
Department of Informatics
Technical University of Munich

Bachelor’s Thesis in Informatics

Accident Prevention Frontend Framework to
Support Autonomous Driving
Frontend Framework für das Vermeiden von Verkehrsun-
fällen und zur Unterstützung des Autonomen Fahrens

Supervisor Prof. Dr.-Ing. habil. Alois C. Knoll

Advisor Zimmer Walter, M.Sc.
Creß Christian, M.Sc.

Author Mohammad Naanaa

Date March 15, 2022 in Garching

Disclaimer

I confirm that this Bachelor’s Thesis is my own work and I have documented all sources and
material used.

Garching, March 15, 2022 (Mohammad Naanaa)

Abstract

Over the last years, autonomous driving technology has moved from the realm of science
fiction to working prototypes [Cha17]. This promising development is expected to improve
road safety, reduce traffic congestion, and reduce ecological footprint [Nas+20]. However,
complex traffic scenarios, such as intersections, roundabouts, or exits from motorways with
high traffic density and various weather conditions, are still considered challenges for this
new technology [SXC16].

Providentia++ Project - a research project of the Technical University of Munich - aims to
improve traffic flow and road safety in such traffic scenarios by overcoming the limitations of
local sensor systems of a single vehicle. This goal is achieved by making the road infrastruc-
ture "smart" with various sensors. This enhanced infrastructure can then build a real-time
virtual twin of the road that can be used for research and as a basis for the development of
various services.

As a part of the Providentia project, this work strives to increase the trust and acceptance
of autonomous vehicles and to improve road safety for human drivers. For this purpose,
the project aims to design and implement a mobile app that will connect to the Providentia
system to utilize its detection capabilities. The goal is to build a mobile platform capable
of processing different accident prevention mechanisms and displaying useful information to
the user, like jam/slowdown warning, accident/collision warning, and lane change recom-
mendations. The mobile platform to be used is iOS.

iv

Zusammenfassung

In den letzten Jahren hat die Technologie des autonomen Fahrens den Bereich der Science-
Fiction verlassen und ist zu einem funktionierenden Prototyp geworden [Cha17]. Von dieser
vielversprechenden Entwicklung wird erwartet, dass sie die Verkehrssicherheit erhöht, Staus
reduziert und den ökologischen Fußabdruck verringert [Nas+20]. Komplexe Verkehrsszenar-
ien wie Kreuzungen, Kreisverkehre oder Autobahnausfahrten mit hoher Verkehrsdichte und
unterschiedlichen Wetterbedingungen gelten jedoch nach wie vor als Herausforderung für
diese neue Technologie [SXC16].

Das Projekt Providentia++ - ein Forschungsprojekt der Technischen Universität München -
zielt darauf ab, den Verkehrsfluss und die Verkehrssicherheit in solchen Verkehrsszenarien zu
verbessern, indem die Limitierungen lokaler Sensorsysteme eines einzelnen Fahrzeugs über-
wunden werden. Dieses Ziel wird erreicht, indem die Straßeninfrastruktur mit verschiede-
nen Sensoren "intelligent" gemacht wird. Diese verbesserte Infrastruktur ist dann in der Lage,
einen virtuellen Zwilling der Straße in Echtzeit zu erstellen, der sowohl für Forschungszwecke
als auch als Grundlage zur Entwicklung weiterer Dienste genutzt werden kann.

Diese Arbeit im Rahmen des Providentia-Projekts zielen darauf ab, das Vertrauen und
die Akzeptanz von autonomen Fahrzeugen zu erhöhen, aber auch die Verkehrssicherheit für
menschliche Fahrer zu verbessern. Zu diesem Zweck wird für das Projekt als Ziel gesetzt,
eine mobile App zu entwickeln und zu implementieren, die sich mit dem Providentia-System
verbindet, um dessen Erkennungsfunktionen zu nutzen. Darauf basierend wird eine mobile
Plattform entwickelt, die in der Lage ist, verschiedene Unfallpräventionsmechanismen zu ver-
arbeiten und dem Benutzer nützliche Informationen anzuzeigen, wie z.B. Stau-/Verlangsamung-
Warnung, Unfall-/Kollisionswarnung und Empfehlungen zum Fahrspurwechsel. Die dabei zu
verwendende mobile Plattform ist iOS.

Contents

1 Introduction 1
1.1 Providentia Project . 1

1.1.1 Road Infrastructure . 1
1.1.2 Digital Twin . 2

1.2 Providentia App Development Goals . 2

2 Related Work 4
2.1 Providentia – A Large-Scale Sensor System for the Assistance of Autonomous

Vehicles and Its Evaluation . 4
2.2 Designing Human-Machine Interface for Autonomous Vehicles 4
2.3 Deep Traffic Scenario Mining, Detection, Classification and Generation 4

3 Connection to Infrastructure 5
3.1 Data Exchange . 5

3.1.1 Transmitted data specification . 6
3.1.2 Received data specification . 6

3.2 Frontend-Backend connection requirements . 9
3.3 Selection of protocols . 9

3.3.1 Data Transport Layer . 9
3.3.2 Application Layer . 10
3.3.3 Security . 10

4 Providentia App 12
4.1 Target Platform . 12
4.2 App Features . 13

4.2.1 Road Traffic Map Visualization . 13
4.2.2 Scenario-based Warnings . 14

4.3 Overall Architecture . 15
4.3.1 Components . 15
4.3.2 Data Flow . 16

4.4 Implementation Details . 17
4.4.1 Location Module . 17
4.4.2 Connectivity Module . 19
4.4.3 Map Module . 21

5 Analysis 28
5.1 Feature-specific Performance . 28

5.1.1 Total Time Delay . 28
5.1.2 System Throughput Capability . 30
5.1.3 GPS Module Precision . 31

5.2 Mobile Device Performance . 33

Contents vi

5.2.1 Network . 33
5.2.2 Random Access Memory (RAM) . 34
5.2.3 Disk . 35

6 Summary 36
6.1 Connection to Infrastructure . 36
6.2 Application Development . 36

6.2.1 Live Traffic Tracking and Visualization . 37
6.2.2 Scenario-based warnings . 37

7 Outlook 38
7.1 Future Feature Increments . 38

7.1.1 Improved Human-Machine Interaction . 38
7.1.2 Functional Increments . 39

7.2 Deployment . 39
7.2.1 App Deployment . 39
7.2.2 Application in Autonomous Driving . 39

Bibliography 41

Chapter 1

Introduction

1.1 Providentia Project

This thesis is written in cooperation with Providentia++ Project - a research project of the
Technical University of Munich aimed at improving traffic flow and road safety by overcom-
ing the limitations of local sensor systems of a single vehicle. Providentia++ was founded in
2017 and since 2020 the project has been led by the Chair of Robotics, Artificial Intelligence
and Real-time Systems at the Technical University of Munich’s Department of Informatics.
It is funded by the Federal Ministry of Transport and Digital Infrastructure (BMVI). Addi-
tional cooperative partners supporting the project are Fortiss, Valeo, Intel, Cognition Factory,
Elektrobit, Huawei, 3D Mapping Solutions, brighter AI, Siemens, and Volkswagen.

This project comprises two significant aspects, hereinafter introduced in more detail: the
enhancement of the present road infrastructure with various sensors to collect traffic data
and the transformation of this data into a virtual copy - the so-called Digital Twin.

1.1.1 Road Infrastructure

The road infrastructure of this project includes a part of the A9 Highway and an extension
into the surrounding urban area of Garching to the north of Munich depicted in Figure 1.1.

Figure 1.1: A map view of the Providentia road infrastructure, consisting of multiple measurement stations: three
on a highway (S40/50/60) and four surrounding urban area of Garching (M70/80/90 & S110). The corresponding
sections colored blue and green. S40-S50 section is highlighted in green as it will be the main stretch used for this
project. Its backend is also displayed on the map.

1.2 Providentia App Development Goals 2

The infrastructure is a constellation of 7 sensor stations equipped with more than 60 state-
of-the-art and multi-modal sensors, providing a road network coverage of approximately 3.5
kilometers. The list of sensors used for measurements includes optical cameras, Light and
Radio Detection and Ranging sensors (LiDaR and Radar). Figure 1.2 demonstrates the sensor
setup of a single measurement point.

Figure 1.2: An image of a single Providentia measurement point on the A9 highway. Two optical cameras pointing
in both road directions are visible (yellow circles on top). Two Radars pointing to the south can also be seen (red
circles). Also, a Data Fusion Unit (DFU) collecting and fusing the sensory data is displayed on the image in the
bottom left corner. (Source: [Krä+19].)

1.1.2 Digital Twin

The purpose of the road infrastructure is to collect sensor data, perform a data fusion of the
measurements from different sensors to improve the detection capabilities, and finally detect
vehicles and additional meta-data to map these into a virtual road model called Digital Twin.
The idea of the Digital Twin is then to represent a relevant subset of the road section that
can later be used for research purposes but also to offer some high-level applications and
services.

1.2 Providentia App Development Goals

With the infrastructure provided by the Providentia project, this thesis extends the project
by developing a proof-of-concept "Providentia App" application to provide the data from the
Digital Twin to both human-driven and autonomous vehicles.

Over the last years, autonomous driving technology has moved from the realm of science
fiction to working prototypes [Cha17]. However, complex traffic scenarios, such as intersec-
tions, roundabouts, or exits from motorways with high traffic density and various weather
conditions remain one of the biggest challenges for both humans and this new technology
[SXC16]. The restricted field of inner vision of a single vehicle is frequently not sufficient to
evaluate these situations, and this is where the app integration will occur.

The abstract goal of the app is to approach this problem by utilizing the surrounding
smart infrastructure enhanced by the Digital Twin. By adding the "external" knowledge from
various road sensors, both humans and autonomous driving vehicles should be assisted by
the app to improve road safety. This work focuses on two aspects of that idea:

1.2 Providentia App Development Goals 3

1. "How can this app be connected to the existing infrastructure?"

2. "What safety-improving features are possible to implement on a mobile app?"

These questions are addressed in detail and solved by the contributions made in this work
in the following chapters.

Chapter 2

Related Work

2.1 Providentia – A Large-Scale Sensor System for the Assistance of
Autonomous Vehicles and Its Evaluation

The Providentia project introduces both an intelligent road infrastructure system and a digital
road twin - a virtual copy of the road infrastructure, including detected vehicles. This thesis
relies on the infrastructure provided by this project in all of its aspects. Therefore, the results
of this thesis are seen as an extension of this project offering additional services built upon
the original infrastructure.

2.2 Designing Human-Machine Interface for Autonomous Vehicles

The paper written by Debernard, Chauvin, Pokam, and Langlois and titled "Designing Human-
Machine Interface for Autonomous Vehicles" aims to answer the question "What information
should be displayed to the driver, how, and when?". The results of this work - which relies on
the Cognitive Work Analysis framework - are used in the following sections of this project to
make a better decision on how to present traffic data and warnings to the app user.

2.3 Deep Traffic Scenario Mining, Detection, Classification and Genera-
tion

The results of Aaron Kaefer’s Master’s Thesis titled "Deep Traffic Scenario Mining, Detection,
Classification and Generation on the Autonomous Driving Test Stretch using the CARLA Simula-
tor" are used as a foundation for this project. The goal of this work was to "create a collection
of diverse driving scenarios, which are automatically classified and labeled by an algorithm
that is capable of detecting various driving maneuvers and traffic scenes." Using these results,
a risk scenarios detection mechanism was implemented and used by the Providentia system
to generate warnings. The Providentia App builds upon this warning detection mechanism by
allowing this information to be processed by third parties (application/autonomous vehicle).

Chapter 3

Connection to Infrastructure

The software architecture of this project involves three major components: Data Fusion
Units ("DFU"s), Bridge Server (hereafter "backend"), and Mobile App (hereafter "frontend").

A DFU is responsible for running local sensors collecting raw data, sensor data fusion, and
transformation of this data into a digital twin. The processed digital twin from a DFU is then
published to the bridge server.

Each DFU is responsible for one road section (e.g., S40-50) and does the processing in-
dependently of other DFUs. It enables multiple DFUs to asynchronously publish their local
traffic’s digital twin updates to the bridge server, making the process scalable for an indus-
trial application with numerous DFUs that allow the Providentia system to monitor many
road sections simultaneously.

Upon receiving this data, the backend processes it and provides it to multiple frontend
users that request it. The backend’s main purpose is therefore to be a "single point of contact"
for the frontend so that no knowledge of the actual DFUs setup on the roads is required.

Figure 3.1 displays the described software architecture.

Figure 3.1: Platform architecture of the Providentia system. Three distinct components (DFU, Backend, and
Frontend/Autonomous Vehicle) can be seen with the inter-component data flow. A DFU is connected to sensors
on the left and processes the raw data. The data is used to construct a digital twin. Additive Services are then
provided using that twin. These services are offered to the Frontend. (Source: [Krä+19].)

3.1 Data Exchange

For scalability purposes, a mobile app user should dynamically receive only the relevant part
of the traffic data for the current position. This approach limits the amount of data that has
to be received by the frontend and therefore improves both backend’s and mobile device’s

3.1 Data Exchange 6

network performance. However, for this approach to work, a notion of data relevance has to
be developed.

In this project, the relevance of the data is determined based on the principle of locality
- while driving, only the current and potentially adjacent road sections in more complex
road situations, e.g. intersections, are meaningful for the user. This principle requires a
bidirectional exchange between the backend and frontend with a well-defined specification
that is considered and described in the following sections.

3.1.1 Transmitted data specification

For the backend to decide which traffic data is relevant for the requesting user, the frontend
has to specify its location first. This requires the frontend to transmit the user’s GPS location
that the backend server will process. Additionally, some meta-data, e.g. user’s velocity and
heading direction, is sent to allow for even better decisions of what data to send on the
backend side. The complete transmission specification from the frontend’s side is listed in
Table 3.1.

Name Type Description

timestamp Double The interval between the date value and 00:00:00
UTC on 1 January 1970

locationAccuracy Double The accuracy of the course value, measured in de-
grees

course Double The direction in which the device is traveling, mea-
sured in degrees and relative to due north

speed Double The instantaneous speed of the device, measured
in meters per second

speedAccuracy Double The accuracy of the speed value, measured in me-
ters per second

longitude Double The longitude in degrees with positive values ex-
tending east of the meridian and negative values
extending west of the meridian

latitude Double The longitude in degrees with positive values ex-
tending north of the equator and negative values
extending south of the equator

Table 3.1: Transmitted data specification from the frontend to the backend.

3.1.2 Received data specification

Upon receiving user’s GPS location, the server has to decide what part of the traffic data
is relevant based on the user’s location and send it back. As for the data specification, the
backend server mirrors the format received from the DFUs but adds additional valuable meta-
data for the mobile app.

The received message represents a traffic snapshot from a single road section. This
Traffic message contains a list of detected vehicles of type Vehicle and additional data for
identification (id and section fields), testing, and analyzing performance (several time-of-
capture entries called timestamp). This structure is described in Table 3.2. Each Vehicle

3.1 Data Exchange 7

from the aforementioned list also holds its locally unique id, a vehicle’s category, speed,
shape, and position described in Table 3.4. The corresponding vehicle’s fields category,
position, speed, and shape are also data structures holding vehicle’s specific data. The
Category field enumerates all possible vehicle categories a DFU can detect. The Position
field stores the position of a vehicle in two dimensions - latitude and longitude, described
in Table 3.5. The Speed field stores the speed of a vehicle in two dimensions - latitudinal
and longitudinal - and the derived heading direction, described in Table 3.6. The Shape field
stores the shape of a vehicle in three dimensions (width, length, and height), described in
Table 3.7. And finally, the Scenarios field is an extension for a vehicle storing flags for all
detectable hazardous scenarios associated with a vehicle, described in Table 3.3.

The complete specification of a single message is listed in Tables 3.2 and 3.8.

Name Type* Description

id Int The ID of the whole traffic sequence of one road
section

section String The name of this section, e.g. "S40-50"
timestampSecs String The timestamp of this message, originating from a

DFU, in s
timestampNsecs String The timestamp of this message, originating from a

DFU, in ns
timestampFull String The timestamp of this message, originating from a

DFU, formatted as sec.nsec
vehicles [Vehicle] The list of all detected Vehicle objects

Table 3.2: JSON specification of a single Traffic message received from the backend. *The data is transmitted
in a stringified JSON format - the ’Type’ column specifies the actual data type after parsing.

Name Type* Description

wrongWay Bool This vehicle is driving in a wrong way
tailGateLevel Int This vehicle is tailgating. Severity ∈ {0,1, 2,3}
speeding Bool This vehicle is exceeding the speed limit
standing Bool This vehicle is standing
laneChangeLeft Bool This vehicle is changing its lane to the left
laneChangeRight Bool This vehicle is changing its lane to the right
cutInLeft Bool This vehicle cuts into a lane to the left
cutInRight Bool This vehicle cuts into a lane to the right
cutOutLeft Bool This vehicle cuts out from a lane to the left
cutOutRight Bool This vehicle cuts out from a lane to the right

Table 3.3: JSON specification of a Scenarios class - an extension for Vehicle for describing risk scenarios.

3.1 Data Exchange 8

Name Type* Description

id Int The ID of a single detected vehicle
category Category The category of a vehicle. Possible values ∈

{”bus”, ”car”, ”t ruck”, ”motorc ycle”}
position Position The position of a vehicle as a vector v ∈ R3

speed Speed The speed of a vehicle as a vector v ∈ R3

shape Shape The shape of a vehicle as a vector v ∈ R3

scenarios Scenarios A container storing flags for all risk-scenarios asso-
ciated with a vehicle

Table 3.4: JSON specification of a Vehicle class.

Name Type* Description

position.x Double The latitude of a vehicle in degrees with positive
values extending east of the meridian and negative
values extending west of the meridian

position.y Double The longitude of a vehicle in degrees with positive
values extending north of the equator and negative
values extending south of the equator

position.z Double The altitude of a vehicle - Unused field set to 0

Table 3.5: JSON specification of a Position class.

Name Type* Description

speed.x Double x-component of the vector
speed.y Double y-component of the vector
speed.z Double Angle (in radians) between the north (0,1)-vector

and this speed vector indicating movement direc-
tion

Table 3.6: JSON specification of a Speed class.

Name Type* Description

length Double Length of a rectangle corresponding to a vehicle
width Double Width of a rectangle corresponding to a vehicle
height Double Height of a rectangle corresponding to a vehicle

Note: Might be set to zero if computation is impos-
sible, i.e. in bad weather conditions or darkness

Table 3.7: JSON specification of a Shape class.

Table 3.8: The complete specification of data stored in a Vehicle. A single Traffic message stores a list of
such vehicles that were detected in a snapshot of a single road section from one DFU. *The data is transmitted in
a stringified JSON format - the ’Type’ column specifies the actual data type after parsing.

3.2 Frontend-Backend connection requirements 9

3.2 Frontend-Backend connection requirements

Following the described specification, a bridge server and a mobile application therefore form
a bidirectional communication pair - after establishing a connection, the mobile app sends its
user GPS location and the bridge server sends a relevant subset of the traffic data back.

To implement this communication, a connection protocol has to fulfill several crucial
requirements:

• Bidirectionality

• Low latency

• Security

Bidirectionality is required as both sides of the communication have to send and receive
data - in one direction the user’s GPS data and in the other a part of the traffic data relevant
for the given GPS location are sent.

Additionally, low latency is essential - traffic data is expected to be transmitted very fre-
quently. The data publishing frequency of each DFU is approx. 25Hz, i.e. approx. every
40ms a DFU publishes a new portion of its traffic data. Moreover, as the user’s vehicle con-
tinuously moves, a single vehicle can require data from multiple DFUs as multiple adjacent
sections of the highway that can be simultaneously relevant. For a given single DFU si, its
update frequency t i is 40ms + L, where L denotes additional transmission latency analyzed
in Section ??. The actual update time Tupd , given multiple DFUs s1, ..., sn and their respective
frequencies t1, ..., tn, is therefore:

Tupd = min{t1, ..., tn}< 40ms+L

A further concern for the data transfer is security. The frontend will send user’s GPS
position, while the backend will send the GPS positions of all vehicles of a certain part of
traffic - both representing location data. Location data is considered as sensitive data subject
to protection under European Union’s General Data Protection Regulation (GDPR), and hence
regulation-conform handling of the data is required [Eur18].

3.3 Selection of protocols

With all aforementioned requirements, several protocol candidates had to be considered on
two distinguished layers: the low-level Data Transport Layer and the more abstract Applica-
tion Layer.

3.3.1 Data Transport Layer

For the underlying data transport layer, the selection of a protocol is straightforward. As both
connection endpoints have their IP address, the underlying network protocol was chosen
to be the TCP as it provides reliable, ordered, and error-checked delivery of a byte stream
between applications running on hosts communicating via an IP network.

3.3 Selection of protocols 10

3.3.2 Application Layer

The more challenging part is the selection of the application layer data exchange protocol.
The connection between two points can be separated into two phases: initial handshake to
establish a connection and the continuous data exchange for maintaining the connection.

For the initial handshake, HTTP is considered a standard and is therefore also used in this
project [Int22].

However, although HTTP is used for the initial handshake, it is not a good candidate for
the listed requirements as it is a stateless protocol that does not allow continuous bidirec-
tional exchange. Additionally, certain design features of HTTP interact badly with TCP for this
project’s described use cases, causing problems with network performance and with server
scalability:

• Latency problems are caused by opening a single connection per request, through con-
nection setup and slow-start costs.

• Further avoidable latency is incurred due to the protocol only returning a single object
per request.

• Scalability problems are caused by TCP requiring a server to maintain state for all re-
cently closed connections.

For such a bidirectional data exchange, a different popular application layer protocol
was considered - the Websocket (ws) protocol. Websocket is a full-duplex communication
protocol that supports communication over a single TCP connection.

3.3.3 Security

However, Websocket is known to have some considerations regarding the security aspect. As
opposed to HTTP requests, Websocket requests are not restricted by the same-origin policy,
i.e. a vanilla implementation of a Websocket server could expose a vulnerability to cross-
site hijacking attacks [Kuo16]. To improve the security aspect and mitigate that risk, two
security-improving decisions were made:

• Switching to the secure version of the Websocket protocol, called Websocket Secure
(wss)

• Setting up an SSH tunnel between two endpoints

The secured wss version of the protocol offers two benefits for security: It encrypts the
data between the frontend and the backend, preventing capturing or tampering of the sen-
sitive data in the middle, and it avoids issues with Websockets on networks that employ
so-called intermediaries (proxies, caches, firewalls). The latter is especially relevant for mo-
bile operator networks, which are expected to be the primary network source since the Prov-
identiaApp will mainly be used by users in moving vehicles, naturally constraining other
connectivity types such as Wi-Fi [Kuo16].

3.3 Selection of protocols 11

Figure 3.2: A visual representation of the connection between the frontend (seen here on the left side) and
backend (seen here on the right side consisting of two abstract parts: SSH handler and the actual application
server). In between of the two endpoints a bidirectional connection achieved by Websocket Secure (wss)
is depicted, wrapped in an SSH tunnel isolating it from third-party listeners. Public keys required for the SSH
tunneling of both parties can also be seen on the respective sides. (Source: [SSH]).

Utilizing SSH tunneling addresses the concern of Websocket’s vulnerability - after a tun-
nel between two endpoints is established, the server is accepting data only coming from it,
eliminating a possibility of cross-site attacks. This final connection setup used in this project
between the frontend and the backend is depicted in Figure 3.2.

Chapter 4

Providentia App

4.1 Target Platform

One of the major decisions that had to be made prior to the application development was the
selection of the target platform. Following the goals described in Section 1.2, an application
that can be used by a driver and potentially by an autonomous driving vehicle should be de-
veloped. Under this constraint, two approaches for software development are considered to
achieve the goals: a native mobile platform or a web solution. Considering the requirements
on time-constrained connectivity and performance imposed in Section 3.2, a less-performant
web solution would be impractical. Hence, the decision was made to develop an application
for a mobile platform.

Although various mobile platforms exist, two of them dominate the market share world-
wide being installed on over 99% of all smartphones - iOS (with 28.27%) and Android (with
70.97%) [Glo22]. It is therefore sufficient to limit the mobile target selection to one of the
three options:

• Native iOS, e.g. in Swift

• Native Android, e.g. in Kotlin

• Cross-platform solution for both platforms, e.g. in Flutter

The cross-platform approach seems to be the most practical as it allows developing for
both platforms simultaneously and additionally offers code reusability and easy maintenance.
However, as cross-platform apps work by forming an independent layer on top of the native
solutions, this approach also introduces some challenges:

• Integration: Apps have inconsistent communication between the abstract system-independent
code and their target operating system.

• Performance: Apps have an additional overhead caused by the extra layer between the
device’s native and non-native components.

• User Experience: Apps are not able to take full advantage of native-only features to
provide target-OS specific user experience - different for iOS- and Android-paradigms.

For this reason and taking into consideration the connectivity requirements froms Sec-
tion 3.2 that require optimal performance and low-level network tuning, native solutions are
preferred. Finally, having a major prior experience in iOS mobile applications development,
the decision was made to develop natively for Apple’s operating system. With the specified
target platform, the list of application features is identified in the next section.

4.2 App Features 13

4.2 App Features

Derived from the development goals, the Providentia App offers two significant features en-
hancing driving:

• Map Visualization of the current surrounding road traffic

• Displaying warnings for potential risks

Both of these features are described in detail in the following. Additionally, their implemen-
tation details are introduced and discussed later in Section 4.4.

4.2.1 Road Traffic Map Visualization

As described in the Data Exchange Section 3.1, based on the user’s GPS location transmitted
to the backend, a subset of the traffic that is relevant for the user is received back. This traffic
data, containing (among other information) a list of vehicles, should be displayed on a map
around the user according to the following principles:

• Each vehicle is transformed to a marker on a map set to its detected GPS coordinates

• Each marker is uniquely identifiable

• Each marker is translated with the vehicle’s movement

Figure 4.1: UI screenshots (iPhone 13) displaying two different approaches for visualizing detected vehicles on
a map. The map on the left draws all vehicles with a single marker type indicating only vehicle’s position. The
map on the right generates scenario-based markers for each vehicle based on some additional meta-data (e.g.
speed/type/risk scenarios).

4.2 App Features 14

Figure 4.1 demonstrates two approaches for visualizing vehicles on a map: uniform (all
markers equal) or scenario-based (each marker can have different appearance based on ve-
hicle’s properties). Additionally, the user should be able to interact with the map in multiple
ways:

• The map can be moved around preserving the positions of the markers

• The map can be rotated and zoomed in and out to ease navigating

• The map can be centered back to the user with a single button

• The map can be set to follow the moving user

4.2.2 Scenario-based Warnings

The Providentia project offers more than just a visualization of the surrounding vehicles. The
system is also capable of detecting various potential hazards on the road. These scenarios
are vehicle-specific, i.e. each vehicle can be associated with various (also multiple) scenarios.
The list of all scenarios includes the most common risks that can be detected to improve
safety: standing, tailgating, driving in the wrong way, speeding, and lane changing.

The goal of the app is to display warnings to the user in a meaningful way. The "mean-
ingful way" means this notification should be apparent, however, not distract the driver from
the actual vehicle steering.

In general, various notification methods exist. Since the app utilizes maps already, the
decision was made to indicate potential hazards by modifying the cars’ markers involved
in a warning on the map. As described in Table 4.1, each detectable scenario has its own
associated color. In addition to that, the hazardous vehicles’ markers are larger by a factor of
2 compared to the non-hazardous marker and also pulsate, making them more visible.

Note: For vehicles associated with multiple scenarios, the largest risk’s associated color is
selected. This approach implies an order relation between different scenarios, and the table
illustrates that by sorting the risks in descending order starting from the most dangerous.

Name Marker Description

Wrong Way The vehicle is moving in the wrong direction

Standing The vehicle is standing

Tailgating The vehicle is tailgating another vehicle in front of it

Speeding The vehicle’s speed is exceeding the local limit

Lane Change The vehicle is changing the lane

None The vehicle is driving properly

Table 4.1: The complete table of all detectable vehicle-specific hazards sorted by their risk in descending order
with their brief description. The table indicates how vehicle’s marker color changes depending on the detected
scenario. For reference, the standard "safe" marker with no detected hazard is also included at the bottom.
Additionally, the table displays the difference in marker’s radii based on risk detection - the hazardous vehicles’
markers are larger and filled with color, whereas the safe one is smaller and void.

4.3 Overall Architecture 15

Figure 4.2 demonstrates the visual warning animation in practice for a vehicle that was
tailgating another (also speeding) vehicle.

Figure 4.2: A sequence of images (left-to-right) demonstrating a risk scenario detection by the Providentia system.
Two vehicles are moving in the upper direction and the first in the front is speeding (hence marked in orange).
The second vehicle enters the road section (drawn as a green circle in the first image) and then gets too close
to the first vehicle. The tailgate scenario is detected, and the marker becomes bigger (second image) and
changes its color to dark blue (third image).

4.3 Overall Architecture

Having specified the features that have to be implemented, the next step of a software devel-
opment is the design of system architecture.

4.3.1 Components

In an abstract way, the goal of the app is to receive traffic data, process it and transform it
into useful (visual) information. From this abstract definition, several major components can
be derived that would handle each of the aforementioned steps:

• Data Model

• Location Module

• Connectivity Module

• Map Module

Data Model

The Data Model is the most straightforward module to construct - this component should store
the data processed by other components. Therefore, it is sufficient to mirror the specification
of the transmitted and received data described in Tables 3.1 and 3.2.

Location Module

The Location module is responsible for providing user’s location. This component fetches GPS
data from the device’s hardware and manages location data access permissions. Additionally,
it encapsulates a state machine that handles the interaction between other components re-
quiring location data and the device’s hardware.

4.3 Overall Architecture 16

Connectivity Module

The Connectivity module manages network connectivity with the backend. This component
implements the Websocket Secure connection mechanism as defined in Section 3.3. It also
manages a state machine that supervises connection status changes and notifies all compo-
nents requiring connectivity about these changes.

Map Module

The Map module is used to offer every functionality related to the map. Displaying roads,
moving vehicle markers, and visualizing user’s position are all tasks handled by this compo-
nent.

4.3.2 Data Flow

The derived components are connected together by the data flow between them:

1. The Location module publishes user’s location every time it is updated.

2. This location data is consumed by two modules - the Connectivity module (to send to
backend) and the Data Model (to propagate to map).

3. The Connectivity module consumes that location data and sends it to the backend.

4. It also receives the traffic data from the backend passed down to the Data Model.

5. Aggregating data from the steps 2. and 4., the Data Model publishes the user’s location
and surrounding traffic data to the Map module.

6. The Map module displays that information and enables user interaction.

The resulting architecture with the data flow is depicted in Figure 4.3.

Figure 4.3: The complete architecture of the Providentia App. All internal components of the app are displayed in
green. The backend, here in blue, is added to display app’s connection with the outer world. The associated data
flow between the components is also displayed with arrows indicating the direction of data flow.

4.4 Implementation Details 17

4.4 Implementation Details

The aforementioned data flow to connect the app components was implemented using the
declarative approach of the SwiftUI framework. In addition to that, several decisions re-
garding the implementation of the components were made that are worth further explana-
tion. These decisions are therefore explained in this section for each relevant component.

4.4.1 Location Module

As stated in the specification, the app must send user’s GPS position to the backend. Each cur-
rently supported Apple device has an integrated GPS module that is capable of determining
user’s location. Apple provides that functionality in Swift using the CoreLocation library.
The Location module’s goal is therefore to offer an interface from the hardware GPS mod-
ule to the other components requiring that data. This task includes three important aspects,
covered in the following:

1. Requesting access permissions

2. Fetching the GPS data from hardware

3. Publishing the GPS data to other components

Requesting access permissions

Location data is considered private data. It is therefore required by the system to ask the user
for permission to access their location. The implementation requires configuring the so-called
"Purpose Strings" for the project.

The Purpose Strings belong to the Xcode project settings, and they are used to describe
the purpose of the authorization. In this case, a simple description "For communicating with
the road system" is added to the "Privacy - Location Always and When in Use Usage Description""
purpose string in the Info.plist file managing the settings shown in Figure 4.4.

Figure 4.4: A screenshot of the Info.plist file managing project settings in Xcode. The purpose string related
to accessing location data is highlighted in blue.

4.4 Implementation Details 18

Fetching and publishing the GPS data

After specifying Purpose Strings, it is now possible to request access to the user’s location
data. Following Apple’s specification [App22], the standard approach is to define a wrapper
for the CLLocationManager object provided by Apple’s CoreLocation framework. The idea
of the wrapping is that the CLLocationManager object offers OS-level control for interacting
with GPS hardware, whereas the wrapper serves as a state machine for different possible GPS
tracking states. Additionally, the LocationManager wrapper can be extended to publish the
data to other components.

This implementation is demonstrated and explained in detail in Code 1.

1 // A wrapper for the `CLLocationManager` to manage the user location data
2 class LocationManager: NSObject, ObservableObject, CLLocationManagerDelegate {
3 // The actual system location manager wrapped
4 private let locationManager = CLLocationManager()
5

6 // A webController that consumes the location updates
7 private var webController: WebSocketController
8

9 // Initialize the wrapper
10 override init() {
11 // Settings determining the accuracy and other aspects
12 locationManager.desiredAccuracy = kCLLocationAccuracyBestForNavigation
13 ...
14

15 // Tell the system that this wrapper will handle all updates
16 locationManager.delegate = self
17 }
18

19 // executed whenever the location authorization rights are changed
20 // implements logic to react for changed authorization status
21 func locationManager(_ manager: CLLocationManager,
22 didChangeAuthorization status: CLAuthorizationStatus) { ... }
23

24 // executed whenever the location was updated
25 func locationManager(_ manager: CLLocationManager,
26 didUpdateLocations locations: [CLLocation]) {
27 // logic to process the new location fetched from GPS module
28 ...
29 // after processing, propagate to the webController
30 webController.sendLocation(locations.last)
31 }
32 }

Listing 1: A code snippet of the LocationManager.swift wrapper for the CLLocationManager ob-
ject provided by Apple’s CoreLocation framework. This wrapper initializes the actual GPS location man-
ager in init() and declares itself as a delegate to react to changes from the CLLocationManager.
There are two possible types of changes that this wrapper must react to: changes in access
rights (using locationManager(_:didChangeAuthorization)) and user location updates (using
locationManager(_:didUpdateLocations)). The latter method is used to propagate the location up-
dates to the WebController that sends these to the backend.

4.4 Implementation Details 19

4.4.2 Connectivity Module

Another essential component of the Providentia App is the Connectivity module as both main
features of the app require a continuous connection to the backend as specified in the re-
quirements in Section 3.2. This component is responsible for multiple connectivity aspects
described in more detail in the following:

• Connection management using WebSocket Secure protocol

• En- and decoding for sending/receiving data

• Publishing the new data to other components consuming these updates

Connection management using WebSocket Secure protocol

The most important part of the Connectivity module is clearly the connection management.
This process includes:

1. Establishing an initial connection over HTTP

2. HTTP upgrade to the WebSocket Secure protocol

3. connection supervision covering edge cases (e.g. connection loss)

The implementation of these connection management aspects is described in detail in Code 2.

En- and decoding for sending/receiving data

After establishing the connection to the backend, the core task of the Connectivity module can
be performed - sending and receiving data. This task includes working with the socket con-
nection but also processing the data. The data is sent and received as a stringified JSON
message, so the processing involves en- and decoding the message for sending/receiving,
respectively. The implementation of this aspect is described in detail in lines 1-32 of Code 2.

Publishing the new data to other components consuming these updates

Finally, the received data should be automatically propagated to other components that con-
sume this update - e.g. the map. This functionality is achieved using SwiftUI’s declarative
data flow approach. The implementation of this aspect is also described in detail in the subset
of WebSocketController implementation in lines 33-46 of Code 2.

Connectivity using SSH tunneling on an iPhone

Another important aspect of the Connectivity module implementation is the integration of the
SSH tunneling. Although the measures defined in the Security Section 3.3.3 significantly
improve the data transfer security between the app and the backend, they also introduce
an implementation challenge as the iOS limits the usage of external port forwarding tools
running in the background to only 30s. This limitation requires implementing a custom SSH
tunneling, which - given the scope of this project and the time constraints - is left to be
implemented in the future iterations of this project.

4.4 Implementation Details 20

1 class WebSocketController: NSObject, URLSessionWebSocketDelegate {
2 // The `URL` of the server that this controller should connect to
3 private let serverURL: String
4 // Session responsible for `WebSocket` connection
5 private var session: URLSession!
6 // Socket used for the connection
7 private var socket: URLSessionWebSocketTask!
8 // Queue on which the delegate will observe the connection status changes
9 private let delegateQueue = OperationQueue()

10

11 // Connect to the server using `serverURL`
12 public func connect() {
13 // start a default (HTTP) session
14 self.session = URLSession(configuration: .default,
15 delegate: self, delegateQueue: delegateQueue)
16 // prepare to upgrade to a web socket connection
17 self.socket = session.webSocketTask(with: URL(string: self.serverURL)!)
18 // establish a connection by initiating the handshake
19 self.socket.resume()
20 }
21

22 // Disconnect from the server
23 public func disconnect() {
24 self.socket.cancel(with: .goingAway, reason: nil)
25 }
26

27 // Detect successful connection
28 internal func urlSession(..., didOpenWithProtocol) { ... }
29 // Detect clean disconnect
30 internal func urlSession(..., didCloseWith, reason) { ... }
31 // Detect connection invalidation with error
32 internal func urlSession(..., didBecomeInvalidWithError) { ... }
33

34

35 // Data decoded as `Traffic` to publish to other components
36 @Published public var traffic: Traffic?
37

38 // Data coders for sending and receiving
39 let decoder = JSONDecoder()
40 let encoder = JSONEncoder()
41

42 // Send a stringified message using encoder
43 func send(text: String) { ... }
44

45 // Listen for incoming messages and decode these
46 func listen() { ... }
47 }

Listing 2: A code snippet of the WebSocketController class implementation demonstrating its relevant
functionality. The first block (lines 1-32) implements connectivity management, including connect() and
disconnect() methods for establishing and terminating a connection. A reaction mechanism for detected
connection status changes - opening, closing and invalidating - is also implemented here. The second block
(lines 35-46) implements the communication with the backend and propagation of received data. Two methods -
send(...) and listen() - allow for bidirectional data exchange. The data is transmitted as a stringified
JSON, so sending data involves an encoder and receiving data requires a decoder, both initialized here. The
received data is propagated to other components using SwiftUI’s @Published property wrapper.

4.4 Implementation Details 21

4.4.3 Map Module

The Map module is one of the largest components as all features of the app utilize it. There-
fore, numerous aspects had to be considered during the development. Each aspect is ex-
plained in detail in the following.

HD maps usage

To display vehicles on a map, an underlying map has to be loaded. During the development,
two approaches for map usage were tested: Having an HD map of the road or downloading
necessary map tiles dynamically as required.

The first approach offers support for roads with well-defined lanes and very tidy appear-
ance, as depicted in Figure 4.5. However, it also introduces scalability problems caused by
two factors:

• Missing HD maps for most road sections

• Memory or networking problems for bigger infrastructures

Most of the actual roads do not have digitized HD maps. Following this approach, a future
extension of the Providentia road network would require an additional and potentially ex-
pensive step of creating an HD map for each new section. Even disregarding the cost aspect,
it would require either downloading and storing all these sections on the device - causing
a memory concern - or dynamically downloading new sections while driving - increasing
network pressure. Hence, due to the lacking scalability, this approach was rejected.

Figure 4.5: On the left, a single section of an HD road map with a length of 440.12 m. On the right, an HD road
map consisting of multiple such sections is overlayed on top of a satellite map. This image also includes vehicles
for demonstration purposes, visualized as models by their category (e.g. "car" or "truck") and colored by their
speed with red being the slowest and green being the fastest.

Third Party Maps

Instead of using custom and handcrafted maps, it is possible to utilize existing map APIs. For
iOS, two mapping services were considered: Apple maps and Google maps offering MapKit
and Google Maps SDK frameworks, respectively.

Both of these services support various map types, including:

• normal for displaying human-built features and abstract roads

• satellite for satellite photograph data

4.4 Implementation Details 22

• terrain for topographic data

Figures 4.6 and 4.7 depict the difference between these three map types fetched from Google
Maps SDK and Apple Maps MapKit, respectively.

Figure 4.6: Three different map types from Google Maps SDK displaying the same road section near Garching.
This road section is a part of the Providentia System. The map types from left to right: normal, satellite,
and terrain. No major differences between normal and terrain map types are recognizable other than
coloring as the road section is mostly flat. This comparison demonstrates that only the satellite map type (in
the middle) displays road lanes.

Figure 4.7: Analogous to Figure 4.6, three different map types from Apple Maps SDK displaying the same road
section near Garching. The map types from left to right: normal, satellite, and terrain. This comparison
shows the same pattern where only the satellite map type (in the middle) displays road lanes.

For Providentia App’s use cases the satellite map type is the only one with visible road
lanes. Therefore, the decision was made to use satellite map type.

Selection between Google Maps and Apple Maps

As can be seen in Figures 4.6 and 4.7, both Google Maps SDK and Apple Maps MapKit
frameworks offer the comparable satellite map type. Furthermore, both frameworks offer
comparable functionality, such as map interactions and marker generation. Therefore, since
the decision was made to use SwiftUI GUI-framework for the app development, the selection
of the mapping service comes down to the ease of mapping framework’s integration.

4.4 Implementation Details 23

Apple’s MapKit is currently undergoing its transition period as it was initially developed
to integrate into Apple’s old GUI-framework called UIKit. The old framework was created
with a declarative paradigm of event-driven UI, whereas the new SwiftUI framework fol-
lows the declarative paradigm. Since these paradigms differ by the way they handle the app’s
control flow, it is not possible to directly use the old code base with the new GUI-framework.
Although Apple has tried to make the transition as imperceptible as possible, this incompati-
bility currently limits some functionality of MapKit’s integration. For example, as of SwiftUI
3.0 version, it is not possible to change the map type programmatically without using the
UIViewRepresentable bridge protocol that wraps the old UIKit map.

Google’s Map SDK faces the same challenge when integrating with SwiftUI, however, it
offers more map interaction functionality when bridging with UIViewRepresentable.

It is worth mentioning that Apple’s MapKit framework is currently being actively devel-
oped. With a help of AI, the next versions of this framework will offer three-dimensional HD
road maps, as seen in Figure 4.8.

Figure 4.8: A highway intersection fetched from Apple’s MapKit mapping framework in Cupertino, CA. This
image displays a three-dimensional HD road map with lanes and elevation. Also, road surface marking (arrows
and separator lanes) is visible. This feature is currently available only in several regions of the United States.

However, the new version is still in development and is currently only available in some
parts of the United States. Therefore, due to currently existing limitations, the decision was
made to use Google Maps SDK.

API Integration of Google Maps SDK

In general, Google Maps SDK is a paid service following the so-called "pay-as-you-go" pricing
model that sets the price depending on the number of requests. However, the base function-
ality - such as loading a simple map, i.e. instantiation of a GMSmapView object - is offered free
of charge. This functionality is sufficient for Providentia App’s use purposes. Therefore, the
API integration of Google Maps SDK framework can be broken down into only three steps:

1. Setting up a Google Cloud project

2. Integrating SDK into the Xcode project

4.4 Implementation Details 24

3. Adding an API key to instantiate objects

The first step is required to manage services, credentials, billing, APIs and SDKs (as Google
offers more than one mapping service). The complete setup process is described in [Goo22a].

In the second step, specified in [Goo22b], a code dependency for Google Maps SDK
is integrated into the Providentia App’s Xcode project. Google Maps SDK is a proprietary
framework so the integration is achieved by binding binaries into the project. For this pur-
pose, an open source dependency manager called CocoaPods is used. This manager is easy
to install using gem as described in Code 3.

1 sudo gem install cocoapods

Listing 3: A bash command to install CocoaPods using gem.

After that, a Podfile is created in the project’s root directory to install the API and its
dependencies. An example setup used for integration in this project is described in Code 4.

1 # Source for CocoaPods specs (always the same)
2 source 'https://github.com/CocoaPods/Specs.git'
3 # Specify the target app
4 target 'ProvidentiaApp' do
5 # Specify what pod has to be added, here Google Maps SDK and its version
6 pod 'GoogleMaps', '6.0.1'
7 end
8

9 # Modify configuration
10 post_install do |installer|
11 installer.pods_project.build_configurations.each do |config|
12 # Exclude arm64 architecture only for the simulator
13 # to support intel-architecture-based iPhone simulator
14 config.build_settings["EXCLUDED_ARCHS[sdk=iphonesimulator*]"] = "arm64"
15 end
16 end

Listing 4: The content of the Podfile used to integrate Google Maps SDK into the Providentia App Xode
project.

Using a terminal, pod install can now be run in the Podfile’s directory to install the
dependency finishing the second step.

In the final third step, the GoogleMaps library can now be imported to use in the project.
This process requires providing API key generated in step 1. to the app during its initial-
ization. In SwiftUI, it requires defining an UIApplicationDelegate that implements
UIApplicationDelegate.application(_:didFinishLaunchingWithOptions:) function.
This process is described in more detail in Code 5.

Map integration into UI using GMSMapView

After the initial framework integration, a map can now be instantiated using the GMSMapView
class. As previously mentioned, Google’s mapping library was developed to integrate with
Apple’s old UIKit GUI-framework. To make it compatible with the new SwiftUI GUI-
framework, a wrapper conforming to the UIViewRepresentable must be declared. This

4.4 Implementation Details 25

1 // Import the SDK
2 import GoogleMaps
3

4 // Main App struct
5 @main
6 struct ProvidentiaApp: App {
7 // Custom `AppDelegate` to ensure correct setup
8 @UIApplicationDelegateAdaptor(AppDelegate.self) var appDelegate
9

10 // The main web controller of the app
11 @StateObject private var webSocketController = WebSocketController(
12 serverURL: "wss://localhost:31500/")
13 }
14

15 // Custom `UIApplicationDelegate` to ensure correct setup
16 class AppDelegate: NSObject, UIApplicationDelegate {
17 func application(_ application: UIApplication,
18 didFinishLaunchingWithOptions launchOptions:
19 [UIApplication.LaunchOptionsKey : Any]? = nil) -> Bool {
20 // Provide API Key generated in step 1. to Google Maps services
21 GMSServices.provideAPIKey("YOUR_API_KEY")
22 return true
23 }
24 }

Listing 5: A code snippet of the ProvidentiaApp.swift structure used to initialize the Providentia App.
This code snippet demonstrates the integration of the Google Maps SDK framework using the API key gen-
erated in step 1. of the setup process. SwiftUI’s ProvidentiaApp struct is responsible for the app initializa-
tion. This structure defines a UIKit’s UIApplicationDelegate that offers a customizable initializer func
application(...) allowing custom setup to provide the API key required for mapping services. Additionally,
the initialization of the WebSocketController object responsible for the connection to the backend required
for mapping is shown.

wrapper stores the actual GMSMapView and allows SwiftUI’s declarative UI handling to ren-
der that map on changes by using two wrapper methods:

• func makeUIView(context:Context) -> GMSMapView

• func updateUIView(mapView:GMSMapView, context:Context)

The makeUIView(...) method is used to instantiate the GMSMapView only once at the
beginning, whereas the updateUIView(...) is invoked every time the state of the app
binded with the map changes. Code 6 displays the implementation of this wrapper in detail.

4.4 Implementation Details 26

1 // GUI framework
2 import SwiftUI
3 // Mapping framework
4 import GoogleMaps
5

6 // Wrapper for the GMSMapView
7 struct GoogleMapsView: UIViewRepresentable {
8 // (3) A controller that provides all data from backend
9 // and stores active markers of this map

10 @ObservedObject var webController: WebSocketController
11

12 // (1)
13 func makeUIView(context: Context) -> GMSMapView {
14 // initialize a full-frame map centered at the hard-coded camera
15 let mapView = GMSMapView(frame: CGRect.zero,
16 camera: GMSCameraPosition.providentiaCamera)
17

18 // set map's type and other properties
19 mapView.mapType = .satellite
20 ...
21

22 return mapView
23 }
24

25 // (2)
26 func updateUIView(_ mapView: GMSMapView, context: Context) {
27 // Update logic for the existing map
28 // [described in the next section]
29 ...
30 }
31 }

Listing 6: A code snippet of the GoogleMapsView.swift structure wrapping GMSMapView to draw a map
using SwiftUIGUI-framework. This wrapper conforms to the UIViewRepresentable protocol by implement-
ing two UI rendering functions commented with (1) and (2). The first function is called to initialize the map during
the setup, whereas the second function is called to redraw a map on app’s state change. During the setup and fol-
lowing the previously specified software architecture, the wrapper is connected with a WebSocketController
as seen in (3).

Mapping moving objects onto the map

Finally, the two main features of the app, introduced in Section 4.2, are implemented in the
updateUIView(_ mapView:GMSMapView, context:Context) function.

The GoogleMapsView wrapper receives data from the observed WebSocketController
that handles the connection to the backend. By using the @ObservedObject property wrap-
per on this controller, changes can be published automatically invoking the updateUIView(...)
function that redraws the map when new traffic data is received from the backend.

Every time new traffic data is received, it contains a list of vehicles. This list can contain
both vehicles that (1) were already detected in the previous messages (these vehicles’ markers
must simply be updated) and (2) newly registered vehicles (requiring new markers to be
displayed). This process is described abstractly with an algorithm in pseudo-code 7.

4.4 Implementation Details 27

1 func updateUIView(_ mapView: GMSMapView, context: Context) {
2 traffic.vehicles.forEach { vehicle in
3 // check if it is a new vehicle
4 if not alreadyActiveMarkers.contains(vehicle) {
5 // generate a new marker and assign it to the map
6 let newCarPolygon = Marker()
7

8 // assign map, marker id, color, radius, and GPS position
9 // this marker takes into account detected risk scenarios

10 newCarPolygon.map = mapView
11 ...
12

13 alreadyActiveMarkers.append(newCarPolygon)
14 } else {
15 // already existing vehicle
16 let carPolygon = alreadyActiveMarkers.get(vehicle)
17

18 // animate its color, shape, and GPS position change
19 carPolygon.color = determineCarFillColor(using: vehicle)
20 ...
21 }
22 }
23

24 // logic to remove irrelevant and old markers to free memory
25 ...
26 }

Listing 7: A pseudo-code snippet for the func updateUIView(...) function that demonstrates the algorithm to draw
markers on the map for vehicles received from the backend.

The actual implementation contains a more dedicated memory management - the part
that was simplified in the pseudo-code. There is a need for a special data structure that
decides what marker is not active anymore and should be removed from the map (e.g. the
associated car is already outside of the road section) This data structure must store references
to all active markers, and it also must take into account that the app can be connected with
multiple road sections sending messages independently. The solution was to use a dictionary
of type {String:[Marker]} mapping a road section name to a list of its active markers.
This data structure is depicted in Figure 4.9.

Figure 4.9: An abstract representation of the data structure for the active vehicle markers displayed on the map.
The internal structure is a dictionary of type {String:[GMSCircle]}. Each key is a string storing a road
section name (here, S40-50, S50-60, M70-80 and others, denoted by "...") The associated value for each key is a
list of markers (GMSCircle) for active vehicles of the associated road section. In this example, S40-50 section
stores m and S50-60 stores k active markers as a list.

Chapter 5

Analysis

The analysis chapter can be structured in two major sections: Feature-specific Performance
and Mobile Device Performance. The prior covers performance analysis of app’s high-level
functionality, whereas the latter comprises device’s hardware performance analysis. Both
sections are covered in the following.

5.1 Feature-specific Performance

Following the requirements imposed in the Connection To Infrastructure Chapter 3, a feature-
specific performance analysis can be conducted to measure whether the requirements are
fulfilled for the specified features. The following essential aspects - used by both main app
features defined in the App Features Section 4.2 - are analyzed and covered in detail here-
inafter:

• Total time delay (DFU to App)

• System throughput capability

• Connection security on iPhone

• GPS module precision

5.1.1 Total Time Delay

One of the main Providentia App goals is the accident prevention aspect. The driver should be
notified about potential hazards in advance, making the warning mechanism time-critical. It
is therefore essential to minimize the time delay from the generation of a potential warning
until this warning could have been received.

DFU [timestamp] =⇒ Backend =⇒ AppDecoder =⇒ Map [timeToDisplay]

Figure 5.1: A scheme describing the complete schematic path of a single message generated on a data fusion
unit. After generation, a timestamp is attached to the message and it travels to the backend where it is pro-
cessed. After processing, the message is sent to the App where it also has to be decoded. After the decoding
process, a second timeToDisplay is computed as the difference between Date.now and the timestamp
value. The message is now ready to be displayed on the map.

Each portion of the traffic data contains a UNIX-based timestampSecs field that captures
the time the message was generated by a data fusion unit (DFU) from the road section’s

5.1 Feature-specific Performance 29

infrastructure. This message travels to the app and after it is ready to be displayed on the
map, a second UNIX timestamp called timeToDisplay is captured. The complete schematic
message path is displayed in Figure 5.1.

For analysis, data was collected from 1095 real vehicles from a single road section S40-
50 and written into the timeToDisplayLogs.txt file. The average measured latency was
665 ms, the minimum and maximum values were 128 ms and 1362 ms, respectively. Table 5.1
demonstrates the time delay translation into meters traveled for different speeds for the
average latency as well as both min and max latency edge cases.

Speed (km/h) smin (m) savg (m) smax (m)

10 km/h 0.36 m 1.85 m 3.78 m
30 km/h 1.07 m 5.54 m 11.35 m
50 km/h 1.78 m 9.24 m 18.92 m
80 km/h 2.84 m 14.78 m 30.27 m
100 km/h 3.60 m 18.50 m 37.80 m
130 km/h 4.62 m 24.02 m 49.18 m
200 km/h 7.20 m 48.04 m 98.36 m

Table 5.1: A table demonstrating the time delay of a single traffic message converted into meters traveled for
different vehicle speeds. Typical values for speeds were taken ranging from slow city driving to a highway with
no speed limit. For each speed, three distances were calculated for different registered delays: the optimistic
128 ms (denoted as smin for minimal delay), the average 665 ms (savg), and the pessimistic 1362 ms (smax)
meters traveled.

Figure 5.2: An image captured from the delay field test. On the left, a live output from the simulator connected
to the backend showing a map with the road section S40-50 is visible. A reference object (a massive cell tower)
is highlighted on the map with a red circle and a perpendicular line to the road is also drawn in red. A truck is
highlighted with a violet rectangle around its detected center drawn as a green circle. In the background, the actual
road section S40-50 with the truck (in violet) and the perpendicular line (in red) is seen. From this image, a delay
of approx. one truck length can be seen with respect to the red line.

In addition to the theoretical values of meters traveled for the delay, a field test was
performed to obtain an empirical result. During the test, a static reference object was selected
(a massive cell tower) and a perpendicular line from this object to the road was drawn. A

5.1 Feature-specific Performance 30

video was captured with both live footage and the output from an iPhone simulator connected
to the backend. The difference between the real vehicle position and the one displayed in
the simulator was then estimated using a truck size of 16 m. Based on this approximation, a
delay of approx. one truck length was observed, which translates into approx. 16 m meters
traveled. With a measured truck velocity of approx. 80km/h (also a standard for trucks
on german highways), this result matches the average estimate in the theoretical values
Table 5.1 of 14.78 m confirming its validity empirically. Figure 5.2 displays the performed
test.

5.1.2 System Throughput Capability

Using the measurements from the previous subsection, an additional metric can be analyzed.
The DFUs publish data very frequently (approx. 25Hz), and it is essential to process every
message within this time frame. Otherwise, older messages have to either be dropped leading
to "jumping" vehicles or enqueued eliminating the real-time aspect of the visualization as the
queue might continuously grow. Although from these two options the prior is less destructive
and is hence implemented by the Providentia App as a "worst-case" mechanism, it is even
better to not have to face this problem at all by processing incoming messages in-time.

From the previously observed timeToDisplay data, it can be derived whether the app
manages to process the messages in-time. For that, the consequent timeToDisplay entries
are plotted against time. If the app processes each message before the next one arrives, the
timeToDisplay values are expected on average to not change over time. It can be tested
"optically" by fitting a regression line for the delay over increasing id and observing that it’s
slope is approx. zero indicating no change in average delay over time is occurring. This
approach is seen in Figure 5.3.

Figure 5.3: A graph demonstrating change of timeToDisplay measured in seconds for increasing id value.
Each consequent message is assigned with a higher id value so this field is used to indicate increasing time. The
dots are spread equally with no significant outliers suggesting no change in mean over time. Also, a regression
line (in red) is fitted that seems to have a zero slope confirming the assumption of no change of mean over time.

However, this can also be proven mathematically by performing a statistical test on a
linear regression model to show that the null hypothesis of the zero-mean change cannot be
rejected - as demonstrated in Figure 5.4. Both approaches confirm that the app is capable of
handling each traffic message within the required time frame.

5.1 Feature-specific Performance 31

Figure 5.4: An output from fitting a linear regression model using summary(lm(timeToDisplay ∼ id))
command in R. The βid regressor estimate is −3.269 · 10−5s/id indicating negligible change of mean over time.
In fact, even this small value is statistically insignificant under 95% confidence having a p-value > 0.05. The
F-statistic having a p-value > 0.05 also does not allow to reject the null hypothesis H0 with 95% confidence
indicating no significant change of timeToDisplay mean over time.

5.1.3 GPS Module Precision

As defined in the Transmitted Data Specification Section 3.1.1, the app receives only the rele-
vant portion of the traffic data based on the locality principle. This approach requires sending
user’s device GPS location associated with a certain variability that can be analyzed.

Two ways to test the precision of the device’s GPS module were considered in the follow-
ing:

• Internal device accuracy metric • External observation

Internal Device Accuracy Metric

Each iOS-device has a built-in support for GPS location services. As specified in the Transmis-
sion Specification Table 3.1, the data provided by the GPS module also includes locationAccuracy
field that measures the precision of the module. Figure 5.5 demonstrates the average accu-
racy measured over time by an iPhone 13 Pro on the highway during test driving.

External Observation

The high precision is confirmed by a highway test drive as depicted in Figure 5.6 demonstrat-
ing that this location accuracy is sufficient even to detect a single lane switch.

5.1 Feature-specific Performance 32

Figure 5.5: A graph demonstrating the change of location accuracy (measured in m as an "uncertainty" diameter)
over time (measured in s) after starting the app. A local polynomial regression line (LOESS) is also fitted in blue
to demonstrate the change of mean accuracy over time. Two phases are recognizable on the graph: the GPS
module initialization phase (approx. the first 35 seconds) with an unstable low-accuracy location measurements
and the running phase with a stable high-accuracy location precision. After the initialization, a mean accuracy
diameter of approx. 7.56 m is observed - highlighted with a red dotted line here.

Figure 5.6: Three screenshots made during a highway test drive demonstrating a lane switch. The user’s GPS
location is displayed as a blue circle centered in the middle of each screenshot. The vehicle starts in the second
to last driving lane (colored red here) [left screenshot] then moves to the adjacent lane on the left (colored green
here) and is displayed between the two lanes [middle screenshot]. The maneuver is completed and the vehicle is
visible inside the green lane. This sequence confirms the actual location is detected within the road lane bound.

5.2 Mobile Device Performance 33

5.2 Mobile Device Performance

Another important aspect to be analyzed is the overall device performance that includes
several hardware metric sets:

• Network workload

• Random Access Memory (RAM) load

• Disk utilization

5.2.1 Network

Following the app architecture described in the Overall Architecture Section 4.3, all network-
related functionality was delegated to the Connectivity module. This module is one of the
core components as all app features rely heavily on a continuous connection to the back-
end. In addition to that, a driver is expected to use the device’s mobile data as connectivity
alternatives such as Wi-Fi are not available for a driving vehicle. It was therefore crusial
to optimize the network usage. Two types of measures were used for that: low-level and
high-level optimization.

Low-Level Optimization

The idea of optimizing network usage on a hardware level utilizes the flexibility of the
WebSocket protocol. This protocol allows sending both textual (UTF-8-encoded) and bi-
nary data. To reduce the potential ’empty bits" overhead of the UFT-8 encoding, the latter
data format can be used.

High-Level Optimization

Eliminating the overhead using a more efficient transmission encoding will not improve the
network performance alone if there is still too much data being sent/received. Another ap-
proach of improving the network performance is therefore to optimize what data exactly is
sent/received and how frequently this process should happen.

Regarding the first question, the Received Data Specification defined in 3.1.2 has a fixed
structure potentially containing an "empty" information. This follows from the fact, that most
vehicles are expected to not cause any risk situations but a field of empty "scenario" flags is
sent nevertheless. This approach can be optimized by introducing a more flexible structure
that accounts for that and only sends the scenarios when applicable, hence reducing the
mean message payload and therefore its size.

Assuming a semi-constant sending rate from the road DFUs (whose frequency is subject
to its own possible optimization) and given the high GPS precision covered in the previous
section, it is also possible to address the second question and reduce the frequency of send-
ing updates to the backend. Currently, the app sends user’s location upon fetching a new
portion of data immediately, which - given the highest possible accuracy set - happens quite
frequently. Two ideas to optimize that without a major loss of accuracy are presented here:
defining a device-internal location update radius that the user must physically exceed to send
the next location update to the backend or defining a timer that constrains the transmission
to every x ms.

Given the scope of this project and the time constraints, the two aforementioned High-
Level optimization mechanisms are left to be implemented for future iterations of Providentia

5.2 Mobile Device Performance 34

App. Nevertheless, Figure 5.7 demonstrates a decent network usage graph with only Low-
Level optimization applied during a real highway test.

Figure 5.7: An output from the Xcode network usage analysis tool during a test drive through the S40-50 road
section. The first row indicates current and total network usage for receiving (on the left, colored violet) and
sending (on the right, colored orange). The second row shows all reading and writing requests over time starting
from 50 s to 119 s - the app was used for almost one minute before the benchmarking to establish a connection
with the backend. A consistent network usage is observed on the graph of approx. 0.3 MB/s and 0.1 KB/s
for receiving and sending, respectively. This graph also demonstrates that receiving data requires significantly
more network than sending (approx. 3000-to-1 ratio), matching the expectation. The bottom "Active Connections"
section confirms only one connection over TCP was observed, making the analysis valid.

5.2.2 Random Access Memory (RAM)

Among all app components defined in the Components Section 4.3.1, the most RAM-consuming
one is the map module. This module is required to handle a constant flow of traffic data,
managing numerous markers. In addition to that, this process constantly happens in RAM as
working with the disk would slow the time-critical process due to the additional read/write
overhead. Therefore, the app implements a number of clever solutions to memory manage-
ment - such as reusing markers for multiple objects or detection and elimination of strong
reference pointer cycles [Swi22] - to free up all objects when they are no longer needed. All
these measures should lead to an almost constant RAM usage depending only on the number
of active vehicles. Figure 5.8 confirms this statement displaying a controllable growth of RAM
usage of approx. 700 MB as the vehicle enters the S40-50 highway road section and drives
through it.

5.2 Mobile Device Performance 35

Figure 5.8: An output from the Xcode RAM usage analysis tool during a test drive through the S40-50 road
section. The x- and y-axes describe time in seconds and memory usage in MB, respectively. The data was
captured for almost four minutes with approx. 160 s of driving within the road section displayed on the graph. The
moment of a rapid increase of RAM usage can be seen in the first seconds of entering the road section, followed
by an almost constant RAM usage.

5.2.3 Disk

As the app does not involve any persistent data storage, disk usage does not happen. This is
confirmed by the disk usage graph depicted in Figure 5.9 displaying no app-induced reading
or writing requests.

Figure 5.9: An output from the Xcode disk usage analysis tool. The first row indicates current (0.0 KB/s) and
total disk usage for reading (on the left, colored blue) and writing (on the right, colored red). The second row
shows all reading and writing requests over time from 130s to 199s - the app was used for two minutes before the
benchmarking to establish a connection with the backend. The last row displays the total accumulated read/write
disk requests graph over time from 129s to 199s. From all three metrics it can be seen that the disk is not actively
used by the app. The total non-zero read and write values of approx. 55MB were caused by initially opening the
app as well as logging some debugging messages.

Chapter 6

Summary

The efforts made in this work have dealt with the research questions asked in the introduc-
tion:

1. "How can this app be connected to the existing infrastructure?"

2. "What safety-improving features are possible to implement on a mobile app?"

Corresponding to the questions, two major contributions were made in this work covered
in detail in the following sections.

6.1 Connection to Infrastructure

In this thesis, a connection interface between the backend and a mobile app was designed
and specified. In addition to the interface, various connection protocol alternatives were
investigated and compared based on several aspects, including transmission efficiency, scal-
ability, and security. A continuous, efficient, and secure bidirectional data exchange using
WebSocket Secure protocol between two endpoints was established. An option to use an
additional security layer using SSH tunneling was investigated and - although only for a
simulator but not a physical iPhone due to iOS restrictions - successfully tested.

The final connection interface was extensively tested in the Analysis chapter proving to
fulfill the imposed requirements.

6.2 Application Development

As a result of this work, an iOS application named Providentia App was developed, docu-
mented, and tested.

The implementation follows the designed software architecture of Section 4.3 offering
connection to the Providentia system. The app implements two safety-improving features
available both for a human driver and potentially for an autonomous driving vehicle:

• Live tracking and visualization of the surrounding traffic on a map

• Scenario-based in-app warning system

Finally, in addition to the implemented features covered in the following subsections, an-
other achieved milestone is the modular app architecture design with low coupling allowing
for future extensions as described in detail in the Outlook chapter. To support that, the project
implementation was extensively documented in Xcode to further ease future app increments.

6.2 Application Development 37

6.2.1 Live Traffic Tracking and Visualization

The application supports live traffic tracking and map visualization for the road sections
covered by the Providentia systems.

The tracking capability is achieved by the implemented connection to the backend con-
stantly sending the relevant traffic data based on the locality principle. The app implements
a data structure representing this data for supported road sections with all detected vehicles
and their measured metrics, such as velocity and heading direction.

The visualization process is achieved with markers displaying the detected vehicles on
a map. Different vehicle meta-data - like vehicle type or speed - can be used to generate
a custom appearance for icons. This custom appearance supports shape, size, and color
changes based on various parameters.

6.2.2 Scenario-based warnings

The Providentia App also utilizes the risk-scenarios detection capabilities of the Providentia
system. Each vehicle has associated potential risk-scenarios, such as speeding or aggressive
lane changes, that can be used to warn the vehicle about potential hazards ahead that might
be undetectable by the driver or the autonomous vehicle otherwise. Figure 6.1 demonstrates
an example of such locally undetectable risk that could have been detected by the infrastruc-
ture generating a warning in advance.

Figure 6.1: Four images from a video footage (left-to-right then top-to-bottom) with a car crash from the road
section S40-50 monitored by the Providentia system. All vehicles captured by the system are overlayed with their
digital twin rectangles colored by their type. In the first image, a van (marked with a black circle) is standing in
the middle of the left-most driving lane. However, for the quickly incoming car (marked with a red circle) it was
not possible to locally detect that because three other vehicles were obstructing the visual contact. In the second
image, the incoming driver detects the risk and starts emergency braking that causes the driver to loose control.
The images in the bottom row demonstrate the devastating result of this accident. Running this recorded scenario
with the app has confirmed to generate a warning that would have been sufficient to start braking much earlier.

Chapter 7

Outlook

This outlook deals with two questions in detail: "What can be done next?" and "What is the
utility of this project?".

7.1 Future Feature Increments

As mentioned in the Summary chapter, the app architecture was designed to be as modular
as possible. This approach allows for future increments that can be easily integrated into
the existing app. These potential functionality extensions can be split in two groups covered
hereinafter: Human-Machine interaction improvements and functional increments.

7.1.1 Improved Human-Machine Interaction

One of the project development goals was to design an app useful not only for autonomous
driving vehicles but also convenient for human drivers. Multiple aspects involved in the
Human-Machine-Interaction can therefore be improved, such as map visualization, haptic
feedback, or acoustic warnings.

Map Visualization

The map visualization using circles of different colors and radii implemented in this project
serves as a proof of concept. The visual aspect can be improved by introducing custom
markers with a more complex appearance generation logic. This logic can for example use
the available meta-data - like vehicle type or speed - to render unique markers.

Haptic Feedback

Each iPhone is equipped with a vibration engine called "Taptic Engine". Another candidate for
improved interaction with the app is therefore an integration of a haptic feedback produced
by this engine.

acoustic Warnings

Another Human-Machine interaction improvement candidate is closely related to the previ-
ous one - acoustic warnings. The driver is typically focused on the road and is not expected
to keep a visual contact with the app. By using various acoustic warnings, driver’s attention
can quickly be gained. For example, this can be used to warn about detected hazards ahead
so that the driver would have more time to react.

7.2 Deployment 39

7.1.2 Functional Increments

The potential increments are not limited to the improvement of the Human-Machine inter-
face. Functional increments are also possible to further increase the app utility. Hereinafter,
two examples are covered to demonstate the posibilities: new detectable scenarios and driving
recommendations.

New Detectable Scenarios

Currently, only vehicle-specific scenarios (such as speeding or tailgating) are available, how-
ever various meta-scenarios can also be integrated in the future iterations of the app devel-
opment. Meta-scenarios can encompass some situations specific for not a single vehicle but
a whole road sections - like traffic jam, bad road or weather condition.

Driving Recommendations

In combination with the aforementioned meta-scenarios, the app could be used not only to
prevent accidents but also to improve the quality and comfort of driving. For example, the
Providentia system could hint the user to switch to another lane because of some construction
site ahead. Such local recommendations - especially connected with autonomous driving
vehicles - could form a "hive mind" improving the overall traffic flow and safety.

7.2 Deployment

Another important aspect for the outlook is the real-world application of the project. Two ma-
jor deployment possibilities are discussed in the following: human-centered app deployment
and application in autonomous driving.

7.2.1 App Deployment

As demonstrated in this project, the Providentia app can improve driving for humans making
it more predictable and safe. This approach can be scaled by offering navigation companies
this detecting and warning functionality as a paid service. A navigation company can then
subscribe to this service and following the connection specification designed in this project
receive the traffic data. The company can then integrate both traffic information and the
warnings into their own apps improving their navigation service. Another benefit of this
approach is that it simplifies the project scaling process as the funding for new road sections
enhancement can be supported by offering this paid service.

7.2.2 Application in Autonomous Driving

Another promissing deployment target for the project is the integration with autonomous
driving vehicles. Autonomous driving vehicles have proven to successfully handle the driv-
ing process in both simple and even somewhat complex conditions. However for the most
complex scenarios, where AI-driven vehicles inevitably fail and so do human drivers, the
Providentia system can provide an additional support. This integration can then happen
seamlessly - an autonomous vehicle would approach the complex road section supervised by

7.2 Deployment 40

the Providentia system, connect to it automatically, and either use the data from the digital
twin as an additional sensory data to make decisions or even receive complete path recom-
mendations to follow.

Bibliography

[App22] Apple Inc. Requesting Authorization for Location Services. https : / / developer.
apple.com/documentation/corelocation/requesting_authorization_for_location_
services. Accessed: 2022-03-06. 2022.

[Cha17] Chan, C.-Y. “Advancements, prospects, and impacts of automated driving sys-
tems”. In: International Journal of Transportation Science and Technology 6.3
(2017). Safer Road Infrastructure and Operation Management, pp. 208–216.
ISSN: 2046-0430. DOI: https : //doi .org/10 .1016/ j . ijtst .2017 .07 .008. URL:
https://www.sciencedirect.com/science/article/pii/S2046043017300035.

[Eur18] European Commision. General Data Protection Regulation (GDPR) and location
data. https://joinup.ec.europa.eu/collection/elise-european-location-interoperability-
solutions-e-government/news/gdpr-and-location-data. Accessed: 2022-02-20.
2018.

[Glo22] GlobalStats. Mobile Operating System Market Share Worldwide. https://gs.statcounter.
com/os-market-share/mobile/worldwide. Accessed: 2022-03-04. 2022.

[Goo22a] Google. Set up in the Google Cloud for iOS. https://developers.google.com/maps/
documentation/ios-sdk/cloud-setup. Accessed: 2022-03-04. 2022.

[Goo22b] Google LLC. Set up an Xcode Project. https ://developers .google .com/maps/
documentation/ios-sdk/config. Accessed: 2022-03-04. 2022.

[Int22] Internet Assigned Numbers Authority (IANA). Hypertext Transfer Protocol (HTTP)
Upgrade Token Registry. https : //www. iana .org/assignments/http - upgrade -
tokens/http-upgrade-tokens.xhtml. Accessed: 2022-02-22. 2022.

[Krä+19] Krämmer, A., Schöller, C., Gulati, D., Lakshminarasimhan, V., Kurz, F., Rosen-
baum, D., Lenz, C., and Knoll, A. “Providentia – A Large-Scale Sensor System for
the Assistance of Autonomous Vehicles and Its Evaluation”. In: arXiv.org (2019).
DOI: https://doi.org/10.48550/arXiv.1906.06789. URL: https://arxiv.org/abs/
1906.06789.

[Kuo16] Kuosmanen, H. “Security Testing of WebSockets”. In: JAMK University of Applied
Sciences (2016), pp. 30–31. URL: https://www.theseus.fi/bitstream/handle/
10024/113390/Harri+Kuosmanen+-+Masters+thesis+-+Security+Testing+
of+WebSockets+-+Final.pdf?sequence=1.

[Nas+20] Nastjuk, I., Herrenkind, B., Marrone, M., Brendel, A. B., and Kolbe, L. M. “What
drives the acceptance of autonomous driving? An investigation of acceptance
factors from an end-user’s perspective”. In: Technological Forecasting and Social
Change 161 (2020), p. 120319. ISSN: 0040-1625. DOI: https://doi.org/10.1016/
j.techfore.2020.120319. URL: https://www.sciencedirect.com/science/article/
pii/S0040162520311458.

https://developer.apple.com/documentation/corelocation/requesting_authorization_for_location_services
https://developer.apple.com/documentation/corelocation/requesting_authorization_for_location_services
https://developer.apple.com/documentation/corelocation/requesting_authorization_for_location_services
https://doi.org/https://doi.org/10.1016/j.ijtst.2017.07.008
https://www.sciencedirect.com/science/article/pii/S2046043017300035
https://joinup.ec.europa.eu/collection/elise-european-location-interoperability-solutions-e-government/news/gdpr-and-location-data
https://joinup.ec.europa.eu/collection/elise-european-location-interoperability-solutions-e-government/news/gdpr-and-location-data
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://developers.google.com/maps/documentation/ios-sdk/cloud-setup
https://developers.google.com/maps/documentation/ios-sdk/cloud-setup
https://developers.google.com/maps/documentation/ios-sdk/config
https://developers.google.com/maps/documentation/ios-sdk/config
https://www.iana.org/assignments/http-upgrade-tokens/http-upgrade-tokens.xhtml
https://www.iana.org/assignments/http-upgrade-tokens/http-upgrade-tokens.xhtml
https://doi.org/https://doi.org/10.48550/arXiv.1906.06789
https://arxiv.org/abs/1906.06789
https://arxiv.org/abs/1906.06789
https://www.theseus.fi/bitstream/handle/10024/113390/Harri+Kuosmanen+-+Masters+thesis+-+Security+Testing+of+WebSockets+-+Final.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/113390/Harri+Kuosmanen+-+Masters+thesis+-+Security+Testing+of+WebSockets+-+Final.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/113390/Harri+Kuosmanen+-+Masters+thesis+-+Security+Testing+of+WebSockets+-+Final.pdf?sequence=1
https://doi.org/https://doi.org/10.1016/j.techfore.2020.120319
https://doi.org/https://doi.org/10.1016/j.techfore.2020.120319
https://www.sciencedirect.com/science/article/pii/S0040162520311458
https://www.sciencedirect.com/science/article/pii/S0040162520311458

Bibliography 42

[SXC16] Song, W., Xiong, G., and Chen, H. “Intention-Aware Autonomous Driving Decision-
Making in an Uncontrolled Intersection”. In: Mathematical Problems in Engi-
neering 2016 (Apr. 2016), p. 1025349. ISSN: 1024-123X. DOI: 10.1155/2016/
1025349. URL: https://doi.org/10.1155/2016/1025349.

[SSH] SSH. SSH Tunnel. https://www.ssh.com/academy/ssh/tunneling. Accessed:
2022-02-22.

[Swi22] Swift. Automatic Reference Counting. https://docs.swift.org/swift-book/LanguageGuide/
AutomaticReferenceCounting.html. Accessed: 2022-03-08. 2022.

https://doi.org/10.1155/2016/1025349
https://doi.org/10.1155/2016/1025349
https://doi.org/10.1155/2016/1025349
https://www.ssh.com/academy/ssh/tunneling
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html
https://docs.swift.org/swift-book/LanguageGuide/AutomaticReferenceCounting.html

	Introduction
	Providentia Project
	Road Infrastructure
	Digital Twin

	Providentia App Development Goals

	Related Work
	Providentia – A Large-Scale Sensor System for the Assistance of Autonomous Vehicles and Its Evaluation
	Designing Human-Machine Interface for Autonomous Vehicles
	Deep Traffic Scenario Mining, Detection, Classification and Generation

	Connection to Infrastructure
	Data Exchange
	Transmitted data specification
	Received data specification

	Frontend-Backend connection requirements
	Selection of protocols
	Data Transport Layer
	Application Layer
	Security

	Providentia App
	Target Platform
	App Features
	Road Traffic Map Visualization
	Scenario-based Warnings

	Overall Architecture
	Components
	Data Flow

	Implementation Details
	Location Module
	Connectivity Module
	Map Module

	Analysis
	Feature-specific Performance
	Total Time Delay
	System Throughput Capability
	GPS Module Precision

	Mobile Device Performance
	Network
	Random Access Memory (RAM)
	Disk

	Summary
	Connection to Infrastructure
	Application Development
	Live Traffic Tracking and Visualization
	Scenario-based warnings

	Outlook
	Future Feature Increments
	Improved Human-Machine Interaction
	Functional Increments

	Deployment
	App Deployment
	Application in Autonomous Driving

	Bibliography

