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Learning Model Predictive Robustness of Proba-
bilistic Signal Temporal Logic

Background

Formal methods have been crucial for cyber-physical systems to verify safety, formalize task
specifications, and synthesize trajectories [1, 2, 3]. Temporal logic, such as linear temporal logic
(LTL) [4], metric temporal logic (MTL) [5], and signal temporal logic (STL) [6], allows specifying
unambiguous requirements, e.g., traffic rules for autonomous vehicles, due to their rich expres-
siveness. MTL and STL are equipped with quantitative semantics, i.e., the robustness degree
(aka robustness) [7, 8], which measures the degree of satisfaction or violation of a system with
respect to the given specification.

For uncertain and changing environments, a probabilistic variant of STL is proposed to express
safety constraints on random variables and stochastic signals in [9, 10, 11]. Similarly, Lee et.
al. [12] extend STL with random predicates to formulate a controller synthesis problem as pro-
babilistic inference.

Description

The original robustness degree for probabilistic STL predicates is defined in a model-free way,
i.e., without considering the underlying system dynamics. Therefore, it does not embody or
predict the real capability of the system to meet the specifications and is not scalable for com-
plicated predicates. In our previous work, we have proposed a model predictive robustness
(MPR) for original STL predicate [8], which is defined as a probability distribution anticipating
future changes in specification satisfaction or violation. Therefore, to address the above men-
tioned issues, MPR needs to be included to probabilistic STL and applied to motion planning
and control problems. Moreover, the results should be demonstrated in CommonRoad1 [13],
which is a collection of composable benchmarks for motion planning on roads.

Tasks

• Literature review of works related to stochastic model predictive control as well as tem-
poral logic and its probabilistic variants.

• Familiarizing with the current MPR definition and the existing traffic rule monitor in Com-
monRoad platform

• Learning the MPR for probabilistic STL formulae and testing the new definition in bench-
mark specifications, e.g., from stlpy2 [14]

• Extending the approach to motion planning problems for autonomous vehicles and eva-
luating the developed approach on CommonRoad scenarios

• Documentation of codes and other related materials

1https://commonroad.in.tum.de/
2https://github.com/vincekurtz/stlpy

mailto:yuanfei.lin@tum.de
http://www.ce.cit.tum.de/air/people/yuanfei-lin-msc//
http://www.ce.cit.tum.de/air/people/yuanfei-lin-msc//
https://commonroad.in.tum.de/
https://github.com/vincekurtz/stlpy


Department of Informatics

Chair of Robotics, Artificial
Intelligence and Real-time
Systems

Technical University of Munich

References

[1] C. Pek, S. Manzinger, M. Koschi, and M. Althoff, “Using online verification to prevent autonomous
vehicles from causing accidents,” Nature Machine Intell., vol. 2, no. 9, pp. 518–528, 2020.

[2] A. Rizaldi, F. Immler, B. Schürmann, and M. Althoff, “A formally verified motion planner for autonomous
vehicles,” in Proc. of the Int. Symp. on Automated Technology for Verification and Analysis, pp. 75–90,
2018.

[3] Y. Lin and M. Althoff, “Rule-compliant trajectory repairing using satisfiability modulo theories,” in Proc.
of the IEEE Intell. Veh. Symp., pp. 449–456, 2022.

[4] K. Esterle, L. Gressenbuch, and A. Knoll, “Formalizing traffic rules for machine interpretability,” in Proc.
of the IEEE Connected and Automated Veh. Symp., pp. 1–7, 2020.

[5] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “Formalization of interstate traffic rules in
temporal logic,” in Proc. of the IEEE Intell. Veh. Symp., pp. 752–759, 2020.

[6] N. Aréchiga, “Specifying safety of autonomous vehicles in signal temporal logic,” in Proc. of the IEEE
Intell. Veh. Symp., pp. 58–63, 2019.

[7] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications for continuous-time
signals,” Theoretical Computer Science, vol. 410, no. 42, pp. 4262–4291, 2009.

[8] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-valued signals,” in Proc. of the
Int. Conf. on Formal Modeling and Analysis of Timed Systems, pp. 92–106, 2010.

[9] C. Yoo and C. Belta, “Control with probabilistic signal temporal logic,” arXiv preprint arXiv:1510.08474,
2015.

[10] D. Sadigh and A. Kapoor, “Safe control under uncertainty with probabilistic signal temporal logic,” in
Proc. of Robotics: Science and Systems XII, 2016.

[11] M. Tiger and F. Heintz, “Incremental reasoning in probabilistic signal temporal logic,” Int. J. of Appro-
ximate Reasoning, vol. 119, pp. 325–352, 2020.

[12] K. M. B. Lee, C. Yoo, and R. Fitch, “Signal temporal logic synthesis as probabilistic inference,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation, pp. 5483–5489, 2021.

[13] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Composable benchmarks for motion plan-
ning on roads,” in Proc. of the IEEE Intell. Veh. Symp., pp. 719–726, 2017.

[14] V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal logic with fewer binary variables,”
IEEE Control Systems Letters, 2022.


