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How to Achieve Optimality in Safe Reinforcement
Learning?

Background

Many real-world applications such as autonomous driving, power system operation, or robot
navigation require powerful decision-making tools. Reinforcement Learning (RL) has proven its
potential to control complex systems from various applications by learning through interaction
with the environment [4], [3]. However, most state-of-the-art RL algorithms have a significant
disadvantage which prevents their deployment beyond simulated environments: They cannot
guarantee fulfilling safety specifications, e.g., obstacle avoidance in autonomous driving. A sim-
ple yet effective approach for safeguarding RL algorithms is visualized below: If the action aRL,
which is proposed by the RL algorithm, steers the agent into an unsafe state, a safety controller
is employed to modify aRL so that the agent does not leave the safe set.

If the RL algorithm makes the agent leave the safe set, a safety
controller is applied to keep the system inside the safe set (figu-
re taken from: Melanie N. Zeilinger Towards Safe Learing-Based
Control, around 2014).

The safety-preserving action asafe can be obtained by projecting the (potentially unsafe) action
aRL onto a set of admissible actions A [1, Sec. 3.3.2]:

asafe =argmin
a

||a− aRL||

such that : a ∈ A.

However, adjusting the action proposed by the RL algorithm may disrupt the learning process
and result in suboptimal policies. Gros et al. [2] therefore derived corrections that ensure opti-
mality in both Q-Learning and policy gradient methods despite safe action projections as des-
cribed above. However, they did not provide practical examples showcasing the effects of their
theoretical results.

Description

The goal of this thesis is to evaluate the influence of applying the corrections proposed in [2]
to RL control of a dynamic system, e.g., an inverted pendulum. This includes extending an
existing framework for safe RL of an inverted pendulum with the corrections of the learning pro-
cess. Three different RL algorithms will be examined: Q-learning, deterministic policy gradient
optimization and stochastic policy gradient optimization. For Q-learning, an additional goal is
to analyze two different possibilities for integrating exploration into the learning process. One
possibility is to randomly disturb the optimization problem formulation [5]. The other is to use
epsilon-greedy action selection. The effect of the corrections should be evaluated empirically
first. Optionally, it is then possible to derive theoretic bounds on the error introduced without
the correction. Another extension would be to test the framework for more complex dynamic
systems.
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Tasks

• Familiarize with the corrections for safe Q-learning and policy gradient methods propo-
sed in [2],

• Implement uncorrected safe Q-learning and policy gradient methods for an inverted pen-
dulum,

• Implement proposed corrections for the different learning algorithms,

• Evaluate the performance difference between standard and corrected learning algo-
rithms empirically,

• Implement and evaluate two different exploration schemes for Q-learning.

What We Offer

• Research in Machine Learning,

• Weekly meetings with your advisors,

• Flexible start and schedule for the thesis project,

• Thesis topics that will be tailored to your interest, and

• Good coffee in case you want to meet in Garching.
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