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Abstract

Autonomous driving has been an active research area for many years to achieve safer and
more comfortable transportation [26]. Road perception is at the core of autonomous driving
since Advanced Driver-Assistant System functions rely on reliable sensing of the environment.
One key issue in road perception is the detection of road lanes in different scenarios such as
lane splits. For this purpose, a neural network-based scenario detection framework for detec-
tion lane split scenarios using time series data is developed. In the framework, three neural
network models are experimented: Multi-Layer Perceptron, Convolutional Neural Network
and self-attention based neural network. The solution also includes an end-to-end training
pipeline for the developed models to provide flexibility in model development.

Another aspect in autonomous driving is the Intelligent Transportation Systems (ITS)
which includes traffic scenario understanding on the road infrastructure and infrastructure-
to-vehicle communication to improve the perception of the automated vehicles. One impor-
tant topic in such systems is the detection of scenarios. Therefore, a head-to-tail collision
detection method is proposed as part of this work. Furthermore, scenario detection for ITS is
extended with near real-time capability.

Zusammenfassung

Das autonome Fahren ist seit vielen Jahren ein aktives Forschungsgebiet mit dem Ziel, den
Verkehr sicherer und komfortabler zu machen [26]. Die Straßenwahrnehmung ist das Kern-
stück des autonomen Fahrens, da die Funktionen fortschrittlicher Fahrerassistenzsysteme
auf einer zuverlässigen Erfassung der Umgebung beruhen. Ein zentrales Problem bei der
Straßenwahrnehmung ist die Erkennung von Fahrspuren in verschiedenen Szenarien, wie
z.B. bei Spurwechseln. Zu diesem Zweck wird ein auf neuronalen Netzen basierender Rah-
men für die Erkennung von Fahrspurwechsel-Szenarien anhand von Zeitreihendaten entwick-
elt. In diesem Rahmen werden drei neuronale Netzwerkmodelle erprobt: Multi-Layer Percep-
tron, Convolutional Neural Network und ein auf Selbstbeobachtung basierendes neuronales
Netz. Die Lösung umfasst auch eine End-to-End-Trainings-Pipeline für die entwickelten Mod-
elle, um Flexibilität bei der Modellentwicklung zu gewährleisten.

Darüber hinaus gibt es im Bereich des autonomen Fahrens Intelligente Verkehrssysteme,
die das Verstehen von Verkehrsszenarien auf der Straßeninfrastruktur und die Kommunika-
tion zwischen Infrastruktur und Fahrzeug umfassen, um die Wahrnehmung der automa-
tisierten Fahrzeuge zu verbessern. Ein wichtiges Thema in solchen Systemen ist die Erken-
nung von Szenarien. Daher wird im Rahmen dieser Arbeit eine Methode zur Erkennung
von Kollisionen von vorne nach hinten vorgeschlagen. Darüber hinaus wird die Szenar-
ienerkennung für intelligente Verkehrssysteme um die Fähigkeit erweitert, nahezu in Echtzeit
zu fahren.
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Chapter 1

Introduction

This thesis is written in cooperation with one of the leading premium car manufacturers [55],
BMW Group AG, and Autonomous Driving (AD) project Providentia++.

1.1 BMW Group AG

Bayerische Motoren Werke Group Aktiengesellschaft (BMW Group AG) is a corporation based
in Germany that produces premium segment cars and motorcycles under the brands BMW,
MINI, Rolls-Royce, and BMW Motorrad. The corporation is the leading luxury car manufac-
turer and it is investing heavily in autonomous driving hardware and software development
in order to have advanced Automated Vehicles (AVs) in the increasingly competitive market
[8]. Currently, its car portfolio equips range of Advanced Driver-Assistance System (ADAS)
features including but not limited to lane-change assist, lane-keep assistant, collision avoid-
ance systems, etc. that rely on the sensors mounted on the cars such as camera, Light Detec-
tion and Ranging (LiDAR), Radio detection and ranging (radar).

BMW Group AG is one of the partners in many European Union (EU) funded autonomous
driving research projects such as EU-funded AdaptIVe, HI-DRIVE and L3Pilot [2, 28, 51] and
it is a major contributor to the autonomous driving research area and tools [4, 14, 50] such
as ROS.

1.2 Providentia++

The autonomous driving project funded by German Federal Ministry of Transport and Digital
Infrastructure (BMVI), Providentia++ aims to improve the safety of the traffic participants
and reduce traffic congestion by complementing the sensors on the automated vehicles on
the road. Providentia++ builds on and extends the original Proactive Video-Based Use of
Telecommunication Technologies in Innovative Traffic Scenarios (Providentia) project [47]
that lasted from 2017 to 2019 where the cameras, radar and LiDAR sensors are stationed
on the overheads of the highway signs to detect the traffic participants and create digital
version of the world called "digital twin" based on these detections. The autonomous vehicles
travelling on the road can use the digital twin information that can be obtained from the
sensor systems on the road using 5G connection in order extend the perception where it can
be limited due to sensor limitations of the car [68].

The Providentia++ project consortium is lead by the Chair of Robotics, Artificial Intel-
ligence, and Real-time Systems at the Technical University of Munich (TUM) and includes
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many partners from the industry such as fortiss, Valeo, Intel, Cognition Factory, Elektrobit,
Siemens, Volkswagen, brighter AI, 3D Mapping Solutions, and Huawei [69].

1.3 Problem Statement

In the recent years, autonomous driving technology has been one of the key focus of the
vehicle industry, and extensively studied by the researchers [26]. The automated driving
systems must be able to understand their environment by detecting the driving space of
the vehicle through detecting the lanes, objects or obstacles in the environment in order to
replace human drivers in the future for safer and more comfortable transportation. Therefore,
road perception or driving space detection is a crucial component of the automated vehicles.
Road perception is usually achieved by using the map information, cameras mounted in the
front of the vehicle and range of sensors such as LiDAR and radar [41], and as well as
additional information such as Intelligent Transportation System (ITS). The automated car
creates an internal representation of the environment based on the detected driving space.

The developments in the data-driven approaches such as neural networks and the rapid
advances in the hardware have led to more advanced automated driving functions, for in-
stance, lane keeping systems that rely on lane detection [46]. Even though the detection of
lanes with traditional methods is highly accurate in the ideal conditions, scenarios such as
merging or splitting lanes, and as well as lane changing are still challenging to detect, espe-
cially in the road perception domain where computing power is mostly limited to the CPU
of the vehicles [62]. The road perception can be improved by detecting such scenarios and
performing filtering on the lane detection.

The detection of lane split scenarios is challenging due to the variety of the situations and
environment conditions in the real-world and it is crucial in the road perception area since
it is demanded by automated features such as lane centering which helps keeping the car in
the center of the lane [39]. In this work, a neural-network based lane split scenario detection
method that run on the sensor data of a BMW prototype car is introduced.

Scenario detection for car accidents or traffic jams through the cross-vehicle ITS such as
Providentia++ would be an important information for the automated vehicles on the road
where it might not be possible to detect such scenarios solely based on the sensors of the
car. Another aspect of the scenario detection field is scenario-based safety testing. In order to
test the automated vehicles for as many different scenarios as possible, a variety of scenarios
such as cars overtaking, standing cars on the road, cut-ins, etc. must be detected and the data
that contains such scenarios would be test-cases in the testing of the autonomous vehicles to
ensure the safety of such systems. It is also important to detect such scenarios in real-time
to improve road safety through notification of the traffic participants in case of emergencies.
Moreover, detection of different scenarios where there is a traffic congestion or many traffic
participants do not obey the traffic rules could also contribute to take a step to improve those
situations if there is a pattern. Therefore, real-time scenario detection support for various
vehicle maneuvers such as lane changes, cut-in, cut-out and tailgate events is implemented
in the Providentia++ project in this work alongside with the detection of accident detection.

1.4 Contributions

The contributions in this work contain a scenario detection framework in two different do-
mains which are BMW prototype automated vehicle and Providentia++ where there are
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static sensor stations on the highways.

1.4.1 Contributions for Automated Vehicles

The neural network-based scenario detection framework for automated vehicles implemented
in this work consists of three parts: auto-labeling, neural-network models and a training
pipeline.

1. Auto-labeling

Training a neural network requires a labeled dataset since the introduced training meth-
ods are all supervised learning methods. Having a manual-labeling solution is not
enough to achieve decent results since it requires extensive human labor to create a
large dataset that covers variety of scenario situations.

2. Neural-network model

In this work, three different neural-network models, namely Multi-Layer Perceptron
(MLP), Convolutional Neural Network (CNN), and the self-attention based network,
are implemented. Each neural network model type can be configured to be used in the
training pipeline.

3. Training pipeline

An end-to-end training pipeline that can be run periodically with a dataset getting larger
in time is an important aspect to avoid having a neural network model that is unable
to capture variety in the data.

The pipeline includes each step that is required to generate a trained model. It first
extracts sensor signal data for a list of data that is collected by the prototype cars, then
performs auto-labeling on the extracted signals, generates training data, and finally
trains a neural network model on the generated dataset. The pipeline runs can easily
be configured to test different hyperparameters.

1.4.2 Contributions for the Providentia++ project

The neural network-based scenario detection framework for automated vehicles implemented
in this work consists of two parts: live system support for the existing rule-based method and
implementation of the detection of accident detection.

1. Live system support

The scenario and maneuver detection system introduced in the Providentia++ project
[44] does not support scenario detection in the live system when the detection relies
on previous detections. The existing rule-based solution for the scenario and maneu-
ver detection is extended to support running on live system with fixed-time detection
caching.

2. Maneuver Detection

The scenario detection support is extended with accident detection that uses rule-based
solutions.





Chapter 2

Theoretical Background

The theoretical topics that found the pillars of the thesis work are described in this section.

2.1 Lane Boundary Polynomial Model

In the context of road perception, lane detection is an integral task to determine the driving
space of an automated vehicle. The detected lane boundaries can be modeled in different
ways such as a set of points or polynomials. The polynomial modelling of a lane boundary is
shown in the Equation 2.1 where K is the order of the polynomial, P = {a0, ..., aK} is the set
of polynomial coefficients [76].

p(y) =
K
∑

k=0

ak yk (2.1)

Figure 2.1: Lane boundary polynomials projected on the road image [76]

In Figure 2.1, lane boundaries modeled as third-order polynomials are projected onto the
road image as green lines.

2.2 Corner Case Detection

Corner case definition varies in the literature. As stated by Heidecker et. al [37], corner
cases mean deviations from "normal" in broad terms which overlap with definitions of outliers
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which are huge enough deviations in an observation from other observations so that it can
be considered as generated by another system, novelties that appear as samples not seen yet,
and anomalies which can be defined [21] as patterns not consistent with normal behavior.

In the automated driving area, detection of corner cases or scenarios is crucial for each
phase of the data processing toolchain. It is been shown in [37] that corner case detection
is a valuable information for the driving function since it is an addition to the environment
representation generated through perception. The detected corner cases can also be used as
test cases for the further development of the automated driving functions.

2.3 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a type of machine learning model that is inspired by
the neural networks in the brains of animals [43]. ANN is a very popular research field in
many disciplines such as classification, clustering, pattern recognition and prediction [1].
Similar to biological neural networks in design, a neuron in an ANN receives input data,
processes the data by multiplying with a weight and passes the aggregated output to the next
neuron. The "learning" is achieved through processing an input and updating the weight
of each characteristic feature in the input data that define the importance of that particular
feature in making a prediction by the factor of the error in the predictions represented as
a loss function. An optimizer algorithm updates the attributes such as weights to achieve a
lower loss value; therefore, better "learning" [83]. "Learning" processes can be controlled
by changing the parameters that are called hyperparameters such as number of layers that
are a group of neurons operating together at the same depth and learning rate which is the
rate of change that affect updating weights based on the loss value [49]. A neuron in the
ANN multiplies features in the data with the weights but the result is aggregated through an
activation function that decides whether or not the neuron should pass the value to the next
neuron. If each neuron in a layer multiplies each input with a weight, the layer is called
fully-connected [25].

There are many types of ANNs including but not limited to perceptron, feed-forward
network, radial basis network, recurrent neural network (RNN), long-short term memory
(LSTM), autoencoder (AE), convolutional neural network (CNN) and generative adversarial
network (GAN).

2.4 Multi-Layer Perceptron (MLP)

Perceptron is a simple model used in binary classification tasks where the output can only
have two values, 0 or 1. The perceptron model algorithm is shown in Equation 2.2 where x is
the input vector, w is the weight vector, b is the scalar-valued bias term and τ is the threshold.
If the dot product of w and x combined with the bias term b is larger than the threshold τ,
the perceptron outputs 1, otherwise 0 [64].

f (x) =

¨

1 if w · x + b > τ

0 otherwise
(2.2)

However, the perceptron model is only capable of learning patterns in linear data by
nature. In an MLP, there are multiple layers of perceptrons or simply multiple fully-connected
layers and non-linear activation function after some neurons that allow it to learn from non-
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linear data. MLPs can work on multi-class problems by having a perceptron for each class in
the last layer [71].

2.5 Convolutional Neural Network (CNN)

Convolutional neural networks or CNNs are similar to MLPs but layers are replaced by convo-
lutional layers. It is developed for image classification tasks but it can also be used for simple
classification tasks. It differs from MLP by having convolutional layers that receive input from
a limited number of neurons of the previous layer that form the receptive field whereas in MLP
with fully-connected layers each neuron takes the input from the all neurons in the previous
layer [65]. This allows CNNs to consider larger area in the input data since convolution is
performed on a single data value in the input multiple times [5]. Since spatial relations of
features can be "learned" through convolutional layers, CNNs perform better than MLPs if
the location of a value in the input data is an important factor to determine the output [48].
Thus, CNNs are suitable for time-series data classification where relation between the data
points for different timestamps is useful.

2.6 Self-attention

Attention is a mapping from a query and set of key-value pairs to an output [81]. The general
idea is to put emphasis on the areas in the input where the areas are important. Attention
has become an essential part of the approaches [60, 75] on sequential data tasks since it can
learn the dependencies regardless of the distance to input or output sequences [81] whereas
CNNs can only consider a fixed distance.

Self-attention is an attention mechanism relating different positions of a single sequence
in order to compute a representation of the sequence [81]. In other words, self-attention is an
attention implementation where the key and the value are derived from the same sequence
in the attention function.

2.7 Robot Operating System (ROS)

Robot Operating System (ROS) is an open-source framework that includes a set of tools to
enable robotics software development through re-using code and extending the functionality
without knowing how the hardware works. As opposed to what the name suggests, ROS is
neither an operating system nor only limited to robotics development. It is a meta-operating
system that provides services similar to what an operating system offer such as device drivers,
hardware abstraction, communication protocol over multi-device systems and visualization
systems [70]. The services that ROS provide do not only provide a groundwork for robotics
software development but they also allow ROS to be used as a communication layer for a
system with multiple peripheral hardware devices.

The basic concepts that define the pillars of ROS works can be listed as packages, nodes,
messages, topics, and bags [70]. Packages are the main units in the file system for organizing
software in ROS and they can contain multiple nodes which are the processes where the
computation is performed, and each package can be considered as a software module [70].
Nodes communicate with each other by consuming or producing messages which are a strictly
typed data structure [70]. As it can be seen in Figure 2.2, Messages are consumed through



8 2 Theoretical Background

Figure 2.2: Topic based publish/subscribe communication model [72]

so-called topic subscriptions where a node that is needed to consume a certain type of data
such as "odometry" or "map" subscribes to the certain topic to consume the data published by
another node [70]. Bags are a data storing mechanism that allows saving and playing back
messages [72].

2.8 Time-series Data

Time-series data is a data type that consists of sequentially collected samples over the time
domain. Each data point is distinguished by a timestamp; therefore, time-series data is im-
mutable. Time-series data can be univariate if only one variable is observed at a time. An
example to univariate time-series is data collected from the odometry sensor of a car. More-
over, time-series can be multivariate where multiple variables are recorded over time. For
instance, three-axis accelerometer sensor of a car that collects information for yaw, pitch and
roll over time. In Figure 2.3, an example to multivariate sensor data of speed, yaw rate and
acceleration are visualized as a time graph can be seen.

Figure 2.3: Time graph sensor data of a vehicle [38]

In the Equation 2.3, univariate time series T is modeled as an ordered sequence of n
real-valued variables [30].

T = (t1, ..., tn), t i ∈ R (2.3)

2.9 Trajectory Data

A trajectory is the path of a moving object over time. The trajectory data is a time-series data
represented by a series of spatial coordinates and a timestamp such as p = (x , y, t) in the
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2D coordinate system where x and y are the coordinate values and t is the timestamp [87].
Trajectory data can be useful for urban planning to avoid congestion where recordings of the
cars travelling across the city as well as motion planning of automated cars [84].

2.10 Kubeflow

Kubeflow [10] is a machine learning platform that enables developing, deploying and manag-
ing multi-stage machine learning workflows in a toolkit called Kubeflow Pipelines. Kubeflow
is based on a container orchestration framework called Kubernetes [11] and can be run on
any Kubernetes cluster regardless of the cluster type such as local single machine clusters or
remote clusters with multiple servers for distributed workflows.

Kubeflow Pipelines provide a set of tools to enable automated and distributed model
training defined as an end-to-end workflow divided into specific containerized stages such as
data preparation, data augmentation, training and evaluation that communicate with each
other through the file system or log output [34]. Moreover, Kubeflow has a hyper-parameter
tuning tool with neural architecture search called Katib [33].

The end-to-end neural network model training pipeline implemented in this work is a
Kubeflow pipeline. Kubeflow is selected based on the features that it provides such as its
flexibility in development, scalability, availability, ease of use and versioning of the neural
network models [35].





Chapter 3

Related Work

3.1 Road Perception

Perception is an integral part of achieving an automated driving system that is safe and
reliable. In Figure 3.1, an overview of the process of automated vehicle control is shown.
The process of a controlling vehicle in the environment starts with the perception module
that perceives and monitors the environment through a range of sensors such as cameras,
LiDAR and radar [57, 79]. The localization and mapping module determines the global
and local position of the automated vehicle, and maps the environment of the vehicle from
the sensor data and offline maps [58]. The path planning module generates the possible
safe routes using the information generated from the previous modules, and then decision
making module calculates the optimal route [58]. The vehicle control module is responsible
for controlling the vehicle by calculating and using the appropriate vehicle commands to
follow the optimal route found by the decision making module [79]. This shows that the
information from the perception module should always be reliable for an automated vehicle
to safely navigate.

Figure 3.1: Overview of automated driving navigation architecture [79]

Perception module with separate detectors consists of sub-modules where each has a
different purpose such as detecting roads, lanes boundaries, traffic signs, vehicles and pedes-
trians whereas a one-shot detector produces output for roads, lanes and signs, etc. in a single
unified system [73]. An example perception module with separate detectors is shown in
Figure 3.2a and a unified system is shown in Figure 3.2b.

Vehicle-to-Infrastructure (V2I) communication could provide a reliable information to the
AVs regarding the road layout changes, accident situations, where the vehicle’s sensor range
may not be enough to "see" and detect in different scenarios [15, 36]. The ITS deployed on
the roads such as Providentia [47] could be a useful information source for the perception
modules of the automated vehicles.
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(a) Perception module with multiple detectors (b) Perception module with unified detector

Figure 3.2: Examples of perception module types [73]

3.2 Corner Scenario Detection in Autonomous Driving

Figure 3.3: Corner case detection system [18]

Detection of corner cases that appear infrequently is critical in an automated driving
system to ensure the safety of traffic participants. In Figure 3.3, integration of a corner case
detection system to the autonomous driving system is illustrated. The system can support
the autonomous driving system by providing self-awareness and criticality measures for the
perception module so that the automated vehicle plans its motion accordingly [18]. The
corner case detection task is similar to outlier detection tasks on the time-series data domain
which this work covers.

For instance to the corner cases, lane merging and lane splitting scenarios are listed as
corner cases of lane detection task of the perception modules of autonomous vehicles [46,
52, 54] since they can cause large deviations from the expected lane representation. In the
lane merging scenario, the right or left-most lane merges into the lane next to it. Similarly, a
new lane splits from the right or left most lane in lane splitting scenario.

3.3 Outliers in Time-Series Data

Time-series data is a collection of data points ordered based on time and this type of data has
been extensively collected, researched and used in various areas such as finance [7, 42, 56],
medicine [6, 63, 78] to transportation [29, 82, 85]. Predicting future behaviors of a system
and detecting outliers in the data relies on analyzing time series data [45]. In the domain
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of AD, multivariate time series data is collected from the sensors of the AVs; for instance,
speed information from the accelerometer sensor and lane detection polynomial coefficients
used in the perception module of the AVs. Detecting anomalies or outliers in those systems is
an important research area [17, 19]. There are different types of outliers in the time-series
data that depend on the data points affected by the outlier; thus, there are different types of
outlier detection methods based on the time series and outlier types [16]. The outlier types
and detection methods are briefly reviewed in the following section, Section 3.3.1.

3.3.1 Outlier Types

As stated in [16], outliers can be divided into three categories: point outliers, subsequence
outliers and outlier time series.

(a) Multivariate time series with point outliers (b) Multivariate time series with subsequence outliers

(c) Multivariate time series with time series outlier

Figure 3.4: Examples of outlier types [16]

3.3.1.1 Point Outliers

Point outlier is an outlier type that affects a specific time step in the data [16]. A point
outlier can be univariate if it affects a single variable in the time series or multivariate if it
affects multiple variables in the time series data. A point outlier is considered a local outlier
if it deviates from the neighboring data points whereas it is considered a global outlier if
it deviates from the other values in the time series [16]. In Figure 3.4a, O1 and O2 are
multivariate point outliers whereas O3 is a univariate point outlier.

3.3.1.2 Subsequence Outliers

Subsequence outlier is an outlier type that affects subsequent time points in a time series;
however, a specific time point in the subsequence outlier may not be a point outlier [16].
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Similar to point outliers described in Section 3.3.1.1, a subsequence outlier can be a univari-
ate or multivariate outlier depending on the affected variable. In Figure 3.4b, O1 and O2 are
multivariate point outliers whereas O3 is a univariate subsequence outlier.

3.3.1.3 Outlier Time Series

An outlier time series occurs when the entire time series of a variable in the multivariate time
series input is an outlier [16]. In Figure 3.4c, Variable 4 is an outlier time series.

3.3.2 Outlier Detection Methods

Detection of outliers depends on the outlier type and characteristics. Most of the studies that
focus on the detection of point outliers are traditional methods such as Bayesian filtering such
as Kalman filters [77] or k-means clustering [86]. Those methods do not cover or perform
well on the subsequence outliers or outlier time series [16].

3.3.3 Neural Network-based Outlier Detection

The diverse types of outliers, the infrequency of outliers in a time series and unknownness
in the nature of the outliers make the detection of outliers with traditional methods difficult
[66]. Therefore, the ability of generalization of the data puts neural networks in focus for
outlier detection tasks [66].

According to Pang et al. in [66], neural network-based outlier or anomaly detection
methods can be categorized into three types end-to-end anomaly score learning where the
model predicts if a data point at a time step is an anomaly or not based on a score; learning
feature representations of normality so that the model can predict the next "normal" value
and compare it to the current data point to determine if there is an anomaly.

One method introduced as an example to the learning feature representations of normal-
ity type of outlier detection is the usage of Autoencoder (AE) [45]. The idea behind the usage
of AE is based on the assumption that outliers cannot be reconstructed when the dense rep-
resentation generated by the first part of the AE is used to reconstruct input data, therefore,
outliers can be detected by comparing the reconstructed and the original input data [45].
Another neural network based method is based on MLP which is a end-to-end anomaly score
learning type where the MLP model is trained on the anomaly samples and used to predict
the noise value [22].

3.4 Providentia++

Providentia++ is the successor project to the original Providentia ITS system project [47]
with an aim to improve the perception of the automated vehicles which have sensors with
limited range, therefore the safety of the roads. There are 7 measurement points on the
German A9 autobahn and the highway B471 near Munich that cover 3.5 km total length
[24]. As it can be seen in Figure 3.5, there are multiple camera, LiDAR and radar sensors
stationed on the measurement points of the German A9 highway.

The data coming from the multiple stationary sensors are fused together to generate
a unified digital representation of the highway environment called the "digital twin" [47].
The traffic participants such as cars, buses, trucks and pedestrians are then detected with a
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Figure 3.5: Providentia sensors stationed on one of the measurement points on the A9 autobahn [23]

machine learning-based object detection algorithm [47]. Recently, an ITS dataset consists of
the traffic participants detected on the A9 autobahn is released [24].

3.4.1 Scenario Dataset Creation Framework

Kaeefer introduced a scenario mining, detection, classification and generation framework
[44] for the Providentia++ project in his Master’s thesis. The stages of the scenario dataset
generation are shown in Figure 3.6.

These stages can be summarized as [44]:

1. Scenario Catalog and Analysis of Recorded Data

Scenario catalog formed of traffic scenario situations that are relevant to and occur on
the Providentia++ projects are determined after collecting scenario types from various
sources.

The recorded data is then analyzed based on the selected traffic scenario types to see
how frequently a scenario in the scenario catalog occurs on the data.

2. Scenario Generation

The scenarios that do not occur on the recorded data is artificially generated in the
simulation environment

3. Scenario Mining

In order to automate the scenario labeling, a scenario mining tool is introduced. The
tool consists of 5 stages: Data Extraction where the raw data is extracted; Data Pre-
processing where the raw data is processed to extract features that can be used in the
maneuver detection; Data Augmentation where multiple variations of the extracted data
are generated to increase the number of scenarios; Maneuver Detection where the vehi-
cle maneuvers are automatically detected based on the trajectory information and the
preprocessed data; Scenario Statistics where the detected maneuvers are aggregated to
record the statistics.

4. Scenario Simulation / Visualization
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The driving scenarios are written in a format that is compatible with simulation tools
such as CARLA Simulator [27] to be simulated and visualized.

5. Scenario Database

The scenario files are recorded to generate a scenario database by combining the data
recording with labels, scenario statistics, maneuver labels, and simulation compatible
file format.

Figure 3.6: Stages of the scenario dataset generation [44]

The scenario dataset generation framework introduced by Kaefer [44] is compatible with
pre-recording data; however, it is not possible to detect maneuvers that rely on past informa-
tion in real-time since the real-time implementation only processes the current ROS message.

3.4.2 Maneuver Detection

The maneuvers of the vehicles are determined based on the trajectory information of the
vehicle and preprocessed data. In the preprocessing step, several features are extracted from
the trajectory information of each vehicle such as the vehicle’s distance to the lane center,
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the ID of the lane vehicle is on, distance to the following and leading vehicles, Time-To-
Collision (TTC) information for the following and leading vehicles.

3.4.2.1 Maneuver Types

The maneuvers that could be detected by the Maneuver Detection component of the scenario
dataset generation framework of the Providentia++ project are shown in Table 3.1. The
algorithm behind the detection of selection of maneuvers is summarized in Sections from
3.4.2.2 to 3.4.2.5.

Road Type Detected Driving Maneuvers

Highway
Enter / Exit Highway, Lane Change Left / Right, Cut-In Left / Right,
Cut-Out Left / Right Speeding / Standing Vehicle, Tailgate

Urban / Rural
Turn Left / Right at Crossing, Straight / U-Turn at Crossing,
Lane Change Left / Right, Cut-In Left / Right, Cut-Out Left / Right,
Speeding / Standing Vehicle, Tailgate

Table 3.1: The overview of the detected maneuvers [44]

3.4.2.2 Maneuver: Lane Change Detection

According to [3] and [40], unsafe lane changes are responsible for a considerable amount
of accidents that happen in the United States where the ratio of these types of accidents is
%5 of all accident events. Therefore, it is important to detect lane change maneuver of the
vehicles to analyze the accident situations or traffic congestion [53].

The maneuver detection tool in the Providentia++ project detects lane changes based on
the ID of the lane vehicle is on and the distance to the lane center information [44]. Firstly,
the time points when a vehicle crosses a lane marking are determined based on the lane ID
information by finding the time points where the lane ID information of the vehicle changes.
In order to determine the start and end of the lane change behavior, the distance to the lane
center metric is used. When a driver decides to change the lane he/she is driving on, the
vehicle starts to move away from the center of the lane; therefore, the distance to the center
of the lane increases. The start of the lane change behavior is the time when increase in the
distance to the lane center occurs. Similarly, the distance to the lane center decreases when
the vehicle closes to the end of the lane change behavior. This marks the end time point of
the lane change maneuver.

3.4.2.3 Maneuver: Cut-in and Cut-out Detection

The cut-in and cut-out maneuvers are among the most challenging situations in traffic and
the vehicles with ADAS are tested against the scenarios including such maneuvers [61]. Cut-
in and cut-out maneuvers are types of lane change maneuvers but it also includes another
vehicle into the consideration. Cut-in is a maneuver type where a vehicle changes lane to an
adjacent lane just in front of another vehicle. On the other hand, cut-out is a maneuver type
where a vehicle changes its lane when it is very close to the car in front of it, in other words
when it keeps a distance that is less than the required safe following distance.

Detecting cut-in and cut-out maneuvers uses the output of lane change detection and TTC
metric. In Equation 3.1 [74], TTC is defined where ∆v is the velocity difference between the
leading and following vehicles and ∆d is the absolute distance between the vehicles.

T T C =∆v/∆d (3.1)
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In the cut-in detection algorithm, cut-ins are extracting the checking the lane changes
maneuver points and checking if the TTC value after the lane change is less than 2 seconds
[44]. Similarly, cut-outs are detected when the TTC value before the lane change is less than
2 seconds [44].

3.4.2.4 Maneuver: Speeding and Standing Vehicle Detection

Speeding and standing vehicles are detected solely based on the velocity information of each
detected vehicle on the road [44]. Speeding vehicles are detected when the velocity of the
vehicle exceeds the speed limit on the road which is 130 kilometers per hour (kph) on the
A9 highway. Similarly, standing vehicles are detected when the velocity of the vehicle is very
close to or equal to 0 kph [44].

3.4.2.5 Maneuver: Tailgate

Tailgate behavior can be described as driving a vehicle closer than the required safe distance
and not increasing the distance to the required safe distance in a required timely manner.
The required safe distance and time to correct distance vary based on the road type and the
country-specific regulations. In German traffic regulations [20], the safe driving distance for
a vehicle is the distance travelled in a second and required time to keeping the distance is 3
seconds in urban areas, and safe driving distance is vehicle’s velocity divided by 2 in meters
and required time to keeping the distance is 3 seconds if the speed is less than 160 kph, 1
seconds if it is more than that in areas other than urban road.

The detection of tailgates is performed using the distance to the leading vehicle and the
velocity of the vehicle [44]. The algorithm performs the rules described in the German
regulations described above. The tailgate events are divided into three categories based on
the risk of the behavior causing an accident: minor, moderate and severe tailgate [44]. A
tailgate event is considered as severe if the vehicle’s velocity is over 100 kph and it has the
distance to the leading car less than the 30 percent of the required minimum distance [44].
A moderate tailgate event is detected if a vehicle’s velocity is over 100 kph and it is holding
a distance to the leading car less than the 50 percent of the required minimum distance or a
vehicle’s velocity is between 80 and 100 kph and distance to the leading vehicle is 50 percent
of the required safe distance [44]. Finally, any detected tailgate event that does not fall in
moderate or severe tailgate behavior is labeled as minor tailgate [44].
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Solution Approach

The contributions of this thesis work are categorized into two main areas as discussed in
Section 1.4. The first main contribution is the implementation of a neural network training
pipeline for the detection of lane split situations. The solution approach for the pipeline is
described in Section 4.1. The second main contribution is to the Providentia++ project. The
solution approach for the detection of an accident detection and support for the live system
maneuver detection is described in 4.2.

4.1 Neural Network Training Pipeline for Lane Split Detection

In addition to the neural network-based approach for the detection of lane split scenarios in
the context of road perception, a training pipeline for the introduced neural network model
based on Kubeflow Pipelines is implemented in this work.

Kubeflow is selected as the platform for the development of a training pipeline since it
offers ease of use with a web interface to run a training job, flexibility in the development of
tasks in the machine learning workflow, ability to run training tasks in a distributed system
and an interface for automated hyper-parameter optimization. Moreover, the components
developed for a pipeline can be re-used in another pipeline with a different purpose than the
original one; thus, developing pipelines for Kubeflow reduces the development time and cost.

The pipeline is an end-to-end machine learning pipeline approach as it consists of compo-
nents that define the entire model training workflow from data preparation to saving trained
models and their parameters. The details of the pipeline and its components are discussed in
Section 4.1.1 and the following sections.

4.1.1 Overview of the Pipeline

The training pipeline has 5 components in total; data selection component discussed in Sec-
tion 4.1.2, for loop component that discussed in 4.1.3, auto-labeling component discussed in
4.1.5, dataset preparation component discussed in 4.1.6 and training component discussed in
4.1.7, respectively.

The overview of the pipeline is shown in Figure 4.1 as a DAG. The reason that for loop is
represented as a component is the pipelines are DAG; thus, there is not a closed loop in the
graph where a component is its own descendent. Therefore, the component that runs in the
loop is shown on the left side of the for loop, and the components that are run after the for
loop ends are shown on the right side of the for loop. The descriptions of the components
are summarized below.
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Figure 4.1: Overview of the Kubeflow pipeline as Directed Acyclic Graph (DAG)

1. Data Selection

The selected data traces that will be used for training are filtered out based on the
signals already extracted in the previous pipeline runs. The output of this component
is the list of data traces that needs signal extraction. The for loop iterates over this
output.

2. For Loop

The sensor signals semantic road points and lane boundary polynomials that will be
used in both training and auto-labeling are needed to be extracted. The signal extrac-
tion component is needed to be run for each data trace in the output of the previous
component.

3. Auto Labeling

After the loop finishes, the auto-labeling component starts labeling the data traces based
on the extracted signals.

4. Dataset Preparation

The signals are extracted and labels are generated for all the data traces in the previous
components. In this component, the dataset is generated by combining the necessary
signal data and the generated labels.

5. Training
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The generated dataset is split into three subset datasets training, validation and test
datasets. A selected neural network model which can be MLP, CNN or self-attention
based is trained and evaluated on the generated datasets.

4.1.1.1 Pipeline File Definition

Kubeflow Pipelines are defined as Yet Another Markup Language (YAML) files and the pipeline
definition files can be generated with a Python script in an automated fashion. Kubeflow
provides a Python SDK [9] with a set of tools to define components with its name, input ar-
guments, and resources that it might use such as Persistent Volume Claim (PVC) or a Secret.
An example pipeline YAML file definition can be seen in Figure 4.2 with a component named
example_component which is defined as a container image pointing to a Docker Uniform Re-
source Identifier (URI). The pipeline has a single parameter named as example_param.

1 apiVersion: argoproj.io/v1alpha1
2 kind: Workflow
3 name: Example Pipeline
4 spec:
5 entrypoint: example_component
6 templates:
7 - name: example_component
8 container:
9 image: example/docker/image:latest

10 args: [
11 python3,
12 program.py,
13 --input,
14 {{inputs.parameters.example_param}},
15 ]
16 inputs:
17 parameters:
18 - name: example_param
19 arguments:
20 parameters:
21 - name: example_param
22 value: 'default_str

Figure 4.2: An example Kubeflow pipeline definition

The pipeline YAML file can be uploaded to the Kubeflow platform via the web interface.
The uploaded pipelines are versioned; therefore, it is possible to use another version of the
same pipeline for testing purposes.

4.1.1.2 Pipeline Parameters

As discussed in Section 4.1.1.1, pipeline runs can be configured with parameters. The
pipeline takes all the arguments defined in the file definition and each defined parameter
can be used as arguments of components. The parameters of the pipeline implemented in
this work and the components that use them are listed in Table 4.1. Each parameter is de-
scribed in the sections that detail the components that use them.
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Parameter Used in Component(s)

selected_data_traces
Data Selection
Dataset Preparation
Auto-Labeling

run_tag
Dataset Preparation
Training

time_offset_ns Dataset Preparation
road_point_relevance_min_distance
road_point_relevance_max_distance Auto-Labeling

road_point_existence_probability_threshold Auto-Labeling
validation_split
test_split Training

num_epochs Training
batch_size Training
kernel_regularizer Training
bias_regularizer Training
learning_rate Training
label_names Training
balance_event_files Training
use_class_weight Training
apply_normalization Training
fill_nan_values Training
time_window_size Training
model_type Training
use_batch_norm_1
use_batch_norm_2 Training

use_dropout_1
use_dropout_2 Training

use_pooling Training
dense_layer_1_size
dense_layer_2_size Training

dense_layer_1_size
dense_layer_2_size Training

dropout_p_1
dropout_p_2 Training

convolution_kernel_size
convolution_filters Training

use_mlflow_logging
mlflow_tracking_uri
mlflow_experiment_id

Training

Table 4.1: Pipeline parameters and their descriptions

4.1.1.3 Communication Between Components

Kubeflow components communicate with each other either using the files in the file system
or container outputs. If a component uses a container output as one of its inputs, the return
value of the container is used. If components will "communicate" or share results of the
operations they are performing using the filesystem, containers must be using volumes which
are files or directories that point to a file storage in a local or remote system.
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4.1.1.4 Kubernetes Persistent Volumes and Persistent Volume Claims

It is discussed in Section 2.10 that Kubeflow components are run on top of a Kubernetes
cluster. A Kubernetes cluster is a set of server machines called Nodes that run applications
and each running application is encapsulated in a Pod that runs single or multiple containers
[11]. Since containers are run with the isolation principle, file storage on the cluster can
be accessed from the containers by "binding" or attaching a volume that points to the file
or directory on the file storage [13]. Accessing the file storage from a Kubernetes Pod is
performed by mounting a resource called PVC to the Pod which is bound to a PV that points to
the location on the file storage. In order to run the pipeline, required Persistent Volume (PV)s
and PVCs must be created and this operation is performed only once since they can be reused
with each run of the pipeline.

PV - PVC name Description

pv-scenario-detection-common
pvc-scenario-detection-common

The common pipeline directory in the file system to be
used to store all the file output generated by the pipeline
components. This volume has read and write access to
the storage.

pv-signal-data
pvc-signal-data

The directory that stores raw signal data for the traces.
This volume is read-only.

Table 4.2: Overview of the PVs and PVCs used in the pipeline

In this work, there are 2 PVs and PVCs required to run the pipeline. These resources are
listed and their purposes are described in Table 4.2. The files written to or read from the file
storage by the components will be discussed in the sections that describe the components.

4.1.1.5 Kubernetes Secret

The sensitive information such as credentials should be used safely when they are needed
by a Pod in a Kubernetes cluster. In order to ensure the safety of such sensitive information,
Kubernetes has a resource type named Secret that stores the credentials as a dictionary that
maps a credential name to credential value [12]. This ensures that Kubernetes or Kubeflow
code does not include any sensitive information.

Name Key - Value pair Description

data-service-access-token ACCESS_TOKEN: access token

The token that is needed to
authorize requests sent to the
web service that serves the
signal data paths.

Table 4.3: Kubernetes Secret used in the pipeline

There is only one Secret used in this work and the information it stores is described in
Table 4.3. The usage of this Secret is described in Section 4.1.4.

4.1.1.6 Definition of Components

Each component in a Kubeflow pipeline must be containerized. Hence all the required pack-
ages are included in the container and inputs and outputs are well-defined, a containerized
application should perform the job it is designed for when its inputs are given correctly no
matter the environment. However, some components in Kubeflow might be a simple Python
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script that does not rely on any additional packages. In that case, the component can simply
be defined as a Python script and Kubeflow automatically uses base Python container to run
the script in the component.

In this work, all the components except the data selection component described in Section
4.1.2 are containerized applications.

4.1.2 Data Selection

The previous subsections in Section 4.1 lay down the foundations of how the implemented
Kubeflow training pipeline works and the Kubernetes resources required to run the pipeline.
The pipeline components are detailed in subsections starting from this subsection to Subsec-
tion 4.1.7.

Data selection component is the starting point of the pipeline as it can be seen in Figure
4.1 and it is defined as a simple Python script.

Figure 4.3: Illustration of the data selection component

The component takes a single input parameter which is a list of selected data trace ids to
be used in training for the pipeline run. However, signal data required for training of some of
the data traces might already been extracted in previous pipeline runs. Extracting the signal
data for all of the selected data traces would make training runs slower and inefficient;
therefore, data selection component checks the common pipeline storage to filter out the
ids of the data traces with extracted signals. The component mounts the common pipeline
volume described in Section 4.1.1.4 for the described operation. An example component run
is illustrated in Figure 4.3 that shows the data trace id trace_2 being filtered out since it exists
in the directory that contains extracted signals.

4.1.3 For Loop

The for loop in the pipeline loops over the data traces whose signal data has not been ex-
tracted by the signal extraction component defined in Section 4.1.4 in the previous training
runs. The component does not use any volumes and it only takes the list of data trace ids
which is the output of the predecessor data selection component detailed in the previous
section 4.1.2.

It is been discussed in the Section 4.1.1 describing the pipeline DAG shown in Figure 4.1
that the signal extraction component run inside the loop is shown as the successor of the for
loop component while the components that are run when the for loop finishes succeeds the
for loop component on the right side. This illustration is designed to conform how Kubeflow
draws pipeline graphs with for loops.
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The signal extraction component inside the for loop is invoked with a data trace id pa-
rameter in the input list of the for loop. The for loop component can run the signal extraction
jobs in parallel for up to 10 jobs running concurrently.

4.1.4 Signal Extraction

The data traces are the real-world driven car data of the BMW Group AG prototype cars
recorded to the filesystem. Moreover, paths to each trace can be fetched via a Hypertext
Transfer Protocol (HTTP) request to an internal web service. The required signal data must
be extracted from the raw trace recordings in the filesystem.

Figure 4.4: Illustration of the signal extraction component

The signal extraction component extracts the desired signal data by fetching the path for
the raw recordings via a HTTP request, and performing the extraction on the raw recordings.
In order to fetch the file system paths from the web service, the HTTP requests must contain
a token so that the requests are authenticated. Thus, the Kubernetes Secret described in
the Section 4.1.1.5 is attached to the component container as environment variable. The
environment variable is then included in the HTTP requests to get authenticated. The signal
extraction component and its interactions with other resources are illustrated in Figure 4.4.
In the illustration, the component extracts signal for the trace with id trace_1.

The signals are only required by the auto-labeling and dataset preparation components.
The extracted signals are semantic road points signal which is detailed in Section 4.1.5.1 and
lane boundary polynomials which is detailed in Section 4.1.6.

4.1.5 Auto-Labeling

Auto-labeling is an important tool in a neural network training workflow. There would be a
large amount of data which is impractical to be manually labeled. Therefore, an automated
labeling solution should be implemented. In this work, the aim is to detect outlier scenarios
in the lane boundary polynomials when there is a lane split on the road. The scenarios of
lane split to left and lane split to right are illustrated in Figures 4.5a and 4.5b, respectively.
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The lane the vehicle is driving on splits to left or right, and a new lane on the left or right
starts from the point split starts.

(a) Illustration of the lane split to left scenario (b) Illustration of the lane split to right scenario

Figure 4.5: Illustrations of lane split scenarios

In order to label such scenarios, a rule-based algorithm that uses the extracted signal
which contains semantic road points is implemented. The details of the semantic road points
signal are explained in Section 4.1.5.1. The idea behind the labeling algorithm is discussed
in Section 4.1.5.2.

Figure 4.6: Illustration of the auto-labeling interactions with pipeline resources

The auto-labeling component is the first component that follows the for loop component
as shown in Figure 4.1. Thus, the auto-labeling component and the components that follow
it are run after the for loop finishes. The interactions of the auto-labeling component in the
pipeline are shown in Figure 4.6. The component mounts the common pipeline volume to
get the extracted signals from the volume and to write the generated labels to the volume.

4.1.5.1 Semantic Road Points

Semantic road points are the points that define the road events and they are detected by
the BMW prototype camera mounted to the automated vehicle. A road event indicates the
change on the detected road such as a new lane to the left or right, merging lanes from left
or right and widening lanes. The detected points are positioned at the starting point of the
road event.

The semantic road points that define the lane splitting to left and right road events are
NewLaneLeft and NewLaneRight, respectively. The NewLaneLeft semantic road point is marked
as a yellow point in the illustration of lane split to left scenario in Figure 4.7a. Similarly,
NewLaneRight semantic road point is marked as orange point in the illustration of lane split
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(a) Semantic road point for lane split to left scenario (b) Semantic road point for lane split to right scenario

Figure 4.7: Illustrations of lane split scenarios with semantic road points

to right scenario in Figure 4.7b. These points denote the position of the starting point on the
left or right lane where the splitting event starts.

The semantic road points also hold a useful information that indicates the distance to
the lane that car is driving on in order to determine if it is a relevant point. The prototype
camera might detect a semantic road point for a lane split scenario; however, this event might
be occurring on a lane other than the lane the car is driving on. Therefore, the detected
semantic road point would be irrelevant in detecting a lane split road event. The reason for
this is the lane splits occurring on a lane that is not adjacent to the lane the car is driving on
would not affect the detected lane boundaries that the car relies on for ADAS features.

In this work, the only semantic road point types used to detect lane split road events are
the described NewLaneLeft and NewLaneRight.

4.1.5.2 Timestamp Labeling

The auto-labeling implemented in this work is based on time interval labeling. Since the
data is time series and contains signal messages with respective timestamps, the message
timestamps can be labeled with the desired label.

It has been described in Section 4.1.5.1 that the rule-based labeling is performed based on
the existence of the relevant semantic road points, namely NewLaneLeft and NewLaneRight.

Figure 4.8: Illustration of the timestamp labeling for lane split to right scenario

A time interval is labeled as lane split to left or right if the signal messages in the interval
contain NewLaneLeft or NewLaneRight and the road point in the messages is close to the
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lane that the car is driving on. Hence, the semantic road points are first filtered based on
the distance to the lane of the vehicle and existence probability. The semantic road point
detection by the prototype camera might not be accurate; therefore, the existence probability
attribute is used to filter uncertain detections. Then, the messages are labeled as lane split
or not based on the existence of the semantic road points. In Figure 4.8, the semantic road
point NewLaneRight is marked as a orange dot similar to the illustration in Figure 4.7b. The
red-dotted vertical lines indicate the signal messages or the timestamps where a message
arrives. The red rectangle containing the semantic road point mark is the interval labeled as
lane split to right. The red-dotted vertical lines of the labeled interval are the start and end
timestamps of the label.

Figure 4.9: Plot of the semantic road point signals for scenario in Figure 4.8

The existence plot of the semantic road point signals NewLaneLeft or NewLaneRight for
the example in Figure 4.8 is show in Figure 4.9. The plot at the top is the NewLaneLeft signal
and the plot at the bottom is the LaneSplitRight signal where the x-axis is the timestamps.
The y-axis value 1 means that the semantic road point exists and 0 means that the semantic
road point does not exist at the timestamp t.

4.1.5.3 Output Label Description

As discussed in Section 4.1.5.2, the auto-labeling algorithm labels each signal message; there-
fore, each timestamp is labeled. Since the data is time series and the messages are ordered,
storing the start and end timestamps of the label event in the output file is sufficient. Each
data trace has its own label file that contains a list of dictionaries where each dictionary is
a label. The format of the label files is JavaScript Object Notation (JSON) and an example
label file is shown in Figure 4.10.

The lane boundary events, i.e labels, are enumerated integers. For example, the 0 value
for the label means there is no lane split, the 2 value means lane split to right and the value
3 means lane split to left. The label names that map human-readable names to enumerated
label values are given by the pipeline parameter label_names.
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1 [
2 {
3 "startTimestamp": 120,
4 "endTimestamp": 620,
5 "laneBoundaryEvent": 2,
6 },
7 {
8 "startTimestamp": 1240,
9 "endTimestamp": 1990,

10 "laneBoundaryEvent": 3,
11 }
12 ]

Figure 4.10: An example label file for a data trace generated by the auto-labeling component.
laneBoundaryEvent denotes the label for the time interval.

4.1.6 Dataset Preparation

The dataset preparation component combines the labels generated by the auto-labeling com-
ponent described in Section 4.1.5 and the lane boundary polynomial signal data that will be
used as features of the neural network. The output files of this component are the input for
the neural network training component where they are used as a dataset.

Figure 4.11: Illustration of the dataset preparation component interactions with pipeline resources

The interactions of the dataset preparation component are illustrated in Figure 4.11. The
component uses the common pipeline volume to store the generated dataset files and read
the extracted signals.

Each label generated by the auto-labeling component is written as a separate data file in
Comma-Separated Values (CSV) file format. The reason for using CSV format over the JSON
file is that the CSV file format takes less size on the disk than JSON since JSON requires syntax
related characters for formatting whereas CSV only uses comma characters for formatting.

In order to generate labeled data files to be used in the training component that will be
discussed in 4.1.7, the JSON label files for each selected data trace and the lane boundary
signal data for the corresponding data traces are read and combined. As it has been discussed
in Section 4.1.5.2 and shown in Figure 4.8, the labels contain start, end timestamps and the
lane boundary event which is the enumerated label. However, the label files generated by
the auto-labeling content only contain labels for the classes LaneSplitLeft and LaneSplitRight;
thus, the default label NoLaneSplit event is missing from the label files. Moreover, in order to
capture the change in the signal messages when there is a lane split scenario, it is important
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to feed the neural network also the messages that come before and after the lane split event.
This will help the model to capture what makes LaneSplitLeft and LaneSplitRight scenarios
different than the NoLaneSplit label. Therefore, the data files that will be used as dataset in
the training component should be generated with a larger time interval instead of the actual
label.

Figure 4.12: Illustration of the training data generation for lane split to right scenario

The dataset files are generated by using an offset value. The offset value is used to ex-
pand the label time interval from (star t t imestamp, end timestamp) to (star t t imestamp−
o f f set, end timestamp+o f f set). The timestamps that are outside of the original label time
interval; therefore, the timestamps in the range of (star t t imestamp − o f f set, star t t imestamp)
and (end timestamp, end timestamp+ o f f set), are labeled as NoLaneSplit.

The possible labels and corresponding enumerated labels for a timestamp in the data are
shown in Table 4.4.

Label Enumerated Label
NoLaneSplit 0
LaneSplitRight 2
LaneSplitLeft 3

Table 4.4: The label names and the corresponding enumerated labels

The process of labeling the extended timestamp is illustrated in Figure 4.12 which shows
the data generation from the label created by the auto-labeling component. The original label
time interval shown as the red rectangle that contains the orange semantic road point similar
to the labeled interval in Figure 4.8 is extended with the offset shown as blue rectangles that
come before and after the labeled interval rectangle.

After the extended time interval is determined, the labels are combined together with the
matching lane boundary polynomial messages. Each timestamp contains three lane boundary
polynomial information; left, center and right lanes. The information for the lanes is in the
extracted signal information. The data preparation component matches the label timestamps
that correspond to the semantic road point message timestamps with the lane boundary poly-
nomial messages. The lane boundary polynomials in this work are three-order polynomials
shown in the Equation 4.1 where p(y) is the polynomial value; therefore, the (y, p(y) point
on the lane. The a0, a1, a2 and a3 are the polynomial coefficient values.

p(y) = a3 y3 + a2 y2 + a1 y + a0 (4.1)

Alongside the polynomial coefficients, the view range start and end values for the lane
boundary are also included in the data as features. The view range start and end values
define the value interval for the y value in the polynomial equation shown in Equation 4.1.
This is a useful information since the end of the view range might change when there is a
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vehicle or an object in front of the car that occludes the lanes on the road or shortened lane
boundary detection because of a lane split event.

Figure 4.13: Illustration of the lane boundaries detected by the car camera

In Figure 4.13, the three lane boundaries included in the training data are illustrated;
green lines as the left and right lane boundaries and turquoise line as the center lane bound-
ary.

To summarize, each data file is a CSV file containing a timestamp, left, right and center
lane polynomial coefficients and view range end-start values, speed of the vehicle and the
enumerated label in every row.

4.1.7 Training

The training component performs the neural network model training using the data gener-
ated by the dataset preparation component. There are 2 different approaches for the prob-
lem; training and making predictions based on a single message which is discussed in Section
4.1.7.1 and based on time windows which is discussed in Section 4.1.7.3. There are also 3
different model types, namely MLP, CNN and self-attention based neural network. The de-
tails of each model and how they correspond to different training and prediction approaches
are discussed in the respective sections; 4.1.7.2 for MLP model, 4.1.7.5 for CNN model and
4.1.7.6 for self-attention based model.

The interactions of the training component are illustrated in Figure 4.14. The component
uses the common pipeline volume to read the generated dataset files and write the trained
model and the confusion matrix as an image. Moreover, the component saves the trained
model and the confusion matrix image alongside with the training parameters and metrics to
a machine learning tracking service called MLflow. The logged information and MLflow are
detailed in the dedicated Section 4.1.8.

As shown in Figure 4.15, the workflow of the training component consists of balancing
the dataset, reading and standardizing the data, training and evaluation steps. The file-based
balancing described in Section 4.1.7.9 is optional and can be replaced by the usage of class
weights for data balancing which is described in Section 4.1.7.8. The data is read and split
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Figure 4.14: Illustration of the training component’s interactions

into training, validation and test datasets based on the pipeline parameters that determine the
ratio of each dataset. Then, each dataset is standardized as described in Section 4.1.7.7. The
training and validation datasets are used during training and the data balancing is achieved
through class weights if the option is enabled with the respective parameter use_class_weight.
The trained model is also evaluated and the confusion matrix is generated using test dataset.

Before going into the details of the training approaches, it is worth noting that all 3 models
are simple models that include number of layers not more than 3. The reason behind this is
that the trained model can be used on car hardware to be tested for a real-world use-case and
the hardware on the vehicles that would do the computation for the real-time inference is
limited in terms of computing resources for most cars on the market. Therefore, the models
are designed to be lightweight and simple.

4.1.7.1 Training on Single Sample

The simple baseline approach to the lane split detection problem is to train a neural network
model that takes a single data point during training, and makes a prediction on a single
data point during inference. Thus, the position of a data point in the training data is not an
information interpreted by the neural network. The advantages or the disadvantages of the
approach are discussed in the 5.

The MLP model implemented in this work is an example to the single sample training
approach.

4.1.7.2 Multi-Layer Perceptron

The MLP model has 2 dense layers, i.e. fully-connected layers, optional batch normalization
and dropout layers. The model can be configured to have batch normalization or dropout
layer after each dense layer. Furthermore, the sizes of the dense layers, i.e number of neurons
in the layer, can also be configured. The output layer has 3 neurons that output softmax
values for each class shown in the Table 4.4.

The model is illustrated in Figure 4.16. The activation function for each dense layer is the
ReLU function. The inputs are the data features for the single data point in the time series
and they are the lane polynomial coefficients and view range start-end values for the left,
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Figure 4.15: Illustration of the training component’s workflow

Figure 4.16: Illustration of the MLP model with all optional layers enabled

right and center lanes and the speed information. The size of the input layer is equal to the
number of features and the size of the output layer is equal to the number of classes which is
3 in this work.

The batch normalization layers can be added to the model in order to have a faster train-
ing since they allow using higher learning rates that reduces the number of steps required to
converge by normalizing the input to the layer comes after [31] batch normalization. Fur-
thermore, dropout layers can also be added to the model with the aim to reduce the risk of
overfitting on the training data by changing the network architecture by randomly blocking
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some of the neurons based on a probability threshold so that learned weights would not be
highly customized to the training data [31].

4.1.7.3 Training on Time Windows

The second approach to the lane split detection problem is to train a neural network model
that takes a time window consisting of a fixed number of data points instead of a single data
point. The advantage of using a time window is the ability of the model to learn sequence
patterns in the data since data points in a time series are generally not independent from
each other. This technique is called sliding windows.

The CNN and self-attention-based neural network models implemented in this work use
sliding windows as their inputs.

4.1.7.4 Generation of Time Windows

The time windows are generated for each data point in the input by combining w−1 number
of samples up to the data point the time window is generated for and the data point itself
where w is the window size.

Figure 4.17: Illustration of the input generation with sliding window, own illustration (source: [67])

The generation of the time windows for each data point is illustrated in Figure 4.17 where
the window size is 25 and the number of data points in the input is T − 1. The xk denotes a
data sample in the input and yk is the label of the kth data point. The first w− 1 = 24 data
points are not used since it is not possible to generate a time window for those data points.
The reason for that is that there are not w− 1= 24 data points preceding them. The solution
for this problem might be to fill in the missing data points with simply 0 value or the mean
of the whole input.

4.1.7.5 Convolutional Neural Network

The CNN model has a single 1D convolutional layer followed by optional batch normalization,
average pooling and dropout layers. Then, the output is flattened to have a 1D input to the
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dense layer that outputs softmax for each class used in this work.

Figure 4.18: Illustration of the CNN model with all optional layers enabled

In Figure 4.18, the CNN model is illustrated. The time window input is fed to the 1D
convolutional layer that creates a feature map of the input. For an input with a window
size of w = 25 and a number of convolution filters that are used to extract features is f the
output size of the first layer is (23, f ) for the convolution stride value of 1, kernel size 3 and
no padding. The average pooling layer between batch normalization and dropout is used to
reduce the number of parameters in the network and the output of the layer is of size (11, f )
with pool size p and stride s since the output size is calculated as (input−p+1)/s. The flatten
layer concatenates the input to have 1D output; therefore, the output size is 11x f . The dense
layer produces the softmax output from the 1D input.

4.1.7.6 Self-Attention based Neural Network

CNNs are able to capture local dependencies in the data; however, they cannot capture the
global meaning of the data which might be a useful information to detect a long lane split
event. CNN models need a large receptive field; therefore, large kernels or deeper model
architecture to detect long-range dependencies. This makes CNN models inefficient when
capturing such dependencies in the data; hence, it is not suitable to deploy a CNN model to
the hardware with limited computing power. On the other hand, self-attention can overcome
the shortcomings of CNN since it "sees" the input data as whole instead of a receptive field
approach as in CNN.

In Figure 4.18, the self-attention based neural network model is illustrated. The time
window input is fed to two separate 1D convolutional layers to create feature maps of the
input called query and value. Both of the feature maps are fed into an attention layer that
creates the query-value encoding. One of the initial feature maps created by one of the 1D
convolutional layer called query is also fed into an average pooling layer whereas the query-
value encoding is also fed into a separate average pooling layer. The outputs of the pooling
layers are concatenated and fed into the dense layer that outputs softmax values for the 3
classes defined in 4.4.

The network is named as self-attention-based neural network since the attention layer
gets its query and value encoding inputs from the same original neural network input which
is a time window generated as described in Section 4.1.7.4.
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Figure 4.19: Illustration of the self-attention based model with all optional layers enabled

4.1.7.7 Data Standardization

Data standardization is applied to each feature in the input data so that each feature is
centered around 0. This avoids features with a large scale to dominate the weights during
training; therefore, it provides more stable and faster training. The equation for the operation
is shown in Equation 4.2 where X is the input, µ is the mean of the feature and σ is the
standard deviation.

X ′ =
X −µ
σ

(4.2)

The µ and σ values are calculated from the training dataset and the same parameters are
used to standardize the validation and the test datasets. The model trains on the training
dataset and learns the parameters based on the scales of the features in the training dataset.
In order to have validation and test dataset features on the same scale that the model is
trained on, these datasets are standardized using the same parameters.

4.1.7.8 Class Weights

An issue in applying a neural network approach to the lane split detection problem is the
class imbalance in the input data. The neural network approach in this work handles the
problem as a multi-class classification task where there are 3 classes, namely NoLaneSplit,
NewLaneLeft and NewLaneRight. The problem is that a class usually dominates the generated
dataset in size. Therefore, the model tends to put importance on the dominant class to
improve accuracy. For example, if a binary classification problem with classes "go to gym"
and "stay at home" has a dataset where "stay at home" labels are the %99 of the samples, the
accuracy of the model would be %99 percent if it always predicts "stay at home" class.

wc =
N

nc ∗ C
(4.3)

In order to avoid the problem described above, classes are weighted based on their sizes
and inversely proportional to the importance that the model should put on a class. The
equation for the class weight of class c is shown in Equation 4.3 where wc is the class weight,
nc is the number of samples belonging to class c, N is the total number of samples in the
dataset and C is the number of classes.
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4.1.7.9 Event Files Balancing

Another option to handle the class imbalance problem is to filter the data files of the dominant
class to have a balanced dataset. The labeled data files can be filtered by selecting the number
of class files as the size of the minority class.

However, filtering out some data files in the dataset also means that some information is
completely lost and the model misses the opportunity to learn them from.

4.1.8 Training Run Tracking

In order to track each training run and easily compare the results, the training component
logs the trained model file, the confusion matrix of the validation dataset and the training
metrics that include the loss history, accuracy, precision and recall values for each training
epoch to a web service platform named MLflow Tracking.

The MLflow Python Software Development Kit (SDK) automatically logs some informa-
tion during training such as resulting metrics and loss history. However, the parameters used
in the training run, trained model files and the confusion matrix image logging are imple-
mented with the SDK methods.

The training run tracking is essential for hyperparameter tuning. Each training run has
logged metrics and loss history so that MLflow can plot and even compare them with the web
dashboard. The logged trained models can be downloaded to be used later for inference or
resuming training from the last epoch.

4.2 Providentia++

The two main contributions to the Providentia++ project in this work are the implementation
of rule-based accident scenario detection and scenario detection on the live system described
in Sections 4.2.2 and 4.2.3, respectively.

The groundwork for the scenario detection framework is implemented by Kaefer in his
work [44] that includes extraction of data used for maneuver detection such as distance be-
tween cars, TTC values, IDs of the lanes that the traffic actors are in, and maneuver detection
based on the extracted features. This work extends the existing implementation with accident
event detection, logging of metadata on the live system that uses ROS for communication,
maneuver and event scenario detection on the live system.

Before going into the details of the approach to the contributions, the data format used
in the project called Scenario Description Format to describe the scenarios in the data trace is
described in Section 4.2.1.

4.2.1 Scenario Description Format

The Scenario Description Format is a data format used to fully represent the describe the traffic
scenario of a given input data. The data format is illustrated in Figure 4.20.

The dictionary Scenario holds data nodes named Meta information and Actors. The Meta
information data node is used to store the metadata information about the scenario such as
the number of frames, frame rate or weather condition when the data is recorded. The Ac-
tors node holds the list of detected traffic participants or actors such as cars, trucks, buses
or pedestrians. Each actor has basic information such as the tracking ID of the object, color,
length, width and height in addition to object’s driving behavior such as trajectory or path,
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Figure 4.20: The illustration of the scenario description before this work [44]

lane ID, velocities, offset. Moreover, detected vehicle maneuvers are also recorded to actor
dictionary such as speeding or standing, cut-in or cut-out and lane change behaviors. There-
fore, the data format is the extended and used to describe the scene both offline and online,
i.e. live system, scenario detection.

The scenario is first constructed from the ROS messages in Scenario Description Format.
Then, the feature extractor extracts the features such as distance to the leading and following
vehicle, TTC to the leading vehicle and the lane id for maneuver detection. These extracted
features are also recorded to the actor itself. The maneuver detection is applied to the sce-
nario and the extracted maneuvers are recorded to the actor in a similar fashion to what
feature extractor does. This process is shown in Figure 4.21.

4.2.2 Accident Detection

Accidents are defined as the collision of a vehicle with an obstruction such as other traffic
participants, vehicles, pedestrians or animals for instance, road barriers or trees [59].

Some of the possible accident scenarios on the German A9 highway are illustrated in
Figure 4.22. The figure at the top shows, Figure 4.22a, the scenario where the vehicle runs
into the road barriers. The center figure, Figure 4.22b shows the scenario where the following
vehicle likely hit the leading vehicle since TTC is 0.5 seconds. The bottom figure, Figure
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Figure 4.21: The illustration of maneuver detection and construction of the scenario

4.22c, shows the scenario where a vehicle changes lane where there is another vehicle on the
trajectory. In this work, only accident scenario detected is shown in the center figure which
is the head-to-tail collision.

In order to detect a head-to-tail collision, the accident detection algorithm checks for the
TTC and the distance between the vehicles. If the TTC value is less than or equal to 1 second
the actor is labeled as collision likely since 1 second is the limit for humans to react in a near
collision situation and 1.1 seconds as TTC is the threshold for collision [80]. However, the
actors are only marked as in accident if TTC is approaching to 0, distance to the leading car
is less than 50 centimeters and the actor is already been marked as collision likely before.
The accident labeling is shown in Equation 4.4 where Laccident is the label of the accident
scenario.

Laccident =











collision likely, 0.5< T T C < 1

in accident, T T C < 0.5 and distanceleading < 50cm

none, otherwise

(4.4)

If the following actor is marked as in accident, then the leading actor is marked with the
same label since that actor will be hit by the following vehicle.

The accidents are also categorized based on the severity of the collision. If the speed
difference between two vehicles is less than 50 kph, the accident is marked as minor accident.
If the speed difference is in the range of 50 to 70 kph, the accident is marked as moderate.
Similarly, if the speed difference is more than 70 kph, the accident is marked as severe.
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(a) Green vehicle collides with the road barrier

(b) Green vehicle collides with the following vehicle due to speed difference

(c) Green vehicle will collide with another vehicle driving on the adjacent lane

Figure 4.22: Illustration of some possible accident types on highway

4.2.3 Scenario Detection on the Live System

It has been discussed in Section 4.2.1 that the detected scenarios are stored in a data format
named Scenario Description Format. However, the data format introduced in [44] can only be
used to analyze single ROS message which causes accident detection and maneuver detection
for lane change, cut-in, cut-out events to be left out on the live system. Therefore, the data
format is extended in this work to keep history of the messages up to 200 hundred messages
which is the equivalent of 8 seconds if the message frequency is 25Hz.

The extended data format illustrated in Figure 4.24 is similar to the original format except
for the addition of message_history to the scenario dictionary and the extended metadata field
that includes the number of lane changes, tailgate events, cut-in, cut-out and existence of an
accident detected from the message_history field. The extended metadata field is shown in
Figure 4.23a. Moreover, actor’s path field is also extended to include the detected scenarios
and yaw data calculated by using the current and previous actor positions. The extended
actor field is shown in Figure 4.23b. The calculation of actor yaw value is shown in Equa-
tion 4.5 where x and y are the x-axis and y-axis coordinates and atan2 is the 2-argument
arctangent calculation.

yawt = atan2(yt − yt−1, x t − x t−1) (4.5)
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(a) Extended metadata information

(b) Extended actor field

Figure 4.23: Illustration of extended metadata and actor fields of Scenario Description Format

Figure 4.24: The illustration of the extended scenario description

The message history has a size of 200 messages and is initialized as empty. As the mes-
sages arrive to the system they are recorded to the history. If the history is full, the oldest
entry in the history is removed and the new message is added to the history. The last element
of the message history is always the latest message. Once a message arrives, the scenario
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detection node updates the message history, and the run the feature extraction and scenario
extraction on the updated message history.

The metadata information for the detected scenario object in format extended Scenario
Description Format is generated for the 200 messages in the message history. Therefore, it
includes scenarios detected for the last 8 seconds if the message frequency is 25Hz.

Figure 4.25: The illustration of the live maneuver detection workflow before this work [44], own illustration

Furthermore, the scenario detection algorithm processes ROS messages to detect scenar-
ios. The frequency of the ROS messages is 25Hz; therefore, 25 messages per second. In order
to detect scenarios on the live system, the message processing time should be in an acceptable
range, i.e. less than 0.04seconds per message which is the time difference between messages;
thus, each message can be processed and scenarios be detected in a timely manner.

Kaefer showed in his work [44] that the scenario detection tool is able to detect lane
change, cut-in, cut-out, tailgate, speeding and standing maneuvers and events in offline mode
which means extracting data from Rosbags. However, there is no time constraint for offline
runs. Running scenario detection in real-time time requires improvements to the scenario
detection workflow. The maneuver and event detection workflow in Kaefer’s work [44] is
illustrated in Figure 4.25. It can be seen from the figure that the maneuver detection jobs for
each actor are run in separate loops.

In order to improve the workflow, the maneuver and event detection jobs are combined in
a module which can be mentioned as scenario detection. This not only makes the workflow
simpler but also significantly reduces the repeated operations when compared to the previous
workflow. The new workflow is shown in Figure 4.26. Moreover, a lookup dictionary for
actor/object IDs to message history indices is used in order to have instant access to the
message data from the history. This eliminates the search time required to find an object in
the message history when it is needed during the maneuver or event detection task.

4.2.3.1 Logging to the Live System

The input ROS messages are obtained by the scenario detector by subscribing to the object
detection topic published by the object detector. The messages are in BackendOutput format
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Figure 4.26: The illustration of the live maneuver detection workflow in this work

which stores information such as timestamp and the list of objects. The objects in the list
contain velocity, path, ID, object class and dimension information.

Figure 4.27: Providentia++ Live System ROS communication illustration for scenario detection

The scenario extractor processes the data obtained from the ROS messages as it has been
shown in Figure 4.26. The detected maneuvers for each actor alongside the metadata infor-
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mation for the ROS messages are stored in the extended Scenario Description Format object.
The generated Scenario Description Format object is translated to BackendOutputExtended

object which is a custom ROS message type. This message type is the extended version of the
message type received from the subscribed topic so that it stores the detected scenarios and
metadata information for the message such as the number of detected lane changes, cut-in,
cut-out, accident and tailgate events. Finally, this ROS message is published to a new topic
that serves purpose for publishing the detected scenarios. The ROS communication is shown
in Figure 4.27.



Chapter 5

Evaluation & Analysis

There are 4 main accomplishments in 2 categories; implementation of a neural network end-
to-end training pipeline and lightweight neural network-based lane split detection solution
for vehicle domain; scenario detection support on the live system and accident detection for
the V2I domain, Providentia++ project. The evaluation of the accomplishments in this work
and the analysis of the results are discussed in the Sections 5.2 and 5.3. The metrics used to
evaluate the results are discussed in the Section 5.1.

5.1 Metrics

In the evaluation and analysis of this work, there are 4 metrics used which are accuracy,
precision, recall, and execution time. The confusion matrix is one of the outputs of the neural
network training pipeline implemented in this work; therefore, it is discussed in Section 5.1.1.

5.1.1 Confusion Matrix

It has been discussed in Section 4.1.7 where the workflow of the training component of the
neural network pipeline is described and illustrated in Figure 4.14 that the trained model is
evaluated over a test dataset after the model is trained based on the parameters. The output
of this evaluation is a confusion matrix.

A confusion matrix is one of the metrics used to evaluate the results of a classification task
and it is a matrix that gives information about the actual and prediction labels. The rows of
the confusion matrix are the actual labels whereas the columns are the predicted labels.

Predicted
Class 1 Class 2 Class 3

Actual
Class 1 a b c
Class 2 d e f
Class 3 g h i

Table 5.1: Confusion matrix example for 3 classes

An example confusion matrix for 3 classes is given in Table 5.1. Each entry shows infor-
mation for the number of elements in the class it belong to for both actual and predicted
labels. For example, the cell with value f means that the number of sample predicted as
Class 3 but actually belongs to Class 2 is f . This shows that the cells on the main diagonal
from the top left corner to bottom right corner contain the information regarding the number
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of samples predicted correctly. These samples are known as True Positive (TP). If a sample
does not belong to a certain class C and the prediction is a class other than the class C , the
prediction is known as True Negative (TN). On the other hand, if the sample indeed belongs
to the class C but the prediction is other than the class C , the prediction is know as False
Negative (FN). If the predictions is class C but the actual label is a class other than C , the
prediction is a False Positive (FP).

5.1.2 Accuracy

One of the most used metrics in the evaluation of classification solutions is the accuracy
metric. Accuracy shows how often predictions are correct. In other words, it is the ratio of
TP to the total number of samples.

However, accuracy is not a good metric if the dataset is imbalanced. For instance, if
majority of the samples belong to some class C and a model labels all the samples as class C
without considering the input samples, the accuracy of the model would be equal to the ratio
of the dominant class in the whole dataset which would be high accuracy score. Therefore,
precision and recall metrics are also used to measure the model performance.

5.1.3 Precision

Precision is a metric that gives information about how correct the predictions are among all
predictions. Precision is calculated for each class. High precision score for class C means that
high ratio of the predicted class C labels are correct. However, this does not mean that most
of the samples belong to class C are correctly predicted as class C . The formula for precision
is given in Equation 5.1.

Precision=
T P

T P + F P
(5.1)

5.1.4 Recall

The recall is a metric that gives information about how correct the predictions for a class are
among all the samples belonging to that class. A high recall score for class C means that a
high ratio of the samples belonging to class C is correctly predicted as class C . However, this
does not mean that all of the predictions for class C belong to class C .

Recal l =
T P

T P + FN
(5.2)

5.1.5 Execution Time

The execution time metric is used to measure the computational performance of the imple-
mentations. This is a useful metric to have an intuition about the usability of the implemen-
tations in the work for production systems.

The execution time metric is simply calculated by getting the time difference between end
and start of the job executed.
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5.2 Lane Split Detection

In this work, a neural network-based lane split detection framework is implemented. In
order to train the model in an end-to-end approach, a training pipeline built for the Kubeflow
platform is also a contribution in this work.

Figure 5.1: Deployed Kubeflow pipeline DAG on the platform

The deployed Kubeflow pipeline can be easily run on any system with the Kubeflow plat-
form whether it is a local or remote deployment. The pipeline runs can be configured with
the available parameters described in 4.1 and a model can be trained with a few parameter
selections and clicking a button since it is an end-to-end approach. This reduces the time cost
that would be spent on training a model with different parameters such as in hyper-parameter
tuning task. A screenshot of DAG of the deployed pipeline on Kubeflow platform is shown in
Figure 5.1. The names of the components shown in the screenshot differs from the simplified
names described in Section 4.1. The first component on the platform is the session selection
component and the receive-mdf4-path component on the platform is described in the signal
extraction section 4.1.4.

The neural network approach to lane split detection problem includes three different
models, MLP that trains on a single sample, CNN and a self-attention-based neural network
that trains on time windows. Each model is trained on both simulation data and real-world
recordings. The results of the trained models and the details of the datasets are described in
the following sections.

5.2.1 Dataset

There are two types of datasets used to train neural network models in this work; a dataset
generated by a script and a dataset consisting of real-world recordings. Both dataset files are
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in CSV format and share the same feature columns.

5.2.1.1 Simulation Data

The simulation dataset is generated by a script that simulates lane splits, s-curved lanes, and
lane widening events. The reason for having different event types is to have a trained model
that can distinguish similar scenarios since the changes on lanes might be similar in scenarios
of both lane split events and a non-split event. For instance, lane widens in both lane split
and lane widening events but the rate of change on the lanes might differ. Similarly, left or
right lane would be curved in a scenario of lane split similar to a s-curved lane scenario. The
difference is both left and right lanes would be curved in a s-curved lane event. There is also
added random noise to the simulation data to have a more realistic dataset.

As it has been discussed in Section 4.1.6, each file in the data file corresponds to a single
label instance and contain 21 columns; timestamp, the label under name lane boundary event,
speed, 6 columns for each left, center and right lanes; coefficients for three-degree lane
boundary polynomials and view range start, end values.

The number of label files in the dataset is 1968. The left and right lane split label files
correspond to the %6 of the dataset each; therefore, %88 of the files correspond to NoLaneS-
plit class. If the number of messages is considered; 692k messages in total are broken down
as 15k for left lane split and 15k for right lane split.

5.2.1.2 Real-world Data

In order to evaluate the performance of the model on real-world data, recordings from the
test drives of BMW prototype cars are used. Some of the sessions are labeled manually
with hindsight and some of the sessions are labeled by the auto-labeling component in the
pipeline. The feature columns in the real-world dataset are the same as the columns in the
simulation dataset.

The manually labeled sessions include the label files for outliers in the lane boundary
detection which will be discussed in the results section 5.2.2. There are 12 manually labeled
event files in total which include 5 lane split to the left and 7 lane split to the right scenario.

There are 6 driving sessions labeled by the auto-labeling algorithm. There are 3 label files
for lane split left and 5 label files for lane split right that result in 131 messages in total.

5.2.2 Results and Analysis

Each model is evaluated in different settings: training and evaluating the simulation data,
training on the simulation data but evaluating on manually labeled data, and finally training
and evaluating on the real-world recordings with the labels generated by the auto-labeling
script. Each evaluation setting shows different aspect of the model performance. Moreover,
time to make an inference on 100 sample is also measured for 3 different neural network
models.

The model architecture parameters are the same for all evaluation settings. The first and
second dense layer sizes are 256 and 128, respectively for the MLP model. The number
of filters and kernel sizes are 3 for convolutional layers for both CNN and self-attention-
based models. The dropout and batch normalization layers are enabled for all models with a
dropout probability of 0.5. Each model is trained for 20 epochs with learning rate 0.001 and
batch size 128.
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5.2.2.1 Model Performance

The datasets are imbalanced datasets where NoLaneSplit class dominates. Therefore, the two
mentioned class balancing methods, class weights and event file-based balancing, must be
compared first to decide which method to use. In Table 5.2, accuracy scores obtained by
training and evaluating MLP model on the simulation dataset are shown. The accuracy is
the highest when no balancing method is used since model tends to predict each sample as
NoLaneSplit which is the dominant class. Therefore, the recall metric is used to determine
the get an insight on models ability to generalize. It has been seen that using event file-based
balancing significantly improves the recall score for lane split labels. Hence, event file-based
balancing is used to balance the dataset.

Without Balancing Class Weights Event File-Based
Accuracy 0.990 0.914 0.962

Recall - Left Split 0.262 0.591 0.824
Recall - Right Split 0.234 0.621 0.874

Table 5.2: Comparison of class balancing methods

The first evaluation setting is the usage of simulation data for both training and evalu-
ation. This setting shows the model’s ability to learn from the proposed data and generate
decent results. The results are presented in Table 5.3 and the CNN model performs the best
in all metrics. The usage of the time windows produces better results as the self-attention
model also outperforms MLP model. The reason behind the lower performance score of the
self-attention model when it is compared to CNN model is the missing positional encoding
implementation. As discussed in Section 2.6, attention network would detect long-term de-
pendencies better than CNN architecture. However, it lacks a useful information to consider
which is the relative positions of samples in the whole data. Therefore, positional encoding
that represents the position of a sample in the data would be applied to attention-based so-
lutions. However, this encoding implementation is missing in this work which describes the
lower performance of self-attention based model.

MLP CNN Self-attention
Accuracy 0.990 0.994 0.958

Precision - Left Split 0.972 0.992 0.982
Precision - Right Split 0.979 0.991 0.977

Recall - Left Split 0.894 0.944 0.901
Recall - Right Split 0.924 0.961 0.932

Table 5.3: Comparison of model performances solely on simulation data

The second evaluation setting is using manually labeled real-world recording during eval-
uation on the models trained on simulation data. The results are presented in Table 5.4.

MLP CNN Self-attention
Accuracy 0.523 0.496 0.421

Table 5.4: Comparison of model performances for simulation data training, manually labeled data evaluation

The accuracy metric for each model is significantly lower than the achieved values on
the evaluation of simulation data. This is due to the difference in the simulation and real-
world data. The lane boundary polynomials in the simulation are the representation of the
actual lane shapes on the road. However, in the real-world recordings, the lane boundary
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polynomials would be outliers due to incorrect lane detection by the prototype camera. An
example to outlier lane polynomials are shown in Figure 5.2 where center lane deviates from
the supposed position due to the lane split. The model trained on simulation data cannot
capture these outliers in the data; therefore, the performance of the models are reduced.
The best accuracy is achieved by MLP model. The reason behind that is the single sample
based evaluation method of the MLP model since NoLaneSplit is still the dominant class and
deviations of the center lane might be interpreted by the model as a s-curve lane. This shows
that a model trained on simulation cannot be reliably used for real-world use cases.

Figure 5.2: Outlier lane boundaries in lane split left scenario, own illustration, image source: [32]

The third and final evaluation setting is using real-world recordings with labels generated
by the auto-labeling script. The results are presented in Table 5.4. The results presented in
Table 5.5 show significantly lower accuracy scores for all the model types. Though, the CNN
model that uses time windows produces the best results among them except for the precision
metric of right lane split scenarios.

(a) Lane boundaries before semantic road point detection (b) Lane boundaries after semantic road point detection

Figure 5.3: Change in lane boundaries in lane split left scenario, own illustration, images source: [32]

The explanation for the low accuracy scores when using labels generated by the auto-
labeling component is the failure of the labeling logic as a result of the assumption that
semantic road point always exists when there is a lane split scenario. However, this assump-
tion is simply not correct for lane boundary outliers shown in Figure 5.2 since outliers usually
occur when the NewLaneLeft or NewLaneRight road points are not detected. The lane bound-
aries are usually correct and reflects the simulation data when the semantic road points are
correctly detected. In Figure 5.3a, the left and center lane boundaries are deviated to the
left due to lane split to left scenario. Few frames after, the semantic road point NewLaneLeft
shown as orange dot in the figure is detected and the lane boundaries are corrected as seen
in Figure 5.3b. Therefore, labels generated by the auto-labeling component only records the
messages that come after the semantic road point is detection and label the scenario as Lane-
SplitLeft. This causes a confusion in the data since the lane boundaries in Figure 5.3b are the
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lane boundaries that could be detected in regular driving without a lane split scenario.

MLP CNN Self-attention
Accuracy 0.641 0.748 0.726

Precision - Left Split 0.341 0.633 0.629
Precision - Right Split 0.689 0.592 0.576

Recall - Left Split 0.750 0.950 0.850
Recall - Right Split 0.886 0.914 0.857

Table 5.5: Comparison of model performances for real-world auto-labeling data evaluation

5.2.2.2 Inference Time Measurements

The 3 model types MLP, CNN and self-attention based Neural Network (NN) are compared
in terms of the time it takes to make predictions on data. This is an important metric if
the model is to be used in real-time where the processing of signal messages promptly is
important.

Model Type
MLP CNN Self-Attention NN

Time (ms) 58.234 52.721 56.521

Table 5.6: Inference time measurements for 3 model types, inference on 100 samples

The inference measurements are recorded on a fifth-generation dual-core Intel Core i5 CPU
after averaging the 100 inference repetitions with trained the same model types discussed in
the model performance discussion section. The inference time measurements are similar for
the three models while CNN model is the fastest even though the pooling layers significantly
reduce the number of operations for middle layers in the network. The reason might be that
the input fed to the first layer of MLP is smaller than other models that use time windows,
(N x19) vs (N xW x19) for N number of samples and W windows size. The reason CNN is
faster than the self-attention based model is that there are two convolution operations in the
first layer of the self-attention model which increases the number of operations. Though there
is not a significant difference in inference time measurements of the models, CNN would be
selected as the model if time constraint is important.

5.3 Providentia++

The contributions to the Providentia++ project in this work are the accident detection imple-
mentation and live system support for the existing maneuver detection solution. Therefore,
the accident detection performance and the live system support are evaluated to determine
if it matches the performance of offline maneuver detection.

5.3.1 Data

There are two Providentia++ recordings stored in Rosbag format. One of the recordings
contains an accident event and the other file is a regular driving recording.

Both of the recordings contain detected objects and their positions, dimensions, speeds,
classes and estimated trajectory information.
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5.3.1.1 Accident Recording

The accident recording contains an accident event that involves 3 cars. The type of the acci-
dent is combination of head-to-tail collision and lane change collision which are illustrated
in Figures 4.22b and 4.22c, respectively. The length of the recording is 1 minute and 59
seconds.

5.3.1.2 Regular Traffic Recording

This recording file is the same file used in the evaluation of Kaefer’s work [44]. The length
of the recording is 60 seconds. The distribution of the events in the recording can be seen in
the results table 5.8.

5.3.2 Results and Analysis

The contributions to the Providentia++ projects are evaluated in two areas: accident detec-
tion and the live system support that uses ROS for communication.

5.3.2.1 Accident Detection

There is a single accident instance to be used in the evaluation of the accident detection
method. The accident occurs on the highway where a vehicle tries to perform a cut-out but
collides with the vehicle in the adjacent lane that it intends to switch to, and then it hits the
leading vehicle in its initial lane.

# Accident Instances # Cars Involved Severity
Ground Truth 1 3 Moderate

Detected 2 2 Minor

Table 5.7: Accident detection evaluation results

The accident detection results are shown in Table 5.7. The method is able to detect the
accident event described above; however, it only labels the car trying to cut-out and the
following car it hit after hitting the adjacent vehicle as in the accident scenario. It misses
the vehicle in the adjacent lane. The reason for this missing detection is that the method
only checks distance to the following vehicle and completely ignore the traffic participants in
adjacent lanes. Moreover, the severity of the accident is incorrectly determined by the method
since number of cars involved is a value below the moderate accident threshold. Furthermore,
the method detects another accident that does not exist in the ground truth. The reason
behind this might be outliers in the data since velocity values jump due to incorrect detection
from object detector; therefore, TTC values are not calculated correctly. This leads to detect
some sever tailgate events as accidents.

5.3.2.2 Live System Support

The live system support is evaluated in a simulated environment. The scenario detector sub-
scribes to a ROS topic to get the object detection messages and detect scenarios. In order
to test this workflow, the regular driving recording stored as Rosbag is played and the mes-
sages are published to the object detection topic. Therefore, the scenario detector receives
messages from Rosbag file.

The scenario detector exactly matches the performance of the offline detection perfor-
mance.
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Offline Live-System
Maneuver Type Ground Truth Detected Detected Precision Recall

Lane Change Left 14 16 16 0.875 1.00
Lane Change Right 55 77 77 0.714 1.00
Cut-in Left 6 13 13 0.462 1.00
Cut-in Right 2 5 5 0.400 1.00
Cut-out Left 1 1 1 1.00 1.00
Cut-out Right 2 5 5 0.400 1.00
Minor Tailgate 139 229 229 0.607 1.00
Moderate Tailgate 26 64 64 0.406 1.00
Severe Tailgate 10 45 45 0.222 1.00
Speeding Vehicle 103 144 144 0.715 1.00
Standing Vehicle 1 1 1 1.00 1.00
Accident 0 1 1 0.00 0.00

Table 5.8: Offline and online scenario detection results

The results show that the live system support does match the performance of the offline
scenario detection implementation. Therefore, the live system results are reliable and show
that it can be used online. The maneuver detection performance will be determining factor
in using the system online. However, the maneuver detection performance is not in the scope
of this work.

Another important metric to evaluate the live system support is to measure the scenario
detection time for a ROS message. In this measurement, the average detection time for a
ROS message is calculated from 1000 consecutive messages.

Before this work In this work
Average Detection Time (s) 28.2 0.72

Table 5.9: Comparison of scenario detection time

The Table 5.9 shows scenario detection time measurements that are recorded on a vir-
tual machine running on a computer with fifth-generation dual-core Intel Core i5 CPU. The
detection time has been significantly reduced. Even though the result obtained after the im-
provements explained in this work is not ideal for the scenario detection in real-time where
there are 25 ROS messages need to be processed every second, this time would be reduced
when the system runs on a faster computer without a virtual machine setup.





Chapter 6

Outlook

There are 4 major accomplishments in this work; implementation of a neural network-based
lane split scenario detection method to improve road perception, an end-to-end model train-
ing pipeline, an accident detection method for the Providentia++ stationary perception sys-
tem, and support for the detection scenarios in the live system.

In this chapter, an outlook is given on the possible use cases for the accomplishments in
general and how they can be extended for new use cases.

6.1 Neural Network

There are 3 different neural network models introduced in this work for the detection of lane
split scenarios on the road. The aim of using neural networks for the defined task is to have
a solution that performs better than the existing rule-based methods thanks to the ability of
data-driven approaches to generalize.

Even though the network models introduced in this work are introduced for the purpose
of the detection of lane split scenarios, they can be easily extended for the detection of other
perception related scenarios such as merging lanes or in general any task that rely on time
series data as long as there is a dataset for the task. The model architectures are flexible and
agnostic to the data and task.

6.2 End-to-end Training

An end-to-end training approach is adopted with the implementation of a training pipeline
to train the neural network models introduced in this work. This approach not only provides
convenience and simplicity for training a model but also provides flexibility to adapt the
pipeline for the development of other data-driven tasks.

The pipeline designed by applying end-to-end training approach include every step used
in machine learning workflows from data extraction to auto-labeling and evaluation of the
training model. Since each step is designed separately and combined together in the pipeline,
individual steps can be modified for different training use cases. This reduces the time needed
to develop a data-driven approach; therefore, more effort can be put into model development
for achieving better results.
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6.3 Online Scenario Detection

The offline scenario detection system that runs on recordings has been extended to support
performing scenario detection on the fly. This has two main use cases: the first is narrowing
down the search intervals on the recordings to find a scenario as they happen and providing
real-time or near real-time statistics about the current or recent driving conditions on the
road.

In the future, ITS systems such as Providentia++ can be used to notify the traffic partici-
pants on the road or the authorities in case of emergencies as the scenario detection becomes
faster and more robust.
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Conclusion

The main goal of this work is to improve perception which is one of the core modules in
the AVs, and through that the safety of the traffic participants. The perception sensing in
the AVs starts with the sensors installed on the vehicle but it does not necessarily rely on
the vehicle itself but it might also be supported by the V2I systems such as ITS. Hence
ADAS features depend on a reliable perception solution, it has been focused in this work to
contribute improvements for perception in both vehicles and ITS. Thereby, the listed tasks
are accomplished:

1. Implementation of neural network-based approach for lane split scenario detection

2. Development of an auto-labeling method

3. Creation of an end-to-end model training pipeline

4. Detection of traffic accidents on the stationary sensor systems

5. Online scenario detection for ITS

For each of the tasks listed above, the values added by the solutions and the possible
improvements for the future are highlighted.

1. Implementation of neural network-based approach for lane split scenario detection

Using rule-based approaches for the road perception module of AVs is a common prac-
tice. However, rule-based models fail to generalize the underlying features of data;
thus, the system might not be robust to scenario changes. Hence, a neural network-
based approach including MLP, CNN and self-attention is adopted for scenario detec-
tion of lane splits. The implemented models, especially time window-based models,
show that a neural network is able to detect lane split scenarios if high quality data is
provided. The model performances can be improved by using deeper models such as a
multi-layer CNN or the Transformer architecture [81]. The implemented self-attention
method can also be extended with the addition of positional encoding which should
improve the performance.

Moreover, the performance of the models should also be tested on the road. This can
be achieved by implementing an efficient forward-pass implementation of the neural
network model that could make predictions in real-time. If the model produces reliable
results, then the implemented inference logic can be used in the production vehicles by
the auto makers.
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2. Development of an auto-labeling method

The size and quality of the data is one of the most important aspects of development
of a successful data-driven approach. Moreover, data should be labeled for supervised
learning approaches. Since time burden for manually labeling data is high, the labeling
processes should be automated. For this reason, a rule-based auto-labeling method that
relies on the detection of new lanes is developed for the splitting lane scenario detection
problem. This automatize the labeling process; therefore, reduces the time cost for the
development of a data-driven approach.

The generated labels are based on the existence of semantic road points for new lanes
which is not realistic in general. Therefore, the auto-labeling tool can be improved
by extending the rule-based method with lane geometry logic such as checking the
distance between left and right lanes. Another improvement might be to use an active
learning approach to generate labels with a deep neural network model.

3. Creation of an end-to-end model training pipeline

An end-to-end neural network training pipeline is created as part of this work to provide
flexibility and ease of use for model development. Currently, training pipeline runs are
initiated manually but this can be improved by the addition of support of recurring runs
or automated runs that would train a model as the dataset gets larger.

4. Detection of traffic accidents on stationary sensor systems

The head-to-tail type traffic accidents are detected by a logic-based method that uses
TTC and distance to leading vehicle information. However, other accident types such
as road barrier collisions that involve single vehicle or collisions occurring during lane
changes that involve vehicles on adjacent lanes are not covered. The rule-based method
can be extended by using additional information such as the path of the vehicles and
yaw information . However, all these features rely on the detection made by another
node in the system. The rule-based accident detection performance heavily relies on
the quality of the data provided by the object detection system. In the future, a neural
network based approach that uses images instead of time series data can combine the
object and scenario detectors.

5. Online scenario detection for ITS

The offline scenario detection system that detects vehicle maneuvers and events such
as lane changes, cut-in, cut-out, tailgate, speeding or standing vehicles is extended to
support as part of this work. The detection performance of online system matches the
performance of the offline one. Furthermore, the scenario detection time is signifi-
cantly improved since the detection is 40 times faster. Further improvements to the
detection time is possible by switching to a more efficient programming language such
as C++ or combining the feature extraction and scenario detection modules together
to additionally reduce the number of operations per scenario detection for a message.
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