
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Robotics, Cognition, Intelligence

Real-Time and Multi-Modal 3D
Object Detection for Autonomous Driving

Xavier Diaz Ortiz

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Robotics, Cognition, Intelligence

Real-Time and Multi-Modal 3D
Object Detection for Autonomous Driving

Echtzeit- und multimodale 3D
Objekterkennung für autonomes Fahren

Author: Xavier Diaz Ortiz
Supervisor: Prof. Dr. Alois Knoll
Advisor: M.Sc. Walter Zimmer
Submission Date: 15.10.2021

I confirm that this Master’s Thesis in Robotics, Cognition, Intelligence is my own work
and I have documented all sources and material used.

Munich, 15.10.2021 Xavier Diaz Ortiz

Acknowledgments

I would like to thank first my parents Lorena and Javier, as well as close friends for
their great emotional support and encourage during the development of this thesis,
even when things seemed difficult at times. I appreciate also the collaboration with
other student colleagues and the guidance of my supervisor Walter with the literature
research and his helpful suggestions. Last but definitive not least, I am very grateful to
the authors of the methods employed in this thesis who are pushing the limits of the
fields Artificial Intelligence and Autonomous Driving even further. They kindly helped
me to understand their work better and provided me with valuable feedback when I
had questions to be able to move forward with my own ideas.

Abstract

This thesis has focused on the multi-modality 3D detection of objects in real-time, par-
ticularly combining the complementary information from camera images and LiDAR
point clouds. The baseline for this project is the state-of-the-art deep learning architec-
ture CenterPoint that is LiDAR-only based, meaning it operates solely on point cloud
data to predict 3D bounding boxes with class classification around the located objects.
The available CenterPoint models have been trained on popular autonomous-driving
datasets like nuScenes and Waymo and have scored among the top-best performers
on their respective 3D detection benchmarks. Furthermore, a late-fusion strategy of
images and point-cloud frames has been applied to increase the accuracy of the 3D
object detector following the proposal described in the recent CLOCs (Camera-Lidar

Object Candidates fusion) network.

In this thesis CLOCs has been extended for multi-class fusion, training and inference
and the method has proven to be valid for a new type of 3D detector like CenterPoint.
Because speed matters for this project, in parallel with the LiDAR-based 3D object
detection, YOLOv4 has been selected to process the image stream and deliver 2D
object instances very fast to the next fusion stage with CLOCs, therefore transforming
the CLOCs method from an offline into an online real-time implementation. More-
over, ablation studies describe how well the detection pipeline does inference with
CenterPoint alone vs. after the fusion step made by CLOCs, analyzing quantitatively
and qualitatively the accuracy gained plus the latency introduced into the system.
All experiments have been conducted on the KITTI dataset. Nevertheless, since this
thesis should serve as a contribution to a larger project, the Providentia++ Intelligent
Infrastructure System (IIS), the conclusion section also remarks how the experiment
results can be applied to the use case of Providentia++.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

1.1. Motivation . 1
1.2. Contributions . 4

2. Background 6

2.1. Sensor modalities . 6
2.1.1. LiDAR . 6
2.1.2. Camera . 7
2.1.3. RADAR . 8

2.2. Sensor fusion schemes . 9
2.2.1. Early-fusion . 9
2.2.2. Late-fusion . 10
2.2.3. Deep-fusion . 11

2.3. Autonomous Driving datasets . 12
2.3.1. KITTI . 12
2.3.2. nuScenes . 13
2.3.3. Waymo Open Dataset . 15

2.4. Deep Learning on point clouds for 3D object detection.
A short overview. 16

2.5. Camera-LiDAR sensor fusion for multi-modal 3D object detection . . . 20

3. Related Work 25

3.1. PointPillars . 25
3.2. CenterPoint . 27
3.3. YOLOv4 . 29
3.4. CLOCs . 31

4. Solution approach 34

v

Contents

5. Experiments 38

5.1. Quantitative results . 38
5.1.1. YOLOv4 training and runtime . 38
5.1.2. CenterPoint trained on 3 classes + CLOCs 40
5.1.3. CenterPoint trained on 4 classes + CLOCs 42

5.2. Qualitative results . 46
5.3. Trials and errors . 55

6. Conclusions 59

7. Future Work 61

A. Appendix 62

Bibliography 80

List of Figures 84

List of Tables 89

vi

1. Introduction

1.1. Motivation

While detection in 2D might be valid for some applications that consider object recogni-
tion and classification only within a plane, there are other scenarios where reasoning
must happen in 3D nature like the robotic manipulation or navigation within a vol-
umetric world by an intelligent agent. Operations in 2D do not suffice any longer
because the estimation of depth implies the perception work must be conducted clearly
in a three-dimensional space. Let us consider the field of autonomous driving that
is experiencing major advances, especially when dealing with the perception of the
environment state. For instance, an autonomous car travelling on the highway has to be
able to localize and track with high accuracy other traffic participants in safety-critical
tasks, e.g. lane change and collision avoidance, so that it can react instantaneously to
unforeseen events. Therefore, 3D object detection in these cases becomes imperative to
determine the exact location coordinates of objects and their real dimensions. Based on
these 3D object attributes it is much more convenient for an autonomous car to make
sense of what is happening in its surroundings and objects can be discriminated simply
by size, Fig 1.1. However, local information gathered by only one vehicle may not be
enough for a complete understanding of traffic scenes as a local point of view suffers
from occlusions and limited range. With the aid of an Intelligent Infrastructure System
(IIS) that can perceive the current traffic situation from a better global perspective a
digital twin of the highway can be simulated in real-time. This simulation can then
be shared with other road users thereby extending its field of view, which in turn
could be beneficial for them to execute more suitable and safer maneuvers. To realize a
digital twin as truthful as possible, 3D detection is a crucial task for building a reliable
virtual representation that can map the position, orientation and dimensions of traffic
participants from the real world to the simulator.

The German state-funded project Providentia++ [1] is an example of such an IIS that
counts with a test-bed on some selected portions of the highway A9 between the cities
of Munich and Nuremberg. Different sensors such as cameras, radars and LiDARs
are mounted at strategic high spots to capture the dynamic environment that involves
the constant movement of incoming and outgoing vehicles on different sides of the

1

1. Introduction

Figure 1.1.: Example of the 3D object detection task where an object is classified as ’Car’
and its attributes like size, location and orientation are predicted as well in
the LiDAR sensor reference frame

2

1. Introduction

Figure 1.2.: Illustration of data flow in the Providentia++ system

highway. Edge workstations process and fuse the sensor readings and object detections
from a certain local measurement point; afterwards in the central backend, data from all
measurement points is fused together to have an overall landscape of the whole stretch.
The information about detected vehicles is transmitted via ROS (Robot Operating System)

[2] interfaces to the CARLA [3] simulator for autonomous driving, where the detected
vehicles are spawned and visualized. In CARLA by means of a HD map the highway
has been depicted with high fidelity as well, thus the end result is the realization of a
digital twin from the highway.

This thesis aims to support the Providentia++ research team to improve the current
3D object detection solution. Up until now a fusion algorithm that relies on camera
and radar was running on the backend system for 3D detection and tracking with
satisfactory results for the most common small-size vehicles, the car class, but for larger
vehicles (i.e. vans, trucks and similar), the estimation of dimensions was not precise
enough. To further enhance the 3D perception capability of the system, LiDAR sensors
were tested successfully in 2020 and finally installed in the summer 2021.

3

1. Introduction

1.2. Contributions

Although classic methods for computer vision and sensor fusion algorithms with regard
to the Kalman Filter and its variants have proven to be effective to some extent for
decades, since the emergence of Deep Learning, the vast majority of state-of-the-art
techniques rely on the development of artificial neural networks targeted to object
detection, whether in 2D or 3D. Therefore, in this thesis a Deep Learning based solution
has been proposed.

After extensive literature research, the real-time 3D object detection pipeline con-
ceived is the outcome of coupling several state-of-the-art networks that will be described
in more detail in Chapter 3. The actions taken to improve them or make them operate
together as an ensemble are highlighted as follows:

• CenterPoint: It is a network that regards objects as points for 3D object detection
and tracking, it takes as input a LiDAR point cloud and predicts 3D bounding
boxes for various classes of objects present in the scene. Actually, CenterPoint

itself refers mainly to the detection head type which runs on top of either two
backbones, for this project the PointPillars version was chosen as it is the optimal
compromise between speed and accuracy. CenterPoint has been tested on large
autonomous driving datasets, namely nuScenes and Waymo, ranking in the top
places of their respective 3D detection benchmarks, thus its success is beyond
doubt. However, in this thesis the KITTI dataset has been chosen to conduct
experiments as it is of manageable size to work with and evaluate results locally
in one computer. Furthermore, using the KITTI dataset helps to study how
CenterPoint behaves with a new dataset it has not been officially tested before.
Despite this, notice that it is not a goal of this thesis to develop a CenterPoint

model that can perform with high-accuracy on KITTI.

• YOLOv4: the fourth iteration of the YOLO (You Only Look Once) family has been
employed to detect objects in 2D from KITTI image recording streams. YOLOv4

has been made available pretrained on the COCO dataset, thus, it can already
detect persons, cars and trucks out-of-the-box, but a new model has been trained
targeted to the more specific classes available on KITTI like cars, vans, pedestrians,
cyclists, etc. In this project it is used as a real-time tool due to its unbeatable
inference speed to supply the next fusion-stage with very fast and quite accurate
2D detections.

• CLOCs: the Camera-LiDAR Object Candidates for 3D object detection method is a tiny
neural network that, as it name suggests, was designed to perform late-fusion of

4

1. Introduction

any combination of 2D and 3D detectors. Among the multi-modality methods it
ranks among the best ones in the car class of the KITTI test set. Simply speaking,
this network takes as input the predicted 2D and 3D bounding boxes before NMS
(Non-Maximum-Suppresion) with the same semantic label and learns to fuse both
confidence scores into one final 3D score. Consequently, the synergy of images
and point cloud data with CLOCs helps to increase the accuracy by removing
false positives and minimizing the number of missed 3D detections. For this
project the CLOCs core functionality has been extended to multi-class fusion and
adapted for integration into the codebase of the 3D detector CenterPoint to allow
training and inference of the fusion-stage with multiple CLOCs instances, one
instance for every object class of interest. The CLOCs fusion method has been
proven to work for a different kind of 3D detector it was not tested before, an
anchor-free network like CenterPoint. With YOLOv4 playing the role of a super
fast 2D detector, CLOCs is well-suited for an online real-time application if some
hardware requirements are satisfied.

Furthermore, ablation studies will determine the following aspects: the final average
inference speed in FPS of the whole detection pipeline, the accuracy of CenterPoint

alone vs. after the fusion step with CLOCs, and the latency introduced into the system
by CLOCs and YOLOv4 running in parallel with CenterPoint. A qualitative analysis
of common fusion effects is given as well to interpret graphically the benefits and
drawbacks of the proposed solution. At the end in Chapter 6, it is briefly explained
how the Providentia++ team could profit from the results found in this thesis.

5

2. Background

On the one hand, this Chapter presents concepts in relation to the topics of Sensor
modalities, Sensor fusion schemes and description of the most popular Autonomous
Driving datasets. On the other hand, the necessary condensed theory to understand
the fundamentals of Deep Learning applied to point clouds and camera-LiDAR sensor
fusion for multi-modal 3D object detection is given.

2.1. Sensor modalities

There exist many kind of sensors with distinct operating principles that are useful
to sense different physical properties. On the one hand, there are sensors that give
information about the own state of a system. For example IMU, acceloremeters,
GPS, and wheel encoders can measure orientation, inertial forces, global position and
distance travelled for odometry purposes. On the other hand, for 3D object detection,
tracking and in general perception of the environment, the most common sensors found
today in the automotive industry are LiDAR, Camera and RADAR, which are also
present at the measurement points of the Providentia++ IIS.

2.1.1. LiDAR

LiDAR (Light Detection and Ranging) is a device that makes periodically rotations of
360 degrees, at a rate of 10-20 Hz while sending out beams of light and measuring how
long it takes for the beam of light to come back to determine the distance to an object.
Each laser ray is in the infrared spectrum, and is sent out at many different angles,
with a spatial resolution in the order of 0.1° due to the short wavelength of the emitted
IR light. Laser intensity value is also received and can be used to evaluate material
properties of the object the laser reflects off. The result after one spin of the LiDAR is a
point cloud (Fig. 2.1), this data is usually stored in a pcd file format that contains the
x, y and z coordinates of each scanned point in the device reference frame, plus some
other attributes like the intensity value. Because the lasers in a LiDAR are concentrated
in vertical layers, the number of layers has a big impact on the resolution of the point
cloud, meaning the more layers a LiDAR has, the more points will be captured in the
vertical field-of-view and hence, there will be less blind spots and objects will have

6

2. Background

Figure 2.1.: Example of point cloud from a traffic scene generated by a LiDAR of the
brand Velodyne.

more points on their surface. Also a LiDAR can send light beams up to a certain range,
so the point density distribution will become lower with increasing distance from the
sensor. While LiDAR sensors are not much affected by adverse weather conditions
and they give us very high-resolution models for the world around us in 3D, they are
currently the most expensive perception sensor.

2.1.2. Camera

When an image is captured by a camera, light passes through the lens and falls on the
image sensor. This sensor consists of light sensitive elements that register the amount of
light that falls on them and convert it into a corresponding number of electrons. Once
the exposure time is complete, the generated electrons are converted into a voltage,
which is finally transformed into a discrete number by means of an A/D-converter.
Currently, there are two main image technologies, CCD (Charge-Coupled Device)
and CMOS (Complementary Metal-oxide Semiconductor). Both technologies convert
electrons into voltage and are inherently color blind, as they cannot distinguish the
different wavelengths which generate the electrons. To enable color vision, tiny filter
elements (i.e. micro-lenses) are placed in front of each pixel to allow only a certain
wavelength to pass through. One common way to map wavelength to color is to arrange
the filter elements in an RGB (Red, Green, Blue) pattern to allow the primary colors
to pass through individually, which gives us three pixel arrays - one for each primary

7

2. Background

Figure 2.2.: Example of 2D image semantic segmentation, i.e. pixel-level object classifi-
cation. (Top) input image. (Below) prediction

color. Cameras provide rich texture and color information. This is one of the prime
advantages of camera systems and recent advances in AI emphasize this even stronger,
that’s why cameras are preferred for objection detection and classification in 2D or
image semantic segmentation (Fig. 2.2). Deriving 3D geometry using 2D camera data
is challenging as they do not provide depth (except for the case of stereo-cameras),
but because they are affordable devices readily available in the market there are some
algorithms that can leverage 2D features from a monocular camera to carry out 3D
object detection, though the accuracy obtained lies far below what could be achieved
by LiDAR-based methods.

2.1.3. RADAR

RADAR (Radio Detection and Ranging) works using the transmission and detection of
electromagnetic waves, measuring the time of flight of the signal to compute the dis-
tance. Electromagnetic waves are reflected if they meet an obstacle, if these are received
again at the place of their origin, then that means an obstacle is in the propagation
direction.The range of detection can be from a few meters up to more than 200 m.
RADAR lacks the capability to generate a high resolution point cloud, but it can highly
accurate estimate velocity of the targets exploiting the Doppler effect of frequency shift.
This is one its primary advantages over other sensors. In Fig. 2.3 RADAR points on
some encountered objects can be seen. The frequency of electromagnetic energy used

8

2. Background

Figure 2.3.: Example of RADAR points spread in all directions projected onto an image.
Two detected vehicles have RADAR points on the rear side.

for RADAR is unaffected by darkness and penetrates fog and clouds. This permits radar
systems to determine the position of road targets invisible to the naked eye because of
distance, darkness, or weather. A key factor to bear in mind is the low manufacturing
cost for a RADAR, one unit can cost as low as a few hundred dollars, allowing a car
manufacturer to deploy multiple RADAR sensors for 360 degree perception.

2.2. Sensor fusion schemes

Depending on the stage at which the data from several sensors, i.e. modalities, is
merged together in a neural network, one can distinguish three fusion approaches:
early-, deep- and late-fusion.

2.2.1. Early-fusion

The raw data from all sensors, after some preprocessing, is fused at the input level.
This means usually every independent set of raw data is transformed first into an input
feature vector, and then all feature vectors are concatenated or stacked together, Fig.
2.4. Only after the heterogeneous data have been transformed to a uniform ground
codification, they can be fed into a machine learning algorithm. The main issue with
early-fusion is devising a common feature representation space for all modalities with
matching dimensions. Also, early-fusion requires that data from different streams is

9

2. Background

well synchronized with the same timestamps, for which the data should be collected at
a common sampling rate.

Figure 2.4.: Early-fusion illustration

2.2.2. Late-fusion

In contrast to before, now every stream of input data for all modalities is first passed
individually to a corresponding data-type appropriate network model for inference,
then all output results are fused at the decision-level, see Fig. 2.5. Late-fusion is a sim-
pler and more flexible technique than early-fusion in the sense that non-homogeneous
raw input data does not need to be converted to some common feature space, instead
the individual models are more specific and tailored to the domain application of the
sensor modality, for instance one model handles best only camera images, another
model is specialized only in point clouds, etc. Several criteria can be used to define the
optimal way about making a decision on how to finally merge each of the independent
predictions from the trained models. Bayes rules, max-fusion and average-fusion are
popular employed late-fusion rules among others.

10

2. Background

Figure 2.5.: Late-fusion illustration

2.2.3. Deep-fusion

This approach can be considered as something in-between the previous schemes. The
data from different modalities is transformed to an intermediate feature space at the
hidden layers of the neural network. The fusion of features is embedded into the
network structure and can occur even at multiple stages of depth along the data down-
stream, see Fig. 2.6. Deep-fusion is more flexible than early-fusion, and enables the
network to learn a joint-representation of each each modality before the final prediction.
Features can be extracted from the typical kinds of layers, namely 2D convolution,
3D convolution and fully connected. The layer where the fusion of different modality
features has taken place is called a fusion layer or a shared representation layer.

11

2. Background

Figure 2.6.: Deep-fusion illustration

2.3. Autonomous Driving datasets

The conception of a satisfactory neural network model often requires a vast collection
of training data for the domain and task of interest. In the field of Autonomous
Driving the most relevant datasets made public available recorded from the ego-vehicle
perspective and their evaluation metrics will be described next.

2.3.1. KITTI

KITTI [4] has been perhaps the dataset of reference for developing Autonomous Driving
algorithms, as it was the first of its kind early released in 2012 in a conjunction project by
the Karlsruhe Institute of Technology and the Toyota Technological Institute at Chicago.
The KITTI dataset was captured by a VW vehicle that was driving in both urban and
rural areas in the German city Karslruhe. In total, 6 hours of traffic scenarios were
recorded at 10-100 Hz using a variety of sensor modalities such as color and grayscale
stereo cameras, a Velodyne 3D laser scanner and GPS/IMU inertial navigation system.
The dataset in KITTI, almost 15.000 frames total in size, is calibrated, synchronized and
timestamped. Labels in 2D and 3D are provided for objects of different classes, being
the most dominant ones ’Car’ and ’Pedestrian’. KITTI offers benchmarks for various
tasks like stereo, optical flow, depth completion, tracking, semantic segmentation, etc.

12

2. Background

Figure 2.7.: Example of 3D object detection in KITTI

For the challenges of BEV (Fig. 2.8) and 3D object detection (Fig. 2.7), the evaluation
metric used in KITTI is the Average Precision (AP) and mAP (mean Average Precision).
For defining a positive match the bounding box Intersection over Union (IoU) in 3D or
2D for BEV - Fig. 2.9 - of at least 70% is necessary for Car, and 50% for Pedestrian/Cy-
clist. The AP can be understood as the area under the precision-recall curve using K
recall sampling points for calculation with the Riemann integral. Originally 11 recall
points were considered, but currently 40 points are taken for the AP estimation in the
official test server. KITTI further divides the detection challenge into three categories:
easy, moderate and hard. The difficulty degree is defined with respect to the bounding
box height in pixels in the image plane, the occlusion level and truncation percentage.

mAP =
1
C

C

∑
i=1

APi

2.3.2. nuScenes

The nuScenes (nuTonomy Scenes) [5] dataset was developed and released in 2019 by the
company Motional (formerly named nuTonomy), which aims at producing driverless
reliable vehicles. 1000 scenes, each 20 seconds long at 2 Hz were compiled by the
fleet of the company in the diverse areas of the cities of Boston and Singapore. It is
the first dataset that covers the full-suite of devices found in today’s most common
configurations of autonomous cars, thus apart from 6 cameras, 1 LiDAR, IMU, GPS,
it also includes the Radar sweeps in its sensor data to encourage research in sensor
fusion. Unlike KITTI, nuScenes is a huge dataset with 40.000 keyframes that contains 7x
more object annotations of 23 classes. In nuScenes the 360 degree field-of-view of the

13

2. Background

Figure 2.8.: Example of BEV object detection in KITTI

Figure 2.9.: Intersection over Union in 3D. The higher the IoU value for a certain
threshold, the better a predicted bonding box matches the ground-truth
label for a particular object

14

2. Background

vehicle is covered, whereas in KITTI only the front-view of the camera distance range
is taken into account. Moreover, nuScenes is the first multimodal dataset that contains
data from nighttime and rainy conditions, road maps and with object attributes and
scene descriptions in addition to object class and locations.

nuScenes offers benchmarks for object detection, tracking, lidar-segmentation and
recently for trajectory prediction. As for the 3D object detection task they use the AP
metric in a slightly different way, a match is defined by considering the 2D center
distance on the ground plane rather than IoU-based criterion. Further, they define
metrics for a set of true positives (TP) that measure average translation / scale /
orientation / velocity and attribute errors. These TP errors are then converted to TP
scores, the mean over classes is taken to calculate the mTPs and together with the mAP
are condensed into a single metric, the nuScenes detection score (NDS), computed as
the normalized sum of mAP with weight 5 and the rest of TP scores, each one with a
weight of 1.

NDS =
1
10

[5mAP + ∑
mTP∈TP

(1 − min(1, mTP))]

2.3.3. Waymo Open Dataset

The Waymo Open Dataset (WOD) [6] was first launched in August 2019 with a per-
ception dataset comprising high resolution sensor data and labels. In March 2021,
it was expanded to also include a motion dataset comprising object trajectories and
corresponding 3D maps. The WOD was publicly released by Waymo - a company of
Alphabet with roots in the Google self-driving car project of 2009 - to aid the research
community in making advancements in machine perception and autonomous driving
technology. They provide more than 100.000, 20s long (over 20 million frames) record-
ings at 10Hz from diverse geographies and conditions of 6 American cities like San
Francisco, Los Angeles, Detroit, to name a few. The data acquired by 1 mid-range
LiDAR, 4 short-range LiDARs, 5 cameras (front and sides) were labeled in the camera
image and LiDAR point cloud for the classes Vehicles, Pedestrians, Cyclists and Signs.

The positive IoU thresholds are set to 0.7, 0.5, and 0.5 for evaluating vehicles, cy-
clists, and pedestrians, respectively. Moreover, the mean average precision is also used
in the WOD, but it is weighted by heading to give as result the mAPH metric, since the
regular average precision AP does not take the heading angle into account.

15

2. Background

APH = 100
∫ 1

0
max{h(r′)|r′ >= r}dr

where h(r) is the PR curve weighted by heading accuracy. The prediction is from
[−π, π]. Angle correction is between 0 and π. To get a weight between 0 and 1, a
division by π is performed.

2.4. Deep Learning on point clouds for 3D object detection.

A short overview.

The application of Deep Learning (DL) in the 2D domain is a very mature field. In Fig.
2.10 a typical 2D convolution is shown, a 3x3 filter is applied to a grid data structure
as it could be the case for image features. Bello et al. [7] underline in their review
the shortcomings of point cloud data as well as the initial history of Deep Learning
to overcome the potential challenges. Unfortunately, using the same operations for
images on point clouds is not so straightforward, since point cloud data, contrary to an
array of pixels in 2D, is not regular organized in a grid-like fashion. Point clouds can
have regions with varying density, they do not follow necessarily any order pattern
whatsoever, Fig.2.11.

Figure 2.10.: Example of a typical convolution operation on a 4x4 input I by a 3x3 filter
K that produces the result O of size 2x2.

These properties are difficult to handle for a normal convolutional neural network
(CNN). Images are discretized in 2D as a grid of pixels, in a similar way initial at-

16

2. Background

tempts were made to regularize point clouds by shaping them into ordered cubic cells,
conversion known as voxelization (Fig. 2.12), to be later convolved with a 3D CNN.
However, this leads to an inefficient high memory consumption due to the sparsity
caused by voxelization as most voxels in the cubic grid are empty. For this reason, it
was necessary that Deep Learning experts came up with algorithms to operate directly
on the raw points of the point cloud instead.

Figure 2.11.: Challenges in handling point cloud data [7]. Left: Point clouds can have
regions with varying density. Middle: Lack of structure in the points
distribution, the distance between points can be random and independent
for each pair of points. Right: The order of points within a set is arbitrary
and meaningless to encode them as a vector

Figure 2.12.: Voxelization of a point cloud which transforms the data into an ordered
data structure, a grid of cubic cells

17

2. Background

Figure 2.13.: PointNet [8] is composed of multilayer perceptrons (MLPs), which are
shared point-wise, and two spatial transformer networks (STN) of 3 × 3
and 64 × 64 dimensions which learn the canonical representation of the
input set. The global feature is obtained with a winner-takes-all principle
and can be used for classification and segmentation tasks.

PointNet [8] is a pioneer technique worth mentioning because it inspired the founda-
tions for other subsequent networks that were developed afterwards. The mulitlayer
perceptron (MLP) and the max-pooling function are the key components of PointNet,
basically the raw points are mapped by MLPs from an input d (d often equals 3 for x, y,
z coordinates but could be larger for more channels) to a D = 1024 dimensional space
in which all points share the same weights in each layer. The max-pooling symmetric
function (symmetric meaning the output is not affected by the input order at all) is
used to obtain a global feature vector descriptor of the input that could be passed to
a classification or segmentation block, Fig. 2.13. One downside of PointNet is that it
fails at capturing the local point structure because the local correlation among points
is totally ignored. Later works tried to overcome this issue through sampling the
point cloud to obtain centroids of the sampled regions and aggregating the k-nearest
neighbours of these centroids into a local group. Then PointNet could learn to extract
local features related to the local neighbourhood of point clusters.

As already said, PointNet was the fist milestone in the application of Deep Learning
to point cloud data, since its emergence a vast amount of sophisticated networks have
arisen for more dedicated tasks such as 3D shape classification, 3D object detection,
tracking, scene flow estimation and 3D semantic segmentation. Down below the
taxonomy of state-of-the-art neural networks tailored to 3D object detection will be
presented as defined by Guo et al.[9]. According to the underlying working principle,
these networks can be generally sorted into:

18

2. Background

• Region Proposal-based methods: In this case first several potential regions con-
taining objects (called proposals, hence the name) are proposed by the network
and then features at the region-level are extracted to predict the category label of
each proposal. These methods can further be divided into:

– Multi-view based methods: Proposal-wise featues from different views (eg.
LiDAR front view, Bird Eye View (BEV) or even images) are fused at the
early stage of the newtork. The computation cost is quite high.

– Segmentation based methods: Semantic segmentation techniques are used
to separate the foreground from the background points, then high-quality
proposals are generated only on the foreground points reducing the compu-
tation burden. These methods are suitable for complex scenes with occluded
and crowded objects.

– Frustum based methods: 2D candidate regions of objects are taken from
available 2D detectors, then a 3D frustum proposal for each 2D candidate
region is extracted. Their performance is limited by the 2D image detector.

– Other methods: PointVoxel-RCNN [10] stands out with excellent results
on the car class of the KITTI 3D detection challenge. Its core idea is the
combination of both a 3D CNN for generation of high-quality proposals
on the voxelized point cloud, and a PointNet-based set abstraction for the
learning of point cloud features.

• Single-shot methods: By means of a single-stage network, the class probabilities
and bounding boxes for each object are regressed directly without any proposal
general generation or post-processing, which makes possible for these methods
to run faster. According to the input data, they can be categorized into:

– BEV-based methods: These methods operate on the Bird Eye View of the
point cloud and apply a FCN to estimate the heading angles and locations
of objects as if the point cloud were a 2D image.

– Discretization-based methods: The point cloud is converted into a regular
discrete representation where a CNNs are applied to predict both the cate-
gories and 3D boxes of objects. VoxelNet [11] is one good example of such
methods that partitions the point cloud into equally spaced voxels and the
features within each voxel are encoded into a 4D tensor. A region proposal
network is then used to produce the detection results. The performance
achieved is high, but slow due to the sparsity of the voxels and the 3D con-
volutions. PointPillars [12] also lies in this category, but it will be explained
in more detail in the next chapter.

19

2. Background

– Point-based methods: These methods take the raw point cloud directly
as their input. 3DSSD [13] introduces a novel fusion sampling strategy
for distance (D-FPS) and a feature FPS with the purpose of removing the
time-inefficient feature propagation layers and the refinement module of
PointRCNN [14]. Next, a Candidate Generation layer extracts the representa-
tive points which are fed into an anchor-free regression head to predict the
3D objects.

– Other methods: the dense Range View (RV) of the point cloud is taken as the
input to LaserNet [15] and a fast mean-shift algorithm is employed to lower
the noise produced by the per-point probability distribution prediction of
bounding boxes. Another input representation was proposed in Point-GNN

[16] by converting the point cloud into a graph of near neighbours with fixed
radius to predict the categories of objects as well as the boxes.

2.5. Camera-LiDAR sensor fusion for multi-modal 3D object

detection

The vast majority of multi-modal fusion networks found in the literature attempt to
leverage the sensor modalities camera and LiDAR, only a few works deal with Camera-
RADAR or LiDAR-RADAR combinations, examples of these are CenterFusion [17] and
RadarNet [18] respectively. A reason for this could be that researchers worked early
on with the KITTI dataset that contains merely Camera and LiDAR within its sensor
suite, just recently nuScenes was the first dataset to include Radar point clouds, but
still up-to-date the methods that occupy the top places in the benchmarks for 3D object
detection are either primarily LiDAR-only based or to a lesser extent camera-LiDAR
based. Wang et al. [19] in its survey discuss the pros and cons of using a single-modality
detector. See Fig. 2.14 that shows an example of the issues inherent to single-modality
detectors. On the one side a monocular camera-based 3D object detector does not
provide reliable 3D geometry, it may demand high-computational cost and suffers
from occlusion and bad weather and unfavorable light conditions such as rain, fog,
dark shadows, bad contrast etc. On the other side a LiDAR-based 3D object detector
provides naturally a better suitable 3D geometry, being an active sensor a LiDAR is
not affected by insufficient light and is more resistant to adverse weather. But LiDARs
are much more expensive devices than cameras, the point cloud data cloud generated
by a LiDAR can become so sparse in the long range that objects with few points are
barely recognizable, the point cloud can have low resolution for spinning LiDARs with
less than 128 channels (however an exception are the solid-state LiDARs manufactured
with a new technology), and the real-time perception could be limited by the refresh

20

2. Background

Figure 2.14.: Illustration of typical problems for Single-Modal detectors. For scene
#1, (a) shows a single camera cannot avoid the occlusion problem while
the detection result of LiDAR only detector in (b) is correct; For scene
#2, camera only detector in (c) performs well while LiDAR only detector
shows the difficulty of detecting faraway vehicles with just a few LiDAR
points in (d). Note that dashed red boxes stand for missed objects [19]

rate of a LiDAR, usually maximum 20 or 25 Hz, much lower than cameras. Therefore,
the use of complementary information from camera and LiDAR inspires the field of
multi-modal 3D object detection so as to take advantage of the strengths of both sensors
while trying to diminish their shortcomings.

In the survey the authors identified that for feature fusion, i.e. early- or deep-fusion
networks, the following are the fusion input representations most common: point cloud
view (Bird Eye, Front or Range View) plus image feature map (a map here refers to
the output of an image convolution layer), point cloud voxels plus image feature map,
raw point cloud data plus image feature map, raw point cloud data plus image mask
(a mask here means one portion of the pixel-wise image semantic segmentation), point
cloud voxels plus image mask, point cloud voxels plus point cloud view plus image
feature map, point cloud voxels plus image feature map plus image pseudo-LiDAR
(here pseudo-LiDAR representation refers to the backprojection into LiDAR frame of
the depth-map prediction for stereo or monocular camera images). The authors coin the

21

2. Background

term ’fusion granularity’ to define the level of detail at which fusion happens, which
could be: RoI-wise via RoI (Region of Interest) pooling or acquiring 3D frustums from
2D RoIs, Voxel-wise when point cloud voxels are projected onto the image plane fol-
lowed by feature extraction within 2D RoIs plus concatenation of pooled image features,
Point-wise when the 3D points are projected onto the image using a known calibration
matrix followed by feature extraction from a pre-trained 2D CNN plus concatenation
of image or mask features; and Pixel-wise when the native representation of LiDAR,
the Range View, is merged with an RGB image for posterior feature extraction with a
2D CNN.

In the survey also some of the challenges in multi-modal fusion are mentioned and
the authors suggest solutions to alleviate these issues, namely:

• Multi-sensor calibration: Doing fusion of camera and LiDAR data implies the
transformation from point cloud data to pixels or vice-versa, to the coordinate
system of the other sensor via a calibration and projection matrix. For datasets like
KITTI, nuScenes or Waymo this transformation between sensor frames is already
provided to the research community. But in practice a self-made calibration
for a new application scenario, when done manually with a target, could be a
cumbersome process prone to a lot of errors and oftentimes the calibration must
be performed as a routine because the sensors are subject to vibrations and forces
from the environment. Assembling the sensors together to restrain the relative
displacement as well as opting for an online targetless (aka automatic) calibration
process would be a good idea.

• Data alignment: Pixels from camera images and point cloud data are acquired
from different perspectives and usually there is not perfect correspondence be-
tween a point in 3D and the pixel domain in 2D, so this leads to quantization
errors that could be mitigated with bilinear interpolation.

• Information loss: Each level of fusion granularity leads inevitably to some
reduction of the input representation capacity, the finer the granularity the lesser
this reduction. Perhaps the design of a loss function specific for multi-modal
fusion could be a solution.

• Multi-Modality Data Augmentation: Operations to increase the size and vari-
ability of the training dataset are used in single-modality detectors to improve
the training and generalization ability of the network. Though in multi-modal
fusion these operations cannot be applied straightforward without an explicit and
careful mapping from one sensor stream to the other. MoCa [20], described later,
is a pioneer work with new strategies that address this issue.

22

2. Background

• Metrics: Currently the object detection benchmarks focus only on the AP metric
with no distinction if the submitted results come from a single-modal or multi-
modal detector. It would be useful to have means to evaluate the special case of
multi-modal fusion networks for comparison of other important metrics such as
computation overhead, latency and robustness introduced by fusion.

Next, some remarkable state-of-the-art multi-modal fusion methods published in
2020 and 2021 will be described. Vora et al. in their work posed the question of
why LiDAR-only based detectors significantly surpassed the accuracy of every prior
network that at the time attempted to fuse LiDAR point clouds and camera images.
This question seems reasonable as more redundant information gathered from multi-
modal perception of the environment should in theory boost the final accuracy, or at
least match, but not worsen, the same performance of the baseline LiDAR detector.
They invented a sequential fusion technique named PointPainting [21] that can improve
the accuracy of any detector. Essentially, it works as follows: projecting the point
cloud into the corresponding image semantic segmentation result. After finding a
mapping between the cloud points and pixels, the semantic segmentation scores of
the corresponding match point-pixel are appended to each point, thus augmenting
the dimensionality of the point cloud. EPNet [22] proposes a LiDAR-guided Image
Fusion (LI-Fusion) module to establish a point-wise correspondence between raw
point cloud data and the camera image, and flexibly give more or less weight to the
image semantic features so that useful image features are utilized to enhance the
point features whereas noisy image features are suppressed. EPNet also derived a
consistency-enforcing loss (CE loss) to tackle the paradox of boxes being predicted with
high classification confidence but low location score (low IoU with the ground-truth
box) or the other way around, thus the CE loss encourages the network to optimize
better the location and classification prediction. 3D-CVF [23] combines the camera
and LiDAR features using a cross-view spatial feature fusion strategy. First, the 2D
camera features are transformed to a smooth spatial feature map with the highest
correspondence to the LiDAR features in BEV. An adaptive gated fusion network
helps to resolve the objects in BEV and balances the contributions from the two sensor
sources using attention mechanism. In the first stage the region proposals are found
based on the joint camera-LiDAR feature map. Then in a second stage 3D region
of interest (RoI)-based pooling is applied to aggregate low-level LiDAR and camera
features with the joint camera-LiDAR feature map, which leads to a better proposal
refinement. MAFF-Net [24] is an end-to-end trainable single-stage multimodal feature
adaptive network that exploits the raw RGB features from images. With PointPillars

as the baseline and based on the channel-attention mechanism the authors of MAFF-

Net designed two fusion modules to choose from, PointAttentionFusion (the channel

23

2. Background

attention mechanism performs point-wise feature fusion of the two modalities) and
DenseAttentionFusion (it converts the image and point cloud into three modalities, and
then performs pillar-wise feature fusion of these multi-modalities), which help to filter
the amount of false positives in the 3D detections while preserving the true positives.
Xu et al. came up with FusionPainting [25] that can be considered a child and upgrade
of PointPainting that brings even superior detection improvement. FusionPainting not
only relies on 2D image semantic segmentation to extract features for each point, but a
similar action is done via 3D semantic segmentation as well. Both 2D and 3D semantic
segmentation score results are appended to each point and the extended point cloud
passes through an adaptive attention-based semantic fusion module that learns context
features at the voxel-level. Single-modality detectors increment the performance when
data augmentation techniques are used during training, but for multi-modal networks
this is not a trivial thing to do because one object sampled in the point cloud might
appear in a location that does not make sense in the image or vice versa. For that
matter Zhang et. al presented Multi-mOdality Cut and pAste (MoCa) as a new data
sampling method very beneficial for multi-modal detectors that ensures consistency of
the object cut-and-paste augmentation by avoiding occlusions and checking beforehand
its plausibility both in the point cloud and image domains. For other operations like
flipping, scaling, rotation, translation the authors contributed also a so-called multi-
modality transformation flow in which the parameters and orders of transformations
used by each augmentation are recorded. Then during fusion, any point in the LiDAR
coordinates could find its corresponding image pixel coordinates by reversing the
point cloud transformations and replaying the image transformation. In this way, any
augmentation operation can be applied and be consistent for the multi-modality case
as long as it can be reversed and replayed.

24

3. Related Work

In this Chapter the Deep Neural Networks that serve as the framework for the de-
velopment of this thesis - namely PointPillars, CenterPoint, YOLOv4 and CLOCs - are
described for a better comprehension of the proposed detection pipeline solution that
combines them all.

3.1. PointPillars

PointPillars [12] is one of the most efficient networks for the task of 3D object detection
when it comes to maintain a balanced trade-off between run-time and accuracy. In
fact, back then at the date of its release, it was considered the best method for 3D and
BEV detection benchmarks in KITTI, outperforming previous attempts in terms of both
accurate predictions and speed, by being 2-4 times faster than most methods running
at 62 Hz. Roughly speaking, PointPillars uses a feature encoder to transform the point
cloud into a sparse pseudo-image, then uses 2D convolutions to have a high-level
representation of the pseudo-image; and a detection head is used to regress the 3D
boxes, Fig. 3.1.

The conversion to pseudo-image is done by discretizing the point cloud - assum-
ing the input dimension to be D=4 for x,y,z and reflectance r - into a grid only along the
x and y ranges, leaving the z out as the common height of a set of pillars P. The points
in each pillar are augmented with the arithmetic mean of the points inside the pillar
and the offset to the particular pillar center, thus making the point cloud dimension
D=9. Due to the sparsity of the point cloud a limit is imposed on the number of
non-empty pillars (P) and the number of points-per-pillar (N), to create a tensor of size
DxPxN, subject to random sampling or zero-padding to compensate for too much or
too few points within the pillar respectively. A PointNet with a linear layer, Batch Norm,
ReLU plus MaxPool is used to encode the features of the tensor and after a scatter
operation a pseudo-image of size C,H,W is created, where C is the number of channels,
H is the height, and W is the width of the canvas. Next. a backbone is applied to the
pseudo-image in two steps, first a network produces features at decreasing resolution
by a series of blocks (S,L,F) being S the stride size, L the number of 3x3 2D-conv-layers
and F the output channels. A second network acts on these intermediate top-down

25

3. Related Work

Figure 3.1.: Schema of the PointPillars network [12]

features to do an upsampling and concatenation of the features generated at different
strides. Finally, a Single-Shot-Detector (SSD) using the matching of priorboxes with
ground-truth via the 2D IoU performs the 3D object detection. The bounding box
height and elevation become a target for regression given a box match in 2D.

PointPillars employs the same loss functions introduced in SECOND [26]. Ground
truth boxes and anchors are defined by (x, y, z, w, l, h, θ). The localization regression
residuals between ground truth and anchors are defined by:

∆x =
xgt − xa

da
, ∆y =

ygt − ya

da
, ∆z =

zgt − za

ha

∆w = log
wgt

wa
, ∆l = log

lgt

la
, ∆h = log

hgt

ha

∆θ = sin
(

θgt − θa
)

,

where xgt and xa are the ground truth and anchor boxes and da =
√

(wa)2 + (la)2. The
total localization loss is then:

Lloc = ∑
b∈(x,y,z,w,l,h,θ)

SmoothL1 (∆b)

Since the angle localization loss cannot distinguish flipped boxes, a softmax classi-
fication loss is used on the discretized directions, Ldir, which enables the network to
learn the heading.

For the object classification loss, the focal loss is used:

Lcls = −αa (1 − pa)γ log pa,

26

3. Related Work

where pa is the class probability of an anchor. with original paper settings of α = 0.25
and γ = 2. The total loss is therefore:

L = 1
Npos

(βlocLloc + βclsLcls + βdirLdir) ,

where Npos is the number of positive anchors and βloc = 2, βcls = 1, and βdir = 0.2.

3.2. CenterPoint

CenterPoint [27] is a novel network that has obtained outstanding results lately. This
network deems 3D object detection as a task of finding, in a first stage, the centers of
objects from which other attributes such as position, size and orientation are estimated
by different regression heads. In a second stage, other point features, coming from the
face centers of the initial bounding box estimate, are condensed into a vector and fed
into a MLP for prediction of confidence scores as well as for further refinement of the
box attributes, Fig. 3.2. By considering 3D objects as rotational-invariant points, this
network is more flexible in the prediction of the orientation. This flexibility leads to
more accurate estimates of the heading angle than anchor-based methods, meaning
for example in a straight road, both point-based and anchor-based methods perform
similar, but when the axes of objects do not match the direction of the ego-vehicle
coordinate frame, i.e. if the vehicle is turning, anchor-based methods struggle to fit the
correct axis-aligned bounding boxes to rotated objects. In contrast, treating objects as
points invariant to rotations alleviates this issue. Also, being an anchor-free method,
there is no need to specify in advance predefined anchor sizes for each object class,
with positive and negative thresholds in the 2D Box IoU for target assignment, thus, the
center-based network does not require a priori anchor-parameters and training becomes
easier and computational less expensive. Another advantage of CenterPoint is that per-
forming tasks beyond 3D detection, such as velocity regression and tracking becomes
much simpler with a point-based characterization of objects. The implementation of
the detection head was inspired by the principle of CenterNet [28], that is, formulating
object detection in 2D as a problem of keypoint estimation in the image to predict an
output heatmap. In this manner, every local peak of such heatmap corresponds to the
center of a detected object with confidence proportional to the heatmap value at the
peak. The authors of CenterPoint were able to translate this idea from 2D to the 3D
domain: after processing the input point cloud with either the PointPillars or VoxelNet

backbones for feature extraction, the result is a map-view feature-map ~M ∈ R
W×L×F

of width W and length L with F channels in a map-view reference frame. Both width
and height directly relate to the resolution of individual voxel bins and the backbone
network’s stride. This map-view is then passed to a 2D CNN detection head to produce

27

3. Related Work

Figure 3.2.: Schema of the CenterPoint network [27]

a K-channel w × h heatmap Ŷ ∈ [0, 1]w×h×K – one channel for each K class respectively
- with peaks at the center location of the detected object. In the training phase, the
centers of ground-truth bounding boxes are projected into a map-view so that the
detection head can target a 2D Gaussian around these projections using a focal loss.
Moreover, separate regression heads handle several object properties at center-features
of objects: a sub-voxel location refinement o ∈ R

2, height-above-ground hg ∈ R, the
3D size s ∈ R

3, and a yaw rotation angle (sin(α), cos(α)) ∈ R
2. CenterPoint aggregates

both the heatmap and object properties regression losses in one common objective and
jointly optimizes them.

The limitations of CenterPoint stem from the nature of the backbones used, that
is, generally the VoxelNet flavour of CenterPoint is slower but more accurate than
its PointPillars counterpart. Also, the second-stage refinement brings zero to little
improvement depending on the dataset intrinsics; according to the authors, the second-
stage was superfluous in the experiments with nuScenes, whereas for Waymo it did help
to boost the accuracy. The big success of CenterPoint is supported by the facts that, at
the time of writing, it ranks 1st in the 3D object detection benchmark of nuScenes with a
mAP of 0.67 and a NDS of 0.714. The next place is another submission that is an extension
of the core CenterPoint. Moreover, on the Waymo 3D detection challenge, it ranks 2nd
with a mean APH of 0.7193 (average precision with heading, level 2 of difficulty).

28

3. Related Work

Figure 3.3.: Comparison of the YOLOv4 peformance with other real-time detectors on
the MS COCO dataset. Tested with a batch size of 1 on a GPU Tesla V100

3.3. YOLOv4

YOLOv4 - stands for "You Only Look Once" version 4 [29] - is a real-time 2D detection
network that takes as input an image and predicts the bounding boxes and classes
of objects present in the scene. The main reason why YOLOv4 was developed is to
yield high-quality predictions while achieving a very fast inference time for the most
common practical industrial applications. Indeed, YOLOv4 is able to get 43.5% Average
Precision (65.7% AP50) for the MS COCO dataset at a speed of ~65 FPS on a GPU
Tesla V100. The official implementation of YOLOv4 is released under the open-source
neural network framework Darknet [30] (written in the C language) and it is better both
in terms of accuracy and speed than real-time neural networks Google TensorFlow
EfficientDet [31] and Facebook Detectron [32], RetinaNet [33] on MS COCO. See Fig. 3.3
for a chart comparison, although recently some new architectures were released that
seemingly are now on top of the performance ladder, such as Scaled-YOLOv4 [34],
PP-YOLO [35] and PP-YOLOv2 [36].

It is beyond the scope of this thesis to expose in depth the operation principles of
the YOLO family detectors, hence only a shallow description will be given and what

29

3. Related Work

Figure 3.4.: Schema of the YOLOv4 architecture

novelties were introduced since the third iteration. In general a 2D object detector is
usually composed of a Backbone pretrained on the ImageNet dataset that can extract
features from images, a Neck with a bottom-up and top-down structure of CNN layers
to collect feature maps at different resolutions; and a Head which could be of types
one-stage or two-stage. The latter head uses a Region Proposal Network to generate
regions of interest then classifies and generates bounding boxes whereas the former
head treats it like a regression problem by taking an input image and learning the class
probabilities and bounding box coordinates. YOLO is the most popular representative
of the one-stage category.

YOLOv4 improves YOLOv3’s AP by 10% and FPS by 12% due to the so-called
Bag-of-Freebies and Bag-of-Specials, which are a compilation of techniques and strate-
gies that optimize the performance. Bag-of-Freebies are methods that only increase the
training cost and make the object detector receive better accuracy without increasing
the inference cost, for instance the Cutmix and Mosaic data augmentations, CIoU-loss,
DropBlock regularization, etc. Bag-of-Specials refers to a set of modules that only
increase the inference cost slightly but significantly improve the accuracy of object de-
tection, this could be for example employing the Mish activation function, Cross-stage
partial connections (CSP), and Multi-input weighted residual connections (MiWRC).
Additionally, the authors selected optimal hyper-parameters while applying genetic
algorithms and a new method named Self-Adversarial Training (SAT) is used where
first the original image is altered instead of the weights, then the network is trained

30

3. Related Work

to detect the objects in this fake image. In short, YOLOv4 uses CSPDarknet53 as the
backbone, modified SPP (Spatial Pyramid Pooling Layer) and PANet (Path Aggregation
Network) as the neck, and the anchor-based YOLOv3 as the head, Fig. 3.4.

3.4. CLOCs

CLOCs - Camera-LiDAR Object Candidates Fusion for 3D Object Detection - [37] is a novel
decision fusion (aka late fusion) method that enables the combination of any pair of
2D image-based and 3D LiDAR-based detectors with the purpose of improving the
accuracy performance of the single-modality 3D detector. CLOCs itself is a network of
tiny size that performs late fusion on the outputs of the 2D and 3D detectors, ideally
but not necessarily before these apply non-maximum-suppression (NMS). In this way,
all potential candidates coming from both modalities participate in the fusion step, so
that in the end the final number of possible true detections is maximized. CLOCs relies
on the principle that association of objects from different modalities is a reasonable
procedure to do provided that the detection candidates satisfy geometric and semantic
consistencies, Fig. 3.5. The former means 3D bounding boxes of detected objects in
the point cloud domain, when its corners are projected onto the corresponding image
frame, should have a high IoU with a particular 2D bounding box detection on the
image plane. The latter refers to the concept that fusion of detection candidates should
take place if and only if both the 3D and 2D detector predict the same class label for
one pair of 3D and 2D intersecting boxes.

Figure 3.5.: Example of geometric consistency of the 2D and 3D detections applied to
the semantic ’Car’ category [37]

31

3. Related Work

CLOCs encodes k and N detection candidates from 2D and 3D domains respectively,
into a k × n × 4 tensor T of joint-detection candidates, in which one element has four
features as follows:

Ti,j = {IoUi,j, s2D
i , s3D

j , dj}

where IoUi,j is the IoU between ith 2D detection and jth projected 3D detection, s2D
i

and s3D
j are the confident scores for ith 2D detection and jth 3D detection respectively.

dj represents the normalized distance between the jth 3D bounding box and the LiDAR
in xy plane. Elements Ti,j with zero IoU are discarded as they are geometrically in-
consistent. It may occur that a projected 3D bounding box does not intersect a 2D box
because the 3D detector found a candidate not available in the image, therefore the
3D box information remains valid and useful; and in such a case the tensor element
Ti,j is still filled with IoUk,j and s2D

k as -1, but not zero to help the network learn to
distinguish the actual condition when the IoUk,j is very low.

As only few 2D detections may intersect some projected 3D detected box, this re-
sults in a sparse tensor with most entries null. However, only the non-empty elements
of the input tensor are processed by the network after their indices are saved in a cache.
The fusion network consists of a set of 1× 1 2D convolution layers. Conv2D(cin, cout, k, s)
represents a 2 dimensional convolution operator where cin and cout are the number of
input and output channels, k is the kernel size and s is the stride. CLOCs employs
four convolution layers sequentially as Conv2D(4, 18, (1,1), 1), Conv2D(18, 36, (1,1),
1), Conv2D(36, 36, (1,1), 1) and Conv2D(36, 1, (1,1), 1), which yields a tensor of size
1 × p × 1, where p is the number of non-empty elements in the input tensor T. For the
first three convolution layers, after each convolution layer applied, ReLU is used. Since
the indices of these non-empty elements (i, j) are saved, a tensor Tout of shape k × n × 1
can be constructed by filling p outputs based on the indices (i, j) and putting negative
infinity elsewhere. Finally, this tensor is mapped to the desired learning targets, a
probability score map of size 1 × n, through maxpooling in the first dimension, see Fig.
3.6. During training cross-entropy loss was used for target classification, modified by
the focal loss to address the large class imbalance between targets and background.

32

3. Related Work

Figure 3.6.: Schema of the CLOCs fusion network [37]

33

4. Solution approach

This Chapter outlines the architecture of the proposed solution developed in this the-
sis for the task of real-time multi-modal 3D object detection. As already mentioned
previously, the architecture is an ensemble after coupling several blocks under the
premise that one GPU or two GPUs are powerful enough to run the detection networks
simultaneously in parallel: CenterPoint as the 3D object detector, YOLOv4 as the 2D
object detector and CLOCs as the late-fusion method, see Fig. 4.1. The authors of CLOCs

released their work as an offline implementation strongly attached to the codebase of
the 3D detector SECOND. With offline meaning that the 2D detections required for
fusion, i.e. the results of Cascade-RCNN, were stored and merely read from text files in
KITTI format. Therefore, it was necessary to adapt the core functionality of CLOCs to
be integrated into the codebase of CenterPoint to make possible the training, evaluation
and online inference of the fusion network.

CLOCs was released to perform fusion between SECOND and Cascade-RCNN for one
class only, the Car class in KITTI. In order to extend CLOCs with a multi-class fusion
capability the following steps were taken: a single CenterPoint model and a YOLOv4

detector were trained on the KITTI dataset to perform inference on multiple classes
at once. For training and evaluation the YOLOv4 results after NMS for each image
in the train + valid partitions were put in text files, not exactly in KITTI format, but
just the essential information about class category, 2D box coordinates (top, left, right,
bottom) and the prediction score was stored, only if such score was bigger than a
0.3 lower-bound threshold. In CenterPoint each class of interest is assigned a separate
detection head for itself alone in the configuration of the network. The point cloud
range, voxel size and stride of the backbone defined for a particular CenterPoint model
establish that each detection head before NMS produces the exact same amount of
boxes, H x W, (equals the size of the predicted center-heatmap), so in general for N
classes the total number of raw 3D boxes and heatmap scores predicted by CenterPoint

is N x H x W. Recall that in CenterPoint a heatmap score represents the probability of a
3D box center with confidence proportional to the local peak value at the location of
the heatmap. Before fusion, these 3D boxes must go trough a preprocessing function,
first they are transformed from the LiDAR frame into the camera frame and projected
into the image plane with the sensor calibration matrices provided by KITTI. Thus,

34

4. Solution approach

from original 3D boxes predictions, after projection into the image, we get pseudo-2D
boxes predictions. Then for each class, a sparse input tensor is built with the 4 channels
described in the CLOCs paper, namely, the score of the 3D box, the score of the 2D
box, the IoU between the pseudo-2D boxes generated from the 3D boxes predicted by
CenterPoint and the actual 2D boxes predicted by YOLOv4 corresponding to the same
class, plus the normalized distance between a 3D bounding box and the LiDAR in xy
plane. The indices for each sparse input tensor are recorded as well and both each
tensor and its index chache are passed to a CLOCs instance module for fusion, again
each class is handled independently by a separate CLOCs instance. One such CLOCs

instance module refers here to the series of CNNs described in the CLOCs section of
Chapter 3. The result for all CLOCs instances is the new fused heatmap scores that
replace the initial 3D scores prediction.

Now the fused scores output of each CLOCs instance are treated differently depending
on the current execution mode, i.e. training, evaluation or testing. For training the
scores of each class are reshaped to a 4-dimensional tensor (B, H, W, C) and then
permuted to (B, C, H, W), being B = 1 the batch size and C = 1 the number of classes in
a single detection head. The justification of this change is to match the dimensions of
the heatmap predicted by one detection head in CenterPoint. Unlike the original work
in CLOCs where the authors used the focal loss with predefined thresholds for positives
and negative targets based on the 3D IoU between 3D box predictions and ground-truth
boxes, here instead, the same focal loss employed in CenterPoint for heatmap regression
is used for training all the CLOCs instances together, applying the sigmoid function
to the new fused scores. Recall that in CenterPoint the heatmap focal loss targets 2D
Gaussians around the centers of the ground-truth bounding boxes projected into the
map-view. It makes sense not to have hard-coded thresholds for training CLOCs given
that CenterPoint is an anchor-free detector. It is important to point out that the CLOCs

instances are grouped as a Fusion Layer module of which an already trained CenterPoint

detector is a member and its checkpoint is first loaded. The Fusion Layer relies on the
CenterPoint 3D predictions for training, but the weight parameters of the prior trained
CenterPoint have to be freezed so as not to modify its already optimized weights during
backpropagation of the gradients. Otherwise CenterPoint + CLOCs would be trained
together in an end-to-end manner, but this is not desirable, solely and exclusively the
Fusion Layer weights have to be updated in the fusion process during training. For
evaluation or testing the fused scores of each class are reshaped to a 3-dimensional
tensor (B, H x W, C), again here B = 1, C =1 and sigmoid is applied. Lastly the NMS
step is done to obtain the final set of 3D boxes.

Notice that 3D boxes before NMS and 2D boxes after NMS are the input data for

35

4. Solution approach

fusion because experimentally it was found that this was the best combination. Feeding
too many 2D detections from YOLOv4 before NMS could spoil the fused scores for
some classes downgrading the performance, even leading to worse accuracy. A reason
for this might be that the number of 3D boxes predicted by CenterPoint is several orders
of magnitude less than in SECOND, thus, also less 2D boxes for fusion may be more
optimal. Besides, having too many duplicate 2D boxes before NMS can increase the
inference time considerably to no avail as in the preparation of the input tensors for
CLOCs, the IoU would be calculated between a projected 3D box and several 2D boxes
with a huge redundant overlap that actually belong to the same detected object in the
image plane.

As for the online implementation of the proposed architecture solution, ROS is used
here as a communication middleware for testing inference in a real-time scenario. In
this regard, a particular sequence of the raw KITTI dataset [38] is converted to a rosbag
file that is the player of two sources of raw sensor data, camera images and point cloud
frames synchronized at 10 Hz. YOLOv4 is active in its own ROS node that subscribes to
the camera stream, parses the image and broadcasts the 2D boxes detections on-the-fly.
Simultaneously, CenterPoint + CLOCs (C+C) run both in a separate ROS node that
subscribes to the point cloud channel, CenterPoint in this node first predicts the initial
raw 3D boxes, then upon receiving the 2D boxes published by YOLOv4 the fusion of
candidates is done with the CLOCs Fusion Layer; and the final 3D boxes detections are
delivered to another topic. To take advantage of CenterPoint running alongside YOLOv4

and process the image and point cloud frames efficiently in parallel, CenterPoint in the
C+C node does inference on the incoming point cloud as soon as it arrives without
waiting for the 2D detections to be delivered. The raw 3D boxes predicted by Center-

Point are stored in a queue and later retrieved for fusion when the 2D detections are
available. Otherwise, if the C+C node has to keep waiting for YOLOv4 to publish its
results, the process would be sequential and not parallel, introducing more latency due
to YOLOv4’s inference time. Additionally, the 2D and 3D boxes are drawn onto the
incoming images to be published by the YOLOv4 and C+C nodes for visualization of
qualitative results and debugging purposes, see Fig. 4.2. To ensure the time consistency
among the 2D and 3D detections, these are supplied with the same timestamps of the
corresponding image and point cloud respectively so that ROS can manage well the
synchronization. To guarantee the feasibility of the whole detection pipeline the 2D
and 3D detectors should have similar inference speeds for the 2D and 3D predictions
to reach the fusion stage at the same pace, ideally the 2D detector should run a little
faster. This is certainly true for the tandem YOLOv4-CenterPoint.

36

4. Solution approach

Figure 4.1.: Schema of the proposed architecture solution for the task of real-time multi-
modal 3D object detection. Note this is only an example for the fusion of 3
classes, but it can be generalized easily to any N number of classes

Figure 4.2.: ROS graph communication for the proposed solution. The oval shapes rep-
resent nodes and the rectangles topics. An arrow entering/leaving a node
that connects a node to a topic means this node is a Subscriber/Publisher
of that particular topic

37

5. Experiments

This Chapter presents experiments of the architecture solution proposed in Chapter
4 for real-time multi-modal 3D object detection. Quantitative and qualitative results
of experiments conducted on the KITTI dataset are provided as well as discussion of
its implications. Because the CenterPoint performance behaves differently depending
on the number of classes of interest, here one model trained on 3 classes and another
one trained on 4 classes are considered with analysis about the accuracy of CenterPoint

alone vs. after the fusion with CLOCs, inference times, FPS and latency introduced.
All experiments have been carried out on a single GPU NVIDIA RTX 3090 with 24
GB of memory. Also, a short summary of trials and errors on a small set of training
data collected from the Providentia++ sensors is given to highlight pitfalls and complex
aspects when trying to build a custom multi-modal dataset.

5.1. Quantitative results

5.1.1. YOLOv4 training and runtime

A YOLOv4 model implemented in the Darknet framework has been trained on all
relevant classes of KITTI with input resolution 512x512, batch size 64, momentum=0.949,
decay=0.0005, learning rate 0.001 and maximum iterations 9600. The KITTI image
dataset and its labels were divided into 5001 for training and 2480 for validation. The
graph in Fig. 5.1 shows the training progress of this YOLOv4 model. The loss converged
steadily to a value below 1.5 whereas the mAP in the evaluation phase increased until
93 %. Perhaps these values could have been even better with more training iterations,
but it seems the gains would have been insignificant and for the task at hand the model
performance is good enough. Below, some more detailed metrics statistics:

• Class ’Pedestrian’, AP = 78.49% (TP = 1066, FP = 181)

• Class ’Car’, AP = 96.65% (TP = 9032, FP = 477)

• Class ’Cyclist’, AP = 90.84% (TP = 443, FP = 56)

• Class ’Van’, AP = 97.89% (TP = 911, FP = 42)

38

5. Experiments

• Class ’Truck’, AP = 98.66% (TP = 360, FP = 19)

• Class ’Tram’, AP = 95.54% (TP = 155, FP = 13)

• For confidence threshold = 0.25, precision = 0.94, recall = 0.91, F1-score = 0.93,
TP = 11967, FP = 788, FN = 1136, average IoU = 82.22 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall.
Mean average precision (mAP@0.50) = 0.930120, or 93.01%

Aside from the hardware power, the inference time for a 2D detector depends
among other factors on the input resolution and number of classes. On the RTX 3090
and having cuDNN (the NVIDIA CUDA® Deep Neural Network library for high-
performance GPU acceleration) plus the fp16, aka half-precision, setting enabled and
image resolution 512x512, this YOLOv4 model takes 18 ms or 56 FPS on average for
doing inference with a single image.

Figure 5.1.: Evolution of the training loss and mAP evaluation of the YOLOv4 model
trained on all classes of the KITTI dataset

39

5. Experiments

5.1.2. CenterPoint trained on 3 classes + CLOCs

A CenterPoint model has been trained on the classes ’Car’, ’Pedestrian’ and ’Cyclist’ of
the KITTI dataset with voxel size [0.16, 0,16, 4], point cloud range = [0, -39.68, -3, 69.12,
39.68, 1] (units in meters), ground-truth sampling distribution ’Car’ = 15, ’Pedestrian’ =
20, ’Cyclist’ = 20, batch size of 3, learning rate 0.003 and Adam optimizer. In this setting
the size of the predicted heatmap is H=248, W=216, so the amount of raw boxes for one
class generated by one detection head is HxW = 53568. The performance of the model
can sometimes drastically change from one training epoch to the next one, therefore
every two epochs the network was set to evaluation mode to get the evaluation metrics
on the validation split of KITTI. The best overall results were obtained at epoch 92. From
this model as the baseline, the CLOCs Fusion Layer was trained on top with the same
settings as before, except the batch size was 1 and ground-truth sampling is disabled
since the data augmentation would not be consistent with the stored 2D detections
from YOLOv4. The best performance for CLOCs was attained at epoch 8. Table 5.1
shows the 3D and BEV Average Precision results of CenterPoint alone compared to the
gains achieved by fusion with CLOCs on the KITTI validation set. Table 5.2 shows a
breakdown of the inference time with half-precision enabled.

Table 5.1.: 3D and BEV Average Precision results of CenterPoint and CenterPoint + CLOCs

on the validation set of KITTI for the classes ’Car’, ’Pedestrian’, ’Cyclist’.
Both the old Recall 11 and the new Recall 40 KITTI evaluation metrics are
presented

Recall 11

Method
Car 3D AP Car BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 80.92 72.13 66.46 87.12 84.52 78.19
CenterPoint + CLOCs 81.91 73.39 67.31 87.57 85.58 78.63
Delta +0.99 +1.26 +0.85 +0.45 +1.06 +0.44

Recall 40

Method
Car 3D AP Car BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 82.29 72.51 69.07 90.05 84.57 82.47
CenterPoint + CLOCs 82.53 72.72 70.24 90.71 85.21 83.10
Delta +0.24 +0.21 +1.17 +0.66 +0.64 +0.63

40

5. Experiments

Recall 11

Method
Pedestrian 3D AP Pedestrian BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 44.21 39.62 37.53 51.26 46.10 42.22
CenterPoint + CLOCs 54.17 48.35 42.41 58.65 52.26 51.25
Delta +9.96 +8.73 +4.88 +7.39 +6.16 +9.03

Recall 40

Method
Pedestrian 3D AP Pedestrian BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 41.14 36.80 33.65 48.71 43.80 40.34
CenterPoint + CLOCs 51.96 46.91 41.67 59.23 53.72 48.19
Delta +10.82 +10.11 +8.02 +10.52 +9.92 +7.85

Recall 11

Method
Cyclist 3D AP Cyclist BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 77.73 55.88 54.50 80.35 61.50 57.75
CenterPoint + CLOCs 82.77 65.81 65.72 85.46 68.16 67.86
Delta +5.04 +9.93 +11.22 +5.11 +6.66 +10.11

Recall 40

Method
Cyclist 3D AP Cyclist BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 80.26 57.08 54.06 84.10 61.10 58.17
CenterPoint + CLOCs 86.07 64.87 62.64 88.87 69.65 65.07
Delta +5.81 +7.79 +8.58 +4.77 +8.55 +6.90

41

5. Experiments

Table 5.2.: Runtime Performance on GPU RTX 3090 divided into blocks of the pipeline,
in total for all 3 classes in this experiment. Averaged over 1000 frames

CenterPoint inference CLOCs prep. CLOCs fusion Final NMS Total
25 ms 10 ms 5 ms 3 ms 43 ms

From Table 5.1 it is obvious that fusion with CLOCs improved the 3D and BEV
Average Precision results of CenterPoint for all classes, especially for ’Pedestrian’ and
’Cyclist’ by a large margin. Table 5.2 indicates that CenterPoint alone before NMS runs
at 25 ms or 40 FPS, the latency introduced by CLOCs in this experinment is 20 ms of
which 66.6% is due to the preprocessing functions to prepare the data for CLOCs (this
refers to the projection of the raw 3D boxes into the image plane and building the 3
input tensors for fusion). The forward pass through all 3 CLOCs fusion instances is
quite fast, only 5 ms, since one such CLOCs instance is a tiny neural network. Notice
the final NMS to obtain the definitive 3D boxes predictions, which takes 4 ms, should
not be considered as a fusion-related latency because this step was actually skipped in
the CenterPoint inference. Thus, the total inference time is 43 ms or 23.3 FPS.

5.1.3. CenterPoint trained on 4 classes + CLOCs

A CenterPoint model has been trained on the classes ’Car’, ’Pedestrian’, ’Cyclist’ and
’Van’ of the KITTI dataset with voxel size [0.16, 0,16, 8], point cloud range = [0, -39.68, -4,
96, 39.68, 4] (units in meters), ground-truth sampling distribution ’Car’ = 15, ’Pedestrian’
= 25, ’Cyclist’ = 25, ’Van’ = 50, batch size of 3, learning rate 0.003 and Adam optimizer.
In this setting the size of the predicted heatmap is H=248, W=300, so the amount
of raw boxes for one class generated by one detection head is HxW = 74400. The
performance of the model can sometimes drastically change from one training epoch
to the next one, therefore every two epochs the network was set to evaluation mode
to get the evaluation metrics on the validation split of KITTI. The best overall results
were obtained at epoch 26. From this model as the baseline, the CLOCs Fusion Layer
was trained on top with the same settings as before, except the batch size was 1 and
ground-truth sampling is disabled since the data augmentation would not be consistent
with the stored 2D detections from YOLOv4. The best performance for CLOCs was
attained at epoch 20. Table 5.3 shows the 3D and BEV Average Precision results of
CenterPoint alone compared to the gains achieved by fusion with CLOCs on the KITTI

validation set. Table 5.4 shows a breakdown of the inference time with half-precision
enabled.

42

5. Experiments

Table 5.3.: 3D and BEV Average Precision results of CenterPoint and CenterPoint + CLOCs

on the validation set of KITTI for the classes ’Car’, ’Pedestrian’, ’Cyclist’,
’Van’. Both the old Recall 11 and the new Recall 40 KITTI evaluation metrics
are presented

Recall 11

Method
Car 3D AP Car BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 57.54 50.91 46.83 72.83 65.84 66.77
CenterPoint + CLOCs 67.14 59.39 55.14 82.04 74.56 75.22
Delta +9.60 +8.48 +8.31 +9.21 +8.72 +8.45

Recall 40

Method
Car 3D AP Car BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 56.46 47.74 47.34 71.49 65.31 64.30
CenterPoint + CLOCs 66.83 57.25 55.00 81.84 74.98 73.84
Delta +10.37 +9.51 +7.66 +10.35 +9.67 +9.54

Recall 11

Method
Pedestrian 3D AP Pedestrian BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 42.72 38.74 35.49 47.38 44.90 42.30
CenterPoint + CLOCs 56.48 50.36 48.15 62.18 58.60 53.98
Delta +13.76 +11.62 +12.66 +14.90 +13.70 +11.68

Recall 40

Method
Pedestrian 3D AP Pedestrian BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 39.63 35.88 32.97 45.85 41.98 40.00
CenterPoint + CLOCs 54.98 49.07 45.35 62.90 57.86 54.45
Delta +15.35 +13.19 +12.38 +17.05 +15.88 +14.45

43

5. Experiments

Recall 11

Method
Cyclist 3D AP Cyclist BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 75.94 54.21 50.94 78.15 56.95 55.28
CenterPoint + CLOCs 85.19 59.38 58.90 85.98 67.61 59.98
Delta +9.25 +5.17 +7.96 +7.83 +10.66 +4.7

Recall 40

Method
Cyclist 3D AP Cyclist BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 77.22 53.56 50.47 78.77 56.78 54.41
CenterPoint + CLOCs 84.54 60.03 57.64 87.28 65.08 60.59
Delta +7.32 +6.47 +7.17 +8.51 +8.30 +6.18

Recall 11

Method
Van 3D AP Van BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 22.83 16.80 15.35 28.90 21.27 20.47
CenterPoint + CLOCs 36.58 23.02 24.55 49.36 34.06 35.09
Delta +13.75 +6.22 +9.2 +20.46 +12.79 +14.62

Recall 40

Method
Van 3D AP Van BEV AP

Easy Mod. Hard Easy Mod. Hard

CenterPoint 22.27 14.40 13.04 28.41 18.88 18.35
CenterPoint + CLOCs 37.14 22.67 21.40 49.65 32.77 30.63
Delta +14.87 +8.27 +8.36 +21.24 +13.89 +12.28

44

5. Experiments

Table 5.4.: Runtime Performance on GPU RTX 3090 divided into blocks of the pipeline,
in total for all 4 classes in this experiment. Averaged over 1000 frames

CenterPoint inference CLOCs prep. CLOCs fusion Final NMS Total
30 ms 15 ms 10 ms 5 ms 60 ms

From Table 5.3 we can see again that fusion with CLOCs improved the 3D and BEV
Average Precision results of CenterPoint for all classes, even by a larger margin than
in the previous experiment with huge gains over +10. From checking the evaluation
history of the CenterPoint models it may happen that in one evaluation iteration the
results are more favorable for a certain class or classes, i.e. the evaluation results dictate
the network should perform in the current iteration better for ’Car’ and ’Cyclist’, but not
as good for ’Pedestrian’ as compared to past iterations or vice versa. This is sometimes
a matter of letting the network train for more epochs to achieve stability, but also often
one has no other choice to simply select a checkpoint that prioritizes the theoretical
performance of a class / classes and sacrifice the accuracy of the others unfortunately.
We can also see that in this experiment with 4 classes the results of CenterPoint alone
are worse than trained only on 3 classes, this degradation is highly noticeable for the
’Car’ class. In fact, it is a general behaviour of a network to perform worse the more
classes it is trained on. Table 5.4 indicates that CenterPoint alone before NMS runs at 30
ms or 33.3 FPS, the latency introduced by CLOCs in this experinment is 25 ms of which
60% is due to the preprocessing functions to prepare the data for CLOCs (this refers
to the projection of the raw 3D boxes into the image plane and building the 4 input
tensors for fusion). The forward pass through all 4 CLOCs fusion instances takes 10 ms.
The final NMS to obtain the definitive 3D boxes predictions, which takes 5 ms, should
not be considered as a fusion-related latency because this step was actually skipped in
the CenterPoint inference. Thus, the total inference time is 60 ms or 16.7 FPS.

Notice that because YOLOv4 runs in parallel with CenterPoint, the inference time
of YOLOv4 should not count as part of the total 3D detection plus fusion runtime. In
this second experiment the total FPS got reduced by 6.6 compared to the first exper-
iment. This is expected since one class more was included, consequently one more
input tensor and a CLOCs instance for fusion are required. Because of the larger point
cloud range in this second experiment, there are more raw 3D boxes generated in each
detection head than before, 4x74400 = 297600 vs 160704 = 3x53568, therefore, both the
inference of CenterPoint and the preprocessing function of detection candidates for
CLOCs with more than twice the number of boxes take logically longer to be computed.

45

5. Experiments

5.2. Qualitative results

In this section the spotlight is placed at some of the pros and cons found in the
predictions generated by the proposed multi-modal 3D object detection solution. It
should be clear that the 3D output boxes come naturally from the reasoning of the
neural network in the point cloud domain, the 2D detections in images only assist and
contribute to a refinement of the primary inference results, see Fig. 5.2. Nevertheless,
to grasp the analysis more intuitively in a visual way, the images with the projected 2D
and 3D boxes are utilized.

(a) 3D detections displayed in the point cloud from the ego-vehicle perspective

(b) The same 3D boxes from the point cloud before are projected to the corresponding image.
Yellow, cyan, green and orange boxes are assigned to the classes ’Cyclist’, ’Pedestrian’, ’Car’
and ’Van’ respectively

46

5. Experiments

(c) 3D detections displayed in the point cloud, Bird-Eye-View (BEV)

Figure 5.2.: 3D boxes in different representations predicted by the proposed solution,
CenterPoint + YOLOv4 + CLOCs

47

5. Experiments

In the following figures always the top image has the 3D boxes predicted by Center-

Point alone before fusion, the bottom image has the 2D detections of YOLOv4, and the
middle image has the 3D boxes predicted by CenterPoint + CLOCs after fusion with
the 2D boxes from YOLOv4. The most noteworthy impact of the fusion process is the
reduction of a lot of undesired False Positives (FPs) that were initially detected because
in the point cloud these objects have a similar shape of the category that was mistakenly
confused, Fig. 5.3. Another benefit is that the 2D detections can help to improve the
recall of the 3D detector, Fig. 5.4 and also increase the confidence scores of the found
objects, Fig. 5.5.

Despite these positive effects, fusion has some downsides too, such as the suppression
of relevant true positives (TPs) when YOLOv4 misses those detections in the image
plane, Fig. 5.6, or the label predicted by YOLOv4 for one object does not match the
same label output of CenterPoint, Fig. 5.7. A likely explanation for this phenomenon
is that in the absence of legitimate 2D detections intersecting a 3D box with identical
semantic meaning, CLOCs tends to discard the TP regardless of its score, or in other
words, CLOCs uses the 2D detections as proof of evidence to confirm the truthfulness
of the 3D detection candidates from CenterPoint. When an object is good located both
in 3D and 2D, but with contradictory class labels, the 2D detector can then cause a
missclasification of the object that would have not occurred before fusion, Fig. 5.8.
These artifacts stress the importance of having a 2D detector as good as possible, since
the accuracy of the YOLOv4 model and the quality of its detections play an essential
role in the final 3D boxes predictions. Once trained, the Fusion Layer with all CLOCs

instances in charge of their respective classes learned some criteria to leverage the
2D detections to either increase or diminish the confidence of the 3D boxes. We can
observe that in general the behaviour of the Fusion Layer is to enhance the 3D boxes
predictions if and only if they match the 2D boxes geometrically and semantically,
otherwise there is a potential risk that even a TP in the camera field-of-view gets
deleted after the final 3D Non-Maximum-Suppresion. But how CLOCs solves the fusion
problem internally cannot be determined beforehand with exact rules as there are no
hard-coded thresholds or a hard decision boundary. Being a neural network CLOCs

adapts dynamically during fusion to give flexible weights to the relevance of 2D and
3D detection candidates. The interested reader can find more descriptions of qualitative
results and edge-cases in the Appendix.

48

5. Experiments

Figure 5.3.: A significant amount of cyclists and pedestrians FPs are removed from the
scene after fusion

49

5. Experiments

Figure 5.4.: The vehicles on the right that were not detected or misclassified are recov-
ered after fusion

50

5. Experiments

Figure 5.5.: Fusion enhances the confidence scores of the predicted objects, CenterPoint

alone estimates ’Car’ [0.43], ’Van’ [0.58]. CLOCs boosted the scores to
be ’Car’ [0.55], ’Van’ [0.70] and deleted the false pedestrians on the right
confused with plants before fusion

51

5. Experiments

Figure 5.6.: The 3D box of the TP van in the middle predicted by CenterPoint, was
suppresed after fusion because YOLOv4 failed to detect it

52

5. Experiments

Figure 5.7.: FPs are removed on the sides, but the two cyclists are not identified after
fusion because YOLOv4 classified these as pedestrians. CLOCs then consid-
ered the TPs cyclists as FPs given the mismatch in the 3D and 2D predicted
labels. Though it is questionable if a person not riding, but just holding a
bike should be classified as either ’Pedestrian’ or ’Cyclist’

53

5. Experiments

Figure 5.8.: Originally CenterPoint classified correctly as ’Van’ and predicted better the
size of the white large vehicle in the middle. Since YOLOv4 labeled this
vehicle as ’Car’ instead, after fusion the category of its 3D box was wrongly
changed to ’Car’ and its size was a little overestimated.

54

5. Experiments

5.3. Trials and errors

As mentioned in Chapter 1 the context frame of this thesis was the Providentia++ Intelli-
gent Infrastructure System and in principle the goal was to conduct experiments on
data collected from the Providentia++ LiDAR and camera sensors. A dataset consisting
of 300 point cloud frames recorded with a LiDAR Ouster OS1-64 was labeled in the
annotation tool 3D BAT [39] with classes ’Car’, ’Van’, ’Pedestrian’ and ’Truck’. In
Fig. 5.9 the annotation of one example training frame in the 3D BAT environment is
shown. A CenterPoint toy model was trained on this very small dataset with satisfactory
results qualitatively speaking. Fig. 5.10 displays the 3D boxes predicted by CenterPoint

on a testing point cloud. Rather than writing an API from scratch to train a new
dataset, it is advisable to modify the existent APIs written for one of the most popular
datasets, practically all open-source networks for 3D object detection have worked
with either KITTI, nuScenes or Waymo. However, the tiny Providentia++ dataset we
labeled would make any 3D detector model fall into overfitting and is not sufficient
to train a high-quality 3D detector for deployment on the edge-computing unit at the
highway. We experienced that annotating ourselves point cloud frames for 3D object
detection is a quite time-consuming procedure that takes more effort, concentration
and longer elaboration than 2D box image annotation. It is subject to mistakes too, e.g.
because the point cloud generated by the Ouster LiDAR was of low density and so
sparse to distinguish objects perfectly in some frames, we often had to approximately
guess the orientation, location and dimensions of the ground-truth box for a vehicle,
so in some sense the ground-truth annotations were already injecting a bias and false
assumed information. The point cloud frames were recorded with an Ouster LiDAR
mounted on a tripod pointing to the highway A9, yet the recording was done without
a strict technical verification protocol of the exact relative position of the LiDAR sensor
with respect to the camera, which is a first step for the extrinsic calibration of the
sensors. Although perhaps even just measuring the relative position of camera and
LiDAR would have been not enough because manual measurements are prone to severe
estimation errors. Conversely, training a YOLOv4 model on images from cameras
of Providentia++ was rather easy, see Fig. 5.11 that shows the 2D boxes predicted by
YOLOv4 on one image taken from the highway A9.

Later on when we became aware that camera-LiDAR calibration was a fundamental
required step towards multi-modal data annotation and fusion, all LiDAR devices were
occupied in their installation to be fixed in the Providentia++ stations, a process that also
went through unforeseen delays. Only one LiDAR device of the brand Valeo and a spare
Basler camera were left and available to the students for indoor testing. The idea was to
perform an extrinsic calibration of these sensors in the laboratory area mounting them

55

5. Experiments

on a tripod, then translating the same tripod configuration and sensors relative position
to the highway to record some new extrinsic calibrated data. A novel target-based
method that optimizes the selection of samples for robust LiDAR-camera calibration
[40] was employed with the Valeo and Basler sensors. This method required necessarily
the ring-channel of the point cloud that is published by other LiDARs like the Ouster
ones or the higher-quality Velodyne devices. The Valeo LiDAR does not provide this
feature by default, thus the ring-information for each point was calculated and added
manually to each point cloud scan done with the Valeo LiDAR. Unfortunately we
obtained quite bad imprecise calibration results as the reprojection errors in pixels and
millimeters of the point cloud into the images were too high to be any helpful for fur-
ther data labelling experiments. The errors during the collection of image-point-cloud
sample pairs for calibration were mostly due to the high noise of the Valeo LiDAR
not being able to adjust and capture the chessboard target with fair planar shape, i.e.
the points had too much spatial deviation from the actual surface making the plane
look jagged and discontinuous in the point cloud. Since camera-LiDAR calibration is
not the main scope of this thesis and given the time constraints and deadline for its
development, we decided to present experiments on the KITTI dataset. Surely new
students and the staff team of Providentia++ will be able to solve the camera-LiDAR
calibration challenge of the already installed sensors in the near future.

Another issue one has to consider is the transmission bandwith limit of the ports
used to connect both the camera and LiDAR simultaneously because we experienced
packet loss from the LiDAR if the camera was connected to the same Ethernet port
of a conventional laptop. The packet loss causes the point cloud broadcasting to look
frozen for a while and the refresh rate of the LiDAR is so reduced to be impractical
to scan moving objects. A workaround to reduce this packet loss could be to utilize
Ethernet-to-USB adapters to connect the devices to different ports. Equally important
is the time synchronization of the camera and LiDAR, e.g. we struggled to realize
that, while recording, a parameter needs to be correctly set up for the Valeo LiDAR
to provide point clouds timestamped according to the ROS clock and not the internal
hardware timestamp. On the contrary the Basler camera uses the ROS clock by default.
Without synced timestamps a multi-modal dataset cannot be created, moreover the time
difference between an image and the closest point cloud frame should be as minimal
as possible to avoid data misalignment even if the sensors operate or the training
sequences are collected at similar sampling frequencies.

56

5. Experiments

Figure 5.9.: 3D BAT annotation-tool environment where in this example from the
highway A9 in Providentia++, trucks are labelled with yellow bounding
boxes and cars with green boxes

57

5. Experiments

Figure 5.10.: 3D boxes of traffic participants predicted by a CenterPoint toy model on
a test point cloud recorded from the highway A9 that is a portion of the
testbed in Providentia++. Small boxes are cars and large boxes are trucks
detected. The red point cloud is the scan of the highway.

Figure 5.11.: 2D boxes predicted by YOLOv4 on an image from the highway A9 that
is a portion of the testbed in Providentia++, where the classes ’Car’, ’Van’,
’Truck’ and ’Trailer’ are detected

58

6. Conclusions

This thesis has addressed the implementation of a real-time multi-modal 3D object
detection pipeline based on the state-of-the-art neural networks CenterPoint, YOLOv4

and CLOCs, which are specialized in the subtasks of LiDAR-based 3D detection, camera-
based 2D detection and camera-LiDAR sensor late-fusion respectively. The CLOCs

method extended here for handling fusion of multiple classes at once from a single Cen-

terPoint model has proven to drastically enhance the accuracy of CenterPoint according
to the evaluation results on the KITTI validation set. Surprisingly, the PointPillars-
version of CenterPoint trained on KITTI achieves a worse accuracy than the baseline
PointPillars also trained on KITTI. After consultation with Tianwey Yin, the main cre-
ator of CenterPoint, he is aware of this issue and suspects that because in KITTI most
objects to be detected are axis-aligned with the ego-vehicle frame, so it could be that
an anchor-free detector like CenterPoint does not have an advantage over anchor-based
networks. Moreover, the Average Precision (AP) metric in KITTI focus exclusively on
the 3D IoU, where as in nuScenes - the first target dataset for which CenterPoint was
designed - this AP metric is based on the 2D center distance on the ground plane, thus
this more relaxed 2D-based metric could lead to better evaluation results. Even with
the modest accuracy of CenterPoint on KITTI, this 3D detector has helped us to analyze
what to expect from CLOCs for real-time multi-class fusion. Besides, Pang Su who is
the main author of CLOCs, confirmed lately that his network does a very good job at
improving the performance of CenterPoint in nuScenes as well. Although there have
been some interesting works in this direction, [41], the fine-tuning of networks for 3D
object detection across different datasets remains still today a challenge. The so-called
transfer-learning technique in Deep Learning cannot be applied in 3D object detection
as straightforward as in the 2D case. The 3D neural networks are influenced heavily by
the inherent features of the training dataset, which could be very unique depending
on the point cloud range and channels, characteristics of the LiDAR device used to
generate the point cloud frames, different perspectives and city locations of the sensor
recordings, etc. Therefore, if possible, it is always more convenient to collect a new big
enough dataset and train a 3D detector from scratch for a custom application.

In terms of speed, the experiments showed that for 3 or 4 classes - different settings
between these two tests apart from the class number - the proposed solution is able

59

6. Conclusions

to run at 23.3 or 16.7 FPS respectively, on a GPU RTX 3090. The experiment with 4
classes involved more than twice the amount of raw 3D boxes candidates for fusion, so
it could also be considered as a quasi-experiment with 6 classes with the same configu-
ration of the 3-classes experiment. Although there does not exist a fair comparison of
other approaches, most multi-modal networks found in the literature run on average
between 10 and 15 Hz or slower for one class only, thus, the proposed solution has an
acceptable runtime considering the multi-class extension case. However, the inference
speed depends on many factors like the point cloud range, voxel size, output stride
of the 3D network backbone, number of classes, and of course the GPU hardware to
name a few. Speaking of hardware, the proposed solution requires one very powerful
GPU or two moderate GPUs to run the 2D and 3D detector in parallel for real-time
inference, this can be perhaps a major constrain for low-budget scenarios. Qualitative
results on KITTI have shown the main repercussion of camera-LiDAR fusion with
CLOCs to be a great reduction of False Positives and improvement of the 3D boxes
confidence scores, but CLOCs is not exempt from removing True Positive detections
when the 2D detector fails to identify an object or when it predicts the wrong class label.

The Providentia++ team can afford to employ the proposed solution in this thesis
since the Data-Fusion Units distributed along the testbed count with several modern
fast GPUs. Assuming the 2D detector performance is excellent, the proposed solution
in this thesis could boost particularly the detection of pedestrians, cyclists and vehicles
in the far range. There could be a risk of missing detections after fusion on the highway
when there is a traffic jam or the vehicles appear very occluded or cluttered in the
camera image. Therefore, it is suggested the proposed solution would be more suitable
for the Garching intersection area, where the Bird-Eye-View from above is clearer and
pedestrians and cyclists transit more frequently. If the inference time cost is too much
of a burden, the CLOCs method could be used with only a subset of classes, the less
common ones, since these might have the most potential better gains from fusion. As
for camera-LiDAR calibration, it would help to first augment the resolution, i.e. point
density, and apply a denoising algorithm on the point cloud scans done by the Ouster
and Valeo LiDARs. A manual target-based procedure seems impractical to be done in
the middle of the road, thus, carrying out a target-less online automatic camera-LiDAR
calibration such as the recent [42] or [43] would be extremely beneficial to compose a
high-quality synchronized multi-modal Providentia++ dataset.

60

7. Future Work

• Speed-related improvements:
If less precision is required or certain portions of the scene are not within the
region of interest for detection, a CenterPoint model with narrower point cloud
range, bigger voxel size and smaller output stride of the backbone neck can be
eonfigured to achieve higher speed because this will create much less raw 3D
boxes predictions. In this regard, the amount of 3D boxes preprocessed and
passed to the Fusion Layer could be reduced to increase the speed, e.g. take only
the 3D boxes for which their score is bigger than a 0.1 threshold since most raw
3D boxes have actually very low scores close to zero. But this would require an
adaptation of the heatmap loss function used for training the CLOCs instances
as the number of 3D boxes predicted by a detection head in CenterPoint will
fluctuate for every frame. Furthermore, the inference time may decrease if the
CenterPoint model is exported to ONNX (Open Neural Network Exchange) format
and accelerated with TensorRT as developed in [44].

• Accuracy-related improvements:
The accuracy of the 2D detector has a crucial impact in the final predictions after
fusion. Being CLOCs a late-fusion method, the positive side is that YOLOv4 can
be replaced by a more accurate and optimized detector like the recent PP-YOLOv2

with little effort. In fact, it would be enlightening to conduct ablation studies
after fusion with more advanced 2D detectors and bigger image resolutions other
than 512x512 employed in this thesis. As for CenterPoint, it would be worth
investigating what was exposed in the MoCa paper that switching the backbone
PointPillars with RegNetX [45] brings great improvements. The 3D detector could
be upgraded to a new version named CenterPoint++ which ranked on a high
position in the real-time 3D detection challenge of Waymo. This CenterPoint++
runs with VoxelNet backbone, so it is expected to be more accurate but slower than
PointPillars. Another modification could be replacing VoxelNet in CenterPoint with
the backbone and neck of SECOND that should be likewise accurate but faster. In
addition, novel universal plug-and-play second-stage detection heads like CT3D

[46] and LiDAR R-CNN [47] have been proposed to increase the accuracy of any
3D detector, thus it would be worth testing these in combination with CenterPoint.

61

A. Appendix

In the following pages supplementary qualitative results are provided. Again in the
next figures always the top image has the 3D boxes predicted by CenterPoint alone
before fusion, the bottom image has the 2D detections of YOLOv4 and the middle
image has the 3D boxes predicted by CenterPoint + CLOCs after fusion with the 2D
boxes from YOLOv4. The figures are properly captioned and without specific order
they are illustrative examples of these post-fusion effects: successful elimination of
False Positives, improvement of recall and scores of the predicted 3D boxes, as well
as suppression of True Positives as a consequence of the inaccuracy of the YOLOv4

detector. An exceptional rare edge-case is described where a high 2D TP in the image
due to a reflective surface creates an absurd 3D FP in the point cloud domain. Apart
from that, one scene remarks the advantage in perception of LiDAR-based over camera-
based object detection for recognition of a challenging target when under adverse light
conditions the detection in the image becomes indeed very difficult.

62

A. Appendix

Figure A.1.: The predicted 3D box as ’Van’ is corrected after fusion with CLOCs thanks
to the right classification in 2D. YOLOv4 additionally detects a car on the
left in the far range that the 3D detector was not able to locate

63

A. Appendix

n

Figure A.2.: FPs pedestrians confused with poles of a construction site on the road are
removed from the scene

64

A. Appendix

Figure A.3.: The fusion method deletes FPs pedestrians confused with poles on the
road boundaries

65

A. Appendix

Figure A.4.: The detections in 2D helped to increase the recall to locate two cars on the
left that were missed previously

66

A. Appendix

Figure A.5.: The 2D detections from YOLOv4 enabled the detection of more 3D car
boxes, (only 2 before vs 6 after fusion) plus some other FPs were removed

67

A. Appendix

Figure A.6.: After fusion one car more on the right was detected and the confidence
scores of the two cars in the middle were enhanced.
CenterPoint alone [0.48, 0.46] vs [0.62, 0.61] CenterPoint + CLOCs

68

A. Appendix

Figure A.7.: A FP cyclist confused with the highway barrier was removed after fusion
on the right side of the scene

69

A. Appendix

Figure A.8.: A FP cyclist confused with a pole on the highway was removed after fusion
on the right side of the scene

70

A. Appendix

Figure A.9.: The white vehicle on the right was correctly detected as ’Van’ by CenterPoint,
but after fusion the TP was removed since a detection in 2D from YOLOv4

was missing, so CLOCs considered the initial TP as a FP

71

A. Appendix

Figure A.10.: The gray big vehicle on the right was well detected by both CenterPoint

and YOLOv4, but there is a strong disagreement between the predicted
labels that causes the 3D box ’Van’ to be removed after fusion

72

A. Appendix

Figure A.11.: A FP pedestrian was deleted on the left side of the street after fusion,
but also the TPs ’Cyclist’ and ’Van’ were suppressed because YOLOv4

detected these with different labels ’Pedestrian’ and ’Car’ respectively.
Also after fusion a car in the middle of the scene in the far range got
detected in 3D thanks to a corresponding 2D ’Car’ match from YOLOv4

73

A. Appendix

Figure A.12.: A FP pedestrian confused with a tree trunk was removed and more cars
on the right side of the street got detected after fusion, but also the TP
van was deleted since YOLOv4 predicted this van to be a car instead

74

A. Appendix

Figure A.13.: This is almost the same scene as in the previous figure, but just a bit later
in time so the objects appear closer. In this case the van that was missed
in the previous figure after fusion, now it does get detected after fusion
because YOLOv4 agrees with CenterPoint that this vehicle is of the same
class, then the labels ’Van’ match both in 2D and 3D

75

A. Appendix

Figure A.14.: Lots of FPs were removed after fusion, but also a TP pedestrian standing
on left side next to the wall was suppressed because YOLOv4 did not
detect anything in that area

76

A. Appendix

Figure A.15.: This a very peculiar edge-case where a car object (a tiny bit of its rear side
is visible on the left bottom corner) is reflected on the shop window on
the right of the scene, thus YOLOv4 detects the reflected car image with
high confidence , then after fusion CLOCs generated a ridiculous 3D car
box FP inside the shop building. Look at the next figure that represents
the same scene in the point cloud

77

A. Appendix

Figure A.16.: This is the same scene after fusion as in the previous figure in the point
cloud domain. The FP predicted car on the right lies inside the walls of
the shop building. The origin of this artifact is the reflected image on the
shop window of the actual car passing by on the left. This fooled CLOCs

into mistakenly predicting the FP car in an absurd location

78

A. Appendix

Figure A.17.: This an example of a situation where the LiDAR-based detection is of ad-
vantage when bad light conditions are against the 2D detection. YOLOv4

misses to identify the pedestrian in the shadow standing in the middle of
the street, but CenterPoint both before and after fusion does detect this
pedestrian very well

79

Bibliography

[1] A. Krämmer, C. Schöller, D. Gulati, V. Lakshminarasimhan, F. Kurz, D. Rosen-
baum, C. Lenz, and A. Knoll. Providentia - A Large-Scale Sensor System for the

Assistance of Autonomous Vehicles and Its Evaluation. 2020. arXiv: 1906.06789
[cs.RO].

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Ng. “ROS: an open-source Robot Operating System.” In: vol. 3. Jan. 2009.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An Open

Urban Driving Simulator. 2017. arXiv: 1711.03938 [cs.LG].

[4] A. Geiger, P. Lenz, and R. Urtasun. “Are we ready for Autonomous Driving?
The KITTI Vision Benchmark Suite.” In: Conference on Computer Vision and Pattern

Recognition (CVPR). 2012.

[5] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, and O. Beijbom. nuScenes: A multimodal dataset for autonomous driving.
2020. arXiv: 1903.11027 [cs.LG].

[6] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C.
Qi, Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J.
Shlens, and D. Anguelov. Large Scale Interactive Motion Forecasting for Autonomous

Driving : The Waymo Open Motion Dataset. 2021. arXiv: 2104.10133 [cs.CV].

[7] S. A. Bello, S. Yu, C. Wang, J. M. Adam, and J. Li. “Review: Deep Learning on
3D Point Clouds.” In: Remote Sensing 12.11 (2020). issn: 2072-4292. doi: 10.3390/
rs12111729.

[8] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning on Point Sets for

3D Classification and Segmentation. 2017. arXiv: 1612.00593 [cs.CV].

[9] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. Deep Learning for 3D

Point Clouds: A Survey. 2020. arXiv: 1912.12033 [cs.CV].

[10] S. Shi, L. Jiang, J. Deng, Z. Wang, C. Guo, J. Shi, X. Wang, and H. Li. PV-RCNN++:

Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object

Detection. 2021. arXiv: 2102.00463 [cs.CV].

80

https://arxiv.org/abs/1906.06789
https://arxiv.org/abs/1906.06789
https://arxiv.org/abs/1711.03938
https://arxiv.org/abs/1903.11027
https://arxiv.org/abs/2104.10133
https://doi.org/10.3390/rs12111729
https://doi.org/10.3390/rs12111729
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1912.12033
https://arxiv.org/abs/2102.00463

Bibliography

[11] Y. Zhou and O. Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based 3D

Object Detection. 2017. arXiv: 1711.06396 [cs.CV].

[12] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. PointPillars: Fast

Encoders for Object Detection from Point Clouds. 2019. arXiv: 1812.05784 [cs.LG].

[13] Z. Yang, Y. Sun, S. Liu, and J. Jia. 3DSSD: Point-based 3D Single Stage Object

Detector. 2020. arXiv: 2002.10187 [cs.CV].

[14] S. Shi, X. Wang, and H. Li. PointRCNN: 3D Object Proposal Generation and Detection

from Point Cloud. 2019. arXiv: 1812.04244 [cs.CV].

[15] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and C. K. Wellington.
LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving. 2019.
arXiv: 1903.08701 [cs.CV].

[16] W. Shi, Ragunathan, and Rajkumar. Point-GNN: Graph Neural Network for 3D

Object Detection in a Point Cloud. 2020. arXiv: 2003.01251 [cs.CV].

[17] R. Nabati and H. Qi. “CenterFusion: Center-based Radar and Camera Fusion for
3D Object Detection.” In: 2021 IEEE Winter Conference on Applications of Computer

Vision (WACV) (Jan. 2021). doi: 10.1109/wacv48630.2021.00157.

[18] B. Yang, R. Guo, M. Liang, S. Casas, and R. Urtasun. RadarNet: Exploiting Radar

for Robust Perception of Dynamic Objects. 2020. arXiv: 2007.14366 [cs.CV].

[19] Y. Wang, Q. Mao, H. Zhu, Y. Zhang, J. Ji, and Y. Zhang. Multi-Modal 3D Object

Detection in Autonomous Driving: a Survey. 2021. arXiv: 2106.12735 [cs.CV].

[20] W. Zhang, Z. Wang, and C. C. Loy. Exploring Data Augmentation for Multi-Modality

3D Object Detection. 2021. arXiv: 2012.12741 [cs.CV].

[21] S. Vora, A. H. Lang, B. Helou, and O. Beijbom. PointPainting: Sequential Fusion for

3D Object Detection. 2020. arXiv: 1911.10150 [cs.CV].

[22] T. Huang, Z. Liu, X. Chen, and X. Bai. EPNet: Enhancing Point Features with Image

Semantics for 3D Object Detection. 2020. arXiv: 2007.08856 [cs.CV].

[23] J. H. Yoo, Y. Kim, J. Kim, and J. W. Choi. “3D-CVF: Generating Joint Camera
and LiDAR Features Using Cross-view Spatial Feature Fusion for 3D Object
Detection.” In: Lecture Notes in Computer Science (2020), pp. 720–736. issn: 1611-
3349. doi: 10.1007/978-3-030-58583-9_43.

[24] Z. Zhang, M. Zhang, Z. Liang, X. Zhao, M. Yang, W. Tan, and S. Pu. MAFF-Net:

Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion.
2020. arXiv: 2009.10945 [cs.CV].

81

https://arxiv.org/abs/1711.06396
https://arxiv.org/abs/1812.05784
https://arxiv.org/abs/2002.10187
https://arxiv.org/abs/1812.04244
https://arxiv.org/abs/1903.08701
https://arxiv.org/abs/2003.01251
https://doi.org/10.1109/wacv48630.2021.00157
https://arxiv.org/abs/2007.14366
https://arxiv.org/abs/2106.12735
https://arxiv.org/abs/2012.12741
https://arxiv.org/abs/1911.10150
https://arxiv.org/abs/2007.08856
https://doi.org/10.1007/978-3-030-58583-9_43
https://arxiv.org/abs/2009.10945

Bibliography

[25] S. Xu, D. Zhou, J. Fang, J. Yin, Z. Bin, and L. Zhang. FusionPainting: Multimodal

Fusion with Adaptive Attention for 3D Object Detection. 2021. arXiv: 2106.12449
[cs.CV].

[26] Y. Yan, Y. Mao, and B. Li. “Second: Sparsely embedded convolutional detection.”
In: Sensors (2018).

[27] T. Yin, X. Zhou, and P. Krähenbühl. Center-based 3D Object Detection and Tracking.
2021. arXiv: 2006.11275 [cs.CV].

[28] X. Zhou, D. Wang, and P. Krähenbühl. “Objects as Points.” In: arXiv preprint

arXiv:1904.07850. 2019.

[29] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. YOLOv4: Optimal Speed and

Accuracy of Object Detection. 2020. arXiv: 2004.10934 [cs.CV].

[30] J. Redmon. Darknet: Open Source Neural Networks in C. http://pjreddie.com/
darknet/. 2013–2016.

[31] M. Tan, R. Pang, and Q. V. Le. EfficientDet: Scalable and Efficient Object Detection.
2020. arXiv: 1911.09070 [cs.CV].

[32] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and K. He. Detectron. https:
//github.com/facebookresearch/detectron. 2018.

[33] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal Loss for Dense Object

Detection. 2018. arXiv: 1708.02002 [cs.CV].

[34] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Scaled-YOLOv4: Scaling Cross

Stage Partial Network. 2021. arXiv: 2011.08036 [cs.CV].

[35] X. Long, K. Deng, G. Wang, Y. Zhang, Q. Dang, Y. Gao, H. Shen, J. Ren, S. Han,
E. Ding, and S. Wen. PP-YOLO: An Effective and Efficient Implementation of Object

Detector. 2020. arXiv: 2007.12099 [cs.CV].

[36] X. Huang, X. Wang, W. Lv, X. Bai, X. Long, K. Deng, Q. Dang, S. Han, Q. Liu,
X. Hu, D. Yu, Y. Ma, and O. Yoshie. PP-YOLOv2: A Practical Object Detector. 2021.
arXiv: 2104.10419 [cs.CV].

[37] S. Pang, D. Morris, and H. Radha. CLOCs: Camera-LiDAR Object Candidates Fusion

for 3D Object Detection. 2020. arXiv: 2009.00784 [cs.CV].

[38] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. “Vision meets Robotics: The KITTI
Dataset.” In: International Journal of Robotics Research (IJRR) (2013).

[39] W. Zimmer, A. Rangesh, and M. Trivedi. 3D BAT: A Semi-Automatic, Web-based

3D Annotation Toolbox for Full-Surround, Multi-Modal Data Streams. 2019. arXiv:
1905.00525 [cs.CV].

82

https://arxiv.org/abs/2106.12449
https://arxiv.org/abs/2106.12449
https://arxiv.org/abs/2006.11275
https://arxiv.org/abs/2004.10934
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://arxiv.org/abs/1911.09070
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/2011.08036
https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/2104.10419
https://arxiv.org/abs/2009.00784
https://arxiv.org/abs/1905.00525

Bibliography

[40] D. Tsai, S. Worrall, M. Shan, A. Lohr, and E. Nebot. Optimising the selection of

samples for robust lidar camera calibration. 2021. arXiv: 2103.12287 [cs.CV].

[41] Y. Wang, X. Chen, Y. You, L. Erran, B. Hariharan, M. Campbell, K. Q. Weinberger,
and W.-L. Chao. Train in Germany, Test in The USA: Making 3D Object Detectors

Generalize. 2020. arXiv: 2005.08139 [cs.CV].

[42] C. Yuan, X. Liu, X. Hong, and F. Zhang. Pixel-level Extrinsic Self Calibration of High

Resolution LiDAR and Camera in Targetless Environments. 2021. arXiv: 2103.01627
[cs.RO].

[43] X. Lv, B. Wang, D. Ye, and S. Wang. LCCNet: LiDAR and Camera Self-Calibration

using Cost Volume Network. 2021. arXiv: 2012.13901 [cs.CV].

[44] CenterPoint-PonintPillars Pytorch model convert to ONNX and TensorRT. https:
//github.com/CarkusL/CenterPoint. Accessed: 2021-10-01.

[45] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár. Designing Network

Design Spaces. 2020. arXiv: 2003.13678 [cs.CV].

[46] H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X.-S. Hua, and M.-J. Zhao. Improving 3D

Object Detection with Channel-wise Transformer. 2021. arXiv: 2108.10723 [cs.CV].

[47] Z. Li, F. Wang, and N. Wang. LiDAR R-CNN: An Efficient and Universal 3D Object

Detector. 2021. arXiv: 2103.15297 [cs.CV].

83

https://arxiv.org/abs/2103.12287
https://arxiv.org/abs/2005.08139
https://arxiv.org/abs/2103.01627
https://arxiv.org/abs/2103.01627
https://arxiv.org/abs/2012.13901
https://github.com/CarkusL/CenterPoint
https://github.com/CarkusL/CenterPoint
https://arxiv.org/abs/2003.13678
https://arxiv.org/abs/2108.10723
https://arxiv.org/abs/2103.15297

List of Figures

1.1. Example of the 3D object detection task where an object is classified as
’Car’ and its attributes like size, location and orientation are predicted as
well in the LiDAR sensor reference frame 2

1.2. Illustration of data flow in the Providentia++ system 3

2.1. Example of point cloud from a traffic scene generated by a LiDAR of the
brand Velodyne. 7

2.2. Example of 2D image semantic segmentation, i.e. pixel-level object
classification. (Top) input image. (Below) prediction 8

2.3. Example of RADAR points spread in all directions projected onto an
image. Two detected vehicles have RADAR points on the rear side. . . . 9

2.4. Early-fusion illustration . 10
2.5. Late-fusion illustration . 11
2.6. Deep-fusion illustration . 12
2.7. Example of 3D object detection in KITTI 13
2.8. Example of BEV object detection in KITTI 14
2.9. Intersection over Union in 3D. The higher the IoU value for a certain

threshold, the better a predicted bonding box matches the ground-truth
label for a particular object . 14

2.10. Example of a typical convolution operation on a 4x4 input I by a 3x3
filter K that produces the result O of size 2x2. 16

2.11. Challenges in handling point cloud data [7]. Left: Point clouds can
have regions with varying density. Middle: Lack of structure in the
points distribution, the distance between points can be random and
independent for each pair of points. Right: The order of points within a
set is arbitrary and meaningless to encode them as a vector 17

2.12. Voxelization of a point cloud which transforms the data into an ordered
data structure, a grid of cubic cells . 17

84

List of Figures

2.13. PointNet [8] is composed of multilayer perceptrons (MLPs), which are
shared point-wise, and two spatial transformer networks (STN) of 3 × 3
and 64 × 64 dimensions which learn the canonical representation of the
input set. The global feature is obtained with a winner-takes-all principle
and can be used for classification and segmentation tasks. 18

2.14. Illustration of typical problems for Single-Modal detectors. For scene
#1, (a) shows a single camera cannot avoid the occlusion problem while
the detection result of LiDAR only detector in (b) is correct; For scene
#2, camera only detector in (c) performs well while LiDAR only detector
shows the difficulty of detecting faraway vehicles with just a few LiDAR
points in (d). Note that dashed red boxes stand for missed objects [19] . 21

3.1. Schema of the PointPillars network [12] 26
3.2. Schema of the CenterPoint network [27] 28
3.3. Comparison of the YOLOv4 peformance with other real-time detectors

on the MS COCO dataset. Tested with a batch size of 1 on a GPU Tesla
V100 . 29

3.4. Schema of the YOLOv4 architecture . 30
3.5. Example of geometric consistency of the 2D and 3D detections applied

to the semantic ’Car’ category [37] . 31
3.6. Schema of the CLOCs fusion network [37] 33

4.1. Schema of the proposed architecture solution for the task of real-time
multi-modal 3D object detection. Note this is only an example for the
fusion of 3 classes, but it can be generalized easily to any N number of
classes . 37

4.2. ROS graph communication for the proposed solution. The oval shapes
represent nodes and the rectangles topics. An arrow entering/leaving a
node that connects a node to a topic means this node is a Subscriber/Pub-
lisher of that particular topic . 37

5.1. Evolution of the training loss and mAP evaluation of the YOLOv4 model
trained on all classes of the KITTI dataset 39

5.3. A significant amount of cyclists and pedestrians FPs are removed from
the scene after fusion . 49

5.4. The vehicles on the right that were not detected or misclassified are
recovered after fusion . 50

85

List of Figures

5.5. Fusion enhances the confidence scores of the predicted objects, Center-

Point alone estimates ’Car’ [0.43], ’Van’ [0.58]. CLOCs boosted the scores
to be ’Car’ [0.55], ’Van’ [0.70] and deleted the false pedestrians on the
right confused with plants before fusion 51

5.6. The 3D box of the TP van in the middle predicted by CenterPoint, was
suppresed after fusion because YOLOv4 failed to detect it 52

5.7. FPs are removed on the sides, but the two cyclists are not identified
after fusion because YOLOv4 classified these as pedestrians. CLOCs then
considered the TPs cyclists as FPs given the mismatch in the 3D and 2D
predicted labels. Though it is questionable if a person not riding, but
just holding a bike should be classified as either ’Pedestrian’ or ’Cyclist’ 53

5.8. Originally CenterPoint classified correctly as ’Van’ and predicted better
the size of the white large vehicle in the middle. Since YOLOv4 labeled
this vehicle as ’Car’ instead, after fusion the category of its 3D box was
wrongly changed to ’Car’ and its size was a little overestimated. 54

5.9. 3D BAT annotation-tool environment where in this example from the
highway A9 in Providentia++, trucks are labelled with yellow bounding
boxes and cars with green boxes . 57

5.10. 3D boxes of traffic participants predicted by a CenterPoint toy model on
a test point cloud recorded from the highway A9 that is a portion of the
testbed in Providentia++. Small boxes are cars and large boxes are trucks
detected. The red point cloud is the scan of the highway. 58

5.11. 2D boxes predicted by YOLOv4 on an image from the highway A9 that is
a portion of the testbed in Providentia++, where the classes ’Car’, ’Van’,
’Truck’ and ’Trailer’ are detected . 58

A.1. The predicted 3D box as ’Van’ is corrected after fusion with CLOCs

thanks to the right classification in 2D. YOLOv4 additionally detects a
car on the left in the far range that the 3D detector was not able to locate 63

A.2. FPs pedestrians confused with poles of a construction site on the road
are removed from the scene . 64

A.3. The fusion method deletes FPs pedestrians confused with poles on the
road boundaries . 65

A.4. The detections in 2D helped to increase the recall to locate two cars on
the left that were missed previously . 66

A.5. The 2D detections from YOLOv4 enabled the detection of more 3D car
boxes, (only 2 before vs 6 after fusion) plus some other FPs were removed 67

86

List of Figures

A.6. After fusion one car more on the right was detected and the confidence
scores of the two cars in the middle were enhanced. CenterPoint alone
[0.48, 0.46] vs [0.62, 0.61] CenterPoint + CLOCs 68

A.7. A FP cyclist confused with the highway barrier was removed after fusion
on the right side of the scene . 69

A.8. A FP cyclist confused with a pole on the highway was removed after
fusion on the right side of the scene . 70

A.9. The white vehicle on the right was correctly detected as ’Van’ by Center-

Point, but after fusion the TP was removed since a detection in 2D from
YOLOv4 was missing, so CLOCs considered the initial TP as a FP 71

A.10.The gray big vehicle on the right was well detected by both CenterPoint

and YOLOv4, but there is a strong disagreement between the predicted
labels that causes the 3D box ’Van’ to be removed after fusion 72

A.11.A FP pedestrian was deleted on the left side of the street after fusion,
but also the TPs ’Cyclist’ and ’Van’ were suppressed because YOLOv4

detected these with different labels ’Pedestrian’ and ’Car’ respectively.
Also after fusion a car in the middle of the scene in the far range got
detected in 3D thanks to a corresponding 2D ’Car’ match from YOLOv4 73

A.12.A FP pedestrian confused with a tree trunk was removed and more cars
on the right side of the street got detected after fusion, but also the TP
van was deleted since YOLOv4 predicted this van to be a car instead . . 74

A.13.This is almost the same scene as in the previous figure, but just a bit later
in time so the objects appear closer. In this case the van that was missed
in the previous figure after fusion, now it does get detected after fusion
because YOLOv4 agrees with CenterPoint that this vehicle is of the same
class, then the labels ’Van’ match both in 2D and 3D 75

A.14.Lots of FPs were removed after fusion, but also a TP pedestrian standing
on left side next to the wall was suppressed because YOLOv4 did not
detect anything in that area . 76

A.15.This a very peculiar edge-case where a car object (a tiny bit of its rear
side is visible on the left bottom corner) is reflected on the shop window
on the right of the scene, thus YOLOv4 detects the reflected car image
with high confidence , then after fusion CLOCs generated a ridiculous
3D car box FP inside the shop building. Look at the next figure that
represents the same scene in the point cloud 77

87

List of Figures

A.16.This is the same scene after fusion as in the previous figure in the point
cloud domain. The FP predicted car on the right lies inside the walls of
the shop building. The origin of this artifact is the reflected image on the
shop window of the actual car passing by on the left. This fooled CLOCs

into mistakenly predicting the FP car in an absurd location 78
A.17.This an example of a situation where the LiDAR-based detection is

of advantage when bad light conditions are against the 2D detection.
YOLOv4 misses to identify the pedestrian in the shadow standing in the
middle of the street, but CenterPoint both before and after fusion does
detect this pedestrian very well . 79

88

List of Tables

5.1. 3D and BEV Average Precision results of CenterPoint and CenterPoint +
CLOCs on the validation set of KITTI for the classes ’Car’, ’Pedestrian’,
’Cyclist’. Both the old Recall 11 and the new Recall 40 KITTI evaluation
metrics are presented . 40

5.2. Runtime Performance on GPU RTX 3090 divided into blocks of the
pipeline, in total for all 3 classes in this experiment. Averaged over 1000
frames . 42

5.3. 3D and BEV Average Precision results of CenterPoint and CenterPoint +
CLOCs on the validation set of KITTI for the classes ’Car’, ’Pedestrian’,
’Cyclist’, ’Van’. Both the old Recall 11 and the new Recall 40 KITTI

evaluation metrics are presented . 43
5.4. Runtime Performance on GPU RTX 3090 divided into blocks of the

pipeline, in total for all 4 classes in this experiment. Averaged over 1000
frames . 45

89

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Contributions

	Background
	Sensor modalities
	LiDAR
	Camera
	RADAR

	Sensor fusion schemes
	Early-fusion
	Late-fusion
	Deep-fusion

	Autonomous Driving datasets
	KITTI
	nuScenes
	Waymo Open Dataset

	Deep Learning on point clouds for 3D object detection.A short overview.
	Camera-LiDAR sensor fusion for multi-modal 3D object detection

	Related Work
	PointPillars
	CenterPoint
	YOLOv4
	CLOCs

	Solution approach
	Experiments
	Quantitative results
	YOLOv4 training and runtime
	CenterPoint trained on 3 classes + CLOCs
	CenterPoint trained on 4 classes + CLOCs

	Qualitative results
	Trials and errors

	Conclusions
	Future Work
	Appendix
	Bibliography
	List of Figures
	List of Tables

