
Department of Informatics

Technical University of Munich

Master’s Thesis in Robotics, Cognition, Intelligence

Multi-Task Active Learning for Autonomous
Driving

Aktives Lernen für Multi-Task-Modelle im Kontext des
Autonomen Fahrens

Supervisor Prof. Dr.-Ing. habil. Alois C. Knoll

Advisor Walter Zimmer, M.Sc. & Aral Hekimoglu, M.Sc.

Author Philipp Friedrich, B.Sc.

Date May 15, 2021 in Garching





Disclaimer

I confirm that this Master’s Thesis is my own work and I have documented all sources and

material used.

Garching, May 15, 2021 (Philipp Friedrich, B.Sc.)



Abstract

In many of the tasks that are required for autonomous driving, machine learning is more

and more the method of choice. To ensure that the results of machine learning are reliable

and safe, a huge amount of data is needed. While the collection of such data is somehow

easy, its labelling is highly tedious and costly. Especially in a task like semantic segmentation,

where each pixel must be labelled, a single image can take up to several minutes to annotate.

To avoid the annotation of images that are not useful for the training of a network, active

learning can be used. Iteratively, a subset of the unlabeled data pool is selected based on

the models’ uncertainty. This subset is annotated and used to continue the training. This

procedure is repeated until the labelling budget is exhausted or no data is left. Using active

learning, the overall amount of needed data, time and cost can be reduced. In this thesis, the

research gap of active learning for multi-task models in the context of autonomous driving is

filled. Several active learning methods for 2D object detection and semantic segmentation are

evaluated and compared. In addition, a novel method combining the knowledge about both

task domains is presented. This method alone can leverage the accuracy of both tasks while

keeping the annotation costs lower than random selection. Furthermore, a novel approach

to combining multiple active learning methods is introduced. With this, the accuracy could

be improved even more.

Zusammenfassung

In vielen Bereichen des autonomen Fahrens ist das maschinelle Lernen die Methode der Wahl.

Um sicherzustellen, dass die damit erzielten Vorhersagen zuverlässig und sicher sind, wird

eine große Menge an Daten benötigt. Während die Sammlung solcher Daten einigermaßen

einfach ist, ist ihre Annotation sehr zeit- und kostenintensiv, insbesondere bei einer Aufgabe

wie der semantischen Segmentierung. Aktives Lernen wird eingesetzt um die Annotation

von für das Training eines Deep Neural Network (DNN)s ungünstigen Bildern zu vermei-

den. Dabei wird iterativ die Unsicherheit des Modell genutzt, um eine Teilmenge des nicht

annotierten Datensatzes auszuwählen. Diese Teilmenge wird von einem Experten annotiert

und für das weitere Training verwendet. Dies wird so lange wiederholt, bis das Kosten-

oder Datenbudget für die Annotation erschöpft ist. Mit Hilfe des aktiven Lernens kann die

Gesamtdatenmenge, wie auch der Zeit- und Kostenaufwand reduziert werden. In dieser

Arbeit wird das aktive Lernen für Multi-Task-Modelle im Kontext des autonomen Fahrens

untersucht. Es werden verschiedene aktive Lernmethoden für 2D-Objekterkennung und se-

mantische Segmentierung evaluiert und verglichen. Darüber hinaus wird eine neue Meth-

ode vorgestellt, die das Wissen beider Aufgabendomänen nutzt. Außerdem wird ein neuar-

tiger Ansatz zur Kombination mehrerer aktiver Lernmethoden vorgestellt. Damit konnte die

Genauigkeit verbessert werden, während die Annotationskosten niedrig gehalten wurden.
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Chapter 1

Introduction

1.1 Background & Motivation

The localization and recognition of objects such as pedestrians and other road users are of

enormous importance for autonomous operating vehicles. Without the knowledge about such

dynamic objects, but also about static objects like traffic signs and lights, the planning and

execution of a safe and comfortable drive is not feasible. This challenge is tackled more

and more often by using machine learning approaches. Recent state-of-the-art methods have

already achieved great results in both 2D and 3D object detection. Contextual information

about not only objects but also areas like the derivable surface, sidewalks and vegetation

can be gained using pixel-wise semantic segmentation. The high accuracy of these two tasks

often comes at high computational costs, which often causes the approach to not meet the

real-time requirement of autonomous driving. This first problem can be solved by using

a multi-task architecture, which shares some of the model weights and thus reduces the

overall computational effort. Recent publications showed, that a model that predicts both 2D

object detections and pixel-wise semantic segmentation can reach a higher accuracy on both

tasks compared to the single-task trained models [Dvo+17]. Another problem of machine

learning in the context of autonomous driving is the tremendous need for data. To be safe

and reliable in all possible scenarios that could happen while participating in the traffic, a

large spectrum of various traffic scenes must be captured, labelled and learned. While the

capturing and learning of data is somehow easy to accomplish, labelling requires a human

expert and the task itself is tedious. The process is even for experienced annotators time-

intensive and therefore very costly, especially for the task of semantic segmentation. Recent

studies showed that various active learning methods, such as uncertainty estimation, can

help to improve the accuracy while keeping the annotation costs to a minimum. In active

learning, a small amount of the collected data is labelled and used for training. After the

first training iteration, the networks’ predictions on the remaining unlabeled data are used

to determine, which images are most useful for the further training process and should be

annotated. This procedure is repeated until the labelling budget is reached or no data is left.

Using active learning, the overall amount of needed data, training and annotation time as

well as annotation costs can be reduced. At the time of writing this thesis a lot of ongoing

research on active learning for object detection and semantic segmentation is done. But to

the best of my knowledge, no research has been done on a multi-task model focusing on

these two tasks. This research gap will be filled in the following.
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1.2 Foundations

This thesis has three major components that need to be understood first. These are the two

tasks that are investigated, namely 2D object detection and pixel-wise semantic segmenta-

tion. In this work, various methodologies are investigated to improve the performance on

these two tasks while keeping the required data annotation costs low. To achieve the optimal

trade-off between high accuracy and low costs, the third major component is applied. Us-

ing uncertainty estimation methods, the pool of unlabelled samples can be ranked by their

potential to improve the overall results. While object detection and semantic segmentation

were heavily researched in recent years and thus its basic mechanisms should be known,

the third mentioned component, namely uncertainty estimation is less known and therefore

described in more detail in the following. The predictions of machine learning-based models

aren’t and probably never will be completely reliable. They always contain a certain amount

of uncertainty, the causes of which can be divided into two categories. One is called aleatoric

uncertainty, which is caused by the noise contained within the sensor data or the general

inaccuracy of the sensor themselves. One prime example of aleatoric uncertainty is the data

produced by an RGB camera during night [Fen+21]. Methods that tackle to remedy this

uncertainty are direct modelling and error propagation. In direct modelling, a probability

distribution over the model outputs is assumed and the output layers are used to predict

the parameters for this distribution. This method is efficient, as it requires only one forward

pass. But on the other hand, it requires a modification of the networks’ output layers, as

well as the loss function [Fen+21]. In error propagation, the uncertainty is approximated in

each activation layer and as the name suggests, propagated through the whole model. This

approach is computational efficient at inference and requires only limited modifications of

the architecture [Fen+21]. The second category of predictive uncertainty is called epistemic

uncertainty. It indicates the certainty of a model about its description of a dataset given its

learned parameters. The detection of an unknown object which is not in the training data,

for example, results in a high epistemic uncertainty [Fen+21]. This type of predictive uncer-

tainty is investigated in this thesis. Existing methods are e.g. Monte-Carlo Dropout or Deep

Ensembles. In both approaches, multiple predictions of the same sample are generated and

compared with each other. In the Monte-Carlo Dropout method, dropout layers are used. An

enabled dropout layer results in deviating predictions on the same input when the inference

is performed multiple times. In deep ensembles, multiple instances of the same architecture

of a model are trained with randomly shuffled training data using a different parameter ini-

tialization. This way, each instance of the ensemble models generates a slight variation of

predictions, which then can be used to approximate the predictive probability. Both Monte-

Carlo Dropout and Deep Ensembles are computational inefficient as it either requires multiple

inference passes or a linearly scaling number of models [Fen+21]. More methods, that have

a better efficiency are described in Section 2.1.

1.3 Contribution & Outline

This thesis investigates existing methods of active learning for 2D object detection and pixel-

wise semantic segmentation in the context of autonomous driving. Furthermore, an existing

active learning methodology for 2D object detection is adapted to the semantic segmentation

task, forming the novel InconSeg approach. In addition to that, a novel approach called

Box Mask is proposed which combines the knowledge from the object detection domain with

the knowledge from the segmentation domain. Besides the extensive study of the new and ex-

isting sample selection strategies, the alternation of multiple strategies during the training is
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investigated. Using a combination of the novel sample selection approach and the alternating

training strategy, the existing methods could be outperformed with respect to the accuracy of

2D object detection and semantic segmentation, while requiring fewer annotations compared

to traditional training approaches.

The thesis is structured as follows. In Section 2 recent publications on active- and multi-

task learning are described in detail. Section 3 will then describe the technical details of the

baseline methods, as well as the newly introduced sample selection strategies. The experi-

ment setup, the used datasets and the evaluation metrics are presented in Section 4. Both

the quantitative and the qualitative evaluation results are given in Section 5. The discussion

of the results and the conclusions that can be drawn from them can be found in Section 6.

Finally, the future work is given in Section 7.





Chapter 2

Related work

In this chapter, some of the recent works which have relevance to this thesis are described.

The works are split into two main sections, Section 2.1 focuses on the work on active learn-

ing in recent years, and Section 2.2 is mentioning the latest works on multi-task learning

architectures.

2.1 Active Learning

In general active learning can be categorized into three approaches to handle the unlabeled

sample query. In the first category are query-synthesizing methods, where the active learning

agent creates its data samples based on known data. This could be done by augmentation,

such as brightness reduction to simulate images taken at night or zooming into the picture to

change the perspective of an object. In [MT18] a Generative Adversarial Network (GAN) is

used to generate high entropy samples. Their proposed technique searches similar samples

from the unlabeled pool. The authors of [Mah+18] use a GAN to generate realistic chest

x-ray images with different disease characteristics. This approach is in particular useful if

the dataset is small. Another sampling approach is stream-based selective sampling. Here

the active learning agent decides, during the training, for each data sample one by one if the

agent is confident enough to use the model predictions, or if the oracle should be asked for the

actual ground truth. The oracle is often used as an alias for the human expert that annotated

the data. The disadvantage of this approach is that if you have a fixed labelling budget of N .

In the worst case, the budget is exhausted and you selected the first N samples instead of the

best N samples of the whole unlabeled dataset. Query-acquiring or pool-based methods solve

this disadvantage at the cost of the more required time. All samples of the whole unlabeled

dataset are ranked according to a specific acquisition function. The highest-ranked samples

are used in the next training cycle. There exist various categories of strategies to determine

how to rank the samples. The most common ones are uncertainty-based sampling, diversity-

based sampling, and their combination. The underlying assumption of the uncertainty-based

sampling methods is that samples that the network is uncertain about, are hard to learn.

Therefore, it makes sense to present those objects during the training cycles. However, this

often has the drawback that the selected samples do not represent the same distribution as the

real-world data, which can cause a poor model performance if applied to real-world tasks. In

some cases, the developed model might be confident but wrong due to the non-representative

data selection. This is where diversity-based sampling methods come into play. Instead

of targeting to identify known unknowns of a model, the goal of diversity-based sampling

methods is to spot the unknown unknowns of the model. This is most commonly achieved

by clustering the training data and identifying model-based outliers. For many use cases, a
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combination of uncertainty and diversity sampling is feasible and effective. Depending on

the task at hand, different sampling strategies are more reasonable than others. A broad

survey of the different active learning fundamentals is given in [Set10]. A more recent guide

to active learning techniques is given in [Mon21].

In the following subsections, the most relevant publications related to active learning in

the context of autonomous driving will be described in more detail, grouped by their intended

application task.

2.1.1 Image Classification

Early active learning methods primarily focus on the task of classifying an image. [Bel+18]

compares Ensemble-based methods against Monte-Carlo Dropout (MC Dropout) methods.

The idea of Ensembles goes back to [HS90]. Multiple instances of the same model architec-

ture are trained on the same set of data, but all have a different initialization, a randomly

shuffled data arrangement during training as well as different hyperparameters, and thus pre-

dict different probabilities for each unlabeled image. These various predictions can be used

to measure the uncertainty of the model for that specific sample image. Besides using Ensem-

bles, another commonly used method for obtaining uncertainty estimations is MC Dropout

[GG15]. By running the inference multiple times with an enabled dropout layer, one can get

multiple probabilities for the same sample. This approach is, compared to Ensembles, less

time and resource consuming as only one model must be trained.

Beluch et al. [Bel+18] apply and evaluate various acquisition functions to rank the sam-

ples for the labelling step. One of them is Entropy, which has been introduced in [Sha48].

It can be intuitively understood as the likeliness of one class given a set of classes. If the

entropy is low, one single class is very likely, while the others are more unlikely. If the en-

tropy value is high, all classes are equally likely to be correct. Another method used is called

Mutual Information between data points and weights, which is also known as BALD and was

introduced by Houlsby et al. [Hou+11]. The underlying assumption of this strategy is, that

data samples that have high mutual information between their prediction and the network

weights will most likely have a high impact on the model training, given that the correct label

is available. Another frequently used acquisition strategy utilizes the Variation Ratio [Fre65]

which measures the statistical dispersion in nominal distributions. The authors of [Bel+18]

not only evaluated uncertainty-based sampling strategies, but also a diversity-based one and

a combination of uncertainty and diversity sampling. The former one is a core-set approach,

which has been proposed in [SS18]. It targets to minimize the maximum distance between

a data point in the overall distribution and its closest neighbour data point in the selected

subset. The latter one has been proposed in [Yan+17]. It is a two-step procedure that takes

both uncertainty and diversity into account. In the first step, the samples with the highest

uncertainty are extracted from the data pool. In a second step, a representative score is as-

signed to each sample, by calculating the similarity of a sample and the most similar sample

in the selected subset. The authors conclude that ensemble-based uncertainties outperform

other methods of uncertainty estimation, such as MC Dropout and justify that finding with

the decreased model capacity and lower diversity of MC Dropout.

[Ben+21] combines self-supervised learning with active learning. They claim that self-

supervised is more effective at reducing labelling efforts if the labelling budget is low. If the

labelling budget is high, a combination of both methods outperforms both single methods as

well as random sample selection.
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2.1.2 Object Detection

One of the first papers that focus on active learning, specifically for object detection, is

[Kao+19]. They propose two informativeness metrics, namely localization tightness and

localization stability. The tightness can be calculated by measuring the change between the

region proposal box and the actual predicted box. For stability, noise is added to the im-

age and the change in the detected regions is measured. If there is no change the model

is assumed to be already well trained. Their results show that a combination of localiza-

tion tightness and class uncertainty has the highest performance in most of the cases. They

furthermore show that localization stability combined with class uncertainty adds the most

improvement for difficult categories.

In [RUN18] a novel active learning method is developed called query-by-committee. They

claim that black-box models are outperformed by white-box models. Black-box models are

models that only use metrics like confidence and do not use any knowledge about the under-

lying network architecture, white-box-models on the other hand, use the underlying network

architecture as an additional information source. The proposed committee of classifiers is

formed by the last layer of the base network along with the extra convolution layers. To

query the images, the disagreement between those layers is aggregated for each candidate

bounding box in an image. For each bounding box b, the neighbouring bounding boxes gen-

erated by the other convolution layers are used to compute the margin of the box b. The

difference between the confidence scores of b and the most confident auxiliary bounding

box builds this margin. The higher the margin, the higher the disagreement between the

convolutional layers.

A more straightforward method is proposed in [BKD19]. The authors claim that 1-vs-2-

margin sampling produces better results than least confidence sampling. In 1-vs-2 sampling

the two highest-scoring classes are taken into account for the uncertainty estimation, while

for least confidence only the highest scoring class is used. Brust et al. evaluate various

methods to use the 1-vs-2 sampling strategy. They take either the sum, the average or the

maximum of the 1-vs-2 scores of all detections to rank the images that should be given to

the oracle. In addition to the aggregation methods, they also introduce a selection imbalance

method. With that, instances, where the predicted class is underrepresented in the training

set, are preferred. Their analysis states the sum as the best performing method to aggregate

the uncertainty scores. But it is worth mentioning that this is most likely due to the fact,

that the sum tends to select samples containing many single objects, which increases the

annotation effort.

In [Agh+19] each pixel of each image gets a detection probability assigned. Considering

the spatial neighbourhood a per-pixel score is generated, indicating how informative each

pixel may be for improving the network. The pixel-level scores are aggregated to an image-

level score. The image is divided into non-overlapping regions and the maximum score of

each region is calculated. The overall image score is the average of the max-pooled region

scores. The authors claim that max-pooling is the best performing aggregation method and

that their method outperforms random selection, given that the object detector has enough

capacity for the complexity of the targeted domain.

[Sch+20] compares Ensembles with MC Dropout and claims that Ensembles achieve bet-

ter results. They furthermore propose several new uncertainty scores, not only for 2D but also

for 3D object detection. The authors incorporate the Region of Interests (RoI) and propose

novel scores, namely the consensus score, consensus score with variation ratio, RoI matching

and sequence RoI matching. Their experiments make clear, that the consensus score alone

does not outperform random selection, but combined with the variation ratio it performs

slightly better. The proposed methods using RoI matching perform best. They also show that
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continuous training is not only better performing than training the network from scratch in

each training cycle, but it is also more time and data-efficient.

The authors of [Hau+20] evaluate how well various scoring functions work on unlabeled

data at scale. They evaluate Entropy, Mutual Information, uncertainty estimation based on

the gradient of the output layer and lastly using the confidence of each bounding box. The

latter is performing best but favours samples with many bounding boxes, which increases the

annotation costs. The best trade-off provides Mutual Information having a slightly smaller

Weighted Mean Average Precision (wMAP) and fewer bounding boxes per image on average.

All approaches so far somehow compute a score on an image-level, [DB20] takes a differ-

ent approach. Instead of querying the images, they rank the bounding boxes based on their

informativeness. They then give a certain amount of bounding boxes to the oracle for the

correction of the predicted labels. The images containing the top bounding boxes are used

in the next learning cycle. The bounding boxes of the images in the training set that haven’t

been labelled by the oracle yet, are pseudo labelled with the network’s prediction and act

as noisy labels. The authors use random selection and the proposed metrics from [RUN18;

SS18] as the image-level querying method and use random selection, class uncertainty, and

core-set strategy as the box-level querying method. Their experiments show that box-level

querying methods consistently outperform the image-level ones.

Another simple, yet efficient approach is proposed in [Ele+21b]. For each unlabeled

image the, bounding boxes of both the original image as well as the horizontally flipped im-

age are predicted. The predictions are then matched by their Intersection over Union (IoU)

and for each matched pair an inconsistency score is calculated using the Kullback–Leibler-

divergence (KL-divergence). Samples with the highest inconsistency score are selected for

further labelling. The resulting acquisition function favours the most informative and there-

fore often hard samples. Ignoring confident samples can cause a distribution drift. To rem-

edy these issues, the authors use very confident predictions as pseudo-labels which increases

the performance while keeping the annotation effort low. The proposed approach is com-

pared against the methods of [SS18; YK19; Aga+20; Cho+21; Yua+21] as well as against

the multi-model approaches of [GIG17; Bel+18]. The conducted experiments show that

entropy-based active learning tends to perform better for the best-performing classes, while

the proposed inconsistency-based method is more robust in general and thus better suited for

low-performing classes. The inconsistency-based acquisition function outperforms all other

methods evaluated in the publication in most of the classes. In a detailed ablation study, the

authors make clear that pseudo-labels help to make the network more robust and prevent a

dataset drift.

In [Li+21] six sampling functions are compared against each other. These are random

sampling, least confidence [RUN18], entropy [Agh+19], 1-vs-2 margin [BKD19] and two

new proposed methods. Li et al. claim that the least confidence strategy has limitations for

object detection that are tackled with the first newly proposed method that is based on the

expected error reduction, called Bet Gradient (Bet Gradient (BetG)). It is a promotion of least

confidence for object detection. The second one is called weighted Bet Gradient (Weighted

Bet Gradient (WBetG)) which is a weighted improvement of BetG. Their experiments show

that WBetG in combination with diversity sampling (Weighted Bet Gradient with diversity

Sampling (WBetGS)) has the best overall performance.

Most of the methods that have been published in recent years focus primarily on the

classification uncertainty of a bounding box and ignore its localization uncertainty. The au-

thors of [Cho+21] propose a method that is based on mixture density networks that learn

a Gaussian Mixture Model for both localization and classification. This enables the network

to directly predict a probability distribution and therefore the computation of both aleatoric

and epistemic uncertainties. The reported results are on par with Ensembles or MC Dropout,
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but this method requires way fewer computations and time.

In [Ele+21a] the authors point out the importance of a balanced data selection. If only

hard samples are selected for the labelling, a distribution shift could be the case and the

model might not learn a good representation of the dataset. During the acquisition step,

each sample gets a combined score based on three metrics. If the confidence reaches a specific

threshold, the entropy is multiplied by the inconsistency score. This way, only moderately-

difficult objects are selected. They use augmentations, e.g. horizontal flipping, and compare

the two predictions while ignoring their correctness to compute the consistency. To prevent

the waste of labelling resources for samples that are easy to sample, a pseudo labelling mod-

ule is proposed. The objects where the network is very confident are labelled automatically

with the network’s prediction and used for the training. As some of the samples might contain

objects that weren’t pseudo labelled, the training loss is adapted accordingly. The proposed

method is compared against random and entropy sampling, core-set by [SS18] as well as

against the loss module by [YK19]. Furthermore, they add multi-model methods like an

Ensemble-based [Bel+18] and a MC Dropout-based [GIG17] method to the comparison. It is

shown that multi-model approaches outperform single models at the cost of increased train-

ing time and resources. The proposed method, however, outperforms the other methods and

even the multi-model ones. The authors emphasize that Non-Maximum Suppression (NMS)

is very important in all active learning methods, which is confirmed in an experiment where

outliers are excluded. They show, that active learning methods do not perform better than

random sampling if NMS is not applied. Pseudo labelling adds the most improvement in

the early training cycles and the added improvement continues over all cycles but saturates

towards the end.

2.1.3 Semantic Segmentation

As the labelling effort for semantic segmentation is tremendously high, [Mac+19] devel-

oped an active learning method that automatically selects regions for labelling instead of the

whole image. The authors introduce a cost model behind the segmentation model, that es-

timates the clicks that a human annotator would have needed to annotate the image. Using

the sliding-window approach, the most informative regions from the information map are

selected and at each location, the values are accumulated. The same procedure is applied

to the cost map. The information and cost map are fused, and non-maximum suppression

is applied to retrieve region candidates. The top-scoring region proposals are selected for

labelling. In a detailed ablation study it is shown, that the combination of information con-

tent and cost estimates is very powerful. On the Cityscapes dataset [Cor+16], the proposed

method achieved 95% of the full training set’s performance while requiring only 17% of the

labelling effort.

Other region-based methods are proposed in [Kas+19]. The authors calculate the en-

tropy on an image-level and pixel-level. Furthermore, they use a canny edge detector to

identify edge pixels and calculate the entropy for the edge pixels. As most pixels have some

kind of relation to their neighbouring pixels, it is useful to consider the spatial correlation.

The authors use super-pixels to compute the entropy on a super-pixel level. Super-pixel al-

gorithms divide an image into non-overlapping regions by grouping similar pixels together.

Since most pixels within a super-pixel are from the same semantic category, natural object

boundaries are preserved. This way the need for polygon and intersection clicks is reduced,

making the annotation of the pixels a lot easier. Using this approach the authors achieved

93.8% accuracy while using only 10% of the annotations compared to the baseline on the

Cityscapes dataset.

The method proposed in [SVN19] uses multiple viewpoints to measure the inconsistency
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between the single predictions. They furthermore also use super-pixel labelling to reduce

the labelling effort and show that the results are still good performing. They accomplish

an accuracy of 95% compared to the maximum model performance with just 13% labelling

effort.

A method that can be used on single viewpoint datasets, such as Cityscapes, is proposed

in [Xie+20]. The authors add another branch to the segmentation network that learns to

predict a semantic difficulty score for each pixel. This branch is supervised by an error mask

that is generated by the actual segmentation branch. For the error mask each pixel value

is set to one if the prediction is not equal to the ground truth, and to zero otherwise. Two

aggregation functions are proposed, the difficulty-aware uncertainty score and the difficulty-

aware semantic entropy. Incorporating the semantic difficulty to select the most informative

samples helps to leverage the performance, especially for hard areas. The method reaches

the upper performance bound of the full training data with just about 60% of the data.

For semantic segmentation, the labelling costs are particularly high, which is why [Col+21]

focuses on reducing the actual labelling cost by approximating the segmentation contours to

estimate the number of required clicks during the labelling process. They train a meta-

regression model to estimate the segment-wise IoU of each predicted segment of unlabeled

images which results in priority maps. By combining the two methods, they target informa-

tive regions with low annotation costs. Their method is requiring, depending on the architec-

ture, only 10-30% annotation costs for achieving 95% of the full set Mean Intersection over

Union (mIU).

In [Bel+21] pseudo-labelling is used to further reduce the need for annotations. Their

algorithm selects a subset U ′ for the oracle to label, furthermore, another subset U ′′ is gen-

erated based on the K-Nearest Neighbours (K-NN) samples of U ′. The subset U ′ will contain

correct annotation generated by the oracle. The set U ′′ will contain pseudo-labels generated

by the model. In the next training cycle, the model is trained on the combined set of pseudo

and correct labels. The authors claim that their proposed method outperforms other active

learning methods, namely Entropy and MC Dropout.

Most of the mentioned publications count the number of images used during the training

to measure the saved annotation effort but neglect the important fact, that not every data

sample has the same annotation cost. Especially for semantic segmentation, the labelling

effort difference between two images can be very high, depending on the amount, size and

diversity of objects contained in the image. Following this fact, it is important to incorpo-

rate the labelling costs into the data selection process. Cai et al. revisit in [Cai+21] the

super-pixel based approach used in e.g. [SVN19; Kas+19] and take a realistic click-based

annotation cost estimation into account. They point out that simply taking the percentage of

labelled pixels cannot evaluate the effectiveness of super-pixel based approaches. In addition,

they introduce a class-balanced sampling scheme to overcome the degraded performance for

under-represented classes resulting from datasets with imbalanced class distributions. In

their experiments, the authors show that a super-pixel approach outperforms the traditional

rectangle-polygon approach. Furthermore, the introduced class-balanced acquisition func-

tion achieves better results than random or uncertainty-based selection.

2.1.4 Task Agnostic

Not all active learning methods are bound to a specific task. The aforementioned methods

such as Ensembles [HS90; Bel+18] or MC Dropout [GG15] can be used in models with

various tasks. In [YK19] a so-called loss parametric module is proposed. With that, the

network learns to predict the target losses of unlabeled inputs, which makes it task-agnostic.

The predicted loss for unlabeled data inputs is used to select which data samples should
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be trained next. The efficiency of this method is shown for various tasks, namely image

classification, object detection and human pose estimation. In all three tasks, the learning

loss approach outperforms random, entropy and core-set sampling, making it an effective

and versatile method.

Agarwal et al. [Aga+20] observe a gap in the active learning literature, where prior

methods do not capture the diversity in the spatial and semantic context of an image. They

introduce a new distance metric called Contextual Diversity, which aims to capture the di-

versity in the spatial and semantic context. They replace the Euclidean distance in the core-

set [SS18] approach with contextual diversity, which results in superior performance com-

pared to the other evaluated methods, inter alia, random sampling, core-set [SS18] and

MC Dropout [GG15]. Their findings are validated for image classification, object detection

as well as semantic segmentation.

[Liu+21] proposes an influence selection task- and model-agnostic active learning algo-

rithm. It calculates the influence of a sample by estimating its expected gradient and queries

the samples with the greatest expected influence for the labelling. This approach is evaluated

on both image classification and object detection. It is compared with random sampling,

core-set sampling [SS18], learning loss sampling [YK19] and localization stability sampling

[Kao+19]. To achieve the same accuracy, the proposed method required 13% fewer annota-

tions than core-set and even 26% less than localization stability sampling.

2.1.5 Multi-Task

At the time of writing this thesis, no work on multi-task active learning in the context of

autonomous driving could be found. However, two papers deal with Multi-Task Active Learn-

ing (MTAL) for Natural Language Processing (NLP). Reichart et al. [Rei+08] introduce two

MTAL protocols that could be applied in any Multi-Task setting. The first protocol is called

Alternating Multi-Task Active Learning and as the name suggests the data selection strategy

is alternated in every cycle. In each of these cycles, a single one-sided learning method is

used to determine the next cycle’s dataset. A one-sided learning method focuses on solely

one task and only uses the knowledge in this task domain for the data selection. The second

protocol is more advanced as it combines knowledge about all task domains. For each task, a

usefulness score is calculated and translated into a rank. The rank numbers are summed for

each sample to form a unified rank. The samples with the lowest rank numbers are selected

for the annotation and thus for the next cycle. Both protocols are compared against random

sampling as well as the one-sided learning methods. The evaluation shows, that one-sided

learning performs in the designated task, but not necessarily on the other tasks. The two pro-

posed MTAL protocols outperform random sampling and extrinsic learning. Extrinsic learning

is if a task is trained using data that has been selected by a selection that focuses on another

task. Therefore, the authors conclude that their MTAL protocols provide a good trade-off be-

tween good performance on all tasks while keeping the annotation costs low. Furthermore,

they point out, that even though the more sophisticated rank combination protocol performs

better than the alternating protocol, the margin between those two is relatively small.

Ikhwantri et al. [Ikh+18] use MTAL for Semantic Role Labeling and Entity Recognition

and use both protocols proposed by [Rei+08]. However, they slightly change the alternating

protocol. Instead of alternating the one-sided learning method to select which samples should

be labelled, they randomly select the task that is used for the selection process. The authors

claim that active learning requires 12% fewer data compared to passive learning and, in some

scenarios, even outperforms the one-sided learning methods in the respective task.
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2.2 Multi-Task Learning

In autonomous driving two of the many required tasks are object detection and semantic

segmentation. While the localization and recognition of objects is urgently needed to obtain

information about dynamic objects and pass it on to the path planning modules, semantic

segmentation is particularly useful to obtain information about free space, static objects and

contextual information in general. A lot of research has been done for both tasks and the

trend of state-of-the-art methods is towards deep neural networks. The quite good results

have one disadvantage. They are computationally exhaustive. But since both tasks are ap-

plied to the same domain, namely a camera image of the environment around the car, it

makes sense to share some of the computation for both tasks. Multi-Task architectures aim

to solve both tasks simultaneously, which in practice often is a compromise between a good

detection quality and the real-time requirement. One of the first architectures that was able

to improve the accuracy of both object detection and semantic segmentation, while shar-

ing some of the computational efforts, is called BlitzNet and was published by Dvornik et

al. [Dvo+17]. The proposed architecture follows a fully convolutional approach where all

model weights are shared until the last layer. To perform the actual prediction, a single layer

is added for each task. This way the authors reached a mIU of up to 72.8% and an 80.0%

Mean Average Precision (mAP) on the Pascal VOC 2012 validation set [Eve+15] while still

meeting real-time inference speed of up to 24 frames per second.

A more recent model was proposed by Peng et al. [Pen+20]. Just like BlitzNet, this model

uses a shared ResNet50 backbone [He+15], but it is extended with three additional layers.

Furthermore, the authors designed a novel initialization mechanism to propose more object

candidates, called PriorBox. It can generate dense object candidates with special aspect

ratios, which is beneficial for object detection in complex and dynamic traffic scenes. For the

segmentation, they use Multi-Scale Atrous Convolution (MSAC) to boost the performance in

small areas. The combination of PriorBox and MSAC results in the highest accuracy on the

Cityscapes dataset compared to BlitzNet [Dvo+17] and other approaches that were published

in the meantime [CPL18; Che+18]. The authors achieved a 40.0% mAP on the classes that

are relevant for autonomous driving and a 55.5% mIU for the semantic segmentation task on

the Cityscapes validation set.

In [Sal19] Niels Ole Salscheider proposed a network architecture that concurrently per-

forms 2D object detection and semantic segmentation. The two tasks share a backbone that

is based on ResNet-38 [WSH16] and has been adapted to reduce computational costs. The

backbones output is then the input for the two branches that perform the object detection and

semantic segmentation, respectively. The later branch has a convolutional encoder-decoder

structure, the final layer reduces the number of channels to the number of classes and applies

a softmax function. It is trained using cross-entropy loss. The branch for object detection

shares three ResNet modules and is then split into four separate sub-networks of identical

structure. The first sub-network predicts whether an anchor box contains a relevant object in

a binary classification manner. The second sub-network predicts the object class for each an-

chor box that contains an object. The third sub-network gives the bounding box parameters,

namely the 2D coordinates as well as the height and width. The last sub-network is optional

and can be used to learn a feature embedding for each detected object. The losses for each

sub-network are focal loss, cross-entropy loss, L1 loss and contrastive loss, respectively. It

achieves an mAP of 56.47% on the object detection and a mIU of 73.1% for the semantic

segmentation on the Cityscapes dataset. On the KITTI dataset [GLU12] it achieves an object

detection average precision of 69.3% for cars and 67.7% for pedestrians. Even if the accuracy

is surpassed by other single-task architectures, this architecture convinces with its speed. It

runs at 10 Hz on 1MP images on current hardware built into autonomous vehicles.
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Approach

In the following Section 3.1 the technical details of the investigated methods used to select

the most promising samples from the unlabeled data pool are presented. First, the existing

baseline methods Least Confidence and 1-vs-2 margin sampling will be described in the Sec-

tions 3.1.1 and 3.1.2. In Section 3.1.3 another baseline method is presented, which is then in

Section 3.1.4 adapted to a novel segmentation-focused method. In Section 3.1.5 it is shown

how the existing loss prediction module can be applied to object detection and semantic seg-

mentation. Finally, the newly introduced Box Mask approach is presented in Section 3.1.6.

In the last Section 4.7, the possibilities of combining two or more methods are discussed.

3.1 Sample Selection Strategies

As comparing against the results achieved using all data from the first training step is not fair,

all methods are compared against Random selection. Each image in the dataset gets a random

value between zero and one assigned. In each cycle, a fixed amount of data is selected

using the images with the lowest scores. While having the same amount of data in each

cycle, the goal of any method mentioned in the following section is to select a subset of the

remaining data that results in higher performance concerning 2D object detection, semantic

segmentation or both of these two. In this thesis, the focus lies on single-model methods.

This means, that the data selection is solely based on the predictions of one single model.

This stands in contrast to Ensemble methods, which train multiple models on the same data

and use the variance in the models’ predictions to select the images for the next training

cycle. Ensemble-based methods have the disadvantage of increased need for resources as

well as increased time consumption, as several models need to be trained in each cycle. The

effectiveness is controversial, some say that Ensembles provide better results compared to

e.g. MC Dropout [Sch+20], while others claim the opposite [Bel+18]. In addition, most of

the methods covered here could also be used in an Ensemble setting. Therefore, applying

these methods in an Ensemble setting remains for future work and will not be covered in this

thesis.

3.1.1 Least Confidence

In most state-of-the-art object detection methods, each bounding box has an objectness score

which represents the networks’ certainty about an object being present in that area of the

image. This score can be used to measure the general uncertainty of the network given an

unlabelled image. The inference is run for each image in the unlabelled data pool. The
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amount of bounding boxes is reduced using non-maximum suppression. To get a unified

score for each image, the confidence scores of each predicted bounding box are aggregated.

Three different aggregation methods are used in this thesis. The first is taking the maximal

confidence c of the bounding box d for all detected boxes D in an image i.

Smax(i) = maxd∈Di
cd (3.1)

The second aggregation method calculates the sum of the confidences of all detected bound-

ing boxes for each image.

Ssum(i) =
∑

d∈Di

cd (3.2)

The last method is taking the average of the confidences of all detected bounding boxes as

the total score.

Saverage(i) =
1

|Di |

∑

d∈Di

cd (3.3)

The samples with the lowest scores are selected for labelling and are added to the training

dataset afterwards.

3.1.2 One Versus Second Margin

The three previously described aggregation methods are used by Brust et al. [BKD19] as

well. But instead of using just the objectness score of the bounding box, they introduce the

1-vs-2-margin score. It can be understood as the difference between the most likely class cl

and the second most likely class of the predicted bounding box and is defined as:

S1vs2(d) = (1− (maxcl1∈C p̂(cl1|d)−maxcl2∈C p̂(cl2|d)))
2 (3.4)

The resulting scores for each bounding box can be aggregated to a single score using either

the maximum, the sum or the average of all scores S1vs2. But instead of selected the images

with the lowest scores, those with the highest scores are passed to the annotation.

3.1.3 Inconsistency for Object Detection

A more sophisticated method has been proposed by Elezi et al. [Ele+21b]. In their approach,

the inference is run not only for the original image but also for the horizontally flipped image.

They then measure the inconsistency between the two sets of predicted bounding boxes and

select the image with the highest inconsistency for annotation. The inconsistency score is

calculated in three steps. First, the predictions D of the original image and the predictions

D̂ of the augmented image are matched by their intersection over union. For each matched

pair of bounding boxes, the inconsistency is calculated using the KL-divergence of the class

probabilities cl ′ and ĉ l
′
:

Lcon(cl ′
d
, ˆcld
′
) =

1

2

�

K L(cl ′
d
, ˆcld
′
) + K L( ˆcld

′
, cl ′

d
)
�

(3.5)

The overall inconsistency score of an image is the maximum of the bounding box inconsis-

tency scores:

I(Di , D̂i) = maxd∈Di
(Lcon(cl ′

d
, ˆcld
′
)) (3.6)
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In addition to the inconsistency, the entropy of the original image predictions D is calculated:

H(D) = maxd∈D(H(cld)) where H(x) = −

N
∑

i=1

P(x i) · logP(x i) (3.7)

Finally, the inconsistency and entropy are unified to a single image score:

Sinconsistenc y(i) = H(Di) · I(Di , D̂i) (3.8)

Just like in 1-vs-2-margin sampling, the images with the highest scores are given to the

annotator.

In an earlier publication, Elezi et al. [Ele+21a] claim the labelling of only images that

contain difficult objects could lead to a distribution drift as those objects might not be good

representatives of the dataset. To prevent this issue, they take the objectness score of a

bounding box into account. This results in a bounding box score defined as:

Sinconsistenc y(d) =

¨

H(d) · I(d, d̂), if cd ≥ τ

0, otherwise
(3.9)

and an overall image score:

Sinconsistenc y(i) = maxd∈Di
(Sinconsistenc y(d)) (3.10)

3.1.4 Inconsistency for Semantic Segmentation

Inspired by the prior method, two novel methods were developed. They are similar to the

methods proposed by Elezi et al. [Ele+21b; Ele+21a] but focus on the Semantic Segmen-

tation task. Again, the predictions are generated for the original image and its horizontal

flipped version. In a naïve approach, the inconsistency is measured by comparing the two

predicted classes of the original image pixel p j and the augmented image pixel p̂ j for each

pixel of the image. The image score is defined as:

Sinconsistenc yseg
(i) =

height·wid th
∑

j=0

¨

1, if maxcl∈C p j(cl) 6= maxcl∈C p̂ j(cl)

0, otherwise
(3.11)

An advanced strategy for semantic segmentation works like the method by Elezi et. [Ele+21b],

but instead of using the class predictions of the bounding boxes, the pixel class predictions

cl ′
j
and ĉ l

′

j are used.

Lcon(cl ′j , ĉ l j

′
) =

1

2

�

K L(cl ′j , ĉ l j

′
) + K L(ĉ l j

′
, cl ′j)
�

(3.12)

Sinconsistenc yseg+K L
(i) =

1

height ·wid th
·

height·wid th
∑

j=0

H(p j) · Lcon(p j , p̂ j) (3.13)

For both the naïve and the more advanced method, the images with the highest score are

selected for annotation.
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3.1.5 Loss Prediction Module

The loss prediction module presented in [YK19] is task-agnostic and can be used for both

of the applications examined here. The network is extended by two loss prediction modules

that learn to predict the loss of one of the two tasks, respectively. Three intermediate layer

outputs from both, the backbone and the respective task head, are used as input for the loss

prediction module. Global Average Pooling, followed by a Fully-Connected and Rectified

Linear Unit (ReLU) activation layer, is applied to each input layer. This way, they are all

reduced to the same size and can be concatenated. Finally, a Fully-Connected layer is applied

to get a single loss prediction value. The gradient of the loss prediction module is stopped

at its input layers, such that the optimization of the loss prediction module has no impact on

the learning of the actual network. The authors of the method claim that simply using the

Mean Squared Error (MSE) between the target loss and the predicted loss does not perform

well and is just learning the loss scale instead of its exact value. They, therefore, propose to

use a mini-batch approach, where prediction pairs are used to learn the loss prediction. The

loss prediction loss on a sample pair {x p = (x i , x j)} consists of the task loss l and the loss

prediction l̂.

Lloss(l
p, l̂p) = max
�

0,−1(li , l j) · (l̂i − l̂ j) + ξ
�

s.t. 1(li , l j) =

¨

+1, if li > l j

−1, otherwise

(3.14)

The overall loss given a batch B consisting of the predictions ŷ and the corresponding

groundtruths y is defined as:

Lpred(B) =
1

|B|

∑

(y, ŷ)∈B

δob j · Lob j( ŷ , y) +δseg · Lseg( ŷ , y)

+
2

|B|

∑

(y p , ŷ p)∈B

δlossOb j · LlossOb j( ŷ
p, y p) +δlossSeg · LlossSeg( ŷ

p, y p)

(3.15)

where Lob j is the Loss of the object detection task, Lseg is the Loss of the semantic segmenta-

tion task. LlossOb j and LlossSeg are the losses of the loss prediction modules for the respective

task. δ is the weight for the specific loss. A visualization of the architecture and its loss

composition is provided in Figure 3.1.

Figure 3.1: Visualization of the network architecture consisting of a backbone, two task heads, as well as a Loss

Prediction Module for each task. The figure does also show how the overall Loss is composed.
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3.1.6 Box Mask

The two tasks, object detection and semantic segmentation are closely related and it has

been shown, that the two can benefit from each other when combined [Dvo+17]. In a

Multi-Task setting like it’s used in this thesis, the decision on which samples to select must

not only be based solely on one task. It makes sense to incorporate the predictions of both

tasks and calculate the scores of the remaining samples in a combined and unified scoring

method. A novel approach that does this is developed in this thesis. The idea is to match

the object detection predictions with the predictions of the semantic segmentation and thus,

measure the inconsistency between the two tasks. The samples with the highest inconsistency

are selected for the next cycle. To calculate the inconsistency a mask is drawn using the

predicted bounding boxes from the object detection. Each pixel that is within a bounding

box gets the class label as its value. Therefore, this generated mask has the same format as

the predictions from the semantic segmentation. For each pixel is checked, whether the box

mask label is the same as the segmentation label. If not, the sample score is increased by

one. The method will be referenced as Box Mask. Its pseudo-code of the algorithm is given

in Algorithm 1 and the resulting pixel-mask is shown in Figure 3.2 b). To avoid an imbalance

Algorithm 1 The pseudo code of the BoxMask scoring method.

function BOXMASK(boxes, labels) ⊲ bounding boxes & segmentation labels

box_mask = zeros_l ike(labels)

for box ∈ boxes do

miny , max y , minx , max x = get_box_ed ges(box)

box_mask[miny : max y , minx : max x] = box .class_label

end for

SBox Mask = 0

for i ∈ height do

for j ∈width do

if box_mask[i, j] 6= labels[i, j] then

SBox Mask = SBox Mask + 1

end if

end for

end for

SBox MaskNorm
= SBox Mask/|boxes|

SBox MaskPixelNorm
= SBox Mask/(height img ·wid thimg)

SBox MaskBN
= SBox Mask/count_non_zero(box_mask)

end function

between images that contain a lot of objects and therefore potentially a lot of bounding boxes,

and images that contain only a few or no objects at all, there are also improved versions

introduced that normalize the score based on either the number of detected bounding boxes,

the total image pixels or the size of the specific bounding box. The normalization methods

are indicated with the subscript Norm, PixelNorm and BN (BoxNorm), respectively. During

the analysis of the Box Mask approach, it quickly became clear that a lot of background

noise flows into the score calculation. This is clearly visible in Figure 3.2, where the ratio

between background pixels and object pixels is unbalanced. Therefore, the approach was

further developed to minimise the influence of background noise. A first approach was to

reduce the bounding box mask to an ellipse instead of a rectangle. In the datasets used,

the number of classes that fit this rounder shape, e.g. cars, clearly outweighs the number

of classes that are better suited for a rectangular shape, e.g. trucks. As in the Box Mask
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approach, for each detected bounding box an ellipse with 50% of the height and width of

the box around the centre of the box was drawn into the mask. The resulting output of

the Box MaskEll ipse (Box MaskEl) approach is visualized in Figure 3.2 c). In the second

approach to reduce the background noise, the mask generation was turned around. Instead

of first extracting the bounding boxes and then counting the segmentation pixels in the area

of the boxes, in the Box MaskSegmentation approach the segmentation results are extracted

first. In the second step, the bounding box mask is generated considering only the areas

where an object has been detected by the semantic segmentation. The resulting mask output

is shown in Figure 3.2 d). In the approaches discussed so far, the pixels are counted where

the prediction of the object recognition and the prediction of the semantic segmentation

do not match. Predictions that are completely different, such as Truck and Pedestrian, are

treated the same as predictions that are very similar, such as Truck and Bus. In order to

penalize the cases where the predictions differ significantly, the Box Mask approach has been

further developed and in Box MaskK L the class probabilities are taken into account for the

sample score calculation. For this purpose, the class probabilities of an object predicted by the

object detection are transformed into the same probability domain as the class probabilities

predicted by the semantic segmentation. Each pixel that is within the area of the detected

bounding box is assigned the class distribution that has been predicted for the object. The

probability of the classes that are not trained in object recognition is set to 10−9. The score of

a sample is then calculated from the transformed object class probability distribution Pod( j)

and the class probability distribution of the segmentation Pseg( j) at a pixel j for each pixel

that lies within an object as follows:

SBox MaskK L
(i) =

1

2

∑

j∈box_mask

K L
�

Pseg( j), Pod( j)
�

+ K L
�

Pod( j), Pseg( j)
�

·
1

|box_mask|
(3.16)

3.2 Alternating Methods

The methods just presented all differ in how they work and each has its advantages and

disadvantages. However, they all focus primarily on one task. In a multi-task network, several

tasks are performed simultaneously and it is of course of interest that both tasks achieve

the best possible results. Therefore, it makes sense to combine different methods of active

learning. In the publications by Reichart et al. [Rei+08] and Ikhawantri et al. [Ikh+18] it

was investigated to what extent the alternation of two active learning methods influences the

performance of a multi-task network for natural language processing. Both works use just

two single methods and alternate these two either based on a random selection or based on

the task domain knowledge. Since there are several methods available, the alternation should

not be limited to just two methods. For each training cycle, one could always use the method

that is best performing on object detection or the method that has the best results on semantic

segmentation, or the method that offers the best trade-off of the two tasks at the specific cycle.

One could also just use the overall best method for object detection and alternate it with the

overall best method for semantic segmentation. Another option would be to use the method

that had the highest increase in performance compared to the previous cycle. And since the

annotation effort is also an important aspect to consider, one could also alternate between

the methods that result in the lowest annotation costs. Not only the method itself could be

alternated but also the metric on which the best intermediate checkpoint selection is based

on. This means one could select the checkpoint that performs best on object detection in

the first training cycle and use the same method in the next cycle, but this time one uses the
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(a) An input image taken from the nuImages dataset (b) BoxMask output

(c) BoxMaskEllipse output (d) BoxMaskSegmentation output

Figure 3.2: A visualization of the BoxMask approaches. White pixels represent that the prediction of segmentation

and object detection are equal. All gray colored pixels are the areas where the two task predicted different classes.
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checkpoint that has the highest performance on semantic segmentation. It becomes clear that

the possible combinations are endless. However, due to the time and resource limitations

of this thesis, a selection of the combinations must be done. The most promising method

combinations are described in Section 4.7. The general procedure of the alternating methods

is always the same. In the first cycle, the data is randomly selected. For all subsequent cycles,

a new decision is made on which method to use for each cycle, depending on the approach.



Chapter 4

Evaluation

The evaluation chapter is structured as follows. First, the general experiment setup is de-

scribed in Section 4.1. This includes the model architecture, the used datasets, the active

learning framework and the evaluation metrics. In the Sections 4.2-4.6 the experiment setup

for the single-methods are presented, followed by the combined methods in Section 4.7.

Lastly, most of the methods are compared against each other on different datasets. The com-

parison settings are described in Section 4.8.

4.1 Experiment Setup

4.1.1 Model Architecture

Since this thesis aims to investigate active learning in the context of autonomous driving,

the speed of the applied architecture plays a major role. The choice, therefore, fell on the

architecture presented by Salscheider [Sal19], which is described in more detail in Section

2.2. The corresponding public code [Sal20] was used as a basis for this thesis and adapted

by the following changes and additions. Except for the full training baseline, the learning

rate is kept steady, instead of decreasing the learning rate continuously while the training

progresses. A decreasing learning rate showed worse results in the experiments, which could

be due to the fact that new data is added to the training set in each cycle. All the available

losses, except the embedding loss, are used and their weights are kept. The architecture is

extended by a loss prediction module for both object detection and semantic segmentation

based on the method proposed in [YK19]. The output of three intermediate backbone layers

and three intermediate task head layers is used as input for the loss prediction module. In

addition, depending on the task, the output of another three layers of the respective task

branch is added to the input of the loss prediction module. Using global average pooling, all

inputs are downscaled to the same size. Then a fully-connected layer and a ReLU activation

are applied to each input layer. Finally, all the layers are concatenated and passed to a single

linear layer to produce the loss prediction. The gradient for the input layers of the loss pre-

diction module is stopped during the propagation, as this showed better results in both object

detection and semantic segmentation. Another change to the original code from Salscheider

was the addition of a softmax layer to the segmentation labels and object detection class

predictions to get, not only the most likely class but also the full distribution. This makes

selection methods, like the 1-vs-2 margin sampling possible. In all experiments, if not stated

otherwise, the overall loss L is composed as the weighted sum of the segmentation loss Lseg ,

the object detection loss Lob j and the loss prediction loss Lpred :
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L = δseg · Lseg +δob j · Lob j +δpred · Lpred (4.1)

with δseg = 50.0, δob j = 1.0 and Lpred = 1.0 if the loss prediction module is activated, Lpred =

0.0 otherwise. Lseg is defined as the cross-entropy loss, Lpred is defined in Equation 3.15. The

object detection loss again consists of three losses from the sub networks, namely the object

loss Lrel that comes from the sub network which solves a binary classification problem and

decides whether an anchor box contains a relevant object. A Focal loss with α = 1.0 and

γ = 2.0 is used here. The second loss Lcls is defined as a cross-entropy loss and comes from

the sub network that predicts the objects class. The last sub network predicts the bounding

box parameters and is trained using a smooth L1 loss Lbox . Thus, the overall loss for the

object detection is defined as:

Lob j = δrel · Lrel +δcls · Lcls +δbox · Lbox (4.2)

with δrel = 0.1, δcls = 50.0 and δbox = 100.0. In all experiments a batch size of 4 and a

learning rate of 0,001 was used.

4.1.2 Datasets

NuImages

As this thesis required semantic segmentation labels, the NuImages subset of the nuScenes

dataset has been used. The 2019 published nuScenes dataset [Cae+19] provides 3d object

annotations from 1000 scenes in the cities of Boston and Singapore. This dataset has been

extended with NuImages, which adds another 93,000 images to the dataset. NuImages offers

2d annotations for around 800,000 foreground objects and 100,000 semantic masks. A total

of 93,000 images are taken by six different cameras pointing to the front, back and sides. In

this thesis, only a subset of the NuImages dataset was used. This is because the same object

could potentially occur in multiple images that were taken by different cameras at the same

time, which could cause a distortion of the results of the active learning methods. To match

the domain with the one from other datasets like Cityscapes [Cor+16], only the images

taken from the front camera were used. This resulted in 13,187 images for the training set

and 3,249 images for the validation set. The selected subset has a total of 138,569 objects.

The class distribution is shown in Figure 4.1. This dataset is particularly interesting for this

work because active learning has already been used for scene selection. This allows the

effectiveness of the methods studied to be demonstrated even better. The augmentations

motioned in Section 4.1.3 were all applied except for the horizontal flipping, which was

deactivated on this dataset. The images of both the training and the evaluation set were

downscaled to 1536 x 768 pixels.

A9

The A9 dataset [Cre+22] offers camera and Light Detection And Ranging (LiDAR) frames

from two overhead gantry bridges on the A9 autobahn near Munich, Germany, with the

corresponding objects labelled with 3D bounding boxes. As the cameras are static, the back-

ground is static as well. Therefore, this dataset provides an interesting insight into how the

actual objects, compared to the background of the scene, influence the sample choice of ac-

tive learning methods. To match the task domain with the other experiments, the 3d labels

were transformed into 2d labels. And since the dataset does not provide labels for seman-

tic segmentation, these were generated using another high performing model. The model
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Object class # Train # Validation # Total

Car 55,138 12,758 67,896

Pedestrian 36,764 8,808 45,572

Truck 11,874 2,866 14,740

Motorcycle 3,342 806 4,148

Bicycle 2,513 608 3,121

Bus 2,355 737 3,092

Total 111,986 26,583 138,569 Bus Bicycle Motorcycle Truck Pedestrian Car
Object Class
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Figure 4.1: Object class distribution of the NuImages dataset.

Object class # Train # Validation # Test # Total

Car 17,299 8,133 2,843 28,275

Truck 7,646 3,702 1,244 12,592

Bus 32 24 3 59

Motorcycle 18 14 1 33

Pedestrian 19 1 0 20

Other 233 106 38 377

Total 25,247 11,980 4,129 41,356
Pedestrian Motorcycle Bus Other Truck Car

Object Class
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Figure 4.2: Object class distribution of the A9 dataset. For the experiments only the classes Car, Truck, Bus and

Motorcycle were considered. All other classes are merged into Other and are ignored during the evaluation.

of choice is the Mask R-CNN X152 model from the detectron2 [Wu+19] model zoo, as the

inference speed was not an issue and its accuracy is high. It was trained on the ImageNet

[Den+09] dataset and resulted in good annotations for the A9 dataset. Nevertheless, it must

be noted in the following results that the annotation for semantic segmentation does not

match the accuracy of human annotation. Only the labels containing an object such as a car,

bus, truck or motorcycle were labelled. All the other pixels were marked with the ignore label

and were not considered during training and evaluation. The dataset used for this training

consists of 1,440 images split into a training, validation and test set (60%, 30% and 10%). An

overview of the class distribution is given in Figure 4.2. Again, all augmentations mentioned

in Section 4.1.3, except for the horizontal flipping, have been applied to the input images. A

downsizing to 1008 x 632 pixels during training has been done. During the evaluation, the

image size remains at 1344 x 840 pixels.

Cityscapes

The Cityscapes dataset [Cor+16] is a large-scale collected set of urban street scenes captured

by a stereo camera placed at the front windshield of a car. The data was collected from 50

cities over a longer time period and thus at different lightning and weather conditions. It

provides around 5,000 images with fine annotations and around 20,000 additional images

that were coarsely annotated. The dataset provides semantic, instance-wise, and dense pixel

annotations for 30 classes. The data is split into a training, validation and test subset, contain-

ing around 282,500 fine annotated objects and around 694,000 coarsely annotated objects.

The ground-truth of the test set is not available for public. A detailed listing of the class

distribution of the fine annotated subsets can be found in Figure 4.3, the distribution of the

coarsely annotated subsets is visualized in Figure 4.4. In contrast to the other two datasets,

randomly flipping the image along the horizontal axis has been applied as augmentation in

addition to the other augmentations described in Section 4.1.3. To reduce the time needed

to run the experiments the training input image size was reduced to 1152 x 576 pixels and
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Object class # Train # Validation # Test # Total

Car 27,155 4,667 - 31,822

Truck 489 93 - 582

Bus 385 98 - 483

Motorcycle 739 149 - 888

Pedestrian 17,994 3,419 - 21,413

Bicycle 3,729 1,175 - 4,904

Total 50,491 9,601 - 60,092

Other 185,199 37,208 - 222,407

Total 235,690 46,809 - 282,499 Bus Truck Motorcycle Bicycle Pedestrian Car Other
Object Class
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Figure 4.3: Object fine annotated class distribution of the Cityscapes dataset. For the experiments only the

classes Car, Truck, Bus and Motorcycle were considered. All other classes are merged into Other and are ignored

during the evaluation.

Object class # Train # Train Extra # Validation # Total

Car 3,290 24,107 545 27,942

Truck 155 644 39 838

Bus 127 559 46 732

Motorcycle 344 1,229 65 1,638

Pedestrian 3,921 13,026 756 17,703

Bicycle 1,797 5,177 497 7,471

Total 9,634 44,742 1,948 56,324

Other 82,392 539,772 15,580 637,744

Total 92,026 584,514 17,528 694,068 Bus Truck Motorcycle Bicycle Pedestrian Car Other
Object Class
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Figure 4.4: Object coarsely annotated class distribution of the Cityscapes dataset. For the experiments only the

classes Car, Truck, Bus and Motorcycle were considered. All other classes are merged into Other and are ignored

during the evaluation.

to 1536 x 768 during evaluation.

4.1.3 Active Learning Framework

All the used datasets have the full training set already labelled. However, to evaluate the ef-

fectiveness of a selection strategy it is assumed that the labels are unknown. In the beginning,

all data samples are considered to be in the unlabeled data pool. As the model is not trained

yet, no assumptions about the usefulness of the data samples can be made yet. Therefore,

30% of the training data is selected randomly and moved to the labelled data pool. The model

is trained on this initial labelled data pool and the resulting model state is used as starting

point for all the other methods. From here each cycle follows the same procedure consisting

of three steps. First, the best checkpoint of the last training cycle is selected. This can be done

using the evaluation results from either the object detection or the semantic segmentation.

For object detection, the mean average precision is used to select the best performing inter-

mediate model state. For the semantic segmentation, the mean intersection over union was

used as the difference between the methods was higher using this metric. In the second step,

the remaining data samples in the unlabeled pool are evaluated using the current model and

the specified score is calculated for each sample. The samples are then ranked by their scores

and the highest-ranked samples are moved to the labelled data pool. The size of this pool is

therefore increased by 10% of the full training dataset size in each cycle. The last step of a

cycle is the model update. The weights of the previous checkpoint are loaded and the model

training is continued on the increased training data pool. This procedure is repeated until

no unlabeled data samples are left. To have a fair comparison between the methods in the

following experiments, the learning loss module was activated in the first training cycle using
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30% of the data. From there on, it was deactivated for all methods, except the learning loss

ones. The experiments using the NuImages and Cityscapes dataset were trained for 30,000

steps per cycle, while the experiments using the A9 dataset were trained for only 3,000 steps

per cycle. The current state of the model was saved and evaluated every 1,000th step for

the NuImages and Cityscapes dataset and every 100th step for the A9 dataset. Several aug-

mentations have been applied during training as described in [Sal21]. These augmentations

are randomly cropping, flipping along the horizontal axis, changing the gamma curve, con-

trast, brightness, and hue as well as changing the white balance of the image. Furthermore,

Gaussian blur and noise are added to the image. Non-maximum suppression is applied to

the set of detections and if not stated otherwise, only the detected objects with a confidence

score higher than 60% were kept for the evaluation and next cycles sample selection. All

experiments were trained and evaluated using Tesla V100 GPUs with 32GB of memory. For

the experiments with a batch size greater than 1, multiple GPUs were used with a batch size

of 2 for each GPU. The code was implemented in Python 3.8 with TensorFlow 2.2, Cuda 10.1,

cudnn 7, Boost 1.60 and OpenCV 3.4.16. The code is available online [Fri22].

4.1.4 Evaluation Metrics

To compare the performance of the investigated methods, it is important to look at various

metrics. The two obvious metrics are the performance metrics of the respective tasks, object

detection and semantic segmentation. But in active learning, pure performance is not the

only point of interest. Factors such as the required amount of annotations and thus the

resulting labelling costs are of major importance as well. In the following subsection, the

metrics that have been used throughout this thesis are described in more detail.

Object Detection

The most prominent metric to evaluate the performance on object detection tasks is the mean

Average Precision [Fen+21]. It is based on the precision metric which is defined as

Pc =
T Pc

T Pc + F Pc

(4.3)

where T Pc is the number of true positives and F Pc is the number false positives of a class

c. From here the mean average precision can be calculated by averaging the precision of all

classes C that are evaluated.

mAP =
1

|C |

∑

c∈C

Pc (4.4)

In this thesis, the mAP is always evaluated with an Intersection over Union (IoU) threshold

of 50%. The IoU measures how well a detected bounding box matches the ground-truth box

with respect to location and size [Mon21, Chap. 6.1.1].

IoU(A, B) =
A∩ B

A∪ B
(4.5)

Semantic Segmentation

For the evaluation of the semantic segmentation the Jaccard Index is used. It is also known

as the PASCAL VOC IoU [Eve+15]. In this thesis the mean over all classes C is taken.

mIU =
1

|C |

∑

c∈C

T Pc

T Pc + F Pc + FNc

(4.6)
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Data Correlation

A metric that is useful to compare different selection strategies against each other is the data

correlation. This measures the overlap of two given sets of data samples. If the two sets are

identical the correlation is at its maximum, if there is not a single sample that exists in both

data sets, the correlation is at its lowest value which is zero. Two calculate the correlation,

a simple approach is used. The samples that are within both given sets are counted and this

number is divided by the total amount of samples in the datasets.

Annotation Cost Estimation

The main goal of active learning is the reduction of labelling costs. Therefore, it is important

to estimate the required labelling cost of an unlabeled sample. Cai et al. [Cai+21] argue that

not all samples have an equal annotation cost as the objects differ in their size and shape.

They introduce a click-based annotation cost estimation, which reflects a more realistic es-

timation. However, many labelling companies are paid by the number of objects that were

annotated, regardless of their size. Therefore, the amount of objects within an image is used

as the annotation cost. To estimate the costs of a subset containing the images selected by a

selection strategy, the ground truth bounding boxes of each sample in that subset are counted

and summed together. This method is easily implemented, fast to evaluate and gives a good

enough orientation to compare the various selection strategies.

Cost Efficiency

Some selection strategies might result in a lower mAP or mIU value compared to others but

require fewer annotations. In applications where costs are critical, a strategy with slightly

poorer performance but a significantly lower cost might be preferable. Therefore, it is impor-

tant to weigh the annotation cost against the achieved performance on the respective tasks.

To measure the cost efficiency of the two tasks object detection and semantic segmentation,

the annotation costs of the selected subset at a given cycle are divided by the achieved mAP

and mIU for the object detection and semantic segmentation, respectively.

4.2 Baseline

To evaluate the effectiveness of the researched active learning methods, two baselines were

established. The first one serves as a comparison against the traditional training procedure

where it is assumed that the labels for all data samples are available and no active selection of

data samples is done. During the training 100% of the data is used from the very first training

step on already. This baseline will be referenced as Full and was trained for 300,000 training

steps on the NuImages and Cityscapes datasets, respectively. For the experiments on the A9

dataset, the Full method was trained for 30,000 training steps. The second baseline will be

referenced as Random and uses the active learning procedure described in Section 4.1.3. In

each cycle, a randomly selected subset is added to the labelled data pool. The cycle iterations

were set to 10% of the Full training steps. Therefore, the models were trained for 30,000

iterations each cycle on the NuImages and Cityscapes dataset and 3,000 on the A9 dataset,

respectively. The weights of the best checkpoint of the first random training cycle are used as

the starting point for all the following methods. The best checkpoint has been selected based

on the object detection mAP on the validation set. The reason was that all runs had similar

performance for the semantic segmentation task, but the results on the object detection dif-

fered a lot. It is not to be expected that an active learning method outperforms the full data
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training, however, each method aims to outperform random selection concerning the trained

tasks, but also with respect to the annotation costs. Even though a method might not have a

higher mAP than random selection, a lower annotation cost might still be desirable for some

applications. It must also be mentioned that for the Full training a decreasing learning rate

schedule was used as proposed in [Sal19]. For the active learning method experiments, on

the other hand, the same schedule caused a lower accuracy. This can be explained by the

fact, that new data is added to the dataset and then the decreased learning rate might be

too low. Therefore, this schedule was deactivated for the active learning methods and the

learning rate was kept the same throughout all training steps. However, an adapted learning

rate schedule could result in an increased performance towards the end. Research on this

remains for future work.

4.3 Aggregation Methods - Sum, Maximum and Average

The methods described in Section 3.1.1 and 3.1.2 calculate a score based on the detected

objects. But since the decision of the sample selection is done on an image and not on a

bounding box level, one must find a way to aggregate the scores of the detected objects into

one single image score. In the first experiment of this thesis, two sample selection methods

with three different aggregations each are investigated. Possible aggregations are the sum,

where all box scores are simply added up, the average, where the sum of all boxes is divided

by the number of boxes, and finally the maximum, where only the box with the highest

score determines the total score of an image. The first method is using the least confident

bounding boxes, as described in Section 3.1.1. The results of this method using the different

aggregations will be referenced as Confsum, Confavg , Confmax . The second sample selection

method is described in Section 3.1.2 and uses the difference between the most likely class

prediction and the second most likely class prediction. In the results section these methods

will be referenced as 1vs2sum, 1vs2avg , 1vs2max . The results of the evaluation of all previously

mentioned methods are presented in Section 5.1.

4.4 Inconsistency Methods

Instead of relying on the predictions of a single image to calculate the score, it is also possible

to run the inference twice. Once for the original image and then again for the same image,

but horizontally flipped. The overall image score is then calculated by measuring the inconsis-

tency between the two predictions. This approach was proposed by Elezi et al. and described

in more detail in Section 3.1.3. The method can be divided into two sub approaches, one is

using all detected bounding boxes and the other takes only bounding boxes into account that

surpass a certain confidence threshold ci, which was set to 50%. In the results, those two

methods will be referenced as Inconod and InconConfod . The idea of using augmentation to

calculate the inconsistency can not only be applied to object detection, but also to semantic

segmentation. In Section 3.1.4 two approaches are proposed. One is just counting the pixels

where the two predictions do not match, and the other one is more sophisticated and uses

the KL-divergence to calculate the inconsistency. The two will be referenced as Inconseg and

Inconseg+K L, respectively. The results of the evaluation can be found in Section 5.2.
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4.5 Loss Prediction Methods

A simple yet very efficient approach is the loss prediction module method, which is described

in detail in Section 3.1.5. It does not rely on any task related predictions but adds an addi-

tional module to the network architecture which then learns to predict the loss that a sample

will produce if it would be used during training. The samples with the lowest estimated loss

are chosen for the next cycle. Selecting the samples with the highest estimated loss has been

tried as well, but had worse accuracy in both object detection and semantic segmentation.

The general approach uses three intermediate layers of the backbone and three intermediate

layers of the respective task head as input for the loss prediction module. The backbone lay-

ers had the channel sizes 128, 256, 512, and the head layers had 128, 64, and 32 channels,

respectively. Global average pooling is applied to each input layer, resizing the layers to an

equivalent size. A densely connected layer with 128 units follows the pooling and a ReLU ac-

tivation is used. The resulting outputs of the separate input layers are then concatenated and

passed to a densely connected layer with just one unit. Thus, a loss value can be predicted

based on the intermediate values of the model. The loss prediction module can be used for

three various approaches. First Lossod , just the object detection loss. A single loss prediction

module is added to the model architecture and is used to learn to predict the object detection

loss which is then used to select the samples for the next training cycle. Second Lossseg , the

semantic segmentation loss. This approach works the same as the previous one, but it is

learning to predict just the segmentation loss. The third approach, referenced as Losscombined ,

adds two loss prediction modules and learns to predict both losses simultaneously. In this ap-

proach, the loss of both tasks is predicted and summed together. The samples with the lowest

combined predicted loss are selected for the next training cycle. The two tasks are equally

weighted during this selection process. In the publication of Yoo et al. [YK19], it’s not explic-

itly mentioned whether they froze the weights of the model when training the loss prediction

module. Not stopping the gradient for the model layers during the backpropagation resulted

in reduced accuracy on both tasks. Therefore, the weights of all layers, including the input

layers of the loss prediction module, are frozen while optimizing the layers of the loss pre-

diction module. This way, the training of the loss prediction module does not affect the tasks

themselves. Different weights of the loss prediction module loss have been tried. At first, the

weight was set to δpred = 10.0, but δpred = 1.0 showed to be the better setting. The results of

the three approached Lossod , Lossseg and Losscombined are presented in Section 5.3.

4.6 BoxMask Method

In the first Box Mask experiment, the effect of the bounding box confidence threshold on

the overall performance was examined. In the prior experiments, this threshold was always

set to 60%. This way, only bounding boxes with relatively high confidence have been used

to calculate the samples score. However, if this threshold is set that high, the amount of

detected bounding boxes is quite low, especially in the early training cycles when the model

is not so well trained yet. To examine whether this intuition is true, two experiments have

been evaluated. Their settings were identical, except for the bounding box threshold, which

was set to 60% in Box Mask60 and to 30% in Box Mask. The results show, that there is

not a huge difference in the achieved task performance. The smaller box threshold has a

minimal better performance on the object detection. For semantic segmentation, there is

no noticeable difference. However, the reduced box threshold resulted in lower annotation

costs. Therefore, the box threshold was set to 30% in the remaining BoxMask experiments.
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4.7 Combined Methods

The training of a model using active learning must not be limited to just one selection strat-

egy. There are endless possibilities to combine the various selection strategies. The methods

can be combined based on their estimated cost, the correlation between their selected sub-

sets, or based on their performance on the respective tasks. But not only the strategies can

vary. The most basic combination method, that even does not require a change in the model

architecture is the intermediate checkpoint selection. The effect of different combinations of

the so far presented methods as well as the checkpoint selection is presented in the following

section.

4.7.1 Checkpoint Selection

When training a multi-task model, one has multiple metrics to determine which method

generates the best results on the respective tasks. These metrics are then used to evaluated

the learned parameters of the model at a given checkpoint. During the full pipeline of active

learning many intermediate checkpoints are generated and at the end of each cycle a decision

must be made, which checkpoint is the best to continue the training from. In object detection

this decision is mostly based on the mean average precision and in semantic segmentation

the mean intersection over union is the most frequently used metric for this decision. There

is not a one-and-only choice of metric to choose in a multi-task setting. One could use the

mAP, which could result in worse performance on the segmentation task, or one could use

the mIU, but this would lead to a not optimal performance on the object detection task.

This experiment evaluates the effect of the checkpoint selection using the Inconseg method

described in Section 3.1.4. In Inconseg−od the mAP is used to determine the best checkpoint

to continue from. In Inconseg−seg the mIU is used and in Inconseg−both† both mAP and mIU

influence the checkpoint selection. To find the checkpoint that performs best on both tasks,

the checkpoints are ranked by the respective metric for each task, with the best checkpoint

having the highest rank. In the next step, the ranks of each checkpoint are summed and

the checkpoint with the overall highest sum of ranks is used as the starting point of the next

training cycle. The effect of the combined checkpoint has also been investigated using the

Confmax method, as the results showed it to be the best performing baseline method. The

training settings were kept as they were described in Section 4.3. This experiment will be

referenced as Confmax−both†. The results of the two experiments are shown in Section 5.5.1.

4.7.2 Half Split Alternation

Another idea was to combine a method that performs well in the earlier phase of the training

cycles with a method that performs better in the later phase of the training. As later shown in

the results section the loss prediction module method Lossod is a good performing in the early

training stages. The BoxMask method Box MaskElBN on the other hand is well performing at

later stages. Thus, this two have been combined, using the Lossod selection strategy for the

first 60% of the data and from there on Box MaskElBN was used to select the remaining sam-

ples for the labeling. This experiment will be referenced as Loss + Box Mask. As the 1vs2avg

method has a lower cost efficiency compared to the Box MaskElBN and has a high accuracy

in the later training phases as well, the half split has also been applied to the combination of

Lossod with 1vs2avg . This experiment will be referenced as Loss+1vs2. The results of the two

half split experiments are compared against their single trained components and presented

in Section 5.5.2.
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4.7.3 Alternation of Classification and Localization Optimizing Methods

The investigated methods can be classified into two categories, depending on what the

method is trying to optimize. Some methods are mainly focusing on the predicted classes

and ignore the localization of an object. Other methods do it the vice versa. In this experi-

ment, a method of each category is combined such that each training cycle optimizes either

the class prediction or the localization in an alternating fashion. The method choice fell on

1vs2max as the class optimizer method and Box MaskElBN as the localization optimization.

Even though LeastCon fmax has higher accuracy on both tasks, 1vs2max has a better cost

efficiency, which is why this method was selected. If the two methods Box MaskElBN and

Inconseg are compared fairly by using the same checkpoint selection strategy, Box MaskElBN

has the better overall performance. The training of this experiment uses Box MaskElBN as

the sample selection method for the first active learning cycle, then continues with 1vs2max

for the second cycle. The two methods are then alternated until no data remains. This ex-

periment will be referenced as ClassLocal izat ion and its results are presented in Section

5.5.3.

4.7.4 Alternation of Low Correlating Methods

In the next approach to alternate two methods, the idea was to combine methods that select

sample subsets that have a low correlation to each other. Based on the experiments done

with the methods described earlier, the correlation between the several methods could be

measured easily as described in Section 4.1.4. The correlation measurements showed that

the Box MaskElBN method has the lowest correlation with the Confmax method compared to

the other combinations for most of the cycles. Therefore, in the experiment Box MaskElBN −

Conf † the first training cycle used Box MaskElBN as the selection strategy and the second

cycle then used Confmax . The two methods are alternated at each cycle till no data is left.

Based on the findings in Section 5.5.1, the combined checkpoint selection was applied in

this experiment. This means that a fair comparison with the other experiments is no longer

possible, but it does give an indication of the results that a combination of all the findings in

this thesis is capable of. The results of this experiment on the NuImages dataset are presented

in Section 5.5.4.

4.7.5 Other Alternating Approaches

During this thesis other method combinations have been evaluated as well. These may not

have unique characteristics that make them a useful combination. Based on the results ob-

tained and the costs involved, it was nevertheless interesting to initiate the following exper-

iments. All three variations of the loss prediction module method showed impressive results

on both or either one of the two tasks. As shown in Section 5.3, their combination in a

non-alternating fashion Losscomb offers a good trade-off between the two single task focused

variations. In Lossod− Lossseg the two single-task focused variations are alternated, instead of

combining the two methods. In this experiment the intermediate checkpoints were selected

based on the object detection performance. In Lossod − Lossseg∗ the same methods have been

alternated, but in addition the checkpoint selection has been alternated as well. In the cycles

were the samples were selected using Lossod , the checkpoint was selected based on the object

detection accuracy. In the cycles where Lossseg was used to choose the next batch of unla-

belled data, the intermediate checkpoint was selected based on the segmentation accuracy.

So far only two different methods have been combined with each other. In the experiment
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referenced as Lossod − Box MaskElBN − Lossseg , the three methods Lossod , Box MaskElBN and

Lossseg were alternated in this order. After the cycles that used Lossod and Box MaskElBN

as the selection strategy, the checkpoint was selected based on the object detection results.

In the cycles of Lossseg , the semantic segmentation results were used to determine the best

checkpoint. The same experiment setting was applied to Box MaskElBN−Lossod−Lossseg . The

only difference is the changed order of the methods, now starting with Box MaskElBN , fol-

lowed by Lossod and Lossseg . Out of all non-alternating methods Confmax has the best perfor-

mance on both object detection and semantic segmentation. This comes at the drawback, that

this method causes one of the highest annotation costs. Therefore, it was worth to investigate

the combination of this well performing, but expensive method with another well performing,

but cheaper method. The intention was to keep the task accuracy high, but lower the overall

annotation costs. The two methods under consideration were Losscomb and Box MaskElBN .

Both methods have comparable performance on the two tasks, but Box MaskElBN has slightly

lower cost. Therefore, method Box MaskElBN was alternated with Confmax in the experiment

called Box MaskElBN − Confmax†, which was described in Section 4.7.4. A combined check-

point selection was applied to this experiment as well. The results achieved on the NuImages

dataset using this alteration of methods are presented and compared in Section 5.6.1.

4.8 Method Comparison

Some of the proposed methods have also been evaluated on two other datasets. These are

the A9 and Cityscapes datasets. Both of them are described in detail in Section 4.1.2. The

settings for each method were the same as on the NuImages dataset. All experiments were

run twice to avoid bias due to possible favourable initialisation. The reported mAP and mIU

is the average of these two runs. The results of the different methods on all datasets are

presented in Section 5.6.1.





Chapter 5

Results

The order of the presented results is as it is in the Sections 4.2-4.6. For each experiment,

the results of the object detection and semantic segmentation will be presented as graph

visualization and more detailed in the form of Tables. In addition to that, the cost-efficiency

graphs are given as well. In Section 5.6 the best methods are compared against each other on

the three datasets NuImages, A9 and Cityscapes. This Section is divided into a quantitative

evaluation in Section 5.6.1, which presents the mAP@0.5 and mIU achieved by the evaluated

methods. The methods are also qualitatively evaluated in the following Section 5.6.2.

5.1 Aggregation Methods

In the first experiment, three different aggregation methods have been compared against

each other on two different methods. The aggregation methods are the sum, maximum and

average of all box confidence scores. The evaluated methods are Least Confidence and 1-

vs-2 margin Sampling, which are described in Section 3.1.1 and 3.1.2. Brust et al. state in

their publication [BKD19] that sum is the best aggregation method. They also mention that

the superior performance of the sum aggregation method comes at higher labelling costs,

as this method tends to select the samples containing a lot of objects. This finding can be

confirmed by the results obtained using the least confidence approach. As can be seen in

Figure 5.1, the average aggregation has the worst performance on both, object detection

and semantic segmentation. The results of sum and max, on the other hand, are close.

A larger difference between the two methods is visible when looking at the cost efficiency

shown in Figure 5.2. Here it becomes clear that the max aggregation method achieves the

same results with fewer required annotations, thus making it the preferred method for this

application and dataset. For the 1-vs-2 margin Sampling approach, however, the obtained

results allow other conclusions to be drawn. As can be seen in Figure 5.3, using average

as the aggregation method results in the highest performance for object detection in the

later training cycles. In earlier training cycles the max aggregation has the best results for

object detection. On the segmentation task, all aggregation methods are achieving close

performance, with again max being best in early cycles and the sum being best in the last

cycle. Even though the differences in cost efficiency are significantly smaller than with the

least confidence approaches, in Figure 5.4 it can be seen that maximum is the most efficient

aggregation method for 1-vs-2 margin sampling as well. The general deviation of the results

between the two methods of least confidence and 1-vs-2 margin sampling could be explained

by the fact that not enough experiments could be conducted per method due to the limited

time. Therefore, the presented results may contain a certain statistical variance. The exact

results of the two approaches and their aggregation variants are given in Table 5.1 for the
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(a) Object Detection mAP@0.5
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(b) Semantic Segmentation mIU

Figure 5.1: A result comparison of the least confidence approaches on the NuImages validation dataset. The

plotted values are the average of multiple runs.
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(b) Semantic Segmentation

Figure 5.2: A cost efficiency comparison of the least confidence approaches on the NuImages validation dataset.

Lower values indicate a better efficiency.
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Figure 5.3: A result comparison of the 1-vs-2 margin sampling approaches on the NuImages validation dataset.

The plotted values are the average of multiple runs.
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Figure 5.4: A cost efficiency comparison of the 1-vs-2 margin sampling approaches on the NuImages validation

dataset. Lower values indicate a better efficiency.

object detection and in Table 5.2 for the semantic segmentation. The two active learning

approaches consistently outperform random selection and reach up to 90% of the full data

performance on both tasks with just 50% of the data samples. This corresponds to just 46%

required object annotations and thus annotation costs compared to the full data training. The

1-vs-2 margin approach requires even fewer annotations. With just 39% annotated objects

of the full training, it achieves 85.39% of the object detection mAP@0.5 and 88.16% of the

semantic segmentation mIU. As the maximum aggregation method gives the best trade-off

between performance on the two tasks, as well as the required annotation effort, these two

will be used in the following experiments. It must be mentioned that these aggregation

variants represent the general methodological performance of least confidence and 1-vs-2

margin sampling, but might not be the best choice for other applications.

5.2 Inconsistency Methods

The methods of this work that use inconsistency as a selection criterion can be divided into

two approaches. One approach focuses on object detection and was described in Section

3.1.3. The other focuses on semantic segmentation and was discussed in Section 3.1.4. Both

approaches are similar in their basic functionality. Both tasks are predicted for the origi-
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Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 70.5

Random 36.77 52.98 60.55 62.96 66.17 66.53 68.03 67.94

Confmax 36.77 54.98 63.61 65.68 65.99 67.78 69.54 69.54

Confsum 36.77 55.28 61.85 65.27 66.72 69.19 69.19 69.23

Confavg 36.77 55.35 57.5 60.68 65.43 65.43 66.04 66.07

1vs2max 36.77 53.81 60.2 63.22 63.55 64.11 67.02 67.96

1vs2sum 36.77 50.73 58.07 59.06 62.63 64.36 64.36 69.16

1vs2avg 36.77 54.66 58.0 61.34 61.34 68.91 69.19 69.45

Table 5.1: The object detection mAP@0.5 results of least confidence and 1-vs-2 margin sampling with the various

aggregation methods on the NuImages validation dataset at each cycle.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 47.71

Random 26.53 40.72 43.17 44.2 44.2 44.44 45.2 45.95

Confmax 26.53 40.45 43.55 45.18 46.26 46.26 46.45 46.83

Confsum 26.53 40.46 43.72 43.98 44.69 46.53 46.71 46.71

Confavg 26.53 40.68 42.53 44.01 44.83 46.08 46.13 46.28

1vs2max 26.53 40.7 42.06 43.54 44.04 45.01 45.01 45.77

1vs2sum 26.53 39.66 41.92 43.45 44.61 44.61 46.53 46.53

1vs2avg 26.53 39.51 41.95 43.8 44.46 44.86 45.85 45.85

Table 5.2: The average semantic segmentation mIU results of least confidence and 1-vs-2 margin sampling with

the various aggregation methods on the NuImages validation dataset at each cycle.

nal image and the same image but horizontally flipped. The results of both predictions are

then compared with each other and their inconsistency is used to determine the next cycle’s

data selection. The results of the inconsistency approaches are visualized in Figure 5.5 and

exact values are given in Table 5.3 for the object detection task and in Table 5.4 for the

semantic segmentation task. One can see that the confidence-based approach InconConfod

outperforms I conod in most of the cycles, implying that taking confidence into account has a

beneficial impact on the end result. This becomes more clear if one looks at the cost-efficiency

of both methods in Figure 5.6. Here, the confidence method has a better cost efficiency for

both tasks. The performance of the Inconseg method and the more sophisticated Inconseg+K L

method is more or less on par. However, Inconseg is simpler to compute and has a better cost

efficiency at later cycles, which makes it the preferable option. An interesting observation is

that the segmentation focused methods Inconseg and Inconseg+K L have better results on the

object detection task, while the object detection focused methods Inconod and InconConfod

have better results on the semantic segmentation task. This indicates that one task can bene-

fit from the other task. Nonetheless, the results are quite close together and could potentially

be affected by statistical variance. However, inconsistency-based methods are generally bet-

ter than random selection and undeniably have better cost-efficiency. However, in terms of

performance, they are subject to the least confidence approach and in terms of cost-efficiency,

they are subject to the 1-vs-2 margin sampling approach. The inconsistency methods are thus

a trade-off between performance and cost-efficiency. Due to the simpler score computation,

the Inconseg method has an inferior computation time, reducing the overall training time. As

the performance of this method is close to or even better than the other methods, Inconseg

will be used in the following experiments and represents the inconsistency-based methods.
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(a) Object Detection mAP@0.5
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(b) Semantic Segmentation mIU

Figure 5.5: A result comparison of the inconsistency approaches on the NuImages validation dataset. The plotted

values are the average of multiple runs.
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Figure 5.6: A cost efficiency comparison of the inconsistency approaches on the NuImages validation dataset.

Lower values indicate a better efficiency.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 70.5

Random 36.77 52.98 60.55 62.96 66.17 66.53 68.03 67.94

Inconod 36.77 50.41 58.81 58.81 61.79 64.17 64.42 66.53

InconConfod 36.77 54.56 55.01 64.91 65.55 65.55 65.95 68.71

Inconseg 36.77 54.14 62.88 62.88 63.3 67.36 67.36 67.76

Inconseg+K L 36.77 56.63 62.28 62.86 66.29 66.29 66.6 66.99

Table 5.3: The average object detection mAP@0.5 results for the various inconsistency methods on the NuImages

validation dataset at each cycle based on multiple runs.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 47.71

Random 26.53 40.72 43.17 44.2 44.2 44.44 45.2 45.95

Inconod 26.53 39.4 42.92 44.19 44.78 45.08 46.16 46.84

InconConfod 26.53 41.01 42.26 44.75 44.75 45.12 45.84 46.32

Inconseg 26.53 39.68 42.72 43.42 43.64 44.31 44.31 44.38

Inconseg+K L 26.53 40.22 43.72 43.72 43.72 44.31 44.31 44.81

Table 5.4: The average semantic segmentation mIU results for the various inconsistency methods on the NuIm-

ages validation dataset at each cycle.
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(a) Object Detection mAP@0.5
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Figure 5.7: A result comparison of the loss prediction module approaches on the NuImages validation dataset.

The plotted values are the average of multiple runs.

5.3 Loss Prediction Module

In Section 3.1.5, three different methods were explained how a loss prediction module can

be built and used. The results of these methods are presented below. The first approach,

Lossod , predicts the loss for only the object detection and uses it to select the next training

samples. The second approach, Lossseg , works just like Lossod but predicts the loss for the

semantic segmentation task instead. In the early training phase, the intuition that the task-

focused method stand out from the other task-focused method in the respective focused task

could be confirmed. But as can be seen in Figure 5.7 and in Table 5.5, this changes as soon as

more than 60% of the data is used. In the later training phase, when more data is available,

Lossseg outperforms Lossod in both tasks. Towards the end, the two methods converge again

in their results on object detection, but Lossseg is still ahead on the semantic segmentation

task as can be seen in Table 5.6. This could indicate, that a sample selection strategy that

focuses solely on the semantic segmentation task could have a more beneficial impact on

the object detection performance than a strategy that just focuses only on object detection.

However, the increased performance of the Lossseg method could be explained by the fact,

that this method selects samples that contain more objects. In Figure 5.8, one can see that the

segmentation focused loss prediction module approach has the worst cost efficiency. At 70%

data, the by Lossseg selected subset of samples contains 99,063 objects, which corresponds

to 88.46% of the objects contained in the full training dataset. On the other side, the from

Lossod selected subset at the same cycle contains only 84,165 objects, which is just 75.16%

of the full training dataset objects. The combined variant Losscombined behaves as expected

and offers a good trade-off performance on both tasks as well as in regards to the cost-

efficiency. At 70% data, the by Losscombined selected sample subset contains 93,139 objects,

which is however slightly higher compared to random selection which has 89,375 objects in

that respective subset. Nonetheless, the combined loss prediction module achieves the best

overall performance at 100% data on both tasks, with +0.21% mAP@0.5 and +0.55% mIU,

compared to random selection. The Losscombined method has therefore been selected for the

remaining experiments.
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(b) Semantic Segmentation

Figure 5.8: A cost efficiency comparison of the loss prediction module approaches on the NuImages validation

dataset. Lower values indicate a better efficiency.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 70.5

Random 36.77 52.98 60.55 62.96 66.17 66.53 68.03 67.94

Lossod 36.77 60.42 62.53 63.24 63.69 65.4 68.57 68.57

Lossseg 36.77 55.04 59.81 62.05 68.22 68.8 68.8 68.8

Losscombined 36.77 54.91 59.73 63.19 65.68 66.75 67.98 68.15

Table 5.5: The average object detection mAP@0.5 results for the various loss prediction module methods on the

NuImages validation dataset at each cycle.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 47.71

Random 26.53 40.72 43.17 44.2 44.2 44.44 45.2 45.95

Lossod 26.53 39.48 42.39 43.14 44.68 44.68 44.76 45.81

Lossseg 26.53 40.2 43.17 44.38 45.94 46.29 46.6 46.6

Losscombined 26.53 40.69 41.75 44.34 44.74 44.82 45.96 46.5

Table 5.6: The average semantic segmentation mIU results for the various loss prediction module methods on the

NuImages validation dataset at each cycle.
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Figure 5.9: A result comparison of the different mask generation approaches applied to the Box Mask method

on the NuImages validation dataset. The plotted values are the average of multiple runs.

5.4 BoxMask Methods

The results of the BoxMask methods are split into two parts. The first one will present the

results achieved by the different mask generation approaches described in Section 3.1.6. The

second part will then focus on the different normalization methods applied to the simple

Box Mask approach, which are described in more detail in Section 3.1.6 as well.

5.4.1 BoxMask - Mask Generation Methods

In the first Box Mask experiment the effect of the various mask generation approaches was

investigated. The approaches are described in detail in Section 3.1.6. As can be seen in the

Figure 5.9 and Table 5.7, the Box Mask approaches are not outperforming Random selec-

tion on the object detection task for most of the training cycles, no matter what method is

used to generate the mask. However, the methods do perform on-par during most of the cy-

cles. On the segmentation task on the other hand, the Box Mask achieves better mIU results

for most of the time. In particular the Box MaskEll ipse approach shows to be a promising

method. If then the cost efficiency is considered, all Box Mask approaches are more efficient

than Random selection. This is visualized in Figure 5.10. At 60% used data samples, the

Box MaskEll ipse method required 12% less annotations as Random selection and reached a

similar accuracy. At this training stage the Box MaskEll ipse approach achieved 88.76% of

the full data object detection accuracy and even 91.64% of its accuracy on the semantic seg-

mentation task. The Box Mask approach is the only method, that outperformed the full data

training on the object detection task. The average mAP@0.5 of two runs is 0.48% better than

the full data training. On the segmentation task however, no BoxMask approach reaches the

accuracy of the full data training.

5.4.2 BoxMask - Normalization Methods

In many cases in the field of machine learning, normalization helps and achieves better re-

sults. In this case, however, this general assumption could not be confirmed. The simple

Box Mask approach uses no normalization and achieves the best results for both object de-

tection and semantic segmentation. The normalization by the number of detected objects

Box MaskNorm leads to significantly worse results, this is shown in Figure 5.11. Normalization
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Figure 5.10: A cost efficiency comparison of the different mask generation approaches applied to the Box Mask

method on the NuImages validation dataset. Lower values indicate a better efficiency.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 70.5

Random 36.77 52.98 60.55 62.96 66.17 66.53 68.03 68.03

Box Mask 36.77 53.8 59.07 59.78 63.98 65.43 65.61 70.98

Box MaskEll ipse 36.77 51.98 60.93 62.58 64.01 66.47 66.73 68.89

Box MaskSegmentation 36.77 52.82 58.29 60.49 66.9 66.9 66.9 67.42

Table 5.7: The average object detection mAP@0.5 results for the various mask generation approaches applied to

the Box Mask method on the NuImages validation dataset at each cycle.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 47.71

Random 26.53 40.72 43.17 44.2 44.2 44.44 45.2 45.95

Box Mask 26.53 40.37 42.36 43.34 44.41 45.12 45.22 46.36

Box MaskEll ipse 26.53 40.62 43.72 43.72 45.11 45.53 45.89 46.49

Box MaskSegmentation 26.53 39.77 42.09 43.05 44.38 44.96 45.81 45.49

Table 5.8: The average semantic segmentation mIU results for the various mask generation approaches applied

to the Box Mask method on the NuImages validation dataset at each cycle.
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Figure 5.11: A result comparison of the different normalization approaches applied to the Box Mask method on

the NuImages validation dataset. The plotted values are the average of multiple runs.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 70.5

Random 36.77 52.98 60.55 62.96 66.17 66.53 68.03 68.03

Box Mask 36.77 52.9 59.13 60.4 63.15 65.43 65.61 70.98

Box MaskNorm 36.77 56.95 60.76 61.16 61.39 62.76 64.69 66.55

Box MaskPixelNorm 36.77 52.24 60.79 60.93 61.55 64.63 64.99 69.48

Box MaskBN 36.77 58.19 61.25 63.46 65.05 66.31 66.17 68.1

Table 5.9: The average object detection mAP@0.5 results for the various normalization methods applied to the

Box Mask method on the NuImages validation dataset at each cycle.

by the number of pixels in the image Box MaskPixelNorm performs better than the previously

mentioned normalization but is not better than the approach that does not use normalization.

The exact results are given in the Tables 5.9 and 5.10. If one looks at the cost-efficiency in Fig-

ure 5.12, one can see that the Box MaskNorm normalization leads to higher annotation costs.

The performance and annotation costs of the two methods Box Mask and Box MaskPixelNorm

are close together. This suggests that normalization by the number of pixels of the entire

image has no effect. One possible explanation is that the number of pixels for each image

is the same, so the score of an image is only scaled and not normalized. In Box MaskBN the

number of unequal pixels within a bounding box are normalized by the size of the bounding

box. This approach achieves the best accuracy on the object detection task for all but the last

training cycle, if compared to the other normalization methods. It is also better performing

than random selection for the first three cycles, reaching 90.01% of the full data training

object detection mAP@0.5 accuracy with just 56.9% of the available data used. On the se-

mantic segmentation task, the BoxNorm (BN) approach is the best normalization for most

of the training cycles. The highest accuracy towards the end is achieved by the Box Mask

experiment, which did not apply normalization at all. This approach also has, together with

PixelNorm the best cost efficiency, requiring only 48.61% annotations of all available anno-

tations at the 60% cycle. When the great efficiency of the not normalized Box Mask approach

was finally confirmed, the remaining experiments with the BoxNorm normalization were

already started, as it looked the most promising at that time. Experiments with the pure

Box Mask approach remain for future research.
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Figure 5.12: A cost efficiency comparison of the different normalization approaches applied to the Box Mask

method on the NuImages validation dataset. Lower values indicate a better efficiency.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 47.71

Random 26.53 40.72 43.17 44.2 44.2 44.44 45.2 45.95

Box Mask 26.53 40.08 42.32 43.22 44.35 45.12 45.22 46.36

Box MaskNorm 26.53 38.95 42.09 43.45 44.14 44.0 44.95 46.13

Box MaskPixelNorm 26.53 39.78 42.55 43.59 43.89 44.56 45.18 46.13

Box MaskBN 26.53 40.38 43.17 43.67 44.2 44.98 45.75 45.88

Table 5.10: The average semantic segmentation mIU results for the various normalization methods applied to the

Box Mask method on the NuImages validation dataset at each cycle.

5.5 Combined Methods

As already mention in Section 4.7, multiple combinations of methods are feasible. And not

only the sample selection strategy can vary, the checkpoint selection has various options to

choose from. This section will present the results of the experiments described in the subsec-

tions of Section 4.7. The order is the same, starting with the experiments on the checkpoint

selection strategies in Section 5.5.1, followed by the results of the Hal f Spli t approaches

in Section 5.5.2. In the Sections 5.5.3 and 5.5.4 the alternating method experiments are

presented. The results of the remaining alternating methods can be found in Section 5.6.1.

5.5.1 Checkpoint Selection

If the checkpoint selection based on the object detection is compared against the checkpoint

selection based on the semantic segmentation, no clear conclusion can be made. Both se-

lection strategies achieve results that are close together over all training steps as shown in

Figure 5.13. In some cycles, the object detection based strategy outperforms the segmenta-

tion based one on both tasks, and in some cycles, it’s the opposite way around. What strategy

is performing best in which cycles is marked in Table 5.11 and 5.12 . However, the checkpoint

selection that considers both tasks has a clear advantage on both tasks towards the end of

the training if compared to the other two approaches. The Inconseg method with a combined

checkpoint selection outperforms not only the two single-task checkpoint selection strategies,

but also random selection by approximately 1% on both the object detection and semantic

segmentation at 100% used training data. This might not seem like a huge improvement, but
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Figure 5.13: A result comparison of the different checkpoint selection approaches applied to the Inconseg method

on the NuImages validation dataset. The plotted values are the average of multiple runs.
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Figure 5.14: A cost efficiency comparison of the different checkpoint selection approaches applied to the Inconseg

on the NuImages validation dataset. Lower values indicate a better efficiency.

considering the cost, this combined selection strategy shows its full potential. As visualized

in Figure 5.14, this approach has the best cost efficiency and requires only 92.46% annotated

objects compared to random selection. For the Confmax method the combined checkpoint

selection is outperforming the object detection based checkpoint selection most of the time.

While it is better for all cycles on the segmentation task, the object detection based check-

point selection achieves better accuracy in the later cycles on the object detection task. The

required objects are on-par for both object detection based and combined checkpoint selec-

tion with the Confmax method with a slight favour towards the combined selection.

5.5.2 Half Split

Two experiments were conducted to investigate the effect of an alternation of two methods

at roughly the half of the active learning training cycles. In both experiments one method

was used to the select the data for the labeling until 60% data has been used. From there

on a different method was used to determine the best samples for the remaining labeling.

The intuition was that a method that has a good performance in the early training phase,

but a converging performance in the later phase, could be boosted by switching the sample

selection strategy after 60% data have been selected. In Loss + 1vs2 this intuition was not

validated. Even though the performance on the object detection task was boosted after the
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Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 70.5

Random 36.77 52.98 60.55 62.96 66.17 66.53 68.03 68.03

Inconseg−od 36.77 54.14 62.88 62.88 63.3 67.36 67.36 67.76

Inconseg−seg 36.77 55.29 60.77 62.85 64.47 64.67 66.06 66.06

Inconseg−both† 36.77 56.41 62.46 63.03 66.0 66.0 68.9 68.9

Confmax−od 36.77 54.98 63.61 65.68 65.99 67.78 69.54 69.46

Confmax−both† 36.77 58.99 66.63 66.63 66.63 66.79 68.01 68.01

Table 5.11: The average object detection mAP@0.5 results for the various checkpoint selection approaches

applied to the Inconseg and Confmax method on the NuImages validation dataset at each cycle.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 47.71

Random 26.53 40.72 43.17 44.2 44.2 44.44 45.2 45.95

Inconseg−od 26.53 39.68 42.72 43.42 43.64 44.31 44.31 44.38

Inconseg−seg 26.53 39.44 41.86 43.75 44.85 45.23 45.62 46.16

Inconseg−both† 26.53 41.12 43.06 44.03 44.21 45.94 46.15 47.01

Confmax−od 26.53 40.45 43.55 45.18 46.26 46.23 46.45 46.83

Confmax−both† 26.53 43.06 44.98 45.54 46.35 46.85 46.85 46.89

Table 5.12: The average semantic segmentation mIU results for the various checkpoint selection approaches

applied to the Inconseg and Confmax method on the NuImages validation dataset at each cycle.

60% cycle, it is not outperforming the single 1vs2avg method at these cycles as can be seen

in Table 5.13. On the segmentation task, the combination of the two methods lead to a small

improvement of less than 0.1% compared to its single trained components, shown in Table

5.14. The combination of Lossod with Box MaskElBN outperforms its best performing single

trained component Box MaskElBN by +2.06% mAP@0.5 and +1.17% mIU at 100% used

data. This indicates, that combining two methods at a certain point during the training does

help to increase the performance, but it does matter which methods are combined. However,

it must be mentioned that the Loss + Box Mask has a lower cost efficiency compared to its

single trained components as shown in Figure 5.16. The higher annotation costs could be an

explanation for the higher accuracy. A comparison of the object detection accuracy of both

the Hal f Spli t approaches and their components is visualized in Figure 5.15.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 70.5

Random 36.77 52.98 60.55 62.96 66.17 66.53 68.03 68.03

1vs2avg 36.77 54.66 58.0 61.34 62.08 68.91 69.19 69.45

Lossod 36.77 60.42 62.53 63.24 63.69 65.4 68.57 66.17

Box MaskElBN 36.77 58.19 61.25 63.46 65.05 66.31 66.17 68.1

Loss+ 1vs2 36.77 58.09 61.43 63.22 67.07 67.07 67.07 67.72

Loss+ Box Mask 36.77 57.87 64.35 65.82 68.59 68.59 68.59 70.16

Table 5.13: The average object detection mAP@0.5 results for the Hal f Spli t approaches compared to their

single trained components on the NuImages validation dataset at each cycle.
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Figure 5.15: A result comparison of the Hal f Spli t approaches against its single trained components on the

NuImages validation dataset. The plotted values are the average of multiple runs.
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(b) Semantic Segmentation

Figure 5.16: A cost efficiency comparison of the Hal f Spli t approaches against its single trained components

on the NuImages validation dataset. Lower values indicate a better efficiency.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 47.71

Random 26.53 40.72 43.17 44.2 44.2 44.44 45.2 45.95

1vs2avg 26.53 39.51 41.95 43.8 45.37 45.37 45.85 45.85

Lossod 26.53 39.48 42.39 43.14 44.68 44.68 44.76 45.81

Box MaskElBN 26.53 40.38 43.17 43.67 44.2 44.98 45.75 45.88

Loss+ 1vs2 26.53 40.18 43.66 44.27 45.0 45.93 45.93 45.93

Loss+ Box Mask 26.53 40.88 43.28 44.23 44.59 45.94 46.53 47.05

Table 5.14: The average semantic segmentation mIU results for the Hal f Spli t approaches compared to their

single trained components on the NuImages validation dataset at each cycle.
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(b) Semantic Segmentation mIU

Figure 5.17: A result comparison of the alternating classification and localization optimizer approach against its

non-alternating components on the NuImages validation dataset. The plotted values are the average of multiple

runs.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 70.5

Random 36.77 52.98 60.55 62.96 66.17 66.53 68.03 68.03

1vs2max 36.77 53.81 60.2 63.22 63.84 64.11 67.02 67.96

Box MaskElBN 36.77 58.19 61.25 63.46 65.05 66.31 66.31 68.1

ClassLocal izat ion 36.77 53.45 59.81 60.8 62.54 67.45 67.45 67.45

Table 5.15: The average object detection mAP@0.5 results for the alternating classification and localization opti-

mizer approach against its non-alternating components on the NuImages validation dataset at each cycle.

5.5.3 Alternation of Low Correlating Methods

Alternating two methods that focus on the optimization of the classification and the local-

ization, respectively, should in theory boost the accuracy of both the classification and the

localization of objects and following the improved accuracy, the overall performance should

be increased as well. However, the results presented in Figure 5.17 and Table 5.15 show that

this is not the case for the object detection task. The Classi f icat ionLocalizat ion method is

only at 80% used data better than all three other methods. During all other cycles, there is

always one method performing better. In the early training cycles, Box MaskElBN is outper-

forming the other methods with a large margin achieving an mAP of 58.19%, which is nearly

5% higher than the achieved mAP of the alternating approach. And also in the last cycle

the not alternating Box MaskElBN is the best performing method, outreaching the alternating

method by 0.65% and performing on-par with random selection. On the semantic segmen-

tation, however, the alternating training schema results in an improvement of the accuracy.

ClassLocal izat ion is the best performing method in all but the first two cycles. Looking at the

cost-efficiency shown in Figure 5.18, combining the two methods in an alternating fashion

is a trade-off between the two methods. This indicates, that the alternating training schema

has the potential to make use of both a strong, but expensive method and a bit weaker, but

cheap method. This achieves a good performance while keeping the annotation effort low.



48 5 Results

30 40 50 60 70 80 90 100 110
Used Data in %

800

1000

1200

1400

1600
An

no
ta

te
d 

Ob
je

ct
s /

 O
bj

ec
t M

ea
n 

Av
er

ag
e 

Pr
ec

isi
on

 o
n 

th
e 

va
lid

at
io

n 
se

t

mAP comparison: ['person', 'car', 'truck', 'bus', 'motorcycle', 'bicycle']
Random
1-vs-2_max
BoxMaskEllipse_BoxNorm
Alt_ClassLocalization

(a) Object Detection

30 40 50 60 70 80 90 100 110
Used Data in %

1000

1200

1400

1600

1800

2000

2200

2400

An
no

ta
te

d 
Ob

je
ct

s /
 S

eg
em

en
ta

tio
n 

M
ea

n 
In

te
rs

ec
tio

n 
ov

er
 U

ni
on

 o
n 

th
e 

va
lid

at
io

n 
se

t

mean_iu comparison: ['person', 'car', 'truck', 'bus', 'motorcycle', 'bicycle']
Random
1-vs-2_max
BoxMaskEllipse_BoxNorm
Alt_ClassLocalization

(b) Semantic Segmentation

Figure 5.18: A cost efficiency comparison of the alternating classification and localization optimizer approach

against its non-alternating components on the NuImages validation dataset. Lower values indicate a better effi-

ciency.

Experiment 30% 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - - 47.71

Random 26.53 40.72 43.17 44.2 44.2 44.44 45.2 45.95

1vs2max 26.53 40.7 42.06 43.54 44.06 45.01 45.01 45.77

Box MaskElBN 26.53 40.38 43.17 43.67 44.2 44.98 45.75 45.88

ClassLocal izat ion 26.53 40.66 42.77 44.3 44.53 45.03 45.9 46.53

Table 5.16: The average semantic segmentation mIU results for the alternating classification and localization

optimizer approach against its non-alternating components on the NuImages validation dataset at each cycle.

5.5.4 Alternation of Low Correlating Methods

The analysis of the dataset correlations of all methods with each other showed, that the

two methods Confmax and Box MaskElBN have the lowest correlation averaged over all cy-

cles. Therefore, these two were combined in an alternating training fashion, starting with

Box MaskElBN in the first cycle. The progress of the accuracy on the two tasks compared

to the non-alternating methods is visualized in Figure 5.19. On the semantic segmentation

task, the alternation of the two methods does not result in an improvement. In most of the

cycles, Confmax remains the superior method. Only in the cycle that used 80% of the data,

the alternating approach is slightly better. However, the margin between the alternating ap-

proach and the non-alternating Confmax method is so small, that it can be neglected. On the

other hand, the margin between the two approaches is larger on the object detection task.

The alternating method achieves +2.62% mAP@0.5 at 80% data compared to Confmax and

even +4.09% mAP@0.5 compared to Box MaskElBN at the same cycle. The cost-efficiency of

Box MaskElBN − Confmax† is slightly better compared to Confmax and just marginally worse

compared to Box MaskElBN as shown in Figure 5.20. It cannot be clearly said whether the

combination of the two methods is causing the improved accuracy or the combined check-

point selection that has been used for the Box MaskElBN − Confmax† experiment. This does

also make the comparison against the non-alternating methods not completely fair. Nonethe-

less, it is the best overall method and thus, gives a good indication of what can be achieved

with the alternating methods approach and the checkpoint selection strategy.
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(b) Semantic Segmentation mIU

Figure 5.19: A result comparison of the alternating methods with the lowest dataset correlation against the non-

alternating methods on the NuImages validation dataset. The plotted values are the average of multiple runs.
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(b) Semantic Segmentation

Figure 5.20: A cost efficiency comparison of the alternating methods with the lowest dataset correlation against

the non-alternating methods on the NuImages validation dataset. Lower values indicate a better efficiency.

Experiment 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - 70.5

Random 52.98 60.55 62.96 66.17 66.53 68.03 68.03

Confmax 54.98 63.61 65.68 65.99 67.78 69.54 69.54

Box MaskElBN 58.19 61.25 63.46 65.05 66.31 66.31 68.1

Box MaskElBN − Confmax† 56.29 63.36 65.61 65.98 70.4 70.4 70.4

Table 5.17: The average object detection mAP@0.5 results for the alternating methods with the lowest dataset

correlation against the non-alternating methods on the NuImages validation dataset at each cycle.

Experiment 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - 47.71

Random 40.72 43.17 44.2 44.2 44.44 45.2 45.95

Confmax 40.45 43.55 45.18 46.26 46.26 46.45 46.83

Box MaskElBN 40.38 43.17 43.67 44.2 44.98 45.75 45.88

Box MaskElBN − Confmax† 40.17 42.92 44.93 46.08 46.21 46.5 46.67

Table 5.18: The average semantic segmentation mIU results for the alternating methods with the lowest dataset

correlation against the non-alternating methods on the NuImages validation dataset at each cycle.
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5.6 Method Comparison

In this section the best performing methods are compared against each other. This com-

parison is split into two parts. First, a quantitative comparison in Section 5.6.1, where the

mAP@0.5 and the mIU on the validation subset of the datasets NuImages, A9 and Cityscapes

are presented. And second, a qualitative comparison of the predictions on a selected set of

input images from each dataset. In addition, the top- and lowest scored samples from each

dataset are visualized for some of the methods in Section 5.6.2. For brevity the following

notations were used. Alternating methods are indicated with the − symbol. The Hal f Spli t

methods are displayed with the + symbol. The † symbol indicates that the combined check-

point selection has been used and ∗ indicates an alternating checkpoint selection.

5.6.1 Quantitative Results

NuImages

On the NuImages dataset, the active learning achieved great results as shown in Table 5.19.

Random selection was outperformed by a non-alternating method for most of the cycles.

Only in the cycle that used 70% of the data, the random selection approach has the highest

mAP@0.5 of all non-alternating methods. The best single method is, in this experimental set-

ting, is the least confidence approach using the maximum as aggregation method Confmax .

This method is simple, easy to apply for most object detection architectures and yet very

effective. Its accuracy is highly competitive in both object detection and semantic detection.

Table 5.20 shows that the least confidence method has a strong performance on the seman-

tic segmentation as well. It even outperforms methods that were specifically designed for

semantic segmentation such as Inconseg . The only drawback of this method is the high an-

notation costs that this selection approach causes. The loss prediction module approach in

general, and especially the combined approach Losscomb achieves comparable accuracy on

both tasks and has a slightly better cost-efficiency. The novel Box Mask approach achieves

competitive performance on both tasks as well and has an even better cost-efficiency com-

pared to the two prior mentioned methods. The other newly introduced method Inconseg

has the best overall cost efficiency, which comes at the cost of a decreased object detection

accuracy. The conducted experiments show that the alternation of two or more methods

boosts the object detection accuracy. It is not possible to make a clear decision on which

methods are best combined with each other and in which order. However, it is obvious that

combining two methods that perform well results in a boosted overall accuracy. Combining

a method that performs well on one task with a method that performs well on another task

is also a good option. An increase in accuracy on the semantic segmentation task due to

the alternation of two methods is not as strongly visible as it is the case for the object de-

tection task. Another observation is that the checkpoint selection has a great influence on

the final results. The combined checkpoint selection achieves the best results, both for object

detection and semantic segmentation. It is better than the single-task focused selection and

also better than the alternating, method-specific selection. Finally, it must be said that none

of the methods investigated yielded in better results than the full data training. This could

have various reasons, such as the implementation, the learning rate, the dataset split and

others. More on that in Section 7. It is also worth mentioning that the NuImages dataset

was curated by already applying active learning. Therefore, it is impressive to see, that the

proposed methods and training techniques were still able to improve the accuracy compared

to random selection.
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Experiment 40% 50% 60% 70% 80% 90% 100%

Full - - - - - 70.5

Random 52.98 60.55 62.96 66.17 66.53 68.03 68.03

Confmax 54.98 63.61 65.68 65.99 67.78 69.54 69.54

1vs2max 53.81 60.2 63.22 63.84 64.11 67.02 67.96

Losscombined 56.06 62.44 63.19 65.68 68.07 68.07 68.15

Box MaskElBN 58.19 61.25 63.46 65.05 66.31 66.31 68.1

Box MaskK L 58.79 60.0 63.38 64.92 64.94 66.04 67.78

Inconseg−seg 55.29 60.77 62.85 64.47 64.47 66.0 66.57

ClassLocal izat ion 53.45 59.81 61.08 63.88 66.33 66.35 66.48

Lossod − Lossseg 58.74 64.59 65.4 66.53 67.2 67.7 69.59

Lossod − Lossseg∗ 52.99 59.37 64.99 64.99 69.21 69.21 68.92

Lossod − Box MaskElBN − Lossseg 59.02 62.56 63.85 64.54 66.02 66.05 67.94

Box MaskElBN − Lossod − Lossseg 49.08 57.44 63.41 65.79 65.79 67.3 67.3

Box MaskElBN − Confmax† 56.29 63.36 65.61 65.98 70.4 70.4 70.4

Lossod − Confmax† 55.13 60.97 66.16 66.16 66.16 69.43 69.43

Lossod + 1vs2avg 58.09 61.43 63.22 67.07 67.07 67.07 67.72

Lossod + Box MaskElBN † 57.87 64.35 65.82 68.59 68.59 68.59 70.16

Table 5.19: The average object detection mAP@0.5 results of the best of all evaluated methods on the NuImages

validation dataset at each cycle.

Experiment 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - 47.71

Random 40.72 43.17 44.2 44.2 44.44 45.2 45.95

Confmax 40.45 43.55 45.18 46.26 46.26 46.45 46.83

1vs2max 40.7 42.06 43.54 44.06 45.01 45.01 45.77

Losscombined 40.45 42.87 44.34 44.74 45.09 45.96 46.5

Box MaskElBN 40.38 43.17 43.67 44.2 44.98 45.75 45.88

Box MaskK L 40.19 42.9 43.88 43.97 44.73 44.84 45.87

Inconseg−seg 39.44 41.86 43.75 44.85 45.7 45.93 46.2

ClassLocal izat ion 40.66 42.77 44.06 44.33 45.06 45.62 46.53

Lossod − Lossseg 40.68 43.49 43.98 44.34 45.11 45.82 45.82

Lossod − Lossseg∗ 40.26 42.4 44.47 44.84 45.28 46.39 46.77

Lossod − Box MaskElBN − Lossseg 41.46 42.92 43.97 44.76 45.04 46.01 46.38

Box MaskElBN − Lossod − Lossseg 38.33 42.54 43.48 44.68 45.38 45.55 46.85

Box MaskElBN − Confmax† 40.17 42.92 44.93 46.08 46.21 46.5 46.67

Lossod − Confmax† 41.4 43.94 44.47 45.3 45.35 47.07 47.07

Lossod + 1vs2avg 40.18 43.66 44.27 45.0 45.93 45.93 45.93

Lossod + Box MaskElBN † 40.88 43.28 44.23 44.59 45.94 46.53 47.05

Table 5.20: The average semantic segmentation mIU results of the best of all evaluated methods on the NuImages

validation dataset at each cycle.
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Experiment 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - 65.48

Random 46.79 46.79 46.79 54.15 55.37 64.06 64.06

Confmax 41.08 45.74 49.37 49.37 51.32 51.32 54.02

Confmax† 44.69 44.69 55.84 55.84 55.84 55.84 55.84

1vs2max 42.17 59.68 59.68 59.68 61.48 66.46 66.46

Losscombined 44.51 44.51 53.67 53.67 55.02 55.02 55.02

Inconseg−seg 38.03 43.23 52.84 52.84 56.82 56.82 56.82

Inconseg−both† 43.63 43.63 44.12 48.57 53.88 53.88 53.88

Box MaskEll ipseBN 39.28 41.6 52.74 56.05 56.05 56.05 56.05

Box MaskK L 43.69 44.49 53.41 56.19 56.19 56.19 56.19

Lossod − Lossseg 51.36 51.36 51.36 51.36 51.36 51.36 60.67

Box MaskElBN − Lossod − Lossseg 34.39 41.29 48.07 48.07 67.31 69.32 69.32

Lossod − Box MaskElBN − Lossseg 48.85 48.85 52.62 52.62 52.62 52.62 53.3

Box MaskElBN − Lossod − Lossod† 40.87 50.31 50.31 52.73 56.07 56.07 56.07

Lossod − Confmax 37.65 46.68 46.68 46.68 54.86 54.86 55.15

Box MaskElBN − Confmax 46.24 63.92 63.92 63.92 63.92 63.92 63.92

Lossod + Box MaskElBN † 46.9 54.94 54.94 57.99 57.99 57.99 57.99

Table 5.21: The average object detection mAP@0.5 results of all evaluated methods on the A9 validation dataset

at each cycle.

A9

The object detection results of the conducted experiments on the A9 dataset are given in

Table 5.21. This draws a slightly different picture than the results on the NuImages dataset.

On the object detection, the 1vs2max method achieves the best accuracy and outperforms the

other non-alternating methods by a large margin. This approach has the overall lowest costs

as it requires only 79.43% of the full dataset annotations and yet it achieves higher accuracy

than the full data training. The overall best accuracy is again reached through the method

alternating training strategy. Box MaskElBN − Lossod − Lossseg has a +3.84% mAP@0.5 com-

pared to the full data training and used only 81.03% of the full dataset annotations. This

validates the finding from the NuImages dataset, that the alternating training strategy boosts

the overall object detection accuracy. This can also be observed for the semantic segmen-

tation task as shown in Table 5.22. However, the margin between the non-alternating and

the alternating methods is significantly low. This indicates again, just like on the NuImages

dataset, that the conducted sample selection strategies are more suitable for the object detec-

tion task. The effectiveness of active learning on a small dataset is arguable and especially for

the segmentation task, the scenes in the dataset might not be diverse enough, which could be

a possible explanation for the poor improvement achieved by using active learning. On the

other hand, even though the accuracy of the full data training is not reached for the semantic

segmentation task, the required annotation costs are much lower if active learning is used.

The Lossod − Confmax approach, for example, required just 41.60% of the full data annota-

tions to reach 92.90% of the full data training mIU. It must also be mentioned that the full

data training most likely overfitted the training and validation data. This becomes visible if

looked at the qualitative results presented in Section 5.6.2.
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Experiment 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - 40.03

Random 30.96 34.55 36.35 37.48 37.84 38.11 38.11

Confmax 32.53 33.67 33.67 35.88 36.14 37.28 37.65

Confmax† 33.24 34.81 36.63 38.11 38.11 38.11 38.79

1vs2max 31.3 33.69 35.08 35.86 35.86 37.93 37.93

Losscombined 31.73 33.1 36.09 36.09 36.09 37.89 37.89

Inconseg−seg 32.81 32.81 33.45 36.82 37.97 38.17 38.57

Inconseg−both† 29.53 32.64 35.7 36.52 38.0 38.34 38.34

Box MaskEll ipseBN 30.89 34.3 35.84 35.84 37.53 37.53 37.53

Box MaskK L 32.55 34.0 35.7 37.46 37.46 38.08 38.13

Lossod − Lossseg 32.37 32.37 34.4 34.44 34.44 37.4 37.4

Box MaskElBN − Lossod − Lossseg 28.86 33.45 34.57 37.04 38.34 38.34 38.34

Lossod − Box MaskElBN − Lossseg 33.02 33.59 34.07 36.02 36.17 38.01 38.61

Box MaskElBN − Lossod − Lossod† 30.48 32.42 35.78 36.72 36.98 37.62 37.83

Lossod − Confmax 33.69 35.42 37.19 37.25 37.28 38.7 38.91

Box MaskElBN + Confmax 33.54 35.23 36.72 37.44 38.14 38.96 38.96

Lossod + Box MaskElBN † 31.74 34.9 35.82 36.54 37.65 37.97 38.47

Table 5.22: The average semantic segmentation mIU results of all evaluated methods on the A9 validation dataset

at each cycle.

Cityscapes

Due to the large dataset size and the resulting training time, fewer experiments could be

conducted on this dataset. The mean average precision of the object detection is shown in

Table 5.23 and the mean intersection over union results of the semantic segmentation can be

found in Table 5.24. While in the early three cycles always at least one active learning method

outperforms random selection on the object detection task, the opposite is the case for the

remaining cycles. This indicates, that active learning is only beneficial until a certain amount

of data has been used. From that point on, the effectiveness of active learning converges and

is no better than random selection. Nonetheless, active learning helps to reduce the anno-

tation costs, while keeping the mAP@0.5 relatively competitive. The Box MaskElBN method

achieves 93.26% of the full data trained mAP@0.5 with just using 89.72% of the available

fine annotated objects. The segmentation results achieved by the various methods are again

closely together. The combined loss prediction module is outperforming random selection on

the segmentation task by +0.26% and required only 91.81% of the fine annotated objects to

reach 95.69% of the full data trained mIU.

5.6.2 Qualitative Results

In this section qualitative results on the three datasets NuImages, A9 and Cityscapes are

presented. For each dataset, there are the predictions of both object detection and semantic

segmentation on four randomly selected images from the test sets visualized. The predictions

are taken from the models trained using the various sample selections strategies. The results

are shown for two training states. One is after 40% of the dataset has been used to train the

model and the other is after 100% of the data samples have been used during training. Table

5.25 shows to which class a colour belongs in the prediction. In addition to the prediction

results, the samples with the highest and lowest scores for each sample selection method
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Experiment 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - 58.57

Random 40.62 46.13 48.73 52.08 54.24 56.93 57.27

Confmax 44.82 44.82 46.25 47.67 51.2 52.26 54.58

1vs2max 39.39 44.91 45.54 49.6 50.08 52.39 54.69

Inconseg−seg 42.79 47.02 49.9 51.97 53.28 53.28 53.28

Losscombined 42.68 46.49 50.14 50.3 51.88 52.27 52.97

Box MaskEll ipseBN 41.88 45.7 50.57 50.6 52.03 54.62 56.48

Lossod − Lossseg 42.82 46.84 49.5 50.53 50.53 53.43 53.64

Box MaskElBN − Lossod − Lossseg 39.52 45.86 48.32 48.32 48.32 53.41 53.48

Lossod − Box MaskElBN − Lossseg 40.32 44.34 46.17 51.67 52.38 53.63 53.63

Table 5.23: The average object detection mAP@0.5 results of all evaluated methods on the Cityscapes validation

dataset at each cycle.

Experiment 40% 50% 60% 70% 80% 90% 100%

Full - - - - - - 51.25

Random 44.8 46.56 47.66 47.66 48.35 48.65 49.03

Confmax 45.78 46.65 46.94 47.69 48.25 48.32 49.05

1vs2max 45.15 46.26 47.11 47.51 47.97 48.8 49.2

Inconseg−seg 43.4 46.5 47.16 47.72 48.16 48.71 49.1

Losscombined 44.81 46.53 47.59 48.08 48.36 49.04 49.29

Box MaskEll ipseBN 45.21 46.53 46.57 47.45 48.36 48.97 48.97

Lossod − Lossseg 46.08 46.58 47.17 48.31 48.8 48.82 49.11

Box MaskElBN − Lossod − Lossseg 44.69 46.36 47.11 47.62 48.05 48.76 48.76

Lossod − Box MaskElBN − Lossseg 45.61 46.44 47.5 47.65 48.15 48.43 49.05

Table 5.24: The average semantic segmentation mIU results of all evaluated methods on the Cityscapes validation

dataset at each cycle.
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� Pedestrian � Car � Motorcycle � Ignore

� Bus � Truck � Bicycle

� Traffic Sign � Rider � Sidewalk � Traffic Light

� Road � Vegetation � Terrain � Sky

Table 5.25: The color codes for both the object detection and semantic segmentation.

are presented at the same training states. The highest score does not necessarily mean the

absolute score value but lists the images most likely to be selected for labelling. This is due

to the fact that some methods favour lower scores, while other methods selected the highest

scored samples. The results and selected samples from the other states can be found online

[Fri22].

NuImage

The images for the qualitative analysis on the NuImages dataset are randomly selected from

the test set. The ground truth for those images is not publicly available. The results of the

state at the first active cycle, which corresponds to 40% used data, and the last active cycle,

where 100% of the data is used, are shown in the Figures 5.21 and 5.22, respectively. In

Table 5.25 the color of each class is visualized. The confidence threshold for the NMS was

set to 60% during the inference. The presented qualitative results show that the model can

produce decent results at just 40% data used, no matter what method is applied. While the

difference between the methods might not look much at first, they do exist. One example

where the difference is well observable is the first column. In this image, a van is parked in

the left-hand side background. Only Confmax and Inconsegseg detect and classify this object

correctly at 40% data. At the later training stage where 100% data was used, the models of

all methods detect this object. This shows, that the two prior mentioned methods have an

advantage against the others regarding objects like this particular van. More interesting is

the selection made by the presented methods. The samples at the first cycle with the highest

scores are shown in Figure 5.23 and the images with the lowest scores are shown in Figure

5.24. The highest scores samples at the last cycle are displayed in Figure 5.25 and the lowest

scored samples of the same cycle can be found in Figure 5.26. Looking at these selected

images, the Inconsegseg is particularly interesting. The lowest scored images are all taken at

night, showing no objects at all. 1vs2max is similar, as the lowest scored images contain no

objects as well. In general, one can see that images that contain one large object blocking

the scene are more likely to have a low score. The image of the FedEx car, for example, is

listed as one of the lowest scored images for many methods. The well-performing methods

Box MaskElBN − Confmax† and Lossod + Box MaskElBN † stand out because of their selection

of very diverse scenes. The set of highly scored images contains scenes at night, in difficult

weather conditions and scenes with few and many objects in them. Some images are selected

from many methods equally as either highly scored or low scored. This indicates that there

exists a subset in the dataset that can be considered a good or bad selection, regardless of the

methods used. A combination of the methods at the same cycle could extract those easily. An

experiment in this direction remains for future work.

A9

For the qualitative analysis of the methods on the A9 dataset, a sequence of unseen data

taken from each of the four cameras has been used. The presented images here are a random

selection from this set. The inference results on the first cycle that used 40% of the training

data are shown in Figure 5.27. The predictions on the same images using the models that
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used 100% of the training data are visualized in Figure 5.28. The NMS threshold for the

inference on the A9 dataset was set to 30%. The poor results of the full data trained model

in the first coloured row indicate clearly, that the model overfitted the training and validation

data. This was hard to avoid as the number of iterations should match the iterations per-

formed for all experiments to make a fair comparison possible. This also shows, that if only

a small amount of data is available, active learning can help to prevent overfitting and still

reach high accuracy. In between the methods, the differences in the prediction quality are

minor. The shadows of the overhead structure in the first column image are often detected

as an object in the semantic segmentation. The same accounts for the green verge between

the two driving lanes in the third column image. These incorrect classifications are solved in

the last training cycle. The object detection is more accurate as well in general, but a clear

distinction between the selection methods cannot be made. Again, more interesting insights

can be gained if looked at the Figures 5.29 and 5.30 showing the highest and lowest scored

images at the first training cycle. In general, most of the methods select crowded scenes for

the next training cycle and score the images with no or only a few objects lower. The two

methods Box MaskEll ipseBN and Lossod− Lossseg both selected an image from the scene of an

accident, which is from the human annotator perspective an interesting sample for the train-

ing of a model. The Box MaskEll ipseBN −Confmax method selected multiple images from the

scene of a motorcycle as the highest scored images. This again, just like on the NuImages

dataset, shows that this method selects a diverse set of objects. This furthermore shows that

the scoring methodology works as similar scenes have a similar score. However, this is usu-

ally not desired, as two completely different scenes promise a higher training effect. This will

be taken into account in future developments of the method. The highest and lowest scored

images at the last cycle are presented in Figure 5.31 and 5.32, respectively. Here again, im-

ages from the car accident sequence are selected by multiple methods. This confirms the

assumption made in Section 5.6.2 that there is a specific subset that is considered especially

valuable for the training progress, which could be defined by using multiple methods in the

same cycle.

Cityscapes

The predictions on a randomly selected subset of the Cityscapes test data is shown in Figure

5.33 for the first cycle and Figure 5.34 shows the results of the last cycle on the same set of

images. While the semantic segmentation results are quite accurate with just 40% used data,

the object detection results are relatively bad at this training stage. This is most likely due to

not optimized NMS threshold, which was set to 40% during the inference of this qualitative

evaluation. The accuracy of both tasks is improving a lot over all training cycles resulting in

a good accuracy at 100% used data. The samples at the first cycle with the highest scores are

shown in Figure 5.35 and the images with the lowest scores are shown in Figure 5.36. The

highest scored samples at the last cycle are displayed in Figure 5.37 and the lowest scored

samples of the same cycle can be found in Figure 5.38. The selection on the Cityscapes

dataset correlates to the one on the NuImages and A9 dataset. The higher scored images are

mainly crowded scenes containing many cars and pedestrians. The lowest scored images are

for most of the methods scenes with no objects and a neutral background. In contrast to that

stands one high scored image from the Lossod − Lossseg method shown in the last column of

the third-last row of Figure 5.35. This image contains no objects, but has a very interesting

background. This indicates that a model might not only be uncertain about an object shape

or color, but the background of a scene can also add a lot of uncertainty to the predictions,

especially for the semantic segmentation task. Another insight that can be gained by looking

at Figure 5.37 is that towards the end of the training, most methods select less crowded

scenes as the highest scored images, compared to the first cycle selection. However, the
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scenes either contain special objects, such as a person on a bicycle extending his arm to turn,

or more diverse lightning conditions, such as a reflective road surface or a lot of shadows.

Just like on the other two datasets, the methods often select the same samples as either high

or low scored. This further supports the assumptions made earlier.
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Figure 5.21: Qualitative results on the NuImage dataset with 40% data used in total. The

first colored row are the results from the Full method using 100% data from the be-

ginning, the other rows show these applied selection strategies. From top to bottom:

Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Box MaskElBN −

Lossseg , Box MaskElBN − Confmax†, Lossod + Box MaskElBN †.
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Figure 5.22: Qualitative results on the NuImage dataset with 100% data used in to-

tal. Each row is a different sample selection approach. These are from top to bottom:

Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Box MaskElBN −

Lossseg , Box MaskElBN − Confmax†, Lossod + Box MaskElBN †.
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Figure 5.23: The remaining NuImage samples at the first cycle that have the highest score accord-

ing to proposed methods. Each row represents a different selection method. From top to bot-

tom: Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Box MaskElBN −

Lossseg , Box MaskElBN − Confmax†, Lossod + Box MaskElBN †.
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Figure 5.24: The remaining NuImage samples at the first cycle that have the lowest score accord-

ing to proposed methods. Each row represents a different selection method. From top to bot-

tom: Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Box MaskElBN −

Lossseg , Box MaskElBN − Confmax†, Lossod + Box MaskElBN †.
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Figure 5.25: The remaining NuImage samples at the last cycle that have the highest score accord-

ing to proposed methods. Each row represents a different selection method. From top to bot-

tom: Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Box MaskElBN −

Lossseg , Box MaskElBN − Confmax†, Lossod + Box MaskElBN †.
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Figure 5.26: The remaining NuImage samples at the last cycle that have the lowest score accord-

ing to proposed methods. Each row represents a different selection method. From top to bot-

tom: Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Box MaskElBN −

Lossseg , Box MaskElBN − Confmax†, Lossod + Box MaskElBN †.
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Figure 5.27: Qualitative results on the A9 dataset with 40% data used in total. The first colored row are the

results from the Full method using 100% data from the beginning, the other rows show these applied selection

strategies. From top to bottom: Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN ,

Lossod − Lossseg , Box MaskElBN − Lossod − Lossseg , Box MaskElBN − Confmax .
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Figure 5.28: Qualitative results on the A9 dataset with 100% data used in total. Each

row is a different sample selection approach. These are from top to bottom: Full,

Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Lossseg ,

Box MaskElBN − Lossod − Lossseg , Box MaskElBN − Confmax .
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Figure 5.29: The remaining A9 samples at the first cycle that have the highest score ac-

cording to proposed methods. Each row represents a different selection method. From top

to bottom: Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Lossseg ,

Box MaskElBN − Lossod − Lossseg , Box MaskElBN − Confmax .
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Figure 5.30: The remaining A9 samples at the first cycle that have the lowest score accord-

ing to proposed methods. Each row represents a different selection method. From top to

bottom: Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Lossseg ,

Box MaskElBN − Lossod − Lossseg , Box MaskElBN − Confmax .
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Figure 5.31: The remaining A9 samples at the last cycle that have the highest score ac-

cording to proposed methods. Each row represents a different selection method. From top

to bottom: Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Lossseg ,

Box MaskElBN − Lossod − Lossseg , Box MaskElBN − Confmax .
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Figure 5.32: The remaining A9 samples at the last cycle that have the lowest score accord-

ing to proposed methods. Each row represents a different selection method. From top to

bottom: Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskEll ipseBN , Lossod − Lossseg ,

Box MaskElBN − Lossod − Lossseg , Box MaskElBN − Confmax .
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Figure 5.33: Qualitative results on the Cityscapes dataset with 40% data used in total. The first colored row are

the results from the Full method using 100% data from the beginning, the other rows show these applied se-

lection strategies. From top to bottom: Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskElBN ,

Lossod − Lossseg , Box MaskElBN − Lossod − Lossseg , Lossod − Box MaskElBN − Lossseg .
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Figure 5.34: Qualitative results on the NuImage dataset with 100% data used in total.

Each row is a different sample selection approach. These are from top to bottom: Full,

Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskElBN , Lossod − Lossseg , Box MaskElBN −

Lossod − Lossseg , Lossod − Box MaskElBN − Lossseg .
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Figure 5.35: The remaining Cityscapes samples at the first cycle that have the highest score accord-

ing to proposed methods. Each row represents a different selection method. From top to bottom:

Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskElBN , Lossod − Lossseg , Box MaskElBN −

Lossod − Lossseg , Lossod − Box MaskElBN − Lossseg .
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Figure 5.36: The remaining Cityscapes samples at the first cycle that have the lowest score accord-

ing to proposed methods. Each row represents a different selection method. From top to bottom:

Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskElBN , Lossod − Lossseg , Box MaskElBN −

Lossod − Lossseg , Lossod − Box MaskElBN − Lossseg .



74 5 Results

Figure 5.37: The remaining Cityscapes samples at the last cycle that have the highest score accord-

ing to proposed methods. Each row represents a different selection method. From top to bottom:

Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskElBN , Lossod − Lossseg , Box MaskElBN −

Lossod − Lossseg , Lossod − Box MaskElBN − Lossseg .
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Figure 5.38: The remaining Cityscapes samples at the last cycle that have the lowest score accord-

ing to proposed methods. Each row represents a different selection method. From top to bottom:

Random, Confmax , 1vs2max , Inconsegseg , Losscombined , Box MaskElBN , Lossod − Lossseg , Box MaskElBN −

Lossod − Lossseg , Lossod − Box MaskElBN − Lossseg .
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Discussion

In the following, the results shown in the previous chapter will be discussed. The sections of

this chapter are structured by the general findings of this thesis. Starting with the influence of

the checkpoint selection on the overall accuracy in Section 6.1, followed by the discussion of

the KL-divergence in Section 6.2. The alternating training schema will be discussed in Section

6.3 and in Section 6.4 the possible influence of the size and split of a dataset is discussed. In

Section 6.5 the effect of a single-task method on the respective other task is analysed. Finally,

some of the unsuccessful experiments are presented in Section 6.6.

6.1 Checkpoint Selection

Selecting the intermediate checkpoint based on both tasks gives a good trade-off between

the two tasks. A weighted selection could also be possible here if one task is more important

than the other one. On the Inconseg method the combined checkpoint selection resulted in

better overall performance on both tasks. This confirms the common theory, that two comple-

ment tasks can each boost the other’s performance. On the NuImage dataset, the combined

checkpoint selection on Inconseg outperforms the single task selections towards the end. This

indicates that if a single task focused checkpoint selection is used, the model specializes itself

on that specific single task in the later training phase resulting in a good performance on the

focused task and a reduced performance on the other task. A combined checkpoint selection

remedies this and keeps the performance on both tasks high, even if the training progresses.

On the A9 dataset, object detection is also improved by using the combined checkpoint selec-

tion. The semantic segmentation on this dataset is +2.46% better if the single segmentation

based checkpoint selection is applied. One reason for that could be the applied pre-training

using the Cityscapes dataset. Here, the single object detection focused checkpoint selection

is used. This way, the initial weights are already kind of specialized for the object detection

task. Therefore, a combined selection has not the same effect as on the NuImages dataset and

a single segmentation checkpoint selection results in a better performance on the segmenta-

tion task. This leads to the conclusion that if a model is trained from scratch, the combined

checkpoint selection is the best choice. If pre-trained weights are used, one should consider

how these were trained and use the opposite task during the checkpoint selection.

6.2 KL-Divergence

In both the approaches Inconseg and Box Mask the KL-divergence was used to compute the

inconsistency between two predicted class probability distributions. Even though it is a more
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sophisticated approach, the results were not better than its much simpler counterpart which

often just counts the unequal class predictions. The achieved accuracy of the KL-divergence

approach is on-par or sometimes slightly worse compared to the simpler method. This is the

case for both object detection and semantic segmentation. This suggests that looking at the

most likely class prediction is enough and the full distribution must not be considered. The

KL-divergence approaches are slightly more complex to implement, as the predictions must

be a probability distribution. This thesis aims to reduce the annotation cost, which cannot be

achieved with the KL-divergence. On both the NuImages dataset, as well as on the A9 dataset,

the approaches that used the KL-divergence have higher annotation costs. In addition to that

comes an increased computation time, which is important to consider if one wants to reduce

the overall costs. If the selection of the samples and therefore the training of the network

takes more time, the required resources are occupied for a longer period, which then leads to

higher costs as well. In the used implementation, the computation of the KL-divergence takes

roughly factor 10 of the time that is needed for the simpler approach. The combination of

equal accuracy, worse annotation costs and worse computation time, lead to the suggestion

that the KL-divergence should not be used and that a simpler methodology is better instead.

6.3 Alternating Training Schema

As proposed in the publications by Reichart et al. [Rei+08] and Ikhawantri et al. [Ikh+18]

alternating two or more selection strategies can boost the overall performance of active learn-

ing for natural language processing. The presented results confirm this hypothesis in the

context of autonomous driving as well and experiments applying this training methodology

achieved improved results in object detection and semantic segmentation. However, the re-

sults conducted in this thesis also show, that the choice of methods matters depending on

the dataset that is used. Randomly selecting a method at each cycle might result in a good

performance, but it is questionable whether this is the result of the methodology or rather

a statistical coincidence. Especially on the object detection task, an alternation of methods

resulted in a large improvement in accuracy compared to the non-alternating methods. This

could also be confirmed on the A9 dataset. The segmentation accuracy improvement of the

alternating training approach was not as large as for the object detection but is still notice-

able. On the Cityscapes dataset, the alternation of methods was not successful. However,

the evaluation on this dataset was not as extensive due to the limited time. Combining more

methods and evaluating them on the Cityscapes dataset is an interesting addition for future

work.

6.4 Dataset Size and Split

If the dataset size is small, as the A9 dataset, for example, active learning is hardly outper-

forming random selection. The same accounts for too large datasets. The results on the

Cityscapes dataset show, that active learning is helpful in the earlier training cycles but loses

its advantage to random selection in the later cycles. On both datasets, the poor performance

of all the active learning methods can be due to a miscalibration of the hyper-parameters.

Possible tweaking points could be the size of the randomly selected initial dataset which is

used to train the model before active learning methods are applied. In the conducted ex-

periments this was set to 30% of the full dataset. This value was selected as it resulted in

the best performance on the NuImages dataset. However, for a small dataset like A9, or a
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large dataset like Cityscapes, this value possibly should be de- or increased. The remaining

training cycles always select an additional 10% of the data and add them to the training pool.

Again, this value is the result of the experiments on the NuImages dataset. Another value

could result in higher accuracy on the other datasets. It would be interesting how the data

split and initial data amount affect the performance of active learning methods compared to

random selection. This research remains for future work.

6.5 Effect of Task-Focused Sample Selection on the Other Task

Another interesting discussion point is the effect of a sample selection strategy which is focus-

ing on one task on the other task. Such single-task focused methods are Conf , 1vs2, Inconod

and Lossod for the object detection task. The methods Inconseg and Lossseg were solely us-

ing semantic segmentation features to estimate the uncertainty of the model. The intuitive

assumption that the object detection focused methods perform best on the object detection,

and the segmentation focused ones perform best on the semantic segmentation could only

be partially confirmed. The Lossseg method for example was able to achieve higher accuracy

than the Lossod method on the object detection in the later training cycles as can be seen in

Table 5.5. This is also the case for the Inconseg method which outperforms the object de-

tection accuracy of the Inconod method at all cycles, shown in Table 5.3. In contrast to that

stand, however, the performance of the inconsistency methods on the semantic segmentation,

which is flipped as presented in Table 5.4. The generated results do not lead to a clear con-

clusion on whether a specific task should be focused more on compared to the other task. But

they definitely show that a combination of both tasks leads to an increased overall accuracy

on both tasks. The Box Mask approaches use the gained information from both tasks which

is leading to a strong performance already. The combination of multiple methods, however,

results in the overall best accuracy on both tasks. One can thus conclude, that single-task

focused methods can boost the performance of the other task if alternated with a different

task-focused method.

6.6 Unsuccessful Experiments

One experiment investigated if a good performance of a method at a given training cycle is

related to the method itself or the amount of the available data. The intuition was that a

specific method could always outperform other methods at a certain amount of data, but be

worse in other cycles. To validate this thought, an alternating training was started, which

always used the selection strategy of the method with the highest mAP at this specific cycle.

However, this resulted in very poor results. This indicates that the success of a selection strat-

egy is highly related to its previous selection and that various methods can not be combined

arbitrarily. Another idea was to alternate the methods that have the highest mAP increase

at the respective training cycle, compared to the previous cycle. At the time of starting this

experiment, the resulting alternation schema was a combination of the loss prediction mod-

ule, the least confidence, and the 1-vs-2 margin sampling method. The performance on the

semantic segmentation task was on-par with random selection, but on the object detection,

this approach performed much worse compared to random selection. This again supports the

conclusion made earlier, that methods cannot be combined based on their performance and

should rather be combined by other indications like dataset correlation or their focused task.
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Conclusion & Future Work

The extensive analysis and evaluation of existing methods showed, that active learning can

have a beneficial impact on the overall accuracy of a multi-task network on both trained tasks.

In addition to that, a novel methodology has been developed which combined the domain

knowledge from both tasks and the experiments showed that with that combined knowledge

the accuracy of both tasks can be improved. All that while keeping the annotation costs

lower than the traditional random selection of samples. Even though the accuracy of a fully

trained model could not be reached with the active learning approaches, they achieve a large

fraction of the accuracy at a much earlier time and with much less consumed data. Not only

the sample selection strategies have been investigated in this thesis but also a novel train-

ing schema. Alternating multiple methods and combining the two tasks at the checkpoint

selection pushed the accuracy even higher. Although a similar and more favourable accuracy

could be achieved as that of the full data training, its accuracy was unfortunately not sur-

passed. The question of why this is the case remains for future work. Various possibilities

come into question. The most likely reason is that during the full data training the learning

rate was continuously reduced. This was not the case during the active learning cycles, as

the learning rate was kept constant throughout the training. Also, other hyper-parameters,

such as the number of iterations, were not optimised, which would certainly lead to a further

improvement in accuracy. Especially on the two less studied datasets A9 and Cityscapes, it

would be interesting to see to what extent the accuracy could be improved if the data split

were adjusted to the respective dataset size. In the experiments with the NuImages dataset,

it has been shown that an initial pool of 30% randomly selected data yields the best results.

However, the NuImages dataset has already been curated using Active Learning methods,

so a different split might work better for the A9 and Cityscapes datasets. Unfortunately, in

the time frame of this thesis, it was not possible to try out any number of combinations of

the sample selection strategies presented. An extensive investigation in this respect would

certainly be interesting. And the scheme of alternating the methods could also have more

potential. For example, instead of changing the method in every cycle, one could only alter-

nate them every second cycle. Another idea would be to use two methods in one cycle and

give the highest rated 50% of the samples from both methods to the annotation. Finally, it

should be mentioned that the architecture used offers a good trade-off between accuracy and

speed. However, it would be interesting to see what impact the presented methods have on

other detectors and if the state-of-the-art performance can be further improved by using the

findings presented here.
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Appendix 1

A.1 List of Acronyms

BetG Bet Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

DNN Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

GAN Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

IoU Intersection over Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

KL-divergence Kullback–Leibler-divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

K-NN K-Nearest Neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LiDAR Light Detection And Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

mAP Mean Average Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

MC Dropout Monte-Carlo Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

mIU Mean Intersection over Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

MSAC Multi-Scale Atrous Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

MSE Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

MTAL Multi-Task Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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NMS Non-Maximum Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

NLP Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ReLU Rectified Linear Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

WBetG Weighted Bet Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

WBetGS Weighted Bet Gradient with diversity Sampling . . . . . . . . . . . . . . . . . . . . 8

wMAP Weighted Mean Average Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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