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Abstract

Environmental knowledge of an autonomous vehicle is limited by its
physical range of sensors and algorithmic performance, as well as by occlu-
sions that degrade its understanding of the current traffic situation. Not
only does it pose a significant safety hazard and limit driving speeds, it can
also lead to awkward maneuvering. Smart infrastructure solutions can help
to solve these problems. A smart infrastructure will fill the void between
vehicle perceptions and extend its range in the shape of a digital model of
the present traffic situation (the digital twin), by offering more accurate in-
formation on its environment.

This paper describes how a new synthetic dataset was created using
Carla Simulator. This is based on the Unreal Engine and had to be modified
to make this possible. This artificial dataset has made it possible to train an
existing neural network called YOLOv5. This shows that the completeness
as well as the functionality of the dataset is given. The dataset covers many
possible applications.

The important features for further work are the annotation of the vehi-
cles and the existence of a dynamic vision sensor event stream. The YOLOv5
network was modified to use the DVS event stream as input to detect ve-
hicles and determine their position. Subsequently, the working network was
modified and tested several times. Successfully, various activation functions
were replaced with the leaky-integrate-and-fire neuron. Finally, the network
was optimized in terms of runtime and memory consumption by means of
pruning and quantization.



Zusammenfassung

Das Umgebungswissen eines autonomen Fahrzeugs ist durch die Reichweite
seiner Sensoren und die Leistung seiner Algorithmen sowie durch Verdeckun-
gen begrenzt, die sein Verständnis der aktuellen Verkehrssituation beein-
trächtigen. Dies stellt nicht nur ein erhebliches Sicherheitsrisiko dar und be-
grenzt die Fahrgeschwindigkeit, sondern kann auch zu ungünstigen Manövern
führen. Intelligente Infrastrukturlösungen können dazu beitragen, diese Pro-
bleme zu lösen. Eine intelligente Infrastruktur füllt die Lücke zwischen den
Wahrnehmungen des Fahrzeugs und erweitert seine Reichweite in Form eines
digitalen Modells der aktuellen Verkehrssituation (des digitalen Zwillings),
indem sie genauere Informationen über seine Umgebung bietet.

In dieser Arbeit wird beschrieben, wie ein neues synthetisches Daten-
satz mithilfe von Carla Simulator erstellt wurde. Dieser baut auf der Unreal
Engine auf und musste um dies zu ermöglichen modifiziert werden. Dieser
künstliche Datensatz hat es ermöglicht ein bereits existierendes neuronales
Netz namens YOLOv5 zu trainieren. Dies zeige, dass die Vollständigkeit so-
wie die Funktionalität des Datensatzes gegeben ist.

Der Datensatz deckt viele Anwendungsmöglichkeiten ab. Die für die fort-
setzende Arbeit wichtigen Eingenschaften sind die Annotierung der Fahrzeu-
ge sowie das Existieren von einem Dynamic Vision Sensor event stream. Das
YOLOv5 Netzwerk wurde so verändert, dass es den DVS event stream als
Eingabe verwenden kann um Fahrzeuge zu erkennen und ihre Position zu
bestimmen. Daraufhin wurde das funktionierende Netzwerk mehrfach modi-
fiziert und getestet. Erfolgreich wurden verschiedene Aktivierungsfunktionen
mit dem Leaky-integrate-and-fire Neuron ersetzt. Auch wurde das Netzwerk
zum Schluss mittels pruning und quantizierung in Richtung Laufzeit und
Speicherverbrauch optimiert.
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Chapter 1

Introduction

This chapter introduces the topics of vehicle detection using a dynamic vision
sensor. The research is motivated by the problem that Vehicle detection with
frame based cameras can be improved by using a DVS. And therefor saving
resources. The research proposes a new type of vehicle detection based on
DVS and YOLO.

1.1 Problem

The available sensor ranges and object detection capabilities restrict an au-
tonomous vehicle’s and the ensuing scene’s ambient perception. Even in the
vehicle’s immediate proximity, the existence of occlusions results in inade-
quate information about the vehicle’s surroundings. The ensuing uncertain-
ties endanger not just the autonomous car, but also other road users. It must
lower its driving speed in order to drive safely, which slows down traffic. As
a result of the car reacting spontaneously to unanticipated circumstances,
driving comfort suffers. The Intelligent infrastructure systems (IIS) can help
to alleviate these issues by giving extra information about each road user
and the overall traffic condition to autonomous cars as well as conventional
vehicles and drivers. For instance, an IIS may monitor and recognize road
users from various higher-level views, therefore increasing its coverage be-
yond that of a single vehicle. When a car receives this new information, it
can better comprehend its surroundings and plan safer and more convenient
driving moves. Furthermore, an IIS with the aforementioned characteristics
provides a range of services that aid in decision-making. However, devel-
oping such a system involves a number of problems, such as selecting the
right hardware and sensors, as well as optimizing their deployment and uti-
lization in a complicated software stack. The system’s perception must be
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1.1. PROBLEM

dependable and strong under a variety of weather, lighting, and traffic cir-
cumstances. A combination of multimodal sensors, redundant road coverage
with overlapping field of view (FoV), precise calibration and strong detec-
tion and data fusion algorithms is necessary to achieve this dependability.
This architecture is already the result of our real-world experience with IIS
Providentia shown in Figure 1.1.

Figure 1.1: On the left side the Digital Twin is depicted. On the right side the
original Image. [KSGK19]

A smart infrastructure will fill the void between vehicle perceptions and
extend its range in the shape of a digital model of the present traffic situation
(the digital twin), by offering more accurate information on its environment,
shown in Figure 1.2.

Figure 1.2: A Sample Construction of the Hardware needed to build this IIS
[KSGK19]
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CHAPTER 1. INTRODUCTION

It is already developed with a pipeline including object detection with
a neural network called tiny YOLOv3 working on a radar system and RGB
images. To predict the exact 6DOF Location of the Vehicles on a motorway
and is published by [KSGK19]. This vehicle detection should be build for
another scenario with more traffic participants in the City.

1.2 Motivation

The central motivation driving this thesis is the opportunity to enhance
the Providentia Project. This is made possible to the largest part due to
inventions in an event camera.

Since event cameras have great potential for robotics and computer vi-
sion in difficult scenarios for conventional cameras, such as low latency, high
speed and high dynamic range. However, novel methods are needed to pro-
cess the unconventional output of these sensors to unlock their potential.
This Thesis aims to provide insight into the field of event-based image pro-
cessing for vehicle detection. The focus is on the possibility of event cameras
providing enough data to make accurate statements. This would result in
many advantages. Apart from the obvious ones like less data flow and cheaper
computation costs. There is also the safety aspect of the higher dynamic
range, which also allows backlit shots without overexposure. Also, the lower
power consumption is important to mention in this day and age. Not only
the sensor but the complete pipeline needs less resources. Another advantage
the sensor offers in our scenario is the very low motion blur it brings with it.
So cars can be detected very well at night compared to normal cameras.

1.3 Objectives

In this work we want to clarify whether it is possible to detect and track
vehicles with the help of the DVS event stream. Since the event data is
very similar to the principle of the leakyintegrate and fire (LIF) neuron, the
integration is also an intention to be tested. Thus, system design develops
an application domain model in the one in the previous chapter, that maps
the application domain models to the goals specified in this chapter. Since
there is no dataset that represents our scenario, we have to create one here.
This one will suffice as a synthetic one for our experiment. The question that
arises here is whether the network is faster or requires less computing power
compared to a similar RGB network.
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1.4. OUTLINE

1.4 Outline

This thesis covers seven chapters. This introductory chapter gives an overview
of the thesis’ topics, existing problems, possible solutions, the research objec-
tives and this outline. Chapter 2 provides more information about the funda-
mental concepts used in this thesis. It contains sections about event cameras,
neural networks, machine learning, and machine earning interpretability. As
well as a detailed view of the most important part for this thesis, YOLOv5.
Related work is discussed in Chapter 3. There, a variety of related studies are
discussed and a gap in the literature is elaborated, which should be filled by
this thesis. Chapter 4 follows the requirements elicitation and analysis tem-
plates by [BD09]. It defines the requirements of the LATEST system and
introduces a correct, complete, consistent, and verifiable representation of
the Data generation pipeline. Build upon an already existing System which
is going to be improved for our thesis. The changes of the Neural Network
Design of YOLOv5 is detailed in Chapter 5, which follows the system design
document template by [BD09]. There, the design goals of the envisioned
system are worked out and LATEST is decomposed into smaller subsystems.
Chapter 5 covers detailed explanations of all optimization steps done to the
Neural Network. This thesis’ approach was evaluated in different steps and is
described in Chapter 6. The sections included describe the pruning quantiza-
tion and spiking objectives and the setups and results of its different phases.
Additionally, the findings and limitations are discussed. Chapter 7 closes this
thesis by providing a summary of the work performed as part of this thesis
and gives suggestions for possible future work.
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Chapter 2

Background

This chapter covers important background knowledge that is built upon in
the rest of this thesis.

Dynamic Vision Sensor (DVS) also known as Dynamic and Active-pixel
Vision Sensor (DAVIS) or event camera introduces this new type of camera
in Section 2.1.

Section 2.2 covers the fundamental concept of Neural Network (NN). As
well as Section 2.3 about Convolutional Neural Network (CNN) will make
use of NN for image classification.

In the Section 2.4 Spiking Neural Network (SNN) the activation layer
from usual NN will be replaced.

And afterwards used to rebuild of YOLO in Section 2.5 to be able to
use it with SNN on the DVS data.

The generalization and regularization will be improved through 2 already
known techniques called pruning in Section 2.6 and quantization in Section
2.7. They also offer interference speedup and a smaller network size.

2.1 Dynamic Vision Sensor (DVS)

The novel image sensors known as event cameras, which have the potential to
alleviate most of the problems caused by the design principles of conventional
cameras as mentioned in Section 1.1 when combined with new event-driven
computer vision algorithms introduced in this thesis.

A DVS is a sensor that works radically differently from a conventional
camera. By reporting asynchronous intensity changes over time or space
rather than synchronous full image frames, they generate low bit-rate, in-
formation rich data streams that are free of the redundancy of video while
also providing additional benefits such as high dynamic range, high temporal
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2.1. Dynamic Vision Sensor (DVS)

resolution, and low latency. They are the result of bio-inspired silicon retina
research in neuromorphic engineering, with the goal of replicating some su-
perior qualities of biological vision.

Figure 2.1: Event camera vs standard camera: Unlike the upper graph, which
shows a sequence of video frames from a standard camera, the lower
graph shows a stream of events from an event camera, which has no
redundant data output (only informative pixels or no events at all),
no motion blur, and a high dynamic range. The red and blue dots
indicate positive and bad events, respectively, and this picture was
inspired by the famous animation of [Kim17]

It is inspiring to look at the distinctions between event cameras and conven-
tional cameras, as represented in Figure 2.1, in order to comprehend how
event cameras work and comprehend how they could be advantageous for
real-time computer vision applications.

Standard cameras record scenes at predetermined time intervals (global
or rolling shutter) and output a series of image frames. As shown in Figure
2.1, if a stationary conventional camera stares at the spinning disc with the
black dot on the left, we acquire a series of snapshots as indicated in the top
spatial-temporal graph on the right. If the events are simply visualized by
taking all in a certain, tδ = 30ms an example image is shown in Figure 2.2
on the left side. The graph depicts some main properties of standard video
frames: there are blind time intervals between frames, the sensor continues
to send redundant data even when the disc is stationary (no new informa-
tion produced), and we suffer from motion blur if the disc spins too fast
(illustrated by the gray tails along the trajectory of the block dot).

In contrast to ordinary cameras, event cameras produce a stream of
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CHAPTER 2. BACKGROUND

asynchronous events (also known as spikes), each with a pixel location, po-
larity, and microsecond-precise date, indicating when individual pixels record
log intensity changes of a pre-set threshold magnitude. Positive and negative
changes, on the other hand, result in positive and negative events. By encod-
ing only image changes, the bandwidth required to transmit, process, and
store a stream of events is much lower than that required for standard video,
removing the redundancy in continuously repeated image values; however,
this stream should in theory contain all the information of standard video,
at least up to scale, and without the usual frame-rate and dynamic range
bounds. For example, observing the same spinning disc with a fixed event
camera yields the stream of events depicted in the lower spatial-temporal
graph on the right side of Figure 2.1 — red and blue dots represent positive
and negative events, respectively. This graph also depicts some fundamen-
tal aspects of the event stream, including the near constant reaction to very
rapid motion and how the output data-rate depends on scene motion, albeit
in practice it is nearly always far lower than that of regular video. These
qualities have the potential to overcome the limitations of traditional imag-
ing sensors in real-world computer vision applications, such as low frame
rate, high latency, low dynamic range, and high power consumption.

Figure 2.2: On the left side is an image-like visualization of accumulated events
within a time interval, where white and black pixels represent pos-
itive and negative events, respectively. right is a series of events
depicted as upward and downward spikes for positive and negative
events. Each event is a tuple (hu, v, p, t) where u and v are the event’s
pixel coordinates, p is the event’s polarity, and t is the event’s times-
tamp in microseconds; [Kim17]

In summary, the event camera has the following advantages over a usual
frame based one:
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2.2. Neural Networks

• more dynamic range 140db vs 60db

• no motion blur

• smaller data stream (sparse matrix)

• high temporal resolution (in the order of microseconds)

• less energy consumption

Each event is encoded as described in 2.2

2.2 Neural Networks

A typical NN is made up of many simple, connected processors called neu-
rons, each of which generates a sequence of real-valued activations. The first
one exists out of perceptrons. The perceptron is a simplified artificial neural
network first introduced by [Ros58] shown in Figure 2.3

Figure 2.3: Simplified representation of an artificial neural network

In its basic version (simple perceptron), it consists of a single artificial neuron
with adjustable weights and a threshold. Today, this term is used to refer
to various combinations of the original model, distinguishing between single-
layer and multi-layer perceptrons (MLP). Perceptron networks convert an
input vector into an output vector and thus represent a simple associative
memory.

Some neurons may have an impact on their surroundings by activating
actions. Finding weights that cause the NN to exhibit desirable behavior,

9



CHAPTER 2. BACKGROUND

such as driving a car or classify images, is the goal of learning or credit as-
signment. Depending on the problem and how the neurons are coupled, such
behavior may necessitate extended causal chains of computational stages as
shown in 2.3 and 2.5, with each stage transforming (sometimes in a non-linear
way) the aggregate activation. As [Sch14] says, Deep Learning is concerned
with appropriately attributing credit to the network’s weights and biases
across many such phases. The cell body of a single neuron is depicted in
Figure 2.4.

Figure 2.4: Visualization of a single neuron.

In this example, each input is multiplied by its associated weight in 2.1 - 2.3.

y0 = x0 ∗ w0 (2.1)

y1 = x1 ∗ w1 (2.2)

y2 = x2 ∗ w2 (2.3)

Next, all the weighted inputs are added together with a bias b:

y0 + y1 + y2 + b (2.4)

Finally, the sum is passed into an activation function:

y = f(y0 + y1 + y2 + b) (2.5)

The activation function is important to reduce the image to a specific range.
And to be able to easily back propagate the network. An easy example for
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2.3. Convolutional Neural Networks

an activation function is the sigmoid shown in Figure 2.5. Which projects
the input between [0, 1].

Figure 2.5: Visualization of the Sigmoid activation function.

2.3 Convolutional Neural Networks

A CNN is an artificial neural network. It is a concept inspired by biological
processes in the field of machine learning [MMMK03]. Convolutional Neural
Networks find application in numerous Artificial Intelligence (AI) technolo-
gies, primarily in machine processing of image or audio data. Basically, the
structure of a classical CNN consists of one or more Convolutional Layers,
followed by a Pooling Layer. In principle, this unit can repeat itself as often
as desired; if there are enough repetitions, we then speak of Deep Convolu-
tional Neural Networks, which fall into the area of Deep Learning shown in
Figure 2.6.

Figure 2.6: Structure of a typical CNN for image classification.
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CHAPTER 2. BACKGROUND

Architecturally, three major differences can be noted in comparison to the
multilayer perceptron (for details, see section 2.3.1 Convolutional Layer):

• 2D or 3D arrangement of neurons.

• Split weights

• Local connectivity

2.3.1 Convolutional Layer

Usually, the input is a two- or three-dimensional matrix (e.g. the pixels of
a grayscale or color image). Accordingly, the neurons are arranged in the
convolutional layer.

The activity of each neuron is calculated via a discrete convolution
(hence the addition convolutional). In this process, a comparatively small
convolution matrix (filter kernel) is moved stepwise over the input. The input
of a neuron in the convolutional layer is calculated as the inner product of the
filter kernel with the currently underlying image section. Accordingly, neigh-
boring neurons in the Convolutional Layer respond to overlapping areas (sim-
ilar frequencies in audio signals or local environments in images) [LBBH98].

It should be emphasized that a neuron in this layer only responds to
stimuli in a local environment of the previous layer. This follows the bio-
logical model of the receptive field. In addition, the weights for all neurons
of a convolutional layer are identical (shared weights). This means that, for
example, each neuron in the first convolutional layer encodes to which inten-
sity an edge is present in a certain local area of the input. Edge detection as
the first step of image recognition has high biological plausibility [HW68].It
follows directly from shared weights that translation invariance is an inherent
property of CNNs.

The input of each neuron, determined by discrete convolution, is now
transformed by an activation function, usually Rectified Linear Unit (ReLU)
shown in 2.6 [Aga18]

f(x) = max(0, x) (2.6)

for CNNs, into the output, which is supposed to model the relative firing
frequency of a real neuron. Since backpropagation requires the computation
of gradients, a differentiable approximation of ReLU is used in practice 2.7:

f(x) = ln(1 + ex) (2.7)

Analogous to the visual cortex, in deeper convolutional layers both the
size of the receptive fields (see Pooling Layer section 2.3.2) and the complexity
of the recognized features increase.

12



2.3. Convolutional Neural Networks

2.3.2 Pooling Layer

For example, for object recognition in images, the exact position of an edge in
the image is of negligible interest - the approximate localization of a feature
is sufficient. There are different types of pooling. By far the most common
is max-pooling shown in Figure 2.7, where from each 2 × 2 square of neu-
rons in the convolutional layer, only the activity of the most active (hence
”max”) neuron is retained for further computational steps; the activity of
the remaining neurons is discarded. Despite the data reduction (75% in the
example), pooling usually does not reduce the performance of the network.
On the contrary, it offers some significant advantages:

• Reduced space requirements and increased computation speed.

• Resulting possibility to create deeper networks that can solve more
complex tasks

• Automatic growth of the size of the receptive fields in deeper convo-
lutional layers (without the need to explicitly increase the size of the
convolutional matrices)

• Preventive measure against overfitting

Alternatives such as mean pooling have been shown to be less efficient in
practice [SMB10]. The biological counterpart to pooling is lateral inhibition
in visual cortex.

13



CHAPTER 2. BACKGROUND

Figure 2.7: Max pooling with a 2×2 filter and step size = 2. The step size
indicates how many pixels the filter moves per operation.

2.3.3 Fully-Connected Layer

After some repetitive units consisting of convolutional and pooling layers, the
network can terminate with one (or more) fully-connected layers according
to the architecture of the multilayer perceptron. This is mainly applied
in classification and call Fully Connected Neural Network (FCNN). The
number of neurons in the last layer then usually corresponds to the number
of (object) classes that the network should distinguish. This, very redundant,
so-called one-hot-encoding has the advantage that no implicit assumptions
about similarities of classes are made. The output of the last layer of the CNN
is usually transformed into a probability distribution by a softmax function,
a translation- but not scale-invariant normalization over all neurons in the
last layer.

14



2.4. SPIKING NEURAL NETWORKS

2.4 Spiking Neural Networks

McCulloch and Pitts [MP43] made the first attempt to characterize the un-
derlying activity of neurons in 1943. This first model included binary acti-
vation, excitatory and inhibitory inputs, unit weights, and a fixed threshold.
This meant that the network’s weights and thresholds had to be defined an-
alytically and could not be learned. Despite these constraints, a network of
McCulloch-Pitts neurons can mimic any logic function.

The perceptron model was developed in 1958 as an expansion of the
McCulloch-Pitts model [Ros58]. This methodology enabled parameter learn-
ing and the use of effective minimization methods to tackle linear separation
issues. The perceptron reduces the complicated dynamics of synapses to a
weight factor. The weighted sum of the activation of input neurons is the
definition of the neuron’s membrane potential:

u =
N∑
i=0

wixi + w0 (2.8)

where wi is the synaptic weight to input neuron i, w0 is the weight bias that
determines the resting potential, and N is the number of input neurons. The
output is defined as a membrane potential threshold function:

z =

 1 if u ≥ θ

0 if u ≤ θ

(2.9)

Where z is the value of the threshold parameter.
The next generation of artificial neuron models replaced the threshold

function at the output with nonlinear activation functions, typically sigmoid
ortangens hyperbolicus [Sal18]. Networks of neurons having non-linear acti-
vations, as opposed to perceptrons, may differentiate data that is not linearly
separable [Bis06].

The LIF model of spiking neurons is discussed futher below. Because
of its physiologically realistic communication, the LIF neuron belongs to
the third generation of neuron modes and is one of the most common formal
spiking neuron models used in research. The information transferred through
the networks of LIF neurons is encoded in the spike trains produced by the
neurons.

The cell membrane is represented as an electrical circuit consisting of
parallel resistor R Rand capacitor C parts driven by current I. The current I
is viewed as dendritic incoming current. The current component discharged
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CHAPTER 2. BACKGROUND

across the resistor R is interpreted as ion leakage through open channels in
cells, whilst the second current component charges the capacitor C. The
capacitor voltage is defined by

τm
δu

δt
= −u(t) +RI(t) (2.10)

and is interpreted as membrane potential u. Where τm = RC is the neuron’s
membrane time constant [5].

An action potential (spike) is created when the membrane potential
exceeds the threshold parameter. Spikes are formal events in this paradigm,
defined by their firing time t(f), which is specified by the threshold criterion.

t(f) : u
(
t(f)
)

= θ (2.11)

The membrane potential is set to the resting potential immediately af-
ter the spike fires ur < θ [5]. The LIF neuron, in general, can implement an
absolute refractory time, which we do in our simulations. When the mem-
brane potential u = ur approaches the threshold θ at t = t(f), we stop the
dynamics 2.10 for the period of absolute refractory time ∆abs and resume
the dynamics at t(n) + ∆abs with the membrane potential u = ur [5].

Because the LIF model does not explicitly describe the shape of a spike,
the driving current I of coupled LIF neurons is unknown. The driving current
in a biological neural network is determined by the activation of presynaptic
neurons. At the synapse, spikes generate current pulses that are proportional
to the excitatory post synaptic potential in the receiving dendrite. The input
current in this configuration is the weighted sum of received current pulses,
where weights denote synaptic efficacies:

IiI
(t) =

∑
i

wi
∑
f

αi (t− ti,f ) (2.12)

where kernel αi(t) is the current pulse shape created by synapse i, tij is a list
of input spike times arriving at synapse i, and wi is the synapse’s weight or
efficiency. The kernel α is often a Dirac δ -pule, but it can alternatively be
a double exponential kernel with rise and fall times τr and τx:

αi(t) =
q

τs − τr

(
exp

(
−t−∆i

τs

)
− exp

(
−t−∆i

τr

))
Θ (t−∆i) (2.13)

where q is the total charge of a synapse, ∆i is the latency of a synapse, and
Θ(t)is the Heaviside step function [GK02].
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Figure 2.8: The illustration of Leaky Integrate and Fire (LIF) neuron dynamics.

[LSP+20]

The kinetics of Leaky Integrate and Fire (LIF) neurons are depicted in 2.8.
The synaptic weight modulates the pre-spikes, which are incorporated as the
current influx in the membrane potential, which decays exponentially. The
post-neuron fires a post-spike and resets the membrane potential whenever
the membrane potential reaches the firing threshold.

2.5 Model Architecture You Only Look Once

(YOLO)

The majority of CNN-based object detectors were largely applicable only for
recommendation systems because of inaccuracy and speed. With the aim to
overcome this and create a real-time object detection CNN that operates on
a conventional GPUs, [RDGF16] introduced the YOLO architecture. Real-
time object detector operation on conventional GPUs allows their mass usage
at an affordable price. YOLO was also designed to be easily trained and used
in production systems. A detector is composed of two parts, a backbone and
a head. The backbone is pre-trained on ImageNet, and the head is used to
predict classes and bounding boxes of objects. For those detectors running
on CPU platform, the backbone could also be implemented as SqueezeNet
or MobileNet. The head implementation is usually categorized as one-stage
object detector or two-stage detector. Some detectors insert layers between
backbone and head to collect feature maps from different stages [BWL20].
Figure 2.9 shows the architecture of such object detector consisting of several
components.
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Figure 2.9: Object detection architecture from [BWL20]

• Input: Image, Patches, Image Pyramid

• The Backbone is primarily used to extract key features from an input
image. Common backbones are: VGG16 [SZ15], ResNet-50 [HZRS15],
SpineNet [DLJ+20], EfficientNet-B0/B7 [TL20], CSPResNeXt50 [WLY+19],
CSPDarknet53 [WLY+19]

• The Neck is primarily used to build feature pyramids. Feature pyra-
mids aid models in generalizing well when it comes to object scaling. It
aids in the identification of the same object in various sizes and scales.
Feature pyramids are extremely useful in assisting models to perform
well on previously unseen results. Other versions, such as

– Additional blocks: SPP [HZRS14], ASPP [CPK+17], RFB [LHW18],
SAM [WPLK18]

– Path-aggregation blocks: FPN [LDG+17], PAN [LQQ+18], NAS-
FPN [GLPL19], Fully-connected FPN, BiFPN [TPL20], ASFF
[LHW19], SFAM [ZSW+19]

employ various forms of feature pyramid techniques.

• The Head is primarily responsible for the final detection phase. It uses
anchor boxes to produce final output vectors with class probabilities,
objectness ratings, and bounding boxes.
Available heads are:

– Dense Prediction (one-stage):

∗ RPN [RHGS15], SSD [LAE+16], YOLO [RDGF16], RetinaNet
[LGG+18] (anchor based)

∗ CornerNet [LD19], CenterNet [DBX+19], MatrixNet [RKP19],
FCOS [TSCH19] (anchor free)
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– Sparse Prediction (two-stage):

∗ Faster R-CNN [RHGS15], R-FCN [DLHS16], Mask RCNN
[HGDG18] (anchor based)

∗ RepPoints [YLH+19] (anchor free)

2.5.1 YOLOv5 Architecture

YOLOv5 is a single-stage object detector [JSB+21] which consists of three
equal parts: the backbone, the neck, as well as the head. The only setting
that is adjustable is the depth and width of the model. When V5l is executed,
the following default parameters are used:

• A depth multiplier controls the value of the amount of detail in the
model. To illustrate, the depth of v5s is 0.33, and the number of
Bottlenecks is equal to the depth of v5l.

• The parameter, width multiple, controls the number of convolution
kernels. The number of convolution kernels for V5s is set to 0.5, which
implies that the width of V5s is 0.5, too. Of course, one can also set it
to one and a quarter. For example, the first layer of the backbone in
the YOLO V5 yaml is [[-1, 1, Focus, [64, 3]], and the width of V5s is
0.5, so this layer is actually [[-1, 1, Focus, [32, 3]].

• The column parameter is used to specify the input. -1 represents the
input obtained from the upper layer, -2 represents the input obtained
from the upper two layers (the same is true for head).

• Number column parameters: 1 means there is only one, 3 means there
are three identical modules.
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The architecture can be divided into multiple higher levels shown in
Figure 2.10 and explained further on.

1. Input: The innovational methods used are Mosaic data enhancement,
adaptive anchor frame calculation, adaptive picture scaling.

2. Backbone: Uses a Focus structure at the entry and mainly consists out
of CSP structures

3. Neck: The network for target detection inserts some layers between
the backbone and the output layer, including the SPP module and the
framework for FPN+PAN.

4. Prediction: The output layer’s anchor framework mechanism is the
same as that of Yolov4 and the key change is the GIOU Loss loss
feature, replacing DIOU-CIOU Loss.

2.5.2 Input

The input differs from training to inference in the manner of data augmenta-
tion and enhancement. During training, the average precision (AP) of small
targets is generally much lower than of medium or large targets [KWM+19],
and thus the data gets modified by a mechanism calls Mosaic data enhance-
ment during training. Mosaic data enhancement puts multiple images into
one and by random scaling, random cropping, and random arrangement and
is published by [ZCG+19]. But because we are using synthetic data this
input feature is disabled.

2.5.3 Backbone: Focus Layer

The Focus layer is the first layer in yolov5, and it’s based on the Space-
ToDepth stem published in TResNet [RLN+20] as a faster and more efficient
way to stem the input. In figures 2.11 and 2.13 the functionality is shown for
Yolov5s. Using the Yolov5s structure as an example, the original 608×608×3
image is input into the Focus structure, and the slicing operation is used to
first become a 304 × 304 × 12 feature map, and then after a convolution
operation of 32 convolution kernels, the final change is a 304× 304× 32 fea-
ture map. It should be noted that Yolov5s’ Focus structure now employs 32
convolution kernels, whereas the number of the other three structures has
increased. Pay careful attention first, and then the variations between the
four systems will be clarified.

21



CHAPTER 2. BACKGROUND

Figure 2.11: On the left side is the netron Visualisation of the Focus layer; And
on the right side the simplified Illustrated one

[Dab20]

2.5.4 Backbone: BottleneckCSP Layer

BottleneckCSP is divided into two parts, Bottleneck and CSP.
Bottleneck is a classic residual structure composed of a 1x1 convolutional

layer (conv+batch norm+leaky relu), a 3× 3 convolutional layer, and finally
a residual structure to add to the initial input. It should be noted that
YOLO V5 controls the model’s depth via depth multiple. For example, the
depth of V5s is 0.33 and the depth of V5l is 1, implying that the number of
Bottleneck in V5x’s Bottleneck CSP is three times that of V5s, which was
the model’s first Bottleneck CSP. There are two CSP structures designed in
Yolov5. Taking the Yolov5s network as an example, the CSP1 X structure
is used in the Backbone network, and the other CSP2 X structure is used in
Neck shown in figure 2.12.

The figure 2.12 shows the CSP structure of YOLO V5s. The original
input is divided into two branches, both performing the convolution operation
to reduce the number of channels by half, and then branch one performs the
Bottleneck x N operation. At the end both branches will be concatenated.
That the input and output of BottleneckCSP are the same size, and the
purpose is to allow the model to learn more features.
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Figure 2.12: Detailed view of the BottleneckCSP

[Dab20]

2.5.5 Backbone: SPP Layer

The figure 2.13 shows the SPP structure of YOLO V5s. The input of SPP is
512×20×20. After a 1x1 convolutional layer, it outputs 256×20×20. Then
it is down-sampled through three parallel Maxpools. The result is added to
its initial features to output 1024×20×20. Finally, a 512 convolution kernel
is used to restore it to 512× 20× 20.
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Figure 2.13: Detailed view of the SPP and Focus layers.

[Dab20]

2.5.6 Neck

Yolov5’s current Neck uses FPN+PAN structure. To detect objects, we can
use a pyramid of the same picture at various scales shown in Figure 2.14
on the left. However, processing multiple scale images takes time, and the
memory demand is too high to train end-to-end at the same time. As a result,
we can only use it in inference to increase accuracy as much as possible.
Alternatively, we can create a feature pyramid and use it to detect objects
shown in Figure 2.14 on the right. Closer to the image layer, however, feature
maps are composed of low-level structures that are ineffective for accurate
object detection. The Feature Pyramid Network (FPN) is a feature extractor
built with accuracy and speed in mind for such pyramid concepts. It replaces
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detectors’ feature extractors, such as Faster R-CNN, and generates multiple
feature map layers (multi-scale feature maps) with higher quality information
than the standard feature pyramid for object detection.

Figure 2.14: On the left a pyramid of images to detect different scaled objects.
On the right a feature pyramid to do the same.

[LDG+17]

Furthermore, PAN is build on top of FPN to improve performance shown in
Figure 2.15. Path augmentation and aggregation are used to boost efficiency.
To render low-layer knowledge easier to spread, a bottom-up direction is
supplemented. We devise adaptive feature pooling to allow each proposal to
predict using information from all levels. The mask-prediction branch now
has a complementary direction. This new structure results in acceptable
efficiency. The upgrade, like FPN, is independent of the CNN system.

Figure 2.15: Illustration of PAN. (a) FPN backbone. (b) Bottom-up path aug-
mentation. (c) Adaptive feature pooling.

[LQQ+18]
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2.5.7 Activation functions

In any deep neural network, the selection of activation functions is impor-
tant. Many new activation features, such as Leaky ReLU, mish [Mis20],
swish [RZL17], and so on, have recently been published. In YOLO v5 the
Leaky ReLU and Sigmoid activation functions are used. The Leaky ReLU
activation function is used in the middle/hidden layers of YOLO v5, while
the sigmoid activation function is used in the final detection layer. The SGD
optimization feature is used by default but could be changed to ADAM eas-
ily. A compound loss is measured in the YOLO family based on objectness
score, class likelihood score, and bounding box regression score. For the loss
calculation of class likelihood and object score, Ultralytics used PyTorch’s
Binary Cross-Entropy with Logits Loss function. We also have the option of
measuring the loss using the Focal Loss function [LGG+18]. The main differ-
ence in size and precision control of YOLOv4 and YOLOv5 is that YOLOv5
is reducing or extending each layer by a crop factor and YOLOv4 is reduc-
ing its overall layers. Therefor there will be less connections between the
different stages.

2.6 Pruning

Deep learning methods at the cutting edge depend on over-parametrized
models that are difficult to deploy. On the opposite, it is well known that
biological neural networks make optimal use of sparse connectivity. It is crit-
ical to identify optimal techniques for compressing models by reducing their
parameter count in order to minimize memory, battery, and hardware usage
without compromising accuracy, deploy lightweight models on the computer,
and ensure privacy through private on-device computation [Pag20].

The neural network (NN) Pruning is the process of shrinking a Neu-
ral Network by eliminating some of its parameters/weights. Pruning is of-
ten used to reduce the memory, computational, and energy bandwidths re-
quired for training and deploying NN models, which are infamous for their
large model size, computational cost, and energy consumption. Pruning, and
model compression in general, is desirable and often the only plausible way to
deploy NN models on mobiles or edge devices, where memory, resources, and
computational bandwidths are very small. But, one would wonder, why not
use the cloud’s potentially limitless virtual memory and computing power?
While several NN models are currently running on the cloud, latency is not
low enough for mobile/edge devices, limiting utility and necessitating data
transfer to the cloud, which poses some privacy concerns [CR19].
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A standard pruning method’s workflow is as follows: A number of pa-
rameters of a trained model are zeroed out based on a pre-defined score.
The network that remains is trained again (retraining). To approximate the
accuracy of the original model with the sparse, pruned model, which now
requires significantly lower memory, computational, and energy bandwidths
than the original model due to the fewer parameters. To comprehend the
developments in Pruning science, it is helpful to categorize new techniques
as different forms across different dimensions (methods of classification) and
their distinct strengths and weaknesses. The dimensions mentioned below
are some of the most common.

2.6.1 Structured vs. Unstructured

Unstructured Pruning occurs when NN weights are pruned individually dur-
ing the pruning process. Randomly zeroing out the parameters improves
memory efficiency (models are stored in sparse matrices), but it does not
always improve computational performance because we end up performing
the same number of matrix multiplications as before. Since the matrix di-
mensions have not changed, they are simply sparse. While we could gain
computational advantages by replacing dense matrix multiplications with
sparse matrix multiplications, accelerating sparse operations on conventional
GPUs/TPUs is not trivial. Structured Pruning, on the other hand, removes
parameters in a structured manner to reduce the total computation required.
For example, in a feedforward layer, some of the CNN channels or neurons are
removed, resulting in a direct reduction in computation. Structured Prun-
ing (pruning neurons) and Unstructured Pruning (pruning connections) are
examples of pruning2.16.
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Figure 2.16: Neural Network Pruning differences between structured and un-
structured.

[CR19]

2.6.2 Parameter Scoring

The method used to score each parameter, which is used to choose one pa-
rameter over another, can vary between pruning methods. The absolute
magnitude scoring method is the industry norm, but a new scoring method
may be developed to improve the efficiency of pruning. For example a math-
ematical norm could be used. A norm is applied to a vector. The norm
of a vector maps vector values to values in [0,∞). Going a bit further, we
define ‖x‖p as a ”p-norm”. Given x, a vector with i components, a p-norm
is defined as:

‖x‖p =

(∑
i

|xi|p
)1/p

(2.14)

The simplest norm conceptually is Euclidean distance. This is what we
typically think of as distance between two points in space:

‖x‖2 =

√√√√(∑
i

x2i

)
=
√
x21 + x22 + . . .+ x2i (2.15)

Another common norm is taxicab distance, which is the 1-norm:

‖x‖1 =
∑
i

|xi| = |x1|+ |x2|+ . . .+ |xi| (2.16)
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2.6.3 Pruning Approaches

Rather than pruning the desired amount all at once, which is known as One-
shot Pruning, some methods, known as Iterative Pruning, repeat the process
of pruning the network to some degree and retraining it until the desired
pruning rate is reached. Previous research in the Iterative Pruning model
demonstrated that learning or designing when and how much to prune helps.
A pruning schedule defines the ratio of pruning after each epoch as well as
the number of epochs to retrain the model once it is pruned. The following
are the three steps of a standard iterative pruning approach:

1. train a large, over-parameterized model (pre-trained models are often
available).

2. prune the trained large model based on a criterion.

3. fine-tune the pruned model to recover the lost results.

Another approach instead of fine-tuning would be Weight rewinding [RFC20]
which leads to better results.

2.7 Quantization

Deep learning workloads must leverage available computation and memory
resources more efficiently in order to perform well on a wide range of plat-
forms, from cloud-scale clusters to low-power edge devices. One other popular
method to enhance resource efficiency is to quantize the Neural Network by
reducing the bitwidth e.g. replacing 32-bit floating point numbers with 8-bit
integers. By representing the used spectrum form float32 into 8bit integer
shown in Figure 2.17

Figure 2.17: float32 quantized into int8

[AAB+15]

This enables the use of high-performance vectorized operations on a variety
of hardware platforms, as well as a more compact model representation. In
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comparison to normal FP32 models, PyTorch enables INT8 quantization,
which allows for a 4x reduction in model size and a 4x reduction in memory
bandwidth needs. When compared to FP32 computations, hardware support
for INT8 computations is typically 2 to 4 times faster. In Figure 2.18 the
representation of a 32–bit float number is shown. There are only 23 bits used
for the decimal place. and thus the quantization will be 3 times less precise
in the worst case as long as spectrum stays in [−1, 1]

sign exponent (8 bits) fraction (23 bits)

02331

0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 22 (bit index)

Figure 2.18: Binary representation of a 32-bit floating-point number. The value
depicted, 0.15625, occupies 4 bytes of memory: 00111110 00100000
00000000 00000000

Quantization is primarily used to speed up inference, and quantized operators
can only use the forward pass. There are different quantization approaches:

1. dynamic quantization (Weights have been quantized using activations
that have been read/stored in floating point and then quantized for
computation.)

2. static quantization (Weights have been quantified, activations have
been quantified, and post-training calibration is necessary.)

3. quantization aware training (During training, weights were quantified,
activations were quantified, and quantization numeric were modeled.)

Quantization can only be done in forward and not in backward pass. There
for, the backward pass is done in FP32 and converted before being applied at
the quantization aware training. This is called fake-quantization modules.
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Related Work

3.1 Synthetic Data for Deep Learning

Synthetic data is an approach to solving the data problem by producing ar-
tificial data from scratch or using advanced data manipulation techniques.
Synthetic data can produce a potentially unlimited number of pixel-perfect
labeled images and video clips, among other things. The goal is to make it
possible for humans to create better data sets. This paper focuses on syn-
thetic data rather than data augmentation. Synthetic data can be produced
and supplied to machine learning models on the fly, during training.

The aim is to provide a more general overview of the field. They conclude
with an analysis of some of the most popular synthetic data generators.
In this paper, they look at the use of synthetic data to solve problems in
computer vision, robotics, and other fields. Synthetic data can be used to
resolve privacy or legal issues that make using real data prohibitively hard
for some applications. They also examine how synthetic data is used to train
new models.

In this paper, they look at the privacy side of synthetic data. They also
discuss how to generate synthetic data with differential privacy guarantees.
The paper concludes with a call for further work on synthetic data in finance
and related fields. It includes directions for further research into the field.
[Nik19]

They had a look into synthetic data for basic computer vision problems.
They also examine how synthetic data can be used to improve general prob-
lems such as object detection or segmentation. In 1999, [FPC00] presented
a synthetically generated world of images, with labeling derived from the
corresponding 3D scenes, designed to train and evaluate computer vision al-
gorithms. In 2011, [BSL+11] created a modern dataset for low-level vision
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called Middlebury. [PMM+12] present the Tsukuba CG Stereo Dataset with
synthetic optical flow maps. They show improvements in disparity and clas-
sification quality. This could lead to better understanding of where optical
flow algorithms break down. The study was published in the open-to-read
online journal arXiv.

[OBZ+18] consider an unusual special case for this problem: underwa-
ter disparity estimation. Their work is interesting in the way they produce
synthetic images on randomized synthetic surfaces. They then use render-
ing tools developed to simulate the underwater sensors and characteristic
underwater effects such as back scattering.

Synthetic data can be used to solve problems such as object detection
and segmentation. These problems include object detection for everyday ob-
jects, food, and retail items. Synthetic data also includes 3D-related labeling,
depth maps, and volumetric 3D data. PartNet is a benchmark for 3D object
and scene understanding, but the corresponding 3D models will no doubt
be widely used to generate synthetic data developed by [MZC+18] Synthetic
data can be created by reusing the work of 3D artists that went into creating
virtual environments of video games.

Recent works use synthetic datasets of everyday objects in more complex
ways. In [AMM+17] and [GMBK17] the authors place synthetic objects into
indoor scenes with an eye toward home service robots. The aim is to make
it possible to place these synthetic objects on real backgrounds. A long line
of work has used synthetic data for object detection. In the next section, we
will see how this progress helps to solve the basic computer problems: after
all, recognizing synthetic objects is never the end goal.

The aim is to improve high-level computer vision with synthetic data for
object detection. [HLWK17] propose to freeze the lower layers of a pretrained
object detection architecture and only train the top layers on synthetic data.
They report that freezing the layers helps significantly, improvement in their
results. Synthetic data can be used to solve problems such as 3D pose,
viewpoint, and depth estimation. Which was exactly our starting goal.

[SAS+18] propose a pipeline that combines detection-based masks by
Mask R-CNN and semantic segmentation masks by DeepLab for background
classes. NVIDIA researchers have created the first state of the art network for
6-DoF pose estimation on synthetic data. They trained a deep neural network
and report that it can transfer 3D pose estimation from synthetic to real
data with proper domain randomization and domain adaptation. Synthetic
data helped improve 3D object pose estimation in [GAGM15] and multi-view
object class detection.

The Render for CNN approach outperformed real data with a hybrid
synthetic+real dataset on the view estimation problem. Synthetic data has
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also been used for pedestrian detection by [MVGL10] as part of this thesis.

3.2 Event-based Moving Object Detection and

Tracking

The computer vision community has started to derive inspiration from the
neuromorphic community whose ideas are based on biological systems to
build robust and fast algorithms which run on limited computing power.
The research was carried out by researchers at the University of California,
San Diego. A new time-image representation of the ego-motion estimation
problem has been developed. The paper is highly parallelizable and can be
easily ported to a GPU or an FPGA for even lower latency. It uses a novel
event-only feature-less motion compensation pipeline.

A new event-based approach for 3D motion estimation and segmentation
is proposed. The system would have no knowledge about its motion or the
scene. It could be used to detect moving objects in challenging situations,
such as driving a car at high speed. Inventor: We can’t predict when an
object will move - we can only track it.

The algorithm derives inspiration from 3D point cloud processing tech-
niques, such as Kinect Fusion by [IKH+11]. It performs global motion com-
pensation by fitting a 4-parameter motion model to the cloud of events in a
small time interval. The algorithm then labels event clusters which do not
conform to the motion model and labels them separately. The data from
the DVS sensor is four-dimensional, with the additional, fourth component
a binary value denoting the sign of intensity change.

VI-A, T is a discretized plane with each pixel containing the average
timestamp of the events mapped to it by the event cloud. Equation 6 is
a global error which takes into account local motion inconsistencies of the
event cloud. A pipeline of algorithms is used to detect independently moving
objects. Camera motion compensation and subsequent motion inconsistency
analysis are used to compensate for global background motion. The algo-
rithm was developed by the University of California, San Diego in the 1990s.

It has been used in a variety of applications, such as tracking drones.
Algorithm 1 describes the approach of the detection and tracking of inde-
pendently moving objects by observing inconsistencies of T . The results are
shown in Algorithm 2, which shows how the algorithm is used to detect and
track the objects that have been detected and tracked using a Kalman Fil-
ter. The detection algorithm presented in Subsec. VI-A runs in real-time
(processing time ≤ δt) to account for missing and wrong detections.
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They emphasize the ability of our pipeline to perform detection at very
high rates, and include several sequences where the tracked object changes its
speed abruptly. The dataset was collected using the DAVIS240B bioinspired
sensor equipped with a 3.3mm lens with a horizontal and vertical field of
view of 80◦. Most of the sequences were created in a hand-held setting, but
some were recorded on a mobile phone. The aim of the experiment was to
test the reliability of tracking in scenarios where detection is not possible for
a small period of time-based sensing can fill a void in the area of robotic
visual navigation.

The algorithm is based on event-based only motion estimation and clus-
tering. They argue that it can be used to spot moving objects more accu-
rately. And it’s useful for 3D vision. [MFPA18]

3.3 DavisDrivingDataset 2020

Figure 3.1: On the left side is the actual steering; On the right side is the visu-
alized event data stream.

[HBN+20]

DDD20 is the longest event camera end-to-end driving dataset to date with
51h of DAVIS event+frame camera and vehicle human control data collected
from 4000 km of highway and urban driving. One example Image collection
is shown in 3.1. The next generation event camera called DAVIS could be
used in driving applications. The system can handle dynamic range of 120dB
vs. 60dB for handling uncontrolled lighting conditions. Samsung funded the
project, which is now being expanded to include other partners.

DDD17, containing 12h of E2E labeled driving data, was used by [MLG+18]
to compare the human steering with predictions using APS frames, APS
frame differences, and DVS frames. DDD20 contains 51 h of recordings
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collected from a 346 × 260-pixel DAVIS346 camera. The ’DAVIS Driving
Dataset 2020’ (DDD20) dataset will be released at http://sensorsini.uzh.ch/
databases. We show that fusing APS and DVS data improves the predictions
by a significant margin over either modality by itself. The original DDD17
Ford Mondeo dataset used a single mounting point.

The USB3.0 camera was mounted using a glass suction tripod fixed be-
hind the windshield, just below the rear mirror, and aligned to point to the
center of the hood. The 51 h of usable data were recorded under various
weather, driving, road, and lighting conditions over about 60 days of inter-
mittent recording. The car speed was uniformly distributed over the range
of 0–130 km/h. Steering angles on straight roads were dominated by small
deviations of ±10%. The original DDD17 dataset showed that a 50 ms DVS
frame duration provided the optimum for DVS steering prediction.

Figure 3.2: Illustration of the steering prediction network in the DDD20 paper.

[HBN+20]

We used this data to study the steering angle prediction using our
ResNet-32 network. The configuration for the convolutional neural network
was similar to that used in [MLG+18]. Figure 3.2 shows the architecture
of the steering angle network. In the cases of DVS-only and APS-only, the
network is trained with a one-channel input.

35



CHAPTER 3. RELATED WORK

The networks were trained for 200 epochs, using minibatches of 128
samples and using a Mean Squared Error (MSE) loss. Using DVS+APS
results in the best steering prediction. All networks can successfully predict
the steering wheel angle but the DVS +APS one is most accurate. It seems
that the moving features exposed by DVS improve the steering predictions.
The EVA for DVS+.APS is significantly better than for either DVS or APS
alone.

DDD20 is the first open E2E driving dataset with over 50 h of recordings
from a DAVIS event camera mounted on a vehicle driven over 4000 km.
Results show that fused DVS and APS information best explains the steering
variance under all driving conditions. [HBN+20]

3.4 Ground Moving Vehicle Detection and

Movement Tracking Based on the Neu-

romorphic Vision Sensor

Autonomous vehicles need to be able to take initiative action to navigate
traffic. This requires the autonomous vehicle to have some ability to de-
tect and reason about the movement state of surrounding moving vehicles.
The accuracy is good only for a short time ahead due to inertia and a vary-
ing movement. Several studies proposed from [BMH15], [ST12] and [SBM06]
the use of machine learning methods for vision-based vehicle detection to im-
prove detection accuracy. [BTDB11] presented a filter based on the dynamic
Bayesian network that could estimate driving behaviors and anticipate future
trajectories.

This approach is based on driving behavior estimation and classification,
but drivers’ behavior tends to be inherently multimodal. DVS uses an event-
driven approach to capture pixel changes in the image. DVS do not have the
concept of a ”frame” and is not sensitive to light. Although the detection
results are improved, the computational load resulting from vision computing
remains high. This means that some monovision methods cannot meet the
real-time requirement.

The main contribution of this article is to track moving objects by pro-
viding robust and accurate methods. The Otsu method is put forward to
filter the scattered noise points, and the different moving objects were clus-
tered with the event-points’ depth information. This was used to generate
high-resolution panoramic images of natural scenes. In the DVS sensor, the
texture events of the moving objects occur obviously with the pixel value’s
change. The pixels with consistent colors or noise points usually occur at
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a low frequency. By the Otsu method, the obvious and key features are
highlighted and the noise pints are filtered of front-wheel steering. The state
equation of the CTRV model is shown in [GBD10] and in [GKKÖ11] is nec-
essary to use a multivariable Taylor expansion. After designing the Jacobian
matrix (H) at the next page, and [SFR12] for the above.

strong tracking center differential external Kalman filter (SCDEKF) uses
the principle of orthogonality [ZMN+20]. By introducing a fading factor in
the state prediction covariance matrix, the output residuals are forced to
have orchestrated or approximate orthogony. This allows the system to track
the sudden switch of the system. A proposed method owns a low calculation
load and high filter accuracy. The YOLO-V3 deep learning method is utilized
to detect the moving objects.

The DVS and SCDEKF models are also established in Simulink. Be-
cause of the speed fluctuation, it is necessary to add process noise in the sim-
ulation process. The effectiveness of DVS is verified in two experimental sce-
narios. The results show that the common cam era has a distance-calculation
delay problem and the DVS can detect the moving objects quickly.

In the experiments, two kinds of filter algorithms were adopted to con-
duct the vehicle position and movement estimations of Yolo-V3.

Model Precision Recall mAP FPS Interface time Parameters’ file

Yolo-tiny 33.8 20.1 13.3 72 13.8 8.1M

Yolo-V3 39.2 23.5 15.7 67 14.9 20.8M

Table 3.1: NETWORK’S COMPARISON [LCSK20]

The comparison between YOLO and DVS is shown in 3.1.
3.3 shows the results of moving objects detection. Static trucks, moving

vehicles, towers, and trees are all part of the highway setting. For moving-
objects detection, common cameras and DVS cameras are utilized, and the
results are shown in 3.3. YOLO has good object detection and classification
capabilities, however it can’t tell the difference between static and moving
objects. The detection results of a DVS and K-means technique are shown
in 3.3(b), and a car’s front and rear sections are grouped into two objects,
which is obviously incorrect. The detection results from a DVS and 3D-
IMK approach are shown in 3.3(c), along with the accurate clustering find-
ings. According to 3.3(b) and (c), the suggested 3D-IMK has a significant
advantage in clustering, and the results are consistent with the simulation
results. Although YOLO represents a significant step forward in increasing
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the speed of object identification, 3.3(d) illustrates that YOLO still suffers
from distance-calculation latency. One issue with YOLO detection is that it
typically extracts photos corresponding to many candidate locations in ad-
vance, which takes up a lot of disk space. Each candidate region must go
through the YOLO network calculation, which results in the identical feature
extraction that is performed several times.

The campus scenario includes vehicles, bicycles, pedestrians, and trees.
They detect the moving objects, calculate the angular velocity, and pre-
dict the turning centers of their moving trajectory by DVS and SCDEKF
methods. Results show that the 3D-IMK can distinguish overlapped moving
objects with a good effect. The SCDEKF method can achieve less delay
effect and track the moving objects steadily. Compared with other computer
vision algorithms, the DVS-based algorithms can detect moving objects with
little delay and high accuracy. The overtaking simulation in Gazebo shows
that the system can overtake the distance-calculation delay.
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Figure 3.3: Detection experiment in the highway scenario. (a) Object detection
by common camera. (b) DVS’s clustering results by K-means. (c)
DVS’s clustering results by 3D-IMK. (d) Distance delay for different
cameras.

[LCSK20]
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Chapter 4

Dataset

Many modern AI problems stem from a lack of data. Either the available
datasets are too limited, or the costs of manual labeling are prohibitively
high, even though collecting unlabeled data is relatively simple. Synthetic
data is an important approach to solving the data problem since it allows
for the development of artificial data from scratch or the use of advanced
data processing techniques to create novel and diverse training examples.
The synthetic data generation method is better demonstrated by traditional
computer vision problems, but it is also applicable in the problem domain this
thesis tackles. Another significant challenge is the issue of domain transition.
As shown in Figure 4.1, synthetic images do not look exactly like real images,
and one must make them as photo realistic as possible (a common theme in
synthetic data research is whether realism is really necessary [Nik19] and/or
devise techniques that assist models in transferring from synthetic training
sets to real test sets.
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Figure 4.1: Example from a RGB image on the left and a DVS image on the right
with displaying all events happened in the same time sequenced.

[DRC+19]

This chapter details the system design and decisions for the generation of the
synthetic dataset. There exist several well annotated recent datasets that are
also using an event camera as well as RGB frames but do not provide similar
annotations. Therefore Tobi [DHH20], Yuhuang Hu and Zhe He developed
a realistic dynamic vision sensor event data synthesizer from real (or syn-
thetic) conventional frame based video using an accurate DVS pixel model
that includes DVS non idealities. Most of them are created by a DAVIS
and are intended for Simultaneous Localization and Mapping (SLAM). It
is created because of the lack off well annotated event camera datasets with
the following properties:

• 3D annotation

• Instance segmentation

• 2D annotation

• synchronized RGB and event camera datastream
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The Structure is build up on the System Design Document Template from
“Object-Oriented Software Engineering. Using UML, Patterns, and Java”
[BD09]. The system design’s main objective is to work out the design goals
of the envisioned system and to decompose it into smaller subsystems.

4.1 CARLA Simulator

CARLA is an open source framework based on the Unreal Engine [Epi19],
which is able to render high realistic textures, shadows, weather conditions
and illumination, as depicted in 4.1 developed by [DRC+17] CARLA was
designed from the ground up for supporting autonomous driving systems
production, training and validation. CARLA also offers open visual assets
(urban layouts, houses and vehicles) in addition to open source code and
protocols which were developed and can be used freely for this purpose.
The platform of simulation supports versatile sensor suite specification, en-
vironment conditions, complete static and dynamic player control, mapping
generation and much more [DRC+17]. The most highlighted features are:

• It offers scalability via a multi-client server architecture with multiple
clients in the same or different nodes that manage various actors.

• CARLA provides a versatile API that enables users to monitor anything
related to simulation, including the generation of traffic, pedestrian
behavior, weather and sensors.

• The Autonomous Driving Sensor Suite comprises a wide range of sensor
suites, including LIDAR, multiple cameras, DVS cameras, sensors and
GPS.

• It is possible to disable its rendering for which graphics are not needed
to provide a rapid execution of traffic simulation for planning, control
and road behaviors.

• Users can easily build their own maps using software such as RoadRun-
ner according to the OpenDrive format.

• As runnable CARLA agents, including an AutoWare agent and a Con-
ditional Imitation Learner, we have Autonomous Driving baselines.

• And much more features we did not use.

Carla’s Architecture is a Client-server Model. The client-server archi-
tecture is a computer paradigm in which the server hosts, provides, and
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maintains the majority of the client’s resources and services. One or more
client computers are linked to a central server through a network or internet
connection in this design. Because all requests and services are given through
a network, client-server architecture is also known as a networking computer
paradigm or client-server network. There for the Simulator runs as a server
with Unrealengine and the Clients are able to steer a Car, get Sensor data,
control the traffic, change the weather or even changing the Sensor properties
on the fly.

4.2 CARLA DVS Camera Simulation

The DVS camera simulation outputs a stream of events. An event (e =
(x, y, t, pol) is triggered at a pixel x, y at a timestamp t when the change in
logarithmic intensity L reaches a predefined constant threshold C (typically
between 15% and 30%). It was developed and published by the University
of Zurich [RGS18].

The generation of DVS pixel events is described by the following equa-
tion:

L(x, y, t)− L(x, y, t− δt) = polC (4.1)

Where the value t − δt represents the time when the last event occurred at
the pixel and is true if the pixel changed from light to dark. The polarity is
+1 when there is an increase in brightness, and −1 when there is a decrease
in brightness. In the Figure 4.2 below, the following working principles are
illustrated. The frame rate of the regular camera is the same regardless of
whether or not there is motion in the picture. On the other hand, an event
sensor needs microsecond response time to analyze and respond to changes
in light levels. An event is created whenever there is positive or negative
intensity change stronger than the contrast threshold C.
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Figure 4.2: basic DVS functionality illustrated on a rotating dot

[DRC+19]

A DVS is a full-form camera, which includes all of the characteristics found
in the RGB camera. Even so, the operating principle of an Event camera
is remarkably unique. The DVS camera is operating at irregular intervals
between two consecutive conventional RGB images. The time resolution of
a real event (a camera pixel which takes a millionth of a second) must be
achieved using a real-time sensor (much higher frequency than a conventional
camera). Formally, the number of events grows as the vehicle is moving
faster. Thus, the sensor frequency should be proportional to the intensity of
the scene. There is a trade off between the user’s accuracy and computing
cost. And because we did not have any concerning computational or time
restrictions, we used a high accuracy for the generation of the DVS events.
In Table 4.1 one can see all the attributes available as well as the ones we
used as defaults.
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Blueprint attribute Type Default Description

positive threshold float 0.3
Positive threshold C associated

to a increment in brightness
change (0-1).

negative threshold float 0.3
Negative threshold C

associated to a decrement in
brightness change (0-1).

sigma positive threshold float 0
White noise standard deviation

for positive events (0-1).

sigma negative threshold float 0
White noise standard deviation

for negative events (0-1).

refractory period ns int 0.0

Refractory period (time during
which a pixel cannot fire events

just after it fired one), in
nanoseconds. It limits the

highest frequency of triggering
events.

use log bool true
Whether to work in the

logarithmic intensity scale.

log eps float 0.001

Epsilon value used to convert
images to log:

L = log(eps+ I/255.0) Where
I is the grayscale value of the

RGB image: I =
0.2989∗R+0.5870∗G+0.1140∗B

Table 4.1: Carla DVS Camera attributes and used properties

[DRC+19]

4.3 Data generation

This section deals with the configuration and setup of the data generator.
It meets the Object-Oriented Software Engineering Guidelines. And its Pat-
terns are transferred from the UML, Patterns, and Java by [BD09] to C++,

45



CHAPTER 4. DATASET

Python and the C++ API for Python. The design’s main objective is to
achieve the goal of the system as best as possible, and then decompose the
system into smaller subsystems. The following is a high-level summary of
the software architecture and its relation to other parts of the thesis. If the
system design goals are mentioned in the relevant section, then they will be
achieved by the system’s design. The subsystem decomposition defined in
Section 4.3.1 serves to meet these design objectives. Section 4.3.2 presents
the data management, which was carried out by latest. LATEST has good
data access control as defined in Section 4.3.3.

4.3.1 Open source contribution

In order for the data set to serve as many purposes as possible and for us
to have needed the segmentation instance as well, we decided to add exactly
this sensor to the Carla Simulator. Segmentation is often the first step in
image analysis. And consists in a complete segmentation that each pixel is
assigned to at least one segment and thus has a context. In a coverage-free
segmentation, each pixel is assigned to at most one segment. Thus, in a
complete and coverage-free segmentation, each pixel is assigned to exactly
one segment. The instance segmentation gives each instance on the image
its own ID. This is divided into groups and instance ID. This was only made
for vehicles and pedestrians because of some constrains given by the Unreal
Engine and Carla Simulator. Which did not allow us to give more than 255
different segments at one time without changing the hole Architecture of
Carla Sensor Engine. The exact assignment can be read in the appendix.

We had to add another sensor to the Carla framework. This sensor
fulfills these properties.

4.3.2 Datageneration Details

The data creation pipeline is presented here. For this purpose, fixed cam-
era positions were manually selected before the creation so that there are
as many and alternating positions as possible. Also because so the traffic
that was simulated, only in the field of view of the camera had to be calcu-
lated or spawned. For this one could fly in the selected 3D world by camera
and determine the positions. These were then stored in a JavaScript Ob-
ject Notation (JSON) file and later read in as a configuration file when the
framework was started. During the data creation itself, each camera was
processed sequentially. For this, in each step the cars that are needed, which
can also reach the camera field of view in the recording time, were spawned
in the vicinity of the field of view. The sequential processing was due to
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the enormous power needed by the Carla engine to calculate the physics and
thus our DVS events.

After each frame all data was labeled and stored. Thus, if the simulation
was aborted, it could be continued directly. The following elements were
stored per frame:

• 2D/ 3D annotation labels as JSON file

• DVS events array

• DVS event array as image

• Depth image

• Instance Segmentation

• RGB Image

Each set created by a camera position is stored in its own folder. This ensures
that the different locations are not mixed during training. Its name is the
camera seed as well as a hash from the extrinsic camera parameters. Each
image name is generated by this hash and its frame number. An example
path to an image would then look like this:

set_0_16452643/images/16452643_105945_dvs.png

set_0_16452643/labels/16452643_105945_dvs.txt

The converting of the DVS events to the DVS images is done by mapping
a time sequence of them onto an image frame. We were given an event array
which has the same recording time as the RGB images (20 ms). The negative
and positive events are assigned an RGB color. For us this is blue for positive
and red for negative. And these pixels were then drawn on the image area.
We wanted to test if the DVS provides enough information for the task of
vehicle position estimation. To do this we needed to benchmark against well
known efficient existing model which is YOLO. So to do a direct comparison
we used the DVS images. By using the DVS events stream instead of images
there is a lot of potential to make the model/solution much more efficient!

4.3.3 Dataset

The data set itself finally consisted of

• 30 camera locations
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• 900 Images per location

• 45 seconds per location

• splitted by camera location

All over we had 27000 Images splitted into train:test:val by a ratio of 3:1:1.
One example dataset frame is visualized in Figure 4.3
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Chapter 5

Methods

5.1 YOLO

We used for both the DVS Image and the RGB Image YOLO the small
YOLOv5 model with the following parameters:

Model Summary:

191 layers,

7.46816e+06 parameters,

7.46816e+06 gradients

The hyperparameters we use are the default ones from the YOLOv5 source-
code [Joc21] as well as the automatically applied finetuning from YOLOv5
is used.

5.2 Pruning

We applied pruning iteratively using pytorch’s internal pruning functions as
described in Chapter 2.6. We used LN STRUCTURED with n = 1 ex-
plained in 2.15 and n = 2 explained in 2.16 on dimension 0 as well as
L1 UNSTRUCTURED. For all methods we applied the iterative pruning
from 0% to 99% of zeroes in different step sizes shown in equation 5.1.

amount ∈ [0, 10, 20, 30, 40, 50, 60, 70, 75, 78, 80, 90, 95, 97, 98, 99, 99.5] (5.1)

torch.nn.utils.prune.ln_structured(

module, name, amount, n, dim, importance_scores=None)

torch.nn.utils.prune.l1_unstructured(

module, name, amount, importance_scores=None)
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5.3 Quantization methods

We applied quantization with pytroch’s internal functions described in Chap-
ter 2.7 as quantization aware training. Therefor, it models the quantization
errors in both the forward and backward passes using fake-quantization mod-
ule before each layer and after each activation function. We had to modify
all methods to be able to apply quantization aware training.

5.4 Spiking CNN Activations

For the Spiking CNN we had to add a state to the Network. To simplify
this state conversion we used the framework Norse which was developed by
[PP21]. Afterwards we only had to change the functions of the Convolutional
Layer by changing the most used higher hierarchical Layers.

• Focus

• Convolution

• BottleneckCSP

This was done by adding the LIF parameter to the Constructor with the
default parameters shown in 5.1 and replacing the activation function with
a ”LIFCell”.

LIFPa = LIFParameters(

tau_syn_inv=torch.as_tensor(1.0 / 5e-3),

tau_mem_inv=torch.as_tensor(1.0 / 1e-2),

v_leak=torch.as_tensor(0.0),

v_th=torch.as_tensor(0.00001),

v_reset=torch.as_tensor(0.0),

method="tent",

alpha=torch.as_tensor(100.0),

)

Figure 5.1: default LIF parameters

As well as adding a state parameter to each forward function, which
keep track of its activations. The source code of the easiest conversions can
be viewed and compared in A.2 and A.1.
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Chapter 6

Results

In this chapter we evaluate if the data generated by a DVS camera contains
sufficient information for efficient vehicle position estimation. Given that the
YOLOv5 architecture is able to learn and perform efficient object detection
on RGB input images, we investigate if the same architecture is able to solve
the same task using the DVS camera input images. To get the most valuable
results, all scores are average numbers by training each network 10 times and
only trained the altered layers from with scratch with all other layers frozen
and fine-tuned it at the end.

6.1 Vehicle position estimation using Spiking

Neural Networks

At the beginning, we altered different layers of YOLOv5 to spiking ones.
These layers are:

• Focus

• Hole backbone

• All

• Prediction

And compared this to the results of YOLOv5 trained with different inputs
shown in Table 6.1. The Network names which are not YOLOv5 in the Table
6.1 refers to the YOLOv5 with spiking modification.
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6.2. IMPROVING THE NETWORK GENERALIZATION WITH
PRUNING

Input Network precision
mAP

0.5-0.95
mAP 0.5 recall

RGB
Image

YOLOv5 92 79 98 63

DVS Image YOLOv5 96 81 99 65

DVS Focus 82 82 99 1

DVS Prediction 75 74 96 95

DVS Backbone 70 69 90 85

DVS All 30 28 19 18

Table 6.1: Metrics of different Networks compared to the original RGB Network.
All Numbers are percentages.

Except for the improvement of the network by using the DVS images, one
could expect the result to be like this. Due to the recall of 1 in the spiking
focus network, it is to be expected that one object was recognized more the
once. This did not happen with the normal Yolov5. For further investiga-
tions, the most successful spiking one was chosen.

6.2 Improving the network generalization with

pruning

We pruned only the spiking focus network. In Figure 6.1 the pruning progress
of different pruning values is shown. And only the important values are noted
down.
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Figure 6.1: Caption

The resulting regularization could be best shown by comparing the validation
metrics with its inference equivalent drawn in Figure 6.2 with a pruning rate
of 78%.
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Figure 6.2: Compared Inference and Validation precision with different pruning
methods on the spiking focus YOLOv5 network

With a residual size of 32% of the network and with only 6% loss of
accuracy, pruning is successfully applied.

6.3 Improving the network efficiency by quan-

tization

We applied quantization aware training on the best working YOLOv5 spiking
Network from Table 6.1 the Focus one. In our case the Quantization aware
training reduces the weight memory size by 4. Because we did exactly what
is described in Section 2.7. We reduced the datatype from flot32 to int8 on
the model weights. But still holds the following properties shown in Table
6.2. The inference comparison in shown in Figure 6.2
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Input Network precision
mAP

0.5-0.95
mAP 0.5 recall

DVS Focus 82 82 99 1

DVS
Quantized

Focus
62 58 85 90

Table 6.2: Metrics of quantized Spiking Focus Layer YOLOv5 Network and for
comparison the Spiking Focus Layer. All Numbers are percentages

6.4 Speedups

The Section 6.3 and 6.2 both improved the generalization of networks, but
they also had minimal speed up, we should net forget in these results in Table
6.3. These accelerations were achieved on the device on which the training
was performed. This can and will differ from device to device. Especially if
the hardware was built for it

Input Network mins relative

RGB Image YOLOv5 125 1.00

DVS Image YOLOv5 124 0.99

DVS Focus 120 0.96

DVS Prediction 116 0.93

DVS Backbone 114 0.91

DVS All 110 0.88

DVS
Pruned 78%

Focus
95 0.76

DVS Quantized Focus 90 0.72

Table 6.3: Inference duration compare with 1M runs per network.
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Chapter 7

Conclusion

We have successfully created a dataset pipeline. With which a fully usable
dataset was generated. This contains 2D, 3D, depth and segmentation labels
for RGB images and DVS event stream.

This dataset was then tested and validated with YOLOv5 on RGB and
DVS images. YOLOv5 on DVS Images was the corresponding point for all
further researches. It was then shown that it is possible to detect vehicle
positions only using the DVS event stream on a modified YOLOv5 Network.
This network architecture was modified to be able to take an DVS event
stream as input. And some layers were altered to spiking ones. All this was
achieved with a loss of only absolute 10% in precision.

The network was then individually optimized using pruning and quan-
tization, resulting in memory reduction and speedup. It was shown that
the different pruning methods offered by PyTorch does almost perform the
same for this type of network. A lost of roughly absolute 10% in precision
compared to the inference from the spiking one was achieved. As well as
a speedup from 25% to the original RGB YOLOv5. Quantization on the
other hand did not work as well as pruning. It almost loses absolute 20% in
precision by quantization aware training. And a speedup from 28% to the
original one.

The network could be made even faster and smaller by choosing a spiking
optimal network architecture for classification and then training the network
from scratch. Because this synthetic dataset offers a lot of different labels,
we could imagine one can train a 3D car detection network. Or other DVS
based solutions. Maybe it would be interesting to test this network against
real world data as well as fine tune it with them.
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Appendix A

Sourcecode

A.1 Convolution

class Conv(nn.Module):

# Standard Convolution

def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):

# self, ch_in, ch_out, kernel, stride, padding,

# groups, activation

super(Conv, self).__init__()

self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p),

groups=g, bias=False)

self.bn = nn.BatchNorm2d(c2)

self.act = nn.Hardswish() if act is True

else (act if isinstance(act, nn.Module)

else nn.Identity())

def forward(self, x):

return self.act(self.bn(self.conv(x)))

def fuseforward(self, x):

return self.act(self.conv(x))
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A.2. SPIKING CONVOLUTION

A.2 Spiking Convolution

class Conv_S(nn.Module):

# Standard Spiking Convolution

def __init__(self, c1, c2, k=1, s=1, p=None, g=1,

act=True, lifP=None):

# self, ch_in, ch_out, kernel, stride, padding,

# groups, activation, LIFParameters

super(Conv_S, self).__init__()

self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p),

groups=g, bias=False)

self.bn = nn.BatchNorm2d(c2)

if not lifP:

lifP = LIFPa # default LIFPa

self.act = LIFCell(p=lifP, dt=0.001)

def forward(self, input_tensor: torch.Tensor,

state: Union[list, None] = None):

if isinstance(input_tensor, tuple):

state = input_tensor[1]

input_tensor = input_tensor[0]

return self.act(self.bn(self.conv(input_tensor)), state)

def fuseforward(self, x, state: Union[list, None] = None):

return self.act(self.conv(x), state)
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[BD09] Brügge, Bernd ; Dutoit, Allen: Object-Oriented Software
Engineering Using UML, Patterns, and Java. In: Learning 5
(2009), Nr. 6, S. 7

[Bis06] Bishop, Christopher M.: Pattern recognition and machine
learning. 1. USA, New York : Springer, 2006

63

https://www.tensorflow.org/
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1708.01566
http://arxiv.org/abs/1708.01566


BIBLIOGRAPHY

[BMH15] Barrios, Cesar ; Motai, Yuichi ; Huston, Dryver: Trajec-
tory Estimations Using Smartphones. In: IEEE Transactions
on Industrial Electronics 62 (2015), Nr. 12, S. 7901–7910.
http://dx.doi.org/10.1109/TIE.2015.2478415. – DOI
10.1109/TIE.2015.2478415

[BSL+11] Baker, Simon ; Scharstein, Daniel ; Lewis, J. P. ;
Roth, Stefan ; Black, Michael J. ; Szeliski, Richard: A
Database and Evaluation Methodology for Optical Flow. In:
International Journal of Computer Vision 92 (2011), Mar, Nr.
1, 1-31. http://dx.doi.org/10.1007/s11263-010-0390-2. –
DOI 10.1007/s11263–010–0390–2. – ISSN 1573–1405

[BTDB11] Berthelot, Adam ; Tamke, Andreas ; Dang, Thao ;
Breuel, Gabi: Handling uncertainties in criticality assessment.
In: 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, S.
571–576

[BWL20] Bochkovskiy, Alexey ; Wang, Chien-Yao ; Liao, Hong-
Yuan M.: YOLOv4: Optimal Speed and Accuracy of Object
Detection. 2020

[CPK+17] Chen, Liang-Chieh ; Papandreou, George ; Kokkinos, Ia-
sonas ; Murphy, Kevin ; Yuille, Alan L.: DeepLab: Semantic
Image Segmentation with Deep Convolutional Nets, Atrous
Convolution, and Fully Connected CRFs. 2017

[CR19] Chen, Jiasi ; Ran, Xukan: Deep Learning With Edge Com-
puting: A Review. In: Proceedings of the IEEE PP (2019), 07,
S. 1–20. http://dx.doi.org/10.1109/JPROC.2019.2921977.
– DOI 10.1109/JPROC.2019.2921977

[Dab20] Dabai, Jiang: In-depth explanation of the core basic knowledge
of Yolov5 of the Yolo series. https://blog.csdn.net/

nan355655600/article/details/107852288, Januar 2020

[DBX+19] Duan, Kaiwen ; Bai, Song ; Xie, Lingxi ; Qi, Honggang ;
Huang, Qingming ; Tian, Qi: CenterNet: Keypoint Triplets
for Object Detection. 2019

[DHH20] Delbruck, Tobi ; Hu, Yuhuang ; He, Zhe: V2E: From video
frames to realistic DVS event camera streams. In: arxiv (2020),
Juni. http://arxiv.org/abs/2006.07722

64

http://dx.doi.org/10.1109/TIE.2015.2478415
http://dx.doi.org/10.1007/s11263-010-0390-2
http://dx.doi.org/10.1109/JPROC.2019.2921977
https://blog.csdn.net/nan355655600/article/details/107852288
https://blog.csdn.net/nan355655600/article/details/107852288
http://arxiv.org/abs/2006.07722


BIBLIOGRAPHY

[DLHS16] Dai, Jifeng ; Li, Yi ; He, Kaiming ; Sun, Jian: R-FCN: Object
Detection via Region-based Fully Convolutional Networks. In:
Lee, D. (Hrsg.) ; Sugiyama, M. (Hrsg.) ; Luxburg, U. (Hrsg.)
; Guyon, I. (Hrsg.) ; Garnett, R. (Hrsg.): Advances in Neural
Information Processing Systems Bd. 29, Curran Associates, Inc.,
2016

[DLJ+20] Du, Xianzhi ; Lin, Tsung-Yi ; Jin, Pengchong ; Ghiasi, Golnaz
; Tan, Mingxing ; Cui, Yin ; Le, Quoc V. ; Song, Xiaodan:
SpineNet: Learning Scale-Permuted Backbone for Recognition
and Localization. 2020

[DRC+17] Dosovitskiy, Alexey ; Ros, German ; Codevilla, Felipe
; Lopez, Antonio ; Koltun, Vladlen: CARLA: An Open
Urban Driving Simulator. In: Proceedings of the 1st Annual
Conference on Robot Learning, 2017, S. 1–16

[DRC+19] Dosovitskiy, Alexey ; Ros, German ; Codev-
illa, Felipe ; Lopez, Antonio ; Koltun, Vladlen:
Carla Simulator DVS Camera Documentation. https:

//carla.readthedocs.io/en/latest/ref_sensors/

#dvs-camera, 2019. – Accessed: 2020-09-7

[Epi19] Epic Games: Unreal Engine. https://www.unrealengine.

com. Version: April 2019

[FPC00] Freeman, William T. ; Pasztor, Egon C. ; Carmichael,
Owen T.: Learning Low-Level Vision. In: International
Journal of Computer Vision 40 (2000), Oct, Nr. 1, 25-
47. http://dx.doi.org/10.1023/A:1026501619075. – DOI
10.1023/A:1026501619075. – ISSN 1573–1405

[GAGM15] Gupta, Saurabh ; Arbeláez, Pablo A. ; Girshick, Ross B.
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