6.

α= arctan(
zc

d
) (4.1)

h=
d ∗m

f y ∗ (cos(α) + lv
hv
∗ sin(α))

(4.2)

4.5 Category Correction

The estimated heights are then used to correct potentially wrong vehicle categories based
on the computed maximum and minimum height values, as mentioned in Subsection 4.3.

4.5 Category Correction 21

camera

(a) Naive

camera

(b) Improved

Figure 4.5: Comparison of naive- and improved 2D bounding boxes (blue) calculated from projected bottom
contours (red) compared to labels (green). The nearest corner of the naive bounding boxes to the camera is the
most accurate. The improved boxes share this corner but length and width are adjusted.

vehicleh

l

∗ camera

d

zc

m
h

m
l

m

Figure 4.6: The geometric configuration of a camera and the vehicle, which is used for estimating the height. The
observed height of the instance mask of the vehicle is composed of the front/back and the roof. The exact ratio
depends on the vehicle dimensions and the camera angle.

However, first, maximum and minimum values of the categories CAR, VAN, and TRUCK/BUS
are aligned, such that they do not overlap. This is done by setting the maximum height for
cars and the minimum height for vans to the average of their mean heights. The same is
done for vans and trucks/busses. Trucks and busses are different categories, though, they
share the same minimum value for consistency. With that, the categories of vehicles can be
corrected, based on the non-overlapping height regions. Note, the COCO dataset does not
have a VAN class, however, with this method it can still be inferred.

The assumption, that vehicle heights can be roughly partitioned, based on the categories,
is supported by Figure 4.7, where the distributions of height values per category for all vehi-
cles in the A9-Dataset are shown. It is clearly visible, that the height range can be partitioned
into non-overlapping segments for each category, where the majority of all vehicles can be
correctly classified based on their height values. This is also discussed in Subsection 5.2.5, as
part of the evaluation.

22 4 Approach

0 1 2 3 4 5
CAR

VAN

BUS

TRUCK

TRAILER

height

Figure 4.7: Distribution of vehicle heights grouped by category for the A9-Dataset. It is clearly visible, that the
height range can be partitioned into non-overlapping segments for each category, where the majority of all vehicles
can be correctly classified based on their height values.

4.6 Providentia++ Toolchain Integration

The approach is also integrated into the Providentia++ toolchain, which runs with ROS. As
mentioned in Section 2.5, one of the core principles of ROS is to only act as a thin layer on
top of the original software. That means, only two interfaces, to parse images from messages
and to publish the 3D bounding boxes from predictions, have to be implemented. With the
latter, predictions from multiple frames can be combined in the tracking part and eventually
merged with additional data to construct the digital twin.

Note, an important aspect to it is that the entire approach is computed inside a single node
and not split into instance segmentation and bounding box estimation. Adhering to good
software engineering principles, they should be separated, to make testing and maintenance
easier, however, serializing the instance masks into a message is infeasible with real-time
constraints because it includes transferring tensors from the GPU to CPU. This entails that the
calculation of the bottom contour of the instance masks is also computed on the GPU and
only then are the points transferred to the CPU for the remaining steps of the approach.

Chapter 5

Evaluation

In this chapter, the two parts of the approach are evaluated. First, two instance segmentation
models and their variants are compared on accuracy and inference time. Second, the pro-
posed approach is tested with these models and evaluated on the A9-Dataset. All results are
reproducible with the Jupyter notebooks and Python scripts as part of the submitted code.

5.1 Instance Segmentation

For the first part of my approach, the instance segmentation, two different models are evalu-
ated. First, Mask R-CNN as part of the Detectron2 because it is very easy to use and was there-
fore crucial for developing and experimentation. Second, YOLACT, since it offers real-time
capabilities in its YolactEdge variant which is needed for using it as part of the Providentia++
toolchain. For both models, pre-trained weights on COCO with different backbones are pro-
vided by the authors, as discussed in Subsections 3.1.1 and 3.1.2. They are also evaluated
with respect to their mask mAP on the COCO dataset by the authors. As mentioned in Sub-
section 2.1.1, it is a general-purpose dataset but it also generalizes well enough to suffice in
this use case, which is shown in Figure 5.6.

In Table 5.1 you can see the eight different evaluated models with their mAP values.
There is one exception, the last model was trained and evaluated with Cityscapes. You can
clearly see that the Mask R-CNN outperforms the other architecture on mAP but the frames
per seconds FPS are substantially lower. The YolactEdge variants run both at 60 FPS and are
therefore the only ones with real-time capability (i.e. FPS >= 30). With 60 FPS, which is
equal to 16.7 ms per frame, there is a buffer of another 16.7 ms for the remaining part of the
approach. Their mask mAP is much lower, however, as shown in Figure 5.1, it still suffices
for my task. The procedure for measuring the FPS is explained next.

5.1.1 Inference Time

All models were benchmarked on the 642 camera frames of the A9-Dataset. The YolactEdge
variants use TensorRT with the FP16-only configuration and fast NMS. The evaluation ran on
an Ubuntu 20.04 server with an NVIDIA GeForce RTX 3090 GPU and AMD EPYC 7282 CPU.
The measured time includes transferring the original frames from CPU to GPU since it should
resemble the actual use case. Note, the FPS results shown in Table 5.1 are not comparable
to benchmark times by the authors, since different hardware and image resolution is used by
them (e.g. YolactEdge was benchmarked with 550x550 resolution on an NVIDIA GeForce RTX
2080 Ti).

24 5 Evaluation

Model Backbone Mask mAP ↑ FPS ↑

Mask R-CNN R-50-FPN 37.2 14.5
Mask R-CNN R-50-FPN* 36.5* 11.6
Mask R-CNN X-101-FPN 39.5 9.2
Mask R-CNN X-152 44.0 4.5
YOLACT R-50-FPN 28.2 30.2
YOLACT R-101-FPN 29.8 22.6
YolactEdge R-50-FPN 27.0 59.7
YolactEdge R-101-FPN 29.5 59.0

Table 5.1: Comparison of pre-trained (COCO, Cityscapes*) Mask R-CNN and YOLACT models. The mAP values
refer to the validation splits of the respective datasets, on which the models were trained on. The YolactEdge
variants are the only ones with sufficient FPS for real-time use.

5.1.2 Qualitative Results

Figure 5.6 shows the detected instance masks and 2D bounding boxes, with a score above
0.7, generated by the eight model variant on a single frame of the A9-Dataset. Nearly all
vehicles, within a reasonable distance to the camera, are detected. This is just a single frame
and is only intended as a visual example to give a general understanding of the results (e.g.
the white van is generally detected with a high score by the Mask R-CNN R-50-FPN).

The quality of the instance masks is slightly worse for the best YolactEdge model in com-
parison to the worst Mask R-CNN model, as shown in detail in Figure 5.1. Though, the
difference of the bottom contour, which is essential for my approach, is not as substantial
as the run-time difference. This is also compromised by shifting down the contour a small
number of pixels, as mentioned in 4.2.

(a) Mask R-CNN R-50-FPN (b) YolactEdge R-101-FPN

Figure 5.1: Comparison of mask quality between pre-trained (COCO) Mask R-CNN R-50-FPN and YolactEdge
R-101-FPN models. The masks of YolactEdge are slightly worse but the bottom contour does not differ much. A
video for masks generated by the YolactEdge is also available (https://youtu.be/2F2bnz7Mtis).

5.1.3 Limitations

One limitation is that YolactEdge is only pre-trained with COCO, which only has three valuable
classes (CAR, BUS, and TRUCK). Note, there are pre-trained weights for an older version of
YolactEdge on the Cityscapes dataset available from a third party, though, to remain compara-
ble, they are not considered here because they are not provided by the authors. Nonetheless,

https://youtu.be/2F2bnz7Mtis

5.1 Instance Segmentation 25

all relevant vehicles are detected but it cannot be differentiated between all categories in the
A9-Dataset.

Another important limitation is that due to the relatively low camera position, vehicles
can be partially or fully occluded as shown in Figure 5.2. There, the truck (light blue) is
covered by a small trailer of a vehicle but the mask is nearly correct because the truck is
slightly wider. However, for the two partially occluded vehicles (pink and orange), this is not
the case. Vehicles, which are truncated because of the image edges, also produce incomplete
instance masks. Both of these lead to invalid bottom contours, which are not intentionally
handled by my approach.

(a) Original image (b) Instance masks (c) 2D bounding boxes

Figure 5.2: Instance masks and 2D bounding boxes for partially and fully occluded vehicles. The mask of the
truck (light blue) is intentionally drawn on top of the trailer (red) to visualize its full extent.

Also, cameras are heavily influenced by the environment. At night or with bad lighting
conditions, many vehicles are not detected. Additionally, bad weather, especially rain or
snow, can decrease the image quality. These problems are inherent to camera images and
cannot be fixed easily. In Figure 5.3, instance masks generated by a YolactEdge R-101-FPN
model from an image with rainy weather and unfavorable lighting conditions are shown.
The masks are deformed and enlarged due to the blur of the headlights and more vehicles,
especially those far away with bright headlights, are not detected.

Figure 5.3: Instance masks generated by a YolactEdge R-101-FPN model on an image with rainy weather and
unfavorable lighting conditions. A video is also available (https://youtu.be/E0yQkHH5vK0).

https://youtu.be/E0yQkHH5vK0

26 5 Evaluation

5.2 3D Bounding Box Estimation

In this section, the proposed approach with each instance segmentation model is evaluated
on the camera images in the A9-Dataset. First, characteristics of the dataset, which influence
the results are discussed. Second, the used metrics and the procedure to compare predictions
and labels are explained. Then, the optimal hyperparameters for each instance segmentation
model are computed, based on a quarter of the dataset. At last, the results are evaluated
and analyzed on the remaining three quarters. Note, normally the training set is way larger
but here one quarter is sufficient due to the small number of hyperparameters and no "real"
training. This also allows for a better evaluation of a larger test set.

Note, only models pre-trained on the COCO dataset are discussed here because there
are no weights directly for YolactEdge on Cityscapes available without converting them from
YOLACT, as discussed in Subsection 5.1.3.

5.2.1 A9-Dataset

The 3D bounding boxes were hand-labeled on the image and therefore contain ground truth
errors. This is normal for datasets, however, a small number of pixels in the image can turn
into multiple meters when projected on the ground, especially if the distance between the
labeled vehicle and the camera is large. Also, trucks and their trailers are labeled as two
separate vehicles. This is not accounted for in the approach and leads to larger errors for
these categories.

Another aspect is that there are unlabeled vehicles on many frames, which are too far
away for correct labeling. This leads to the issue of correctly counting false positives. Since
the two 50 mm cameras face each other and there are less than 500 meters apart, it is a
reasonable thought to only evaluate vehicles less than 250 meters away respectively. For the
16 mm cameras, which cover a smaller area, 125 m is similar with respect to vehicle size at
the cutoff distance. Therefore, labels and predictions further away will be ignored.

5.2.2 Data Association

To effectively compare labels and their corresponding predictions, they have to be matched
together. Note, normally IoU values are calculated for this, however, due to the amplified
ground-truth and prediction errors on the ground plane, a label and a prediction can still
correspond to each other even if their IoU value is zero. Also, a prediction directly adjacent,
but without any intersection with the label, has the same IoU value as a prediction far away.
Therefore, the matching is done in the image and works as follows:

1. Calculate the 2D centers of the 3D bounding boxes by averaging the eight corners in
the image plane

2. Compute pair-wise distances between of these centers for predictions and labels

3. Match a label and a predication together if they are both nearest to each other

4. Store the unmatched predictions and labels

5. Enforce the cutoff distance for the pairs and unmatched items

5.2 3D Bounding Box Estimation 27

The matching is done before enforcing the cutoff because it may happen that e.g. a label
is just outside the cutoff distance, while the corresponding prediction is just inside of it. If
labels were removed before matching, the prediction would be counted as a false positive.
The opposite direction would also lead to a wrong false negative, with switched locations of
label and prediction.

5.2.3 Metrics

For each frame, the number of matches can be counted as true positives, the number of
unmatched predictions as false positives, and the number of unmatched labels as false neg-
atives. These can be summed up respectively and combined to micro-averaged Precision,
Recall, and F1-Score values, as described in 2.4.

To compare the location and dimensions for each matched pair, MAE values are com-
puted for x-location, y-location, length, width, and height. MAE values are chosen because
they convey the intuitive interpretation: "How wrong (in meters) are my predictions are on
average?", as described in Subsection 2.4.3.

Note, no mAP values are calculated here because of the mentioned issue with IoU values
being zero.

5.2.4 Hyperparameter Optimization

Dimension Values Mapping

The first parameter is the mapping of categories to a minimum, maximum, and mean values
for each dimension (i.e. length, width, and height). For that, all labels of the test set are
used. Note, the minimum and maximum values are calculated as 2nd and 98th percentile
to ignore outliers. Trailers and trucks are grouped together into a single mapping since in
the COCO dataset these two are not differentiated. The heights are modified, as explained in
Section 4.5. The mapping is equal for all instance segmentation models and can be seen in
Table 5.2.

Category Length [m] Width [m] Height [m]
Min Mean Max Min Mean Max Min Mean Max

BUS 10.29 13.27 17.60 2.50 2.60 2.81 2.83 3.33 3.93
CAR 3.33 4.60 4.88 1.57 1.95 2.17 1.22 1.45 1.82
TRUCK 2.57 9.30 16.72 2.01 2.52 2.92 2.83 3.60 4.21
VAN 4.10 5.80 7.45 1.67 2.06 2.51 1.82 2.18 2.83

Table 5.2: Mapping of vehicle categories to length, width, and height values calculated on a subset of the A9-
Dataset. The minimum and maximum height values are aligned, such that cars, vans, and trucks/busses do not
overlap.

Threshold Values

Additional hyperparameters are the three threshold values regarding the instance masks (i.e.
score, width, and edge margin), as explained in 4.1. The first two are optimized using grid
search with regards to the F1-Score based on matched pairs of predictions and labels within
the cutoff distance. The edge margin is set to zero here because it is intended to remove

28 5 Evaluation

masks that are potentially cut off at the edges of the image, however, it would just decrease
the recall here. In Table 5.3, you can see the optimal threshold values. Note, the mask width
threshold is zero for two models and generally does not make a big impact here. It was
originally intended to work as a proxy for the distance cutoff but due to the matched pairs,
it does not have a substantial impact here. Nonetheless, in productive use, it can be really
helpful.

Vertical Contour Shift

The last hyperparameter is the vertical contour shift of the bottom contour, as described in
4.2. It is optimized, with the previously determined threshold values, on the sum of location
and dimensions MAE with the L2-distance as the absolute error term. In Table 5.3, it is visible
that the shift is slightly more important for YOLACT models. This is because their produced
masks are less accurate in general.

Model Score Mask Width [px] Contour Shift [px]

Mask R-CNN R-50-FPN 0.62 20 2
Mask R-CNN X-101-FPN 0.61 25 2
Mask R-CNN X-152 0.52 20 2
YOLACT R-50-FPN 0.51 20 3
YOLACT R-101-FPN 0.51 0 3
YolactEdge R-50-FPN 0.52 20 3
YolactEdge R-101-FPN 0.52 0 3

Table 5.3: Optimal hyperparameters for the proposed approach per instance segmentation model.

5.2.5 Test Set Evaluation

With the optimal hyperparameters for each instance segmentation model, the produced pre-
dictions of the fixed angle approach can be evaluated on the test set. For this, recall, precision,
and f1-score are calculated with the edge margin set to zero. The MAE values for location
and dimensions are calculated with an edge margin of 10 pixels, which compensates for the
inaccuracies produced by truncated vehicles at the image edges. This is needed because there
are labels in the dataset with vertices outside of the image which would produce unfair false
negatives. In Table 5.4, the results for each model are shown. The x-direction points along
the road. All models perform very similarly, which is reasonable because only a 2D bounding
box based on the bottom contour of the mask is used and therefore the lower mask accuracy
of the YolactEdge models suffices.

In-depth Model Analysis

The YolactEdge R-101-FPN model performs slightly better than the R-50-FPN variant and is
therefore the chosen model for real-time use. In the following, an in-depth analysis of the
results by the YolactEdge R-101-FPN model on the test set is presented.

As mentioned in 5.1.3, only cars, trucks, and buses can be predicted as categories. How-
ever, based on the height estimation, as described in Section 4.5, the VAN category is also
produced. In the confusion matrix for categories from labels to predictions, shown in Figure
5.4, it is clearly visible that this estimation generally works. However, the distinction between
vans, trucks, and busses is still improvable.

5.2 3D Bounding Box Estimation 29

MAE [m]↓
Model F1 ↑ Precision ↑ Recall ↑ x y length width height

Mask R-CNN R-50-FPN 0.92 0.94 0.91 1.43 0.19 1.12 0.24 0.11
Mask R-CNN X-101-FPN 0.93 0.94 0.92 1.33 0.19 1.12 0.25 0.10
Mask R-CNN X-152 0.93 0.94 0.92 1.29 0.20 1.11 0.26 0.10
YOLACT R-50-FPN 0.91 0.93 0.88 1.57 0.22 1.08 0.24 0.12
YOLACT R-101-FPN 0.92 0.96 0.88 1.61 0.22 1.11 0.25 0.12
YolactEdge R-50-FPN 0.91 0.94 0.88 1.67 0.22 1.08 0.24 0.12
YolactEdge R-101-FPN 0.92 0.96 0.88 1.62 0.22 1.10 0.25 0.12

Table 5.4: Comparison of MAE values of the predictions on the test set using the fixed orientation approach per
instance segmentation model.

0.61 0 0 0.06 0.08 0

0.11 0.98 0 0.04 0.03 0.25

0.17 0 0.4 0.77 0.67 0.02

0.11 0.02 0.6 0.13 0.23 0.73

BUS CAR SPECIAL TRAILER TRUCK VAN

VAN

TRUCK

CAR

BUS

labels

pr
ed

ic
tio

ns

Figure 5.4: Confusion matrix for categories from labels (columns) to predictions (rows).

The MAE values can also be grouped by labeled category, as shown in 5.5. The number
of matched vehicles for each category is also shown. Due to the larger dimensions, busses,
trucks, and trailers have larger absolute errors for both location and dimensions. The very
large x-location error is the result of a single outlier and the small number of busses. Also, the
larger errors for truck and trailer length are greatly influenced by the labeling inconsistencies
for these two categories, as mentioned in Subsection 5.2.1. The height estimation works
reliably well for all classes.

The error values can also be grouped by the camera, which is shown in 5.6. Here, you
can see that the cameras with a wider field of view (16 mm) have a larger error for length
and a smaller x-location error. The reasonable assumption, that the accuracy decreases for
a larger distance to the camera is confirmed, as shown in Figure 5.7. Here, the MAE values
are also grouped per distance in 25-meter regions (i.e MAE value at 62.5 corresponds to the
average from 50 to 75 meters). The errors per distance are generally higher for the 16 mm
cameras because vehicles at the same distance are smaller pixel-wise compared to the 50 mm
cameras. The latter also only captures vehicles that are further away than 50 meters.

30 5 Evaluation

MAE [m] ↓
Category Count x y length width height

BUS 18 16.83 0.51 3.79 0.21 0.41
CAR 2592 1.22 0.19 0.48 0.22 0.10
SPECIAL 5 2.56 0.32 5.15 0.37 0.10
TRAILER 170 2.99 0.43 4.53 0.38 0.23
TRUCK 117 4.75 0.42 7.82 0.35 0.36
VAN 347 2.14 0.29 1.65 0.35 0.14

Table 5.5: MAE values and number of matched vehicles grouped by labeled category.

MAE [m] ↓
Camera Count x y length width height

S40 North 16 mm 752 1.46 0.27 1.31 0.24 0.16
S40 North 50 mm 981 1.59 0.21 0.90 0.27 0.11
S50 South 16 mm 391 1.36 0.20 1.32 0.30 0.15
S50 South 50 mm 1125 1.85 0.20 1.07 0.22 0.09

Table 5.6: MAE values and number of matched vehicles grouped by the camera.

5.2.6 Qualitative Results

In Figure 5.5, you can see the results of the fixed angle approach with YolactEdge R-101-FPN
from all four perspectives. In this case, a mask width threshold of 50 pixels is used. Cars
are blue, vans are red, and trucks are green. A video is also available (https://youtu.be/
I9XxiKNIwYE).

(a) S40 North 16 mm (b) S40 North 50 mm

(c) S50 South 16 mm (d) S50 South 50 mm

Figure 5.5: Qualitative results of the fixed orientation approach with YolactEdge R-101-FPN from all four perspec-
tives of the A9-Dataset. Cars are blue, vans are red, and trucks are green.

https://youtu.be/I9XxiKNIwYE
https://youtu.be/I9XxiKNIwYE

5.2 3D Bounding Box Estimation 31

(a) Mask R-CNN R-50-FPN (b) YOLACT R-50-FPN

(c) Mask R-CNN X-101-FPN (d) YOLACT R-50-FPN

(e) Mask R-CNN X-152 (f) YolactEdge R-101-FPN

(g) Mask R-CNN R-50-FPN* (h) YolactEdge R-101-FPN

Figure 5.6: Qualitative instance segmentation results of pre-trained (COCO, *Cityscapes) Mask R-CNN and
YOLACT models above a 0.7 score.

32 5 Evaluation

0.5
1

1.5
2

2.5
3

3.5

0.1

0.15

0.2

0.25

0.3

0.4

0.6

0.8

1

1.2

1.4

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

s40-north-16mm s40-north-50mm s50-south-16mm s50-south-50mm

camera distance[m]

x
lo

ca
tio

n
er

ro
r [

m
]

y
lo

ca
tio

n
er

ro
r [

m
]

le
ng

th
 e

rr
or

 [
m

]
w

id
th

 e
rr

or
 [

m
]

he
ig

ht
 e

rr
or

 [
m

]

Figure 5.7: MAE values for location, length, width, and height grouped by distance to the camera of matched
vehicles in the test set.

Chapter 6

Future Work

6.1 Dynamic Orientation

While the approach with a fixed orientation produces sufficient results for images of highways
in the A9-Dataset, where the vehicle orientation is known, it cannot handle vehicles with
dynamic orientations at an e.g. intersection. In Figure 6.1, a frame of an intersection is
shown including the bottom contour points, which were lightly pre-processed by removing
outliers at both ends and also interpolated.

Figure 6.1: A frame of an intersection at the S110 measurement point of the extended Providentia++ test stretch.

In comparison to the contours on the highway, as shown in Figure 4.5, here, the L-shape
can be clearly seen. A 2D bounding box, aligned with the L-shape, was estimated with
a minimization algorithm, which is shown in Figure 6.2. This gives each vehicle its own
orientation. Similar to the fixed orientation approach, the corner nearest to the camera

34 6 Future Work

should be the most accurate. This allows length and width estimation, such as in Section 4.3,
for each vehicle, based on its specific orientation. The height estimation can also be used,
as described in Section 4.4, though, the ratio between vehicle length and width has to be
adjusted based on the orientation for each vehicle.

Figure 6.2: The ground contours and a 2D bounding box estimation for vehicles on a frame of an intersection at
the S110 measurement point of the extended Providentia++ test stretch.

6.2 Combining Multiple Perspectives

With the bottom contour of a mask, the goal is to approximate the two nearest edges of the
vehicle on the ground. Though, as shown in Figure 4.5, errors in the mask are amplified
due to the projection onto the ground and lead to enlarged dimensions. However, the corner
nearest to the camera is reasonably accurate. That brings up the idea to combine two or
more cameras from different perspectives. For two directly opposing cameras, the nearest
corners would also be on opposing sides, i.e span the diagonal line of the 2D bounding box
on the ground. This is enough to accurately estimate the location and dimensions of a vehicle.
However, both cameras need to be calibrated to fit perfectly together, a small deviation would
make this approach useless.

6.3 Transfer Learning

As discussed in Subsection 5.1.3, the used instance segmentation models, pre-trained on the
COCO dataset, do not cover all of the label categories in the A9-Dataset. A solution for that
would be to fine-tune a model on all labeled images, which could lead to better classification
results.

To improve the instance mask quality of YolactEdge models on the A9-Dataset, accurate
instance masks could be created with a larger Mask R-CNN model, and then used to fine-
tune the YolactEdge model. This could lead to better mask quality, tailored for vehicles on
highways.

Chapter 7

Conclusion

In this thesis, an approach for monocular 3D object detection for vehicles on the Providen-
tia++ test stretch was proposed. It is also implemented in real-time and integrated it into
the existing Providentia++ toolchain using ROS.

First, it was presented that the majority of existing work in the domain of monocular 3D
object detection is created for AVs from the ego perspective. However, these approaches gen-
erally cannot translate their success to cameras from the road-side perspective. Furthermore,
it would be unfavorable to not leverage the fact, that the cameras on the test stretch are
precisely calibrated, fixed in their position, and only capture vehicles on a straight highway
segment.

Therefore, a method that takes advantage of the road-side perspective and uses pre-
trained instance segmentation models as a backbone is proposed. These reliably detect the
majority of the visible vehicles on an image and create instance masks and class labels for
each of them. Next, the bottom contours of these masks are extracted, which should approxi-
mate two of the lower edges on the ground of the vehicles. These are then projected onto the
ground plane using the calibrated data of the camera. Using the fact that the orientation of
the vehicles is fixed, due to the straight highway, the projected contours can be used to esti-
mate the location, length, and width of the vehicles. Additionally, the heights of the vehicles
are estimated based on the height of the instance mask and the viewing angle of the camera,
using a geometric argument. This last step also allows the classification of vehicles as vans,
which the instance segmentation models, pre-trained on the COCO dataset, are not capable
of. This works because the height of vans is right between cars and trucks/busses.

To show that the proposed method is working, it was evaluated on images of the A9-
Dataset. This was done with two different instance segmentation models, namely Mask R-
CNN and YolactEdge. However, only the YolactEdge variants, using TensorRT, are capable of
running in real-time. When compared to the Mask R-CNN models on instance segmentation
on the COCO dataset, they perform notably worse, however, when used as the backbone
for predicting the 3D bounding boxes in the A9-Dataset, their performance is very similar.
In general, the predicted 3D bounding boxes are sufficiently close to their corresponding
labels, especially the height estimation works reliably well. Also, 70 % of the labeled vans
are actually classified as vans.

Nonetheless, the approach is not flawless. The performance of the instance segmentation
models is greatly influenced by the image quality. Bad weather and unfavorable lighting
conditions decrease the performance substantially. Also, occluded or truncated vehicles result
in incomplete masks, which are not handled by the proposed method. Additionally, it is only
applicable to the highway scenarios, though, as part of the future work, it was explained how
a single change, i.e. the dynamic estimation for the vehicle orientations, can improve the
method, such that it can also be used from other perspectives, e.g. an intersection.

Bibliography

[Cae+20] Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan,
A., Pan, Y., Baldan, G., and Beijbom, O. “nuScenes: A multimodal dataset for
autonomous driving”. In: (May 2020). URL: http://arxiv.org/abs/1903.11027.

[Che+21] Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., and Girdhar, R. “Masked-attention
Mask Transformer for Universal Image Segmentation”. In: arXiv (2021).

[CBL19] Clausse, A., Benslimane, S., and La Fortelle, A. de. “Large-Scale extraction of
accurate vehicle trajectories for driving behavior learning”. In: 2019 IEEE Intel-
ligent Vehicles Symposium (IV). ISSN: 2642-7214. June 2019, pp. 2391–2396.
DOI: 10.1109/IVS.2019.8814095.

[Cor+16] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., and Schiele, B. “The Cityscapes Dataset for Semantic Urban
Scene Understanding”. en. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, June 2016, pp. 3213–
3223. ISBN: 978-1-4673-8851-1. DOI: 10 .1109/CVPR.2016 .350. URL: http :
//ieeexplore.ieee.org/document/7780719/.

[Cre+22] Creß, C., Zimmer, W., Strand, L., Fortkord, M., Dai, S., Lakshminarasimhan, V.,
and Knoll, A. “A9-Dataset: Multi-Sensor Infrastructure-Based Dataset for Mobil-
ity Research”. en. In: (2022), p. 6.

[GLU12] Geiger, A., Lenz, P., and Urtasun, R. “Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2012.

[Gir15] Girshick, R. “Fast R-CNN”. en. In: (Apr. 2015). URL: https://arxiv.org/abs/1504.
08083v2 (visited on 02/11/2022).

[Guo+21] Guo, E., Chen, Z., Rahardja, S., and Yang, J. “3D Detection and Pose Estimation
of Vehicle in Cooperative Vehicle Infrastructure System”. In: IEEE Sensors Jour-
nal 21.19 (Oct. 2021). Conference Name: IEEE Sensors Journal, pp. 21759–
21771. ISSN: 1558-1748. DOI: 10.1109/JSEN.2021.3101497.

[HZ04] Hartley, R. and Zisserman, A. Multiple View Geometry in Computer Vision. 2nd ed.
Cambridge University Press, 2004. DOI: 10.1017/CBO9780511811685.

[He+18] He, K., Gkioxari, G., Dollár, P., and Girshick, R. “Mask R-CNN”. In: (Jan. 2018).
URL: http://arxiv.org/abs/1703.06870.

[Kra+] Krammer, A., Scholler, C., Gulati, D., and Knoll, A. “Providentia - A Large Scale
Sensing System for the Assistance of Autonomous Vehicles”. en. In: (), p. 5.

[Li+20] Li, P., Zhao, H., Liu, P., and Cao, F. “RTM3D: Real-time Monocular 3D Detection
from Object Keypoints for Autonomous Driving”. In: (Jan. 2020). URL: http:
//arxiv.org/abs/2001.03343.

http://arxiv.org/abs/1903.11027
https://doi.org/10.1109/IVS.2019.8814095
https://doi.org/10.1109/CVPR.2016.350
http://ieeexplore.ieee.org/document/7780719/
http://ieeexplore.ieee.org/document/7780719/
https://arxiv.org/abs/1504.08083v2
https://arxiv.org/abs/1504.08083v2
https://doi.org/10.1109/JSEN.2021.3101497
https://doi.org/10.1017/CBO9780511811685
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/2001.03343
http://arxiv.org/abs/2001.03343

38 Bibliography

[Lin+15] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,
Ramanan, D., Zitnick, C. L., and Dollár, P. “Microsoft COCO: Common Objects
in Context”. In: (Feb. 2015). URL: http://arxiv.org/abs/1405.0312.

[Liu+21a] Liu, H., Soto, R. A. R., Xiao, F., and Lee, Y. J. “YolactEdge: Real-time Instance
Segmentation on the Edge”. In: ICRA. 2021.

[Liu+21b] Liu, Z., Zhou, D., Lu, F., Fang, J., and Zhang, L. “AutoShape: Real-Time Shape-
Aware Monocular 3D Object Detection”. In: (Aug. 2021). URL: http://arxiv.org/
abs/2108.11127.

[Par+21] Park, D., Ambrus, R., Guizilini, V., Li, J., and Gaidon, A. “Is Pseudo-Lidar needed
for Monocular 3D Object detection?” In: IEEE/CVF International Conference on
Computer Vision (ICCV). 2021.

[Red+16] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. “You Only Look Once:
Unified, Real-Time Object Detection”. In: arXiv:1506.02640 [cs] (May 2016).
URL: http://arxiv.org/abs/1506.02640.

[RAM21] Rezaei, M., Azarmi, M., and Mir, F. M. P. “Traffic-Net: 3D Traffic Monitoring
Using a Single Camera”. In: (Sept. 2021). URL: http://arxiv.org/abs/2109.
09165.

[Sun+20] Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B., et al. “Scalability in perception for autonomous
driving: Waymo open dataset”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 2446–2454.

[Wan+18] Wang, Y., Chao, W.-L., Garg, D., Hariharan, B., Campbell, M., and Weinberger,
K. Q. “Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D
Object Detection for Autonomous Driving”. en. In: (Dec. 2018). URL: https://
arxiv.org/abs/1812.07179v6.

[Wu+19] Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R. Detectron2. 2019. URL:
https://github.com/facebookresearch/detectron2.

[Zho+] Zhou, Y., He, Y., Zhu, H., Wang, C., Li, H., and Jiang, Q. “Monocular 3D Object
Detection: An Extrinsic Parameter Free Approach”. en. In: (), p. 11.

[Zhu+22] Zhu, M., Zhang, S., Zhong, Y., Lu, P., Peng, H., and Lenneman, J. “Monocular 3D
Vehicle Detection Using Uncalibrated Traffic Cameras through Homography”.
In: (Jan. 2022). arXiv: 2103.15293. (Visited on 02/12/2022).

http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/2108.11127
http://arxiv.org/abs/2108.11127
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/2109.09165
http://arxiv.org/abs/2109.09165
https://arxiv.org/abs/1812.07179v6
https://arxiv.org/abs/1812.07179v6
https://github.com/facebookresearch/detectron2

	Introduction
	Motivation
	Problem Statement
	Contribution

	Background
	Instance Segmentation
	COCO Dataset
	Cityscapes Dataset

	3D Object Detection of Vehicles
	KITTI Dataset
	Large-Scale Datasets

	Pinhole Camera Model
	Metrics
	Binary Classification
	Object Detection
	3D Object detection

	Robot Operating System
	Providentia++ A9-Dataset

	Related Work
	Instance Segmentation
	Mask R-CNN
	YolactEdge

	3D Object Detection of Vehicles
	Keypoint Estimation
	Depth Estimation
	Road-Side Approaches

	Approach
	Instance Segmentation
	Bottom Mask Contour Extraction
	2D Bounding Box Estimation
	Height Estimation
	Category Correction
	Providentia++ Toolchain Integration

	Evaluation
	Instance Segmentation
	Inference Time
	Qualitative Results
	Limitations

	3D Bounding Box Estimation
	A9-Dataset
	Data Association
	Metrics
	Hyperparameter Optimization
	Test Set Evaluation
	Qualitative Results

	Future Work
	Dynamic Orientation
	Combining Multiple Perspectives
	Transfer Learning

	Conclusion
	Bibliography

