
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Multi-Modal 3D Object Detection in Long
Range and Low-Resolution Conditions of

Sensors

Egemen Kopuz

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Multi-Modal 3D Object Detection in Long
Range and Low-Resolution Conditions of

Sensors

Multimodale 3D-Objekterkennung bei
großer Reichweite und geringer Auflösung

von Sensoren

Author: Egemen Kopuz
Supervisor: Prof. Dr.-Ing. habil. Alois C. Knoll
Advisors: M.Sc. Walter Zimmer, M.Sc. Xavier Diaz Ortiz
Submission Date: 15.11.2023

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.11.2023 Egemen Kopuz

Acknowledgments

I extend my deepest gratitude to Prof. Knoll for giving me the opportunity to
write my thesis under his supervision. I would also like to give my gratitude to my
supervisors, Walter Zimmer and Xavier Diaz, for their invaluable guidance, patience,
and expertise. Their insightful feedback and unwavering support have been pivotal
throughout this journey.

I am equally indebted to my family, whose love and trust have not gone unnoticed. To
my parents and my sister whose wisdom and encouragements have been my motivation,
and provided me with much-needed relief during the most intense moments. Their
unyielding support has been a cornerstone of my success.

Abstract

With the rise of autonomous vehicles and intelligent transportation systems, robust
3D object detection has become essential. These systems often struggle with data
sparsity caused by challenges like distant and occluded objects, or low-resolution
sensors, which can impair performance. This thesis investigates primarily the impact
of temporal information on the prediction accuracy of such objects across two datasets
from different domains – specifically, TUMTraf-i [Zim+23b] and OSDaR23 [Tag+23].
We propose the Temporal Fuser (TF) that assimilate prior frames to refine features in
bird’s eye view level, as well as, the Temporally-Aware Ground Truth Paste (TA-GTP)
data augmentation method, which enhances training scenes with moving and rotating
virtual objects that are temporally coherent.

These proposed methods have been integrated using our custom-made Temporal
Pipeline, built upon BEVFusion [Liu+22], which facilitates swift inference through
an Online Caching mechanism for validation and testing phases while ensuring the
temporal consistency of all existing augmentation methods for training phase. To
ensure our evaluations are contextually relevant to temporal dynamics all the time, we
have implemented a novel Temporal Dataset Split Search algorithm. This algorithm
finds an optimal division of datasets by considering the custom attributes of objects. It
ensures that the divisions are balanced with respect to class variety as well as custom
attributes such as distance from the ego position, the number of points within bounding
boxes, and levels of occlusion.

Our methods, when combined, yield significant performance improvements across
all datasets and various combinations of modalities. We demonstrate their efficacy on
objects at different distances, presenting extensive quantitative results, and illustrate
how our methods predict distant or occluded objects through detailed visualizations.
Furthermore, we have demonstrated our methods’ performance in scenarios charac-
terized by a reduced number of point clouds, further simulating sparsity caused by
low-resolution sensors. To ascertain the effectiveness of each method individually,
we further conducted thorough ablation studies on components of Temporal Fuser
(TF), Temporally-Aware Ground Truth Paste (TA-GTP), and Temporal Loading, thereby
validating our proposed methods.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 4
2.1 Input Data . 4

2.1.1 Multi-View Images . 4
2.1.2 LiDAR Cloud Points . 4

2.2 Bird’s Eye View Data Representation . 5
2.3 Deep Learning . 5

2.3.1 3D Object Detection . 5
2.4 Datasets . 6

2.4.1 TUMTraf Intersection Dataset . 6
2.4.2 OSDaR23 Dataset . 8

3 Related Works 10
3.1 3D Object Detection . 10

3.1.1 Camera-only . 10
3.1.2 LiDAR-only . 12
3.1.3 Multi-modal . 14

3.2 Temporal 3D Object Detection . 17
3.3 Data Augmentation . 19

4 Methodology 21
4.1 Temporal Dataset Split Search . 21

4.1.1 Definitions . 21
4.1.2 Execution Parameters . 23
4.1.3 Algorithm Overview . 25

4.2 Temporal Pipeline . 28
4.2.1 General Structure . 28
4.2.2 Data Sampling . 28

v

Contents

4.2.3 Data Loading . 29
4.2.4 Augmentation Methods . 30
4.2.5 Online Caching . 35

4.3 Temporally-Aware Ground Truth Paste Data Augmentation 36
4.4 Temporal Fusion Networks . 40

4.4.1 Convolutional LSTM . 41
4.4.2 Convolutional GRU . 42

5 Evaluation 43
5.1 Experiment Setup . 43

5.1.1 Configurations . 43
5.1.2 Temporal Dataset Splits . 46
5.1.3 Evaluation Metrics . 51

5.2 Hyper-parameter Tuning . 52
5.3 Quantitative Studies . 57

5.3.1 General Results . 57
5.3.2 Class-wise Results . 59
5.3.3 Object Distance Category Results 61

5.4 Ablation Studies . 66
5.4.1 Temporally-Aware Ground Truth Paste Augmentation 66
5.4.2 Temporal Loading . 67
5.4.3 Cloud Point Sparsity . 68
5.4.4 Temporal Fuser Networks . 70

5.5 Qualitative Studies . 71
5.5.1 Features in Bird’s Eye View . 71
5.5.2 Predictions . 71

5.6 Run-time Measurements . 77

6 Future Work 79

7 Conclusion 81

List of Figures 83

List of Tables 88

Bibliography 92

vi

1 Introduction

The evolution of autonomous vehicles and intelligent transportation systems have
transformed the landscape of transportation, promising increased safety, efficiency,
and convenience. At the heart of this technological developments lies the critical
challenge of accurately detecting objects. For this, there has been remarkable progress
in recent years, including the utilization of numerous sensors and usage of cutting-edge
machine learning techniques. Two fundamental aspects of object detection are 2D and
3D perception. 2D object detection, primarily reliant on cameras, offers cost-effective
solutions for detecting objects within the same plane as the sensor but can struggle with
depth perception. In contrast, 3D object detection, enabled by technologies like LiDAR
and radar, excels at capturing the full spatial extent of objects but tends to be costlier.
While cameras are adept at recognizing object attributes, LiDAR and radar sensors are
indispensable for precise 3D localization. Most importantly, the integration of these
sensors significantly impacts the budget of autonomous systems. Therefore, sensors
themselves are specialized to correspond to specific requirements, such as accuracy
and range specifications. The balance between these modalities is pivotal, as it directly
influences the overall quality of data available for object detection and subsequent
decision-making in autonomous vehicles and transportation systems.

One of the main issues of detecting objects is data sparsity, caused by challenging
conditions, such as having objects that are far away or occluded by other elements
within the environment, or low-resolution sensors. Therefore, selection of sensors
becomes the fundamental part of the decision process. As an example, for far away
objects, cameras by themselves are usually not enough as their depth estimations
become compromised as the range increases, so sensors like LiDARs are generally used
for such cases. However, not all the LiDAR devices are suited for it unless they are
specifically designed for long-range scanning. Otherwise, their scans of far away objects
may be quite sparse to a point that it does not hold any significant information for
system to utilize. Therefore, many state-of-the-art approaches utilize multiple sensors
like cameras and LiDARs to compensate each other’s drawbacks and consolidate their
strengths.

In the context of autonomous vehicles, specifically autonomous trains, and intelligent
transportation systems, the detection of objects at a distance plays a pivotal role in
ensuring safe and efficient operations. Trains often travel at high speeds, and their

1

1 Introduction

immense weight and momentum make sudden stops or evasive maneuvers extremely
challenging. Detecting objects at a considerable distance allows the train’s control
system to anticipate potential obstacles, such as vehicles, pedestrians, or debris on the
tracks, and take early preventive actions. This is crucial in preventing accidents and
ensuring the well-being of passengers and the surrounding community.

Occlusion is also another an ever-present challenge in real-world transportation
environments. Objects, be they other vehicles, infrastructure elements, or pedestrians,
are frequently obscured or partially hidden from view by other objects. From a sensor’s
perspective, the presence of these objects can vary temporally. In other words, an
object may be fully or partially visible in one frame but not in the subsequent frames,
resulting in either sparse or non-existent cloud points. Therefore, having a means to
utilize past temporal information can significantly enhance the detection process. This
temporal information proves particularly valuable for mobile vehicles, as their sensor
placements are inherently limited, resulting in restricted coverage areas. Conversely, in
a static infrastructure environment such as a traffic intersection, additional sensors can
be strategically placed in various locations to expand the coverage area. Nevertheless,
this expansion comes at the cost of an increased budget, which may not be ideal,
especially if the ultimate goal is to implement such a setup in multiple locations across
the country.

This thesis and its associated experiments related to the TUMTraf-i Dataset [Zim+23b]
were conducted within the scope of the Providentia++ project [Krä+21] led by the Chair
of Robotics, Artificial Intelligence, and Real-time Systems at the Technical University
of Munich’s Department of Informatics. The project is dedicated to researching the
flow of information between vehicles and infrastructure along the A9 highway, which
extends into urban areas. Its primary goal is to establish a comprehensive digital twin
of the existing traffic situation. This innovative approach will serve as a foundation for
the development of services that enhance traffic management and improve intelligent
transportation systems. In addition, various other experiments, utilizing the OSDaR23
dataset [Tag+23], were carried out in collaboration with SETLabs Research GmbH
as part of the consortium project known as safe.trAIn. The safe.trAIn project is an
initiative focused on advancing safety and efficiency in driverless rail transport through
the development and integration of robust AI technologies. By addressing the unique
challenges within this safety-critical environment, this project contributes to the broader
objectives of climate protection and sustainable transportation in Europe. The successful
implementation of safe.trAIn is expected to pave the way for the widespread adoption
of driverless rail vehicles, thereby making significant strides toward a cleaner and more
efficient transportation sector.

2

1 Introduction

In conjunction with all the aforementioned projects, the primary objective of this
thesis is to demonstrate the effectiveness of implementing temporal-aware data aug-
mentations and fusion networks within a state-of-the-art multi-modal fusion model.
This study adopts the work of [Liu+22] as its baseline model and builds upon it.

The key contributions can be summarized as follows:

• Temporal Fusion Networks: Convolutional Gated Recurrent Unit Recurrent Net-
works [Bal+16] and Convolutional Long Short-Term Memory Recurrent Networks
[Shi+15] are integrated into the pipeline to effectively fuse bird’s eye view features
of varying sequential frames.

• Temporally-Aware Ground Truth Paste Data Augmentation: A novel and
temporally-aware adaptation of the GT-Paste Augmentation method introduced
by Yan et al.’s work from [YML18] that pastes virtual objects in the forms of
3D bounding boxes and cloud points from other scenes to the training scenes.
Particularly noteworthy in this extended version is the inclusion of randomized,
yet temporally consistent, rotation and translation of such virtual objects across
sequential frames.

• Temporal Pipeline: The training, evaluation and inference pipelines, along with
the 2D and 3D data augmentation methods, have been modified to ensure com-
patibility with sequential data flow, whether it is online or offline. Additionally,
Online Caching mechanism is implemented for faster inference pipeline.

• Temporal Dataset Split Search: A novel exhaustive search algorithm employing
multi-processing techniques to identify temporally optimal splits (consisting
training, validation, and test sets) that maintain uniformity in terms of both
number of classes and object attributes such as distance from the ego position,
point cloud count within bounding boxes, and occlusion levels.

These contributions collectively emphasize the significant impact of leveraging tem-
poral aspects in improving 3D object detection performance, particularly for objects
located at a distance or occluded, within the domains of railway train and traffic
infrastructure.

3

2 Background

2.1 Input Data

Data is fundamental to computer vision for creating and representing digital objects
or scenes. Popular data types, specifically for the 3D object detection task, include
multi-view camera images and LiDAR point clouds. Multi-view images and LiDAR
point clouds complement each other, offering diverse perspectives and precise depth
information crucial for 3D object detection models.

2.1.1 Multi-View Images

Multi-view imaging involves capturing a scene from multiple angles to obtain a set of
images that represent different perspectives. This technique is essential for creating
3D representations of the subjects [HZ01], which is particularly beneficial for tasks
such as 3D object detection [PF20] [Hua+22] [RKC18] [Pan+20] [RC20] [Li+22b] [Li+23].
The images are typically synchronized and calibrated to ensure consistency in further
processing stages. In this thesis, multi-view images are utilized in 3D object detection
models, offering a broader coverage area and better occlusion handling than single-
image counterparts [Nin+].

2.1.2 LiDAR Cloud Points

LiDAR (Light Detection and Ranging) devices produce point clouds by measuring the
distances to objects with laser pulses, creating high-resolution 3D representations of the
environment. These point clouds are known for their high density and accuracy, which
makes them invaluable for precision mapping and detailed examination of physical
spaces [LI20] [Zam+21]. In this thesis, LiDAR point clouds are utilized in 3D object
detection models to provide a nuanced and precise understanding of the environment,
offering detailed localization and depth information.

4

2 Background

2.2 Bird’s Eye View Data Representation

The concept of Bird’s Eye View (BEV) data representation is a comprehensive approach
to visualizing and interpreting data from an elevated perspective, offering benefits
across various fields and applications.

BEV representation has gained popularity for improving 3D detector performance in
autonomous driving systems [Zhu+23], as demonstrated by research adopting BEV as
a unified representation across single or multiple modalities [Hu+23] [Liu+22] [Lia+22].
In this thesis, we utilized a bird’s eye view as a unified representation in order to
overcome the view discrepancy between different modalities.

2.3 Deep Learning

Deep Learning (DL) is an advanced computer-based modeling technique within ma-
chine learning (ML) and artificial intelligence (AI) fields, known for its proficiency in
processing large and unstructured datasets. Tracing its roots to the early neural network
models inspired by associationism – a theory of how the brain processes information
– deep learning has evolved into sophisticated architectures, such as Convolutional
Neural Networks (CNNs) and Transformers, which are at the forefront of current
research [WR17] [Alz+21] [MRP21].

Characterized by their layered processing, deep learning models can interpret data
at multiple levels of abstraction. Their capacity to learn from specific training data
and to streamline analytical model development has led to their widespread adoption
in intelligent systems across various fields, including speech recognition, healthcare,
natural language processing and autonomous vehicle technology [Shi+23] [JZH21].

2.3.1 3D Object Detection

The detection of 3D objects using deep learning models is a process that involves the
identification and localization of objects in 3D space. This is typically achieved through
the generation of 3D bounding boxes that encapsulate the location, dimensions and
orientation of the objects within a given environment. Deep learning models, trained on
large datasets with annotated 3D bounding boxes, learn spatial hierarchies and feature
representations essential for generating these boxes and achieving object detection.
During the inference phase, these models process input data, which can come from
various sources such as LiDAR and multi-view cameras, to predict the 3D bounding
boxes for each detected object.

5

2 Background

Figure 2.1: Image showing the positions of the sensors used in the TUMTraf Intersection
Dataset (TUMTraf-i). Taken from [Zim+23b].

2.4 Datasets

In this thesis, we used two datasets, TUMTraf-i [Zim+23b] and OSDar23 [Tag+23], each
from a different domain with unique attributes specific to their use-cases.

2.4.1 TUMTraf Intersection Dataset

The TUMTraf Intersection Dataset (TUMTraf-i), a component of the Providentia++
project [Krä+21], comprises LiDAR point clouds and multi-view camera images from
a road intersection near Munich, Germany. The sensors – 2 cameras and 2 LiDAR
devices – are mounted adjacently on a gantry 7 meters high to monitor traffic flow at
the intersection’s center (see Figure 2.3). Sensor specifications are as follows:

• Camera: Basler ace acA1920-50gc, 1920×1200, Sony IMX174, glo. shutter, color,
GigE with 8 mm lenses.

• LiDAR: Ouster OS1-64 (gen. 2), 64 vert. layers, 360° FOV, below horizon configu-
ration, 120 m range, 1.5 - 10 cm accuracy.

The TUMTraf-i dataset consists of 4 separate sequences, from S1 (1st sequence) to
S4 (4th sequence), each comprising camera images and corresponding labeled LiDAR
recordings. Sequences S1 and S2 each encompass a 30-second duration, depicting
scenarios at dusk. Sequence S3 presents a 120-second sequence captured in daylight
under sunny conditions. Finally, sequence S4 includes a 30-second recording obtained
at night during heavy rainfall.

6

2 Background

Figure 2.2: Visualization of 3D box labels and tracks in the TUMTraf Intersection Dataset
(TUMTraf-i). The first row shows the labels projected into the two camera images.
Below a registered point cloud from two LiDARs contains 3D box labels of the same
scene. Taken from [Zim+23b].

A total of 2,400 frames have been captured, each synchronized across all sensors at a
rate of 10 Hz using timestamps. The dataset includes 506 unique objects and 57,406
labeled 3D bounding boxes. Each object is categorized into one of the following classes:
Car, Truck, Trailer, Van, Motorcycle, Bus, Pedestrian, Bicycle, Emergency Vehicle, and
Other. However, we do not use the class "Other" in our studies. Figure 2.2 showcases
an example of these objects and their corresponding classes and labeled 3D bounding
boxes. In this thesis, we use all the sensors: 2 cameras and 2 LiDARs.

7

2 Background

Figure 2.3: Image showing the positions of the sensors used in the Open Sensor Data
for Rail 2023 (OSDaR23). Taken from [Tag+23].

2.4.2 OSDaR23 Dataset

Open Sensor Data for Rail 2023 (OSDaR23) is released by DB Netz AG, within the
sector initiative Digitale Schiene Deutschland, and the German Center for Rail Transport
Research (DZSF) at the Federal Railway Authority (EBA). The sensor setup consists of
multiple calibrated and synchronized IR/RGB cameras, LiDAR and a radar sensors
front-mounted on a railway vehicle. In this thesis, we use only the output data from
high-resolution cameras and LiDAR sensors included in the dataset. Consequently, we
utilize 3 high-res cameras with 6 LiDAR (3 long-range, 1 medium-range, and 2 short-
range) which are registered together. These sensors have the following specifications:

• High-resolution Camera: Teledyne GenieNano 5GigE C4040, 4112x2504.

• Long-range LiDAR: Livox Tele-15, 50,000 - 84,000 points per frame.

• Medium-range LiDAR: HesaiTech Pandar64, 60,000 - 115,200 points per frame.

• Short-range LiDAR: Waymo Honeycomb, 20,000 - 40,000 points per frame.

The OSDaR23 dataset originally comprises 45 separate sequences, which include
a total of 1,534 frames and 204,091 annotations. However, the sequences "4_sta-
tion_pedestrian_bridge_4.4" and "19_vegetation_curve_19.1" were excluded from the
study, resulting in a dataset consisting of 1,424 frames. All frames and sensors are
synchronized at a rate of 10 Hz using timestamps. The dataset comprises 22 different

8

2 Background

classes; however, some lack 3D bounding boxes, featuring only 2D ones. Additionally,
certain classes occur either with extremely low frequency or problematic defined 3D
bounding boxes. Consequently, we have chosen to utilize only the following classes for
our studies: Person, Catenary Pole, Signal Pole, Road Vehicle and Buffer Stop.

Figure 2.4: Representative samples of high-resolution, low-resolution, and infrared
camera images, accompanied by radar and LiDAR data from the Open Sensor Data for
Rail 2023 Dataset (OSDaR23) [Tag+23].

9

3 Related Works

3.1 3D Object Detection

The task of 3D object detection is critical in various fields, including autonomous
driving, robotic navigation, and many monitoring applications. Unlike 2D detection,
which concerns itself with locating objects in image space, 3D object detection aims to
establish the locations, rotations, sizes, and categories of the 3D objects in a scene with
respect to the real world, thus demanding a deep understanding of the scene geometry.
Models engineered for such detection tasks typically harness data of a multi-modal
nature, fusing both images from camera systems and point cloud data garnered from
Light Detection and Ranging (LiDAR) sensors. Nonetheless, these multi-modal models
predominantly rely on individual sensor-based detection systems, such as those that
are exclusively camera-only or LiDAR-only; hence, a preliminary investigation into
these modalities is imperative.

3.1.1 Camera-only

Cameras offer a cost-effective solution for 3D object detection systems compared to
sensors like LiDAR, hence they are extensively researched and utilized in both academia
and industry, employing techniques that range from monocular and stereo to multi-view
configurations.

Monocular detection is quite fast but is notably hampered by their inability to directly
extract depth information from a single image, leading to sub-optimal predictions. To
address this, research on this matter can be categorized by two principal methodologies:
single-stage and two-stage detection (See Figure 3.1). Single-stage detection [Lin+18]
[BL19] [Bra+20] [Luo+21] performs object classification and bounding-box regression
simultaneously without the need for pre-generated region proposals. Conversely, two-
stage detection [Ren+16] [Sim+19] [Shi+22] [QWL20] performs these tasks sequentially,
initiating with the generation of region proposals followed by classification for each.
Although two-stage methods typically achieve higher accuracy, they do so at the
expense of reduced inference speed.

Stereo-based detection [LCS19] [Pen+20], on the other hand, is designed to identify
3D objects using a pair of images. These stereo images offer extra geometric con-

10

3 Related Works

Figure 3.1: Comparison between one-stage (single-stage) RetinaNet [Lin+18] and two-
stage Faster-RCNN [Ren+16]. Taken from [Car+21].

straints over monocular images, enabling more precise depth estimation. As a result,
stereo-based approaches tend to outperform monocular methods in detection accuracy.
However, the effectiveness of stereo cameras depends heavily on precise calibration
and synchronization, which are often challenging to attain in practical settings.

Recent advancements in multi-view 3D object detection have led to methods [PF20]
[Hua+22] [RKC18] [Pan+20] [RC20] [Li+22b] [Li+23] that attempt to utilize a unified
representation in bird’s-eye view (BEV) space by mapping multi-view images onto
it and then applying a BEV-based detector to this integrated feature map for 3D
object detection. Specifically, LSS [PF20] which is one of the pioneers, does this by
first “lifting” each image individually into a frustum of features for each camera,
then “splatting” all frustums into a rasterized bird’s eye view space (See Figure 3.2).
Nonetheless, the conversion from camera views to BEV can be imprecise without
accurate depth information, resulting in imperfect alignment between image pixels and
their corresponding BEV space coordinates. The recently introduced EA-LSS model
[Hu+23] tries to address this issue by proposing an edge-aware adaptation of LSS,
wherein it employs an edge-aware depth fusion and a fine-grained depth module to
enhance depth accuracy in regions with rapidly varying depth.

Another important aspect is the choice of a feature extraction backbone model,
which is essential for the production of competitive results by the methods mentioned
above. The range of available backbone models is extensive, including classic models
like ShuffleNet [Zha+17], Xception [Cho17], and DetNet [Li+18] as well as modern
ones such as EfficentNet [TL20], and those introduced in various versions of YOLO
models [RF18] [WBL22] [TC23a]. Models that incorporate transformers, such as DeiT

11

3 Related Works

Figure 3.2: The LSS introduced in [PF20] processes multi-view images along with their
corresponding extrinsic and intrinsic parameters to produce a frustum-shaped point
cloud for each image. These point clouds, embedded with computed depth values, are
subsequently transformed into bird’s-eye view (BEV) space and then processed for a
task via CNN. Taken from [PF20].

[Tou+21] and Swin-T [Liu+21], are also notable. For example, Swin-T employs a
multi-stage hierarchical architecture that computes attention within local windows,
divided into sub-patches. This design allows for the capture of interactions between
different window locations by gradually shifting the partitioning across network levels,
thus covering overlapping regions and maintaining efficient, linear computational
complexity by localizing self-attention computations [Kha+22]. However, transformers
generally require a significant amount of data for training and are known for their high
computational complexity [Lin+22].

3.1.2 LiDAR-only

LiDAR sensors have become the cornerstone of high-precision 3D object detection.
LiDAR technology offers the ability to capture fine-grained 3D information about the
surrounding environment by sending out laser beams and measuring the time it takes
for them to return after reflecting off objects. This "time-of-flight" data translates into
accurate distance measurements, producing a rich point cloud that precisely represents
the scene geometry.

Like camera-based models, LiDAR-based models are primarily classified into single-
stage and two-stage types. Single-stage models, such as VoxelNet [ZT17] and Point-
Pillars [Lan+19], process point clouds and flatten them into Bird’s Eye View (BEV)
space for detection. VoxelNet is an innovative approach that employs 3D sparse voxels
and introduces a Voxel Feature Encoding layer to extract features from points within

12

3 Related Works

Figure 3.3: An illustration of how voxelization works on cloud points [Xu+21].

voxels for comprehensive volume representation. Conversely, PointPillars employs
voxelization using vertically unbounded shape called a pillar, enabling faster encoding.
For two-stage models, PointRCNN [SWL19], Fast Point R-CNN [Che+19], PV-RCNN
[Shi+21] and LiDAR R-CNN [LWW21] incorporate a RCNN network into one-stage
detectors to enhance performance with refinement modules. Beyond classic voxel
[ZT17] [Sun+22] [SWL19] [YML18] [Den+21] and pillar [ZT17] [Zhu+19] [Wan+20] rep-
resentations, there are also others such as cylindrical [Che+20] and spherical [Lai+23]
representations, offering distinct solutions to specific problems.

As transformers advance and become suitable for 3D object detection with point
clouds, works such as FlatFormer [Liu+23] and DSVT [Wan+23] have become alterna-
tives claiming superior accuracy-latency trade-offs over popular sparse convolutional
backbones.

Despite their precision, LiDAR sensors present challenges, the most significant being
their cost, which can be prohibitively expensive, and their sparse nature, especially
at longer ranges or in environments with fewer surfaces to reflect off. Moreover,
processing the high-dimensional point cloud data requires substantial computational
resources, often leading to longer processing times; Consequently, the current trend of
more sophisticated methods is streamlining model selection, enhancing their suitability
for real-time applications.

13

3 Related Works

3.1.3 Multi-modal

The integration of camera and LiDAR data, referred to as multi-modal, seeks to leverage
the complementary strengths of both sensor modalities to improve the robustness
and accuracy of 3D object detection. While cameras provide high-resolution texture
information and color, which is beneficial for object classification, LiDARs offer precise
and reliable depth information, crucial for object localization and dimension. Multi-
modal 3D detection models have different fusion strategies, categorized as early, late,
and deep fusion.

Early-fusion

Early fusion, also termed sensor-level or data-level fusion, combines camera and LiDAR
data at the start of the processing pipeline. This method merges raw data prior to
feature extraction to create an unified representation, blending detailed visuals from
the camera with precise LiDAR depth measurements. Integrating these data sources
early aims to maximize the raw potential of each modality, which could enhance
performance in object recognition and scene understanding. However, early fusion
demands precise alignment of data streams otherwise cross-correlations between data
items cannot be exploited, resulting in poor performance. Typically, these methods are
executed sequentially: first, 2D detection or segmentation networks extract features
from images; next, this information enhances the point cloud data; and finally, the
enriched point cloud is input into a LiDAR-based 3D object detector. Consequently, the
sequential nature of this process limits the flexibility in processing speed, which crucial
for multi-modal models.

There are two types of early fusion: the first leverages knowledge from images to
narrow down candidate regions in a 3D point cloud, and the second augments the
input point cloud with image features. For the former, Frustum PointNet [Qi+18]
initiates this approach, and then Frustum ConvNet [WJ19] makes improvements by
applying convolutinal networks on divided grid cells from frustums. Regarding the
latter, PointPainting [Vor+20] pioneers this technique by projecting LiDAR point clouds
onto the output of an image-only semantic segmentation network and appending
the corresponding class scores to each point. However, PointPainting’s efficacy is
contingent upon the quality and format of the semantic segmentation output, which
may significantly increase the risk of false detections. PointPainting++ [Gao+23]
mitigates these issues by implementing a weighted classification loss that prioritizes
anchors with uncertain semantic information and by integrating a dual-attention
module to enhance the refinement of the voxelized point cloud. Additionally, MVP
[YZK21b] represents another technique, utilizing semantic information from a camera-

14

3 Related Works

Figure 3.4: Late-fusion Multi-modal 3D object detection pipeline [Zim+23a].

only segmentation network to generate dense 3D point clouds through interpolation.

Late-fusion

In contrast to early fusion, late fusion takes place at a later stage in the processing
pipeline. Here, each sensor modality operates independently to produce its own set
of bounding boxes, which are then combined at a decision level to produce a final
output. This method capitalizes on the strengths of each sensor’s processing techniques
separately before making a unified inference, allowing for greater flexibility and the
possibility of redundancy, which can be beneficial for system reliability. Late fusion is
typically less demanding computationally compared to early fusion and can be easier
to implement. However, it may not exploit the full potential of the combined data to
the same extent as early or deep fusion approaches.

CLOCS [PMR20] exemplifies late fusion, working on pre-NMS (Non Maximum
Suppression) output from both 2D and 3D detectors and harnessing their geometric
and semantic consistencies to enhance the accuracy of the final 3D and 2D detection
results. Fast-CLOCs [PMR22] enhances performance through a lightweight 3D detector-
cued 2D image detector (3D-Q-2D) that extracts visual features to significantly improve
3D detection, and by sharing 3D detection candidates as proposals with the 3D-Q-2D,
it substantially reduces network complexity. In relation to our thesis, InfraDet3D
[Zim+23a], evaluated on one of our datasets TUMTraf-i [Zim+23b], proposes a pipeline
that fuses data from two LiDARs through early fusion. Furthermore, detections from
monocular cameras are integrated at a later stage to enhance robustness and to improve

15

3 Related Works

the detection of small objects (see Figure 3.4).

Deep-fusion

Deep fusion, often referred to as feature-level or intermediate-level fusion, is a sophisti-
cated approach that merges the strengths of both early and late fusion techniques. It is
realized by integrating camera and LiDAR data at different levels within a deep learning
architecture. This method allows the network to automatically learn the most effective
way to combine features from each sensor modality at various stages of abstraction. The
fusion can occur at multiple points within the neural network, leveraging the benefits of
joint representations while still allowing individual sensor characteristics to contribute
to the final decision. Deep fusion is particularly powerful for complex tasks like 3D
object detection, where the combination of hierarchical features from both modalities
can lead to a more robust and accurate system. However, it requires significant data and
computational resources, along with more complex network architectures, to achieve
its full potential.

Numerous efforts have been made in the research community to optimize the deep-
fusion process, specifically, on the image and LiDAR features within backbone networks.
LiDAR-to-camera transformations establish point-to-pixel correspondences which are
then used to fuse features from LiDAR and image backbones using various operators.
For example, works of [Lia+20a] and [Lia+20b] utilize continuous convolutions to fuse
image and LiDAR feature maps at various resolution levels, while DeepFusion [Li+22a]
and CAT-DET [ZCH22] employ an attention mechanism to dynamically capture the
correlations between modalities. On the other hand, works such as PointFusion [XAJ18],
EPNet [Hua+20b] and MSF-MC [Wan+21] incorporate image-to-LiDAR transformations
for point-based detection backbones. This whole fusion can also be done at the
output feature maps of backbone networks [Liu+22] [Lia+22]. BEVFusion [Liu+22]
is particularly notable, as it addresses and alleviates key efficiency bottlenecks in
view transformation through optimized BEV pooling, which includes caching/pre-
computation and interval reduction techniques to decrease latency. In parallel, with the
same name, BEVFusion [Lia+22] introduces an Adaptive Module (ADP) to enhance
up-sampled features through adaptive average pooling and a 1x1 convolution prior
to concatenation. Contrary to employing pooling or 3D convolutions for z-dimension
compression, this method utilizes a Spatial to Channel (S2C) operation that reshapes a
4D tensor into 3D, thereby reducing computational expense.

There are also transformer-based models, such as TransFusion [Bai+22] and CMT
[Yan+23]. The TransFusion model generates queries from the high-response regions
of LiDAR features, after which the object queries separately interact with point cloud
and image features. However, in CMT, object queries directly engage with multi-modal

16

3 Related Works

Figure 3.5: Comparison between deep-fusion models BEVFusion [Liu+22], TransFusion
[Bai+22], and CMT [Yan+23]. Taken from [Yan+23].

features simultaneously via Position encoding (PE) for alignment (see Figure 3.5).

3.2 Temporal 3D Object Detection

In the previous sections, we explored 3D object detection and many popular methods
based on different modalities. As an extension that can be added to these popular meth-
ods, the integration of temporal information emerges as a promising research direction
for advancement. This is predicated on the hypothesis that leveraging sequential data
significantly enhances the accuracy and robustness of detection systems at the expense
of processing speed.

Temporal aggregation, a critical feature of this progression, involves the synthesis of
data across consecutive frames to construct a richer, more informative representation
of the environment. Figure 3.6 illustrates several approaches adopted for temporal
aggregation, each with its unique strengths.

Attention mechanisms [Yan+21] [Cai+23], for instance, selectively focus on different
parts of the data sequence, thereby enhancing relevant features while suppressing the
irrelevant ones, and thus, allocating computational resources efficiently to areas of
interest over time.

17

3 Related Works

Figure 3.6: An illustration of various temporal aggregation types for multi-frame LiDAR
sequences. Taken from [Mao+23].

Transformers, a revolutionary architecture in the field of deep learning, have also
been adapted for temporal data processing [Yua+20]. Transformers can weigh the
influence of different time steps in the sequence, enabling the model to capture long-
range dependencies and temporal dynamics with remarkable effectiveness. However,
their computational bulkiness should be considered since sequential data are processed
collectively, which may limit feasibility in real-time scenarios.

Long Short-Term Memory (LSTM) [Hua+20a] and Gated Recurrent Unit (GRU)
[Yin+20] networks are classes of recurrent neural networks designed to remember
information for long periods. In the context of 3D object detection, such networks can
track the changes in object position and orientation over time, within either proposals
or feature maps. Unlike Transformers, LSTMs and GRUs enable sequential processing,
thus offering advantages in real-time applications in terms of speed.

Lastly, research on Graph Neural Networks (GNN) [Zha+20] has extended to include
temporal 3D object detection. GNNs can effectively model the evolving relationships

18

3 Related Works

Figure 3.7: Overview of Multi-modal Virtual Point (MVP) generation framework. Taken
from [YZK21b].

between objects within a scene, considering both the individual properties of objects
and the dynamic topological structure of the scene.

3.3 Data Augmentation

Data augmentation plays a crucial role in enhancing the performance of 3D object
detection models. In the field of machine learning, particularly within computer vision,
having a vast and varied dataset is essential for training robust models. However,
acquiring such diverse datasets, especially for 3D objects, can be challenging. Data
augmentation steps in as a practical solution, artificially expanding the dataset by
generating new samples from existing data through a variety of transformations so that
models can have better generalization.

There are various data augmentation techniques, one of which is the MVP [YZK21b],
which uses a series of 2D detections to generate dense 3D virtual points via interpolation,
thereby enriching sparse 3D point clouds. This enables the preliminary training of
MVP to produce an augmented dataset, which can subsequently be used to train other
models. Other examples that follow the same philosophy are PointPainting [Vor+20]

19

3 Related Works

and PointPainting++ [Gao+23], which augment 3D point clouds by integrating semantic
information from image segmentation models. Additionally, data-driven point cloud
up-sampling techniques, such as those proposed in [Yu+18], [Yif+19], and [Li+19], learn
to perform up-sampling through convolutional or generative networks. However, these
techniques are unsuitable for real-time applications due to their extensive computational
demands.

Beyond basic point cloud augmentation methods like rotation, translation, scaling,
or shuffling, the method introduced in SECOND [YML18] as Ground-Truth Paste
diversifies training set by sampling ground truth objects along with their point clouds
from a database and then pasting them into the frame scene. This method successfully
increases the number of objects in each scene, thus simulating objects across a wide
array of situations. Furthermore, advancements introduced by LiDAR-Aug [Fan+21]
and Real-Aug [Zha+23a] facilitate further extensions of this method by creating more
realistic scenarios via learnable techniques.

20

4 Methodology

4.1 Temporal Dataset Split Search

To train and evaluate models that require sequential frame inputs in their pipelines, it is
essential to partition the dataset in a specific manner, ensuring the presence of sufficient
continuous sequences in the training, validation, and test sets. Doing this manually
is quite a challenge in our case due to the imbalanced class distributions [JK19] in
both datasets, TUMTraf-i [Zim+23b] and OsDAR23 [Tag+23]. Besides, balancing class
numbers across sets is not enough; we must also consider 3D object attributes, such as
their distances from the ego position and whether they are occluded or not. Without
the consideration of these attributes, the risk of inadequate generalization arises. For
example, if one set predominantly contains objects near the ego position while others
feature distant objects, training generalization may be compromised.

Consequently, we introduce a novel exhaustive search algorithm that takes advantage
of multiprocessing techniques to find optimal partitions that maintain uniformity in
terms of aforementioned object attributes across the partitioned sets.

4.1.1 Definitions

To understand the fundamentals of the algorithm, we need to define some terms:

• List of classes in a dataset:

C = {c1, c2, . . . , cn} (4.1)

• For every class cn ∈ C, there are associated weights:

wn = {wcn , wdn , wln , won} (4.2)

where: wcn = the weight for class’ occurrences
wdn = the weight for class’ categorized distance
wln = the weight for class’ categorized count of cloud points
won = the weight for class’ categorized occlusion level

21

4 Methodology

• Categorized distances from the ego position, denoted by D:

D = {d1, d2, . . . , dn} (4.3)

where n is the number of distance categories specific to dataset. For OsDAR23
dataset, values would be

D = {< 50, 50 − 99, 100 − 149, 150 − 200,> 200}

whereas for TUMTraf-i dataset, the values would be

D = {< 40, 40 − 50,> 50}

• Categorized count of cloud points inside 3D bounding boxes denoted by L:

L = {l1, l2, . . . , ln} (4.4)

where n is the number of categories of point cloud counts inside 3D bounding
boxes. Values of L differs depending on the dataset. For OsDAR23 dataset, values
are

L = {< 199, 200 − 499, 500 − 999, 1000 − 1999, 2000 − 2999,> 3000}

whereas for TUMTraf-i dataset, the values are

L = {< 19, 20 − 49,> 50}

• Categorized occlusion levels are denoted by O:

O = {o1, o2, . . . , on} (4.5)

where n is the number of occlusion categories specific to dataset. Values of O
differs depending on the dataset. For OsDAR23 dataset, values are

O = {0 − 25%, 25 − 50%, 50 − 75%, 75 − 100%, 100%}

whereas for TUMTraf-i dataset, the values are

O = {not_occluded, partially_occluded, mostly_occluded, unknown}

• A 3D object b is characterized by the following attributes:

b = (cb, db, lb, ob) (4.6)

where: cb = the class and cb ∈ C
db = the categorized distance and db ∈ D
lb = the categorized count of cloud points and lb ∈ L
ob = the categorized occlusion level and ob ∈ O

22

4 Methodology

4.1.2 Execution Parameters

In order for our search algorithm to be able to create a search space, the following
parameters are manually selected before the execution:

• N f - the minimum number of frames to be included in pseudo-sequences. For
example, if N f = 20, the search algorithm will create pseudo-sequences consisting
of 20 sequential frames. However, if the original sequence has less frames then N f ,
then the whole original sequence will be taken into account as a pseudo-sequence.

• Np - the number of permutations of pseudo-sequences to be searched. For
example, if Np = 100, 000, the search algorithm will consider 100,000 different
permutations of pseudo-sequences and calculate a cost for each of them.

• Nw - the number of processes to be used for multi-processing. Each process
handles at least

⌊
Np
Nw

⌋
permutation. The last process will handle any remained

permutation.

• Rt - list of target ratio values for sets as can be described as follows:

Rt ∈
{
(r1, . . . , rn) | r ∈ [0, 1],

n

∑
i=1

ri = 1, 0 ≤ ri ≤ 1 ∀i

}
(4.7)

For example, if Rt = {0.8, 0.1, 0.1}, the search algorithm will try to create a
training set that contains 80% of the data, a validation set that contains 10% of
the data, and a test set that contains 10% of the data.

• W - the list of class weights to be used in cost operations. With individual weights
of classes defined in equation (4.2), W can be described as follows:

W = {w1, w2, . . . , w|C|} (4.8)

where |C| is the number of classes in the dataset. These weights are important as
they allow putting more emphasis on specific classes and attributes.

• Tc - a Boolean value ensuring all sets contain identical classes as follows:

Tc ⇐⇒ ∀i, j ∈ S (c ∈ Ci ⇐⇒ c ∈ Cj, ∀c ∈ C) (4.9)

where S = {train, val, test}; Ci and Cj are the sets of classes present in i-th and j-th
sets respectively.

23

4 Methodology

• Td - the categorized distance threshold value that takes values in the interval
[0,1]. This threshold helps eliminate sequence permutations where the training
set has a wider range of distance categories than the validation or test sets. The
constraints for this filter are:

|Dtrain| · Td ≤ |Dval |, |Dtrain| · Td ≤ |Dtest| (4.10)

where: |Dtrain| = the number of distance categories in the training set
|Dval | = the number of distance categories in the validation set
|Dtest| = the number of distance categories in the test set

For instance, a Td value of 1 requires all sets to contain an equal number of
distance categories. A value less than 1 allows the validation or test set to have
fewer categories. Adjusting this threshold is crucial, especially when N f has a
high value, making it challenging to satisfy the constraints.

• Tl - the categorized count of clouds points threshold value that takes values in
the interval [0,1]. This threshold helps eliminate sequence permutations where
the training set has a wider range of cloud points categories than the validation
or test sets. The constraints for this filter are:

|Ltrain| · Tl ≤ |Lval |, |Ltrain| · Tl ≤ |Ltest| (4.11)

where: |Ltrain| = the number of cloud point categories in the training set
|Lval | = the number of cloud point categories in the validation set
|Ltest| = the number of cloud point categories in the test set

For instance, a Tl value of 1 requires all sets to contain an equal number of cloud
points categories. A value less than 1 allows the validation or test set to have
fewer categories.

• To - the categorized occlusion level threshold value that takes values in the interval
[0,1]. This threshold helps eliminate sequence permutations where the training
set has a wider range of occlusion level categories than the validation or test sets.
The constraints for this filter are:

|Otrain| · To ≤ |Oval |, |Otrain| · To ≤ |Otest| (4.12)

where: |Otrain| = the number of occlusion categories in the training set
|Oval | = the number of occlusion categories in the validation set
|Otest| = the number of occlusion categories in the test set

24

4 Methodology

For instance, a To value of 1 requires all sets to contain an equal number of
occlusion level categories. A value less than 1 allows the validation or test set to
have fewer categories.

4.1.3 Algorithm Overview

Figure 4.1: Overview of our temporal dataset split search algorithm. A list of original
sequences (denoted as So) is compiled and segmented into pseudo-sequences
of N f frames each. Np permutations are created by rearranging these pseudo-
sequences. Using operation D, as described in 4.13, each permutation is split
into sets: S(p)

train, S(p)
val , and S(p)

test. The algorithm checks if these sets together
satisfy the constraints using T (4.14). When constraints are met, operation
C (4.19) determines the cost, guiding the algorithm to choose the optimal
split with the minimum cost.

The search algorithm consists of three main parts: creating permutations of pseudo-
sequences, discarding those that do not satisfy the constraints, and calculating costs for
the remaining permutations.

Creating Permutations

Each dataset comprises a predetermined list of actual frame sequences. The algorithm
aggregates all such frames in the dataset into a list and divides them into pseudo-

25

4 Methodology

sequences with a minimum length of N f . A pseudo-sequence can be considered a small
continuous part of an actual sequence. These divisions are guided by the following
constraints:

• Frames within the same pseudo-sequence must originate from the same sequence.

• The number of frames in a pseudo-sequence must be at least N f .

Consequently, some pseudo-sequences might contain more frames than N f , especially
if forming another complete pseudo-sequence of minimum length N f is not feasible
with the remaining frames. For these pseudo-sequences, the algorithm generates Np

permutations, collectively denoted by P. If we assume that for a specific permutation p,
it represents a set of pseudo-sequences of size N f , then for a given Rt defined in 4.7,
the division operation D for each permutation can be defined as follows:

D(p, Rt) =
{

S(p)
train, S(p)

val , S(p)
test

}
∀p ∈ P (4.13)

Where, for each permutation p ∈ P, S(p)
train represents the set of pseudo-sequences

allocated to the training set, S(p)
val to the validation set, and S(p)

test to the test set.

Discarding Permutations

After the creation of permutations, the operation denoted by T , is applied to each of
them to discard those that do not satisfy the constraints. The constraints are defined by
the following parameters: Tc (4.9), Td (4.10), Tl (4.11), and To (4.12). The operation T
can be further defined using the constraints:

T (S(p)
train, S(p)

val , S(p)
test) =

{
keep if p satisfies Tc, Td, Tl , and To

discard otherwise
(4.14)

Calculating Objective Function

Once permutations have been filtered based on the aforementioned constraints, the next
step is to rank the viable permutations based on their potential effectiveness. This is
done by calculating a cost for each permutation. The objective is to minimize this cost,
ensuring that the datasets derived from the optimal permutation provide a balanced
representation in terms of classes, distances, cloud point counts, and occlusion levels.

The cost function C for a given permutation p aims to measure the differences in
attribute distributions between the training set and validation/test sets. This cost is
essentially a weighted sum of the differences in distribution of the attributes: class,
distance, cloud points, and occlusion. The breakdown of cost function is as follows:

26

4 Methodology

1. For class distribution difference of the nth class:

∆C(p)
train,set,n = |C(p)

train,n − C(p)
set,n| (4.15)

where set ∈ {val, test} and C(p)
set,n represents the total count of nth class in the

specified set for a given permutation p.

2. For distance distribution difference of the nth class:

∆D(p)
train,set,n = |D(p)

train,n − D(p)
set,n| (4.16)

where set ∈ {val, test} and D(p)
set,n represents the total count of categorized dis-

tances of the nth class in the specified set for a given permutation p.

3. For cloud point count distribution difference of the nth class:

∆L(p)
train,set,n = |L(p)

train,n − L(p)
set,n| (4.17)

where set ∈ {val, test} and L(p)
set,n represents the total count of categorized cloud

points of the nth class in the specified set for a given permutation p.

4. For occlusion distribution difference of the nth class:

∆O(p)
train,set,n = |O(p)

train,n − O(p)
set,n| (4.18)

where set ∈ {val, test} and O(p)
set,n represents the total count of categorized occlu-

sion levels of the nth class in the specified set for a given permutation p.

5. Summing up the distribution differences using weights from W defined in 4.8:

C(p) =
|C|

∑
n=1

wcn

(
∆C(p)

train,val,n + ∆C(p)
train,test,n

)
+ wdn

(
∆D(p)

train,val,n + ∆D(p)
train,test,n

)
+ wpn

(
∆L(p)

train,val,n + ∆L(p)
train,test,n

)
+ won

(
∆O(p)

train,val,n + ∆O(p)
train,test,n

)
(4.19)

6. The permutation with the least cost value is then picked as follows:

p∗ = argminpC(p) (4.20)

where p∗ is the optimal permutation that minimizes the cost function C(p).

Lastly, the optimal partitioned sets
{

S(p∗)
train, S(p∗)

val , S(p∗)
test

}
of p∗ are selected and then

saved for further uses.

27

4 Methodology

Figure 4.2: BEVFusion, our baseline model, extracts features from multi-modal inputs
and converts them into a shared bird’s-eye view (BEV) space efficiently
using view transformations. It fuses the unified BEV features with a fully-
convolutional BEV encoder and supports different tasks with task-specific
heads. Taken from [Liu+22].

4.2 Temporal Pipeline

4.2.1 General Structure

The methods introduced in this thesis are built upon the works of BEVFusion by
[Liu+22], which utilizes MMDetection3D [Con20] as its framework and incorporates
various custom functionalities specifically designed for non-temporal implementations.
Consequently, an essential step in this thesis involved converting the entire code base to
accommodate our temporal methods. We designate the default BEVFusion model as our
baseline and evaluate our methods on the temporal version of the model accordingly.
In our implementation, we replaced the BEV Encoder with the Feature Fuser, a simple
tensor operation that concatenates feature maps from multiple backbones.

4.2.2 Data Sampling

In object detection domain, the inherent long-tail distribution of classes presents
significant challenges. Predominant "head" classes with plentiful data representation
can overshadow the less frequent "tail" classes, skewing the model’s learning focus
[Zha+23b]. For instance, a disproportionate representation of one class can hinder the
model’s capacity to adequately learn features of underrepresented classes [Zhu+19].

Therefore, we adapt the sampling strategy proposed by [Zhu+19], namely, Class-
balanced Grouping and Sampling, to ensure that the models are trained on a balanced
dataset with uniform class representation. In regards to temporal compatibility, several

28

4 Methodology

constraints are added to sampling algorithm to ensure that no frame without any prior
frames is ever sampled, specifically, for the training pipeline.

4.2.3 Data Loading

Figure 4.3: Visualization of temporal data loading for training pipeline. Sequential
frames, which may contain gaps in their indices, are loaded as a sequential
sequence with a specified length denoted by Q. The sum of individual g
values must not exceed G. Subsequently, data augmentation methods are
applied to these sequences, with the manner of application contingent on
the specific configuration of the method, determining whether the effects
are applied uniformly across all sequential frames or not.

We introduce a configurable temporal data loading method, allowing models with
diverse requirements to customize the queue length and incorporate the possibility of
gaps between sequential frames. Let the set F represent a sequence of frames to be
loaded. The frame at the current index is denoted by fi. The set F is constrained by
two parameters:

• Queue Length (Q): This parameter specifies that the size of set F must be Q, that
is, the number of frames in F should be equal to Q. Not only does this serve
as an operational measure, but it also functions as a hyper-parameter that can
be fine-tuned to optimize the model’s performance. An extended queue length
affords the model a broader temporal context, which is beneficial in recognizing
objects that are obscured over longer duration. However, this increase in length
has a corresponding effect on the model’s memory usage and inference time.

In situations where there are insufficient prior frames to meet the size Q, the
system will repeatedly load the same frame. This approach ensures that the

29

4 Methodology

queue consistently maintains its maximum capacity.

• Queue Gap (G): This parameter accounts for the potential presence of gaps
between sequential frames in F. While gaps can exist, their cumulative size must
not surpass G throughout the sequence. For any two consecutive frames fi−k and
fi in F, where 1 ≤ k < Q, the size of the gap is k. The summation of all such gaps
in the sequence can be denoted as:

Q−1

∑
j=1

j · gj ≤ G (4.21)

Here, gj represents the number of gaps of size j in the sequence. This constraint
guarantees temporal coherence, ensuring that abrupt transitions or omitted frames
don’t compromise the analysis. Moreover, it provides an additional mechanism
for training generalization.

4.2.4 Augmentation Methods

Data augmentation is an indispensable technique in deep learning, used to artificially
enhance the variability of training datasets, thus tackling the problem of over-fitting
while training. In the context of temporal data sequences, the importance of consistent
application of augmentation methods across all frames becomes necessity.

Consistency Across Frames

Temporal sequences contain inherent chronological information that establishes re-
lationships between frames. Inconsistent augmentations can disrupt these temporal
relationships, leading to misleading or conflicting cues for models. Consider a sequence
where one frame has undergone a rotation while the subsequent frame has not; the
inconsistency introduced can confuse the model in recognizing the progression of an
object’s movement or position. Therefore, applying augmentation methods uniformly
across frames ensures that the inherent temporal coherence remains undisturbed,
leading to improved model robustness and performance.

Image Augmentations

The data augmentation methods detailed below, specifically designed for image inputs,
have been modified to ensure consistent augmentation across temporal frames:

• Image Augmentation in 3D: As opposed to conventional 2D image augmenta-
tions, this method manipulates the image as if it is in 3D space. Cropping as well

30

4 Methodology

Figure 4.4: An output sample image from Image Augmentation in 3D method.

Figure 4.5: An output sample image from Image Grid Mask method.

as transformations like flipping, rotations and translations are applied considering
the full 3D context by updating the corresponding calibration matrices. A visual
example can be seen in 4.4.

• Image Grid Mask: This method applies a regular grid of masks to the image,
blocking certain sections and forcing the model to learn from partial data. When
applied consistently across a sequence, it simulates scenarios where certain
sections of data are consistently obscured or missing, such as due to occlusions.
A visual example can be seen in Figure 4.5.

31

4 Methodology

Cloud Point Augmentations

Figure 4.6: A comparison of bird’s eye view images of cloud points for Random Flip 3D
method. Left image represent the original cloud points whereas the right
image represents the horizontally flipped version.

Like augmentation methods for images, the following cloud-point-based augmenta-
tion methods are also modified to accommodate temporal consistency:

• Global Transformation (Rotation, Scale and Translation): This method applies
a global rotation, scale, and translation to the entire point cloud together with
ground truth bounding boxes. An example can be seen in Figure 4.5.

• Random Flip 3D: This technique involves mirroring the point clouds when
viewed from a bird’s-eye perspective, thereby introducing variability in the ob-
ject’s viewpoints. If consistently applied across consecutive frames, the mirrored
perspectives retain their temporal coherence. Nevertheless, in our experimen-
tation, we restricted ourselves to horizontal flips. This restriction arises due to
the adjustment in our pre-defined point cloud ranges, which makes vertical flips
yield inconsistent augmentations. A visual example can be seen in Figure 4.7.

• Points Shuffle: This method randomizes the order of points in the cloud. While
this doesn’t change the cloud’s inherent structure, it provides the model with a
varied input structure, promoting robustness against different point orders.

32

4 Methodology

Figure 4.7: A comparison of bird’s-eye view images of point clouds using the Global
Transformation (Rotation, Scale and Translation) method. The upper-left image
presents the original point cloud; the upper-right image presents its rotated
version; the lower-left image presents the scaled version; and the lower-right
image presents the translated version. Coordinate lines are colored red for
the X-axis and green for the Y-axis to differentiate effects.

33

4 Methodology

• Ground Truth Paste: This method, adapted from [YML18], initializes a database
that encompasses labels for all ground truths along with their corresponding
point cloud data, sourced from the 3D bounding boxes of these truths within the
training dataset. During the training process, specific ground truths are randomly
selected from this database and combined into the contemporary training point
cloud via concatenation. This method successfully increases the number of objects
in each scene, thus simulating objects across a wide array of situations. To
guarantee the realism of the results, a post-sampling collision check is performed.
Following this check, any objects found in conflict are promptly discarded. An
example showcase can be seen in Figure 4.9. Regarding the temporal dimension,
we have introduced a variant, namely, "Temporally-Aware Ground Truth Paste
Data Augmentation." A more comprehensive discussion on this is available in
Section 4.3.

34

4 Methodology

4.2.5 Online Caching

Figure 4.8: Visualization of iterative online caching of frames’ feature tensors in val-
idation or test pipeline. Black arrows represent the current iteration step
while pointing to corresponding frame and its feature tensor. Each block
represents a feature tensor of a given frame denoted by f (k)i ∈ F(k) where
each F represents the set of frames in a temporal sequence.

In this section we introduce an online caching mechanism for the validation and
testing phases of a temporal deep learning model. The rationale behind this mechanism
lies in its potential to mitigate the need for recurrent data loading and feature computa-
tion, which is both time-consuming and computationally intensive. To facilitate this, a
cache with a capacity of Q (see 4.2.3) was established.

The operation of this cache follows a systematic protocol: during each evaluation
iteration, the cache accumulates data frames’ feature tensors, growing incrementally by
each single frame. As soon as the iteration arrives at the conclusion of a sequence, the
cache undergoes a reset. Following this, the cache then commences its accumulation of
feature tensors from the succeeding sequence. This operational cycle persists until the
entirety of the validation or test dataset has been processed. You can see the general
work-flow illustrated in Figure 4.8.

There are tangible advantages to this methodology. It offers a marked reduction in the
computational overhead. Given that there’s no requisite to perpetually load sequential
frames afresh and compute their feature tensors, the model can instead utilize the prior
feature tensors already present in the cache. This translates to computational savings,
and thus faster inference, as demonstrated in Table 5.27.

35

4 Methodology

4.3 Temporally-Aware Ground Truth Paste Data Augmentation

In the previous section, specifically in 4.2.4, we referenced the "Ground Truth Paste"
data augmentation method, adapted from [YML18], as an effective technique to aug-
ment the number of ground truths within each scene. However, this method has certain
limitations. The augmentation procedure is entirely stochastic, neglecting the temporal
dimension. Such oversight can generate unrealistic scenarios. To rectify this limitation,
we introduce a modified version, namely, Temporally-Aware Ground Truth Paste Data
Augmentation, TA-GTP for short. This modified method integrates temporal awareness
into the augmentation, ensuring that the ground truths selected are temporally consis-
tent, maintaining iterative translation and rotation transformations across sequences.
The methodology is detailed as follows:

1. Construct a run-time database encompassing labels for all ground truths and their
corresponding point cloud data. This data is derived from the 3D bounding boxes
of the ground truths within the training dataset and is automatically generated
prior to the training phase.

2. Initiate a sampling algorithm where each class within the training dataset receives
several pre-defined configuration parameters as outlined below:

• Maximum Sample Count: Denoted by A(c)
N , it is the maximum number of

objects that can be present together with sampled ones for a given class
c ∈ C. For example, for the class "car," if the A(car)

N is 7 and there are already
5 cars in the frame, then only 2 cars can be sampled and added from the
database.

• Rotation Values: They can be defined as:

A(c)
R = [µ(c), σ(c)] (4.22)

where: A(c)
R = the acceptable rotation parameters for objects of class c

µ(c) = the mean rotation value (radian) for class c
σ(c) = the standard deviation of rotation value (radian) for class c

For any given temporal sequence s, the sampled rotation value r(c)s for class
c can now be expressed using a Gaussian distribution:

r(c)s ∼ N (µ(c), σ(c)2
) (4.23)

Where N (µ, σ2) denotes a Gaussian random sampling with mean µ and
variance σ2. r(c)s specifies the change in orientation of the object on z-axis,
basically changing its yaw.

36

4 Methodology

• Translation Values: They can be defined as:

A(c)
T = [t(c)l , t(c)u] (4.24)

where: A(c)
T = the range of translation parameters for objects of class c

t(c)l = the minimal translation value (meters) for class c
t(c)u = the maximal translation value (meters) for class c

For any given temporal sequence s the sampled translation value t(c)s for
class c can be expressed as:

t(c)s ∼ U(t(c)l , t(c)u) (4.25)

Where U(a, b) denotes a uniform random sampling between values a and b.
t(c)s specifies the displacement of the object in meters along the x-axis (front
of the bounding box where yaw is π/2).

3. For every temporal sequence s used as input, a random quantity of objects B is
extracted from the database for its initial frame f1, adhering to the constraints
outlined earlier, especially the maximum sample count. Formally, the set of extracted
objects for sequence s can be symbolized as Bs.

Within a temporal sequence s, which may consist of multiple frames f1, f2, ... fn,
each frame fi will undergo a uniform movement of the sampled objects. This
results from copying and pasting objects from the initial frame to the subsequent
frames, followed by transformations using the sampled rotation and translation
values. This ensures consistency across all frames to maintain temporal coherence.

The transformation for an object o transitioning from frame fi to frame fi+1 can
be defined as:

Tfi→ fi+1(o, r(c)s , t(c)s) → o′fi+1
(4.26)

where: Tfi→ fi+1 = the transformation from frame fi to frame fi+1

o′fi+1
= the position of object o in frame fi+1 after transformation

This frame-to-frame transformation guarantees that during each transition within
sequence s, objects exhibit fluid and consistent movement, further fortifying the
temporal coherence in the augmented dataset. An exemplification of this iterative
process can be observed in Figure 4.10.

4. The frame-to-frame transformation, as described in the previous step, is reiterated
for all temporal sequences within the training steps.

37

4 Methodology

Figure 4.9: A comparison of ground truth objects and objects randomly sampled via the
Temporally-Aware Ground Truth Paste (TA-GTP) augmentation method,
as depicted in bird’s-eye view image derived from point clouds. Objects
delineated by blue bounding boxes indicate the ground truth, while those
with red boxes indicate the sampled objects. Sampled objects are fully
identical to their original ground truth attributes such as position, rotation,
dimensions and class.

38

4 Methodology

Figure 4.10: A visualization of objects sampled via the Temporally-Aware Ground
Truth Paste (TA-GTP) augmentation technique is presented, showcasing
their historical positions and orientations in bird’s-eye view image derived
from point clouds. Varied shades of blue represent distinct temporal
frames, with darker shades signifying earlier frames. The object inside the
focus panel is classified as "Bus" in TUMTraf-i [Zim+23b].

39

4 Methodology

4.4 Temporal Fusion Networks

Convolutional LSTM (Long Short-Term Memory) and Convolutional GRU (Gated Re-
current Unit) networks, which are the extensions of their fully-connected counterparts,
represent recurrent architectures tailored for spatial-temporal data. They have convolu-
tional structures in both the input-to-state and state-to-state transitions so that they can
encode spatial information as well [Shi+15]. In our case, we integrate these networks to
our temporal pipeline since the spatio-temporal behaviour is quite beneficial for fusing
temporal features in bird’s eye view representations (see Figure 4.11). We shall refer to
these networks as the Temporal Fuser networks, abbreviated as TF.

Figure 4.11: An overview of temporal fusion in the detection pipeline. Both the camera
and LiDAR backbones produce features in a bird’s eye view from their
respective inputs. These features are concatenated and represented as
BEVf eat in the figure. For each frame, denoted by f , in the temporal
sequence, features are generated. Beginning with the initial concatenated
features BEV(i−n)

f eat and progressing to the final one BEV(i)
f eat, consecutive

pairs of these features are fed into the Temporal Fuser for fusion across the
temporal dimension.

40

4 Methodology

Figure 4.12: Flowchart of integration of Temporal Fuser (TF) on BEVFusion model.
Feature Fuser represent an operation that concatenates features of both
backbones. Such concatenated features are then given to Temporal Fuser
together with previous frames’ concatenated features. As a result, tempo-
rally fused features are generated and fed into the Detection Head.

4.4.1 Convolutional LSTM

In numerous studies, Long Short-Term Memory (LSTM), a specific Recurrent Neural
Network (RNN) architecture, has demonstrated its proficiency in handling long-range
dependencies in sequence modeling tasks [HS97] [Gra14].

LSTM’s unique feature is its memory cell (or cell state), denoted as Ct, which serves
as a repository for state information. This memory cell’s interaction, storage, and
erasure are managed by three primary gates: input, forget, and output. When a new
input is presented, it is integrated into the cell based on the activation of the input gate.
Simultaneously, if the forget gate, ft, is activated, the previous cell state, Ct−1, can be
discarded. The decision to convey the current cell state, Ct, to the final hidden state,
Ht, is governed by the output gate, ot. Convolutional LSTM introduces convolutional
layers to this architecture and can be expressed with the following equations:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (4.27)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f) (4.28)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (4.29)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (4.30)

Ht = ot ◦ tanh(Ct) (4.31)

41

4 Methodology

where: Xt = the input at timestamp t
it = the input gate at timestamp t
ft = the forget gate at timestamp t
Ct = the cell output at timestamp t
ot = the output gate at timestamp t
Ht = the hidden state at timestamp t
W = the corresponding weight matrices

4.4.2 Convolutional GRU

The Gated Recurrent Unit (GRU), another type of Recurrent Neural Network (RNN) ar-
chitecture, has been successfully employed in a variety of sequence modeling tasks due
to its ability to retain information over extended sequences while being computationally
less demanding compared to LSTM [Chu+14] [FZL16] [Tod+17].

Distinct from the LSTM, GRU simplifies the gating mechanism by utilizing two gates:
reset and update gates. These gates determine the extent to which past information
is forgotten and how the new input is incorporated into the hidden state. Specifically,
the reset gate, rt, decides how to combine the new input with the previous hidden
state, while the update gate, zt, determines how much of the previous hidden state
is retained. The Convolutional GRU adapts the GRU architecture by integrating
convolutional layers, which can be described with the following equations:

zt = σ(Wxz ∗ Xt + Whz ∗ Ht−1 + bz) (4.32)

rt = σ(Wxr ∗ Xt + Whr ∗ Ht−1 + br) (4.33)

Ĥt = tanh(Wxh ∗ Xt + rt ◦ (Whh ∗ Ht−1) + bh) (4.34)

Ht = (1 − zt) ◦ Ht−1 + zt ◦ Ĥt (4.35)

where: Xt = the input at timestamp t
zt = the update gate at timestamp t
rt = the reset gate at timestamp t
Ĥt = the candidate hidden state at timestamp t
Ht = the hidden state at timestamp t
W = the corresponding weight matrices

This architecture allows Convolutional GRU to efficiently capture spatial-temporal
dynamics in data while reducing the number of trainable parameters by around 33%
when compared with Convolutional LSTM.

42

5 Evaluation

5.1 Experiment Setup

5.1.1 Configurations

In order to evaluate and compare the performance of the proposed methods with
baselines, experiments were mostly standardized under the following configurations:

General Configuration

• Image Size: For both TUMTraf-i [Zim+23b] and OSDaR23 [Tag+23], the original
images are down-sampled into 256x704 pixels originating from the center.

• Voxel and Grid Sizes:

– For TUMTraf-i dataset, voxel dimensions are

Vx = 0.1, Vy = 0.1, Vz = 0.2

with a consistent grid size of 1600 for both training and testing. Point cloud
ranges are

Rx = [−20, 140], Ry = [−80.80], Rz = [−10, 0]

The reason why we shifted the range along the X axis is due to lack of
coverage, specifically for the cameras, behind the gantry. Also, we wanted to
test whether the models can detect objects are 100 meters away.

– For OSDaR23 dataset, the voxel dimensions are

Vx = 0.16, Vy = 0.16, Vz = 0.4

with a consistent grid size of 1600 for both training and testing. Point cloud
ranges are

Rx = [−6, 250], Ry = [−128.128], Rz = [−3, 13].

43

5 Evaluation

• Camera-based Augmentations: Generally applied augmentations are Image
Augmentation in 3D, Image Grid Mask and Image Normalization.

• LiDAR-based Augmentations: Generally applied augmentations are Global
Transformation (Rotation, Scale and Translation), Random Flip 3D (only horizon-
tally) and Points Shuffle.

• Hardware: For the TUMTraf-i dataset, the models are trained on dual RTX 3090
GPUs. In contrast, models for the OSDaR23 dataset are trained on a single RTX
4090 GPU.

Camera-only Configuration

• Backbone: The Swin-T [Liu+21] is adopted as the primary backbone for camera-
based models. The FPN [Lin+17] is used to fuse multi-scale camera features,
producing a feature map at 1/8 the size of the input.

• Transformation: Camera-to-Bird’s Eye View (BEV) transformation is achieved
using the LSS method [PF20].

• Detection Head: The CenterPoint’s detection head [YZK21a] is used.

• Optimizer: The AdamW optimizer [LH19] is with a learning rate of 6.0e-5 and
a weight decay factor of 0.01. Cyclic policy [Smi17] is utilized as a learning rate
scheduler.

• Training Procedure: These trainings are mostly configured to last 20 epochs.

LiDAR-only Configuration

• Backbone: The VoxelNet [YML18] is employed as the backbone for LiDAR-based
models.

• Detection Head: The TransFusion’s detection head [Bai+22] is used.

• Optimizer: The AdamW optimizer [LH19] is utilized with a learning rate of
6.0e-5 and a weight decay factor of 0.01. Cyclic policy [Smi17] is utilized as a
learning rate scheduler.

• Training Procedure: These trainings are mostly configured to last 20 epochs.

44

5 Evaluation

Multi-modal (Camera + LiDAR) Configuration

• Backbones: Both the Swin-T (from the camera configuration) and VoxelNet (from
the LiDAR configuration) are integrated.

• Detection Head: The TransFusion’s detection head [Bai+22].

• Optimizer: The AdamW optimizer [LH19] is utilized with a learning rate of
6.0e-5 and a weight decay factor of 0.01. Cosine annealing [LH17] is utilized as a
learning rate scheduler.

• Training Procedure: These trainings are mostly configured to last 4 epochs.

Temporal Configuration

• Queue Length and Queue Gap: As defined in 4.2.3, the most of the temporal
experiments with some exceptions in ablation studies are configured with queue
length of 3 and queue gap of 1.

• Temporal Fuser: Temporal experiments use Convolutional LSTM (defined in
4.4.1) as a temporal fuser network, with some exceptions of Convolutional GRU
(defined in 4.4.2) in ablation studies. These networks are set to use 1 layer only.

• Optimizer: The AdamW optimizer [LH19] is utilized with a learning rate of
6.0e-5 and a weight decay factor of 0.01. Cosine annealing [LH17] is utilized as a
learning rate scheduler.

• Training Procedure: We utilize transfer-learning manually by loading checkpoints
from already trained non-temporal camera-only or LiDAR-only models, and then
freeze their backbone weights prior to training. These trainings are mostly
configured to last 4 epochs.

By employing the aforementioned configurations for the experiments, we aimed to
ensure consistency and rigor in the evaluation process, thereby providing a compre-
hensive understanding of the system’s performance across different configurations and
datasets.

45

5 Evaluation

5.1.2 Temporal Dataset Splits

As discussed in 4.1, our dataset splits had to be carefully generated in order to be
compatible with temporal aspects of our methods and techniques. Therefore, we
utilized our Temporal Dataset Split Search algorithm to find the optimal temporal splits
for both of our datasets, namely, TUMTraf-i [Zim+23b] and OSDaR23 [Tag+23].

TUMTraf-I Dataset

The TUMTraf-I dataset contains four sequences with a combined total of 2,400 LiDAR
frames. These frames are divided into pseudo-sequences of 20 frames each, denoted
as N f . From these pseudo-sequences, 100,000 permutations, denoted as Np, were
generated through shuffling. We allocated 80% of the frames to the training set and 10%
each to the validation and test sets. Thus, the algorithm partitioned each permutation
of pseudo-sequences according to these ratios. Upon analysis, we excluded the "Other"
class from the search because of its minimal presence in the dataset, affecting temporal
sequence partitioning.

For threshold parameters, we set Tc to 1, Td to 0.95, and Tl to 0.95 to ensure strict
category equivalence. However, we chose To to be 0.75 because objects in the "mostly
occluded" category were scarcely found and concentrated in specific sequences, pre-
venting differentiation in most permutations. As for the weights (as defined in 4.2), we
selected the following:

wCar = {wc = 50, wd = 20, wl = 10, wo = 5}
wTruck = {wc = 120, wd = 48, wl = 24, wo = 12}

wTrailer = {wc = 120, wd = 48, wl = 24, wo = 12}
wBus = {wc = 50, wd = 20, wl = 10, wo = 5}
wVan = {wc = 50, wd = 20, wl = 10, wo = 5}

wBicycle = {wc = 150, wd = 60, wl = 30, wo = 15}
wMotorcycle = {wc = 150, wd = 60, wl = 30, wo = 15}
wPedestrian = {wc = 200, wd = 80, wl = 40, wo = 20}
wEmergency = {wc = 50, wd = 20, wl = 10, wo = 5}

(5.1)

We prioritized the weights for vulnerable traffic elements like bicycles, motorcycles,
and pedestrians by increasing their overall weight values. The greatest emphasis
was placed on the weights corresponding to the number of classes (Wc) and distance
categories (Wd).

46

5 Evaluation

The algorithm used 6 processes (denoted as Nw) to search through 100,000 permu-
tations, identifying 19 valid ones. The optimal permutation with the lowest cost was
selected. Correspondingly, 1,920 frames (96 pseudo-sequences) were allocated for
training, 240 frames (12 pseudo-sequences) for validation, and 240 frames (12 pseudo-
sequences) for testing. The distributions of the classes across the allocated sets can be
observed in Table 5.1.

class train val test

Car 16807 (61.2%) 1991 (55.9%) 2055 (57.0%)
Truck 2002 (7.3%) 253 (7.1%) 306 (8.5%)
Trailer 2163 (7.9%) 285 (8.0%) 339 (9.4%)
Bus 670 (2.4%) 59 (1.7%) 92 (2.6%)
Van 2840 (10.3%) 478 (13.4%) 406 (11.3%)
Bicycle 460 (1.7%) 103 (2.9%) 100 (2.8%)
Motorcycle 526 (1.9%) 130 (3.6%) 78 (2.2%)
Pedestrian 2013 (7.3%) 265 (7.4%) 229 (6.4%)

Total 27481 (79.3%) 3564 (10.3%) 3605 (10.4%)

Table 5.1: Comparison of the number of class objects across the sets of TUMTraf-i. The
given percentages for each column correspond to their respective column,
except for the last row where the percentages correspond to its row.

The following tables include the statistics about the number of objects with their
corresponding attributes for each split.

split set easy moderate hard

train 12516 (41.4%) 10174 (33.7%) 7512 (24.9%)
val 1601 (39.0%) 1343 (32.7%) 1166 (28.4%)
test 1674 (42.5%) 1257 (31.9%) 1010 (25.6%)

Table 5.2: Comparison of the number of objects and their corresponding embedded
difficulty levels across the divided sets of TUMTraf-i. The given percentages
correspond to their respective rows.

47

5 Evaluation

split set d < 40m 40m ≤ d < 50m 50m ≤ d

train 12516 (46.3%) 10174 (37.6%) 4333 (16.0%)
val 1601 (45.4%) 1343 (38.0%) 586 (16.6%)
test 1674 (47.5%) 1257 (35.6%) 596 (16.9%)

Table 5.3: Comparison of the number of objects and their corresponding categorized
distances across the divided sets of TUMTraf-i. The provided percentages
correspond to their respective rows.

split set l ≤ 20 20 < l ≤ 50 50 < l

train 14103 (53.0%) 6023 (22.6%) 6495 (24.4%)
val 1854 (54.5%) 858 (25.2%) 690 (20.3%)
test 1560 (46.8%) 926 (27.8%) 844 (25.3%)

Table 5.4: Comparison of the number of objects and their corresponding categorized
number of points inside their bounding boxes across the divided sets of
TUMTraf-i. The provided percentages correspond to their respective rows.

split set not occluded partially occluded mostly occluded unknown

train 10730 (71.9%) 2858 (19.1%) 211 (1.4%) 1127 (7.6%)
val 1677 (67.1%) 408 (16.3%) 48 (1.9%) 366 (14.6%)
test 1358 (62.1%) 443 (20.2%) 19 (0.9%) 368 (16.8%)

Table 5.5: Comparison of the number of objects and their corresponding categorized
occlusion levels across the divided sets of TUMTraf-i. The provided percent-
ages correspond to their respective rows.

OSDaR23 Dataset

The OSDaR23 dataset contains 45 sequences with a combined total of 1,424 frames.
These frames are divided into pseudo-sequences of 25 frames each, denoted as N f , with
any residual frames being integrated into other or forming their own pseudo sequences
with smaller sizes. From these pseudo-sequences, 100,000 permutations, denoted as
Np, were generated through shuffling. We allocated 80% of the frames to the training
set and 20% to the validation set. Thus, the algorithm partitioned each permutation
of pseudo-sequences according to these ratios. Upon analysis, we excluded several
classes from the search – namely "signal", "train", "animal", "switch", "bicycle", "crowd,"

48

5 Evaluation

"wagons," and "signal bridge" – due to either extremely low frequency or technical
issues present in the version of the dataset with which we engaged such as wrongly
defined 3D bounding boxes.

For threshold parameters, we set Tc to 1, Td to 0.9, Tl to 0.9 and To to 0.8. As for the
weights (as defined in 4.2), we selected the following:

wPerson = {wc = 500, wd = 30, wl = 10, wo = 50}
wSignal = {wc = 250, wd = 15, wl = 5, wo = 25}

wCatenaryPole = {wc = 250, wd = 15, wl = 5, wo = 25}
wSignalPole = {wc = 250, wd = 15, wl = 5, wo = 25}

wRoadVehicle = {wc = 250, wd = 15, wl = 5, wo = 25}
wBu f f erStop = {wc = 250, wd = 15, wl = 5, wo = 25}

(5.2)

We prioritized the weights for pedestrians by increasing their overall weight values
since they are the most crucial elements for detection in this domain. The greatest
emphasis was placed on the weight corresponding to the number of classes (Wc).

The algorithm used 6 processes (denoted as Nw) to search through 100,000 permuta-
tions, identifying 144 valid ones. The optimal permutation with the lowest cost was
selected. Correspondingly, 1,143 frames were allocated for training and 281 frames for
validation. The distributions of the classes across the allocated sets can be observed in
Table 5.6.

class train val

Person 9568 (66.9%) 2839 (66.5%)
Catenary Pole 2381 (16.6%) 728 (17.0%)
Signal Pole 969 (6.7%) 256 (6.0%)
Road Vehicle 823 (5.7%) 243 (5.6%)
Buffer Stop 545 (3.8%) 200 (4.6%)

Total 14286 (77.1%) 4266 (22.9%)

Table 5.6: Comparison of the number of class objects across the divided sets of Os-
DAR23. The given percentages for each column correspond to their respective
column, except for the last row where the percentages correspond to its row.

The following tables include the statistics about the number of objects with their
corresponding attributes for each split. It should be noted that the "buffer stop" class of
objects is excluded from these tables due to a problem in logging.

49

5 Evaluation

split set d < 50m 50m ≤ d < 100m 100m ≤ d < 150m 150m ≤ d < 200m 200m ≤ d

train 9712 (59.1%) 3324 (20.2%) 1343 (8.2%) 956 (5.8%) 1086 (6.6%)
val 2711 (56.3%) 946 (19.6%) 527 (10.9%) 300 (6.2%) 334 (6.9%)

Table 5.7: Comparison of the number of objects and their corresponding categorized
distances across the divided sets of OSDaR23. The provided percentages
correspond to their respective rows.

split set l ≤ 199 200 ≤ l ≤ 499 500 ≤ l ≤ 999 1000 ≤ l ≤ 1999 2000 ≤ l ≤ 2999 3000 ≤ l

train 8802 (53.6%) 4053 (24.7%) 2646 (16.1%) 677 (4.1%) 157 (1%) 86 (0.5%)
val 2617 (54.3%) 1202 (24.9%) 797 (16.5%) 160 (3.3%) 21 (0.4%) 21 (0.4%)

Table 5.8: Comparison of the number of objects and their corresponding categorized
number of points inside their bounding boxes across the divided sets of
OSDaR23. The provided percentages correspond to their respective rows.

split set 0-25 % 25-50 % 50-75 % 75-99 % 100 %

train 11195 (68.2%) 1492 (9.1%) 1790 (10.9%) 1802 (11%) 142 (0.9%)
val 3233 (67.1%) 520 (10.8%) 534 (11.1%) 527 (10.9%) 4 (0.1%)

Table 5.9: Comparison of the number of objects and their corresponding categorized oc-
clusion levels across the divided sets of OSDaR23. The provided percentages
correspond to their respective rows.

50

5 Evaluation

5.1.3 Evaluation Metrics

We define the metrics for the detection task in the TUMTraf-i and OSDaR23 datasets as
follows:

• 2D mean Average Precision (2D mAP): A variation of the Average Precision
metric that considers the 2D center distance on the ground plane for matching
predictions to ground truth objects, instead of using intersection over union (IoU).
Matches are made with the nearest center-distance within specific thresholds. The
AP is calculated by integrating the precision-recall curve for values greater than
0.1, then averaged over thresholds of 0.5, 1, 2, 4 meters and across classes. This
metric is our main evaluation criterion as our models have encoder and decoder
networks that work with features in bird’s eye view representation which is 2D.

• 2D Intersection-over-Union (2D IoU): Measures the overlap between the pre-
dicted and ground truth bounding boxes, divided by their union area. It is
a standard metric for comparing ground truth with predicted bounding box
accuracy.

• 3D Intersection-over-Union (3D IoU): Extends the 2D IoU principle to three
dimensions, considering the entire volume of the predicted and ground truth
bounding boxes.

• NuScenes Detection Score (NDS): Quantifies object detection effectiveness by
averaging scores that are the product of an object’s confidence score and its
IoU with the true bounding box. Scores are adjusted according to the object’s
sensor range and dimensions, providing an evaluation that highlights real-world
variables like proximity, size and orientation.

• Video RAM (VRAM) Usage: Quantifies the model’s graphics memory consump-
tion in megabytes (MB) during inference. This metric is crucial for evaluating
the model’s memory efficiency and its impact on the graphics processing unit’s
(GPU) resource management.

• Frame-per-Second (FPS): Serves as a measure of the model’s runtime inference
speed, indicating the number of frames processed per second. This metric pro-
vides insight into the model’s efficiency and suitability for real-time applications.

51

5 Evaluation

5.2 Hyper-parameter Tuning

Hyper-parameter tuning is a critical step in the development of machine learning
models, particularly for models that utilize complex methods like the Temporally-Aware
Ground Paste Augmentation (TA-GTP). The task of optimizing hyper-parameters goes
beyond mere adjustment; it involves a strategic exploration of the hyper-parameter
space, where the goal is to find a combination that can yield the highest 2D mean-
average precision (2D mAP) score while avoiding over-fitting. By leveraging advanced
methods like the Tree-structured Parzen Estimator (TPE) [Ber+11] [BYC13] [Yos+20]
within the Optuna software framework [Aki+19], we not only systematically approach
this optimization problem but also gain insights into the model’s behavior under various
configurations, which is invaluable for understanding the underlying mechanics of
TA-GTP. Hence, the process of hyper-parameter tuning is not simply a step in model
development but a cornerstone that supports the construction of robust, effective, and
reliable machine learning systems. With that in mind, we applied the hyper-parameter
search algorithm for two separate tasks for each dataset:

1. Finding the optimal values for Maximum Sample Count (as defined in 4.3) for
each class in the dataset. This parameter signifies the upper boundary of objects
that can be together with sampled objects for each class within the frame scene.
It’s important to note that this portion lacked any temporal implementation, and
as such, training was carried out on the LiDAR-only baseline model paired with
the non-temporal version of TA-GTP. The other training details are described in
LiDAR-only configuration, 5.1.1.

2. Finding the optimal values for both Rotation (as defined in 4.22) and Translation
(as defined in 4.24) parameters for each class in the dataset. These parameters
decide the manner in which the sampled objects traverse the temporal sequences.
For this search, we utilized the most optimal model from the prior search as a
starting point. We then introduced a temporal fuser network, specifically the
Convolutional LSTM (as described in Section 4.4.1), and followed the temporal
configuration described in Section 5.1.1.

52

5 Evaluation

TUMTraf-i dataset

In the initial task, we conducted 20 trials, each following the configuration described in
Section 5.1.1, and assessed the mean Average Precision (mAP) metric on the validation
set. Within these assessments, the mAP values ranged from a minimum of 77.80% to a
maximum of 81.13%. We determined the optimal Maximum Sample Count values for
each class in the TUMTraf-i dataset. These values, denoted as Aclass

N , are presented in
the Table 5.10.

Class Aclass
N Value Importance

Car 14 15%
Trailer 2 4%
Truck 3 6%
Van 4 21%
Pedestrian 0 12%
Bus 1 1%
Motorcycle 0 18%
Bicycle 1 18%
Emergency Vehicle 1 6%

Table 5.10: Optimal Maximum Sample Count values (as defined in 4.3) are presented
alongside their respective importance percentages for each class in the
TUMTraf-i dataset. These importance values, derived from the hyper-
parameter search algorithm, signify the impact of the corresponding param-
eter on improving performance.

Based on the optimal Maximum Sample Count values from Table 5.10, distinct sam-
pling choices are made for different classes. For instance, "Pedestrian" and "Motorcycle"
classes are not sampled, and their importance percentages suggest it’s crucial to avoid
sampling them. On the other hand, the "Bus" class has a low sample count while
having lowest importance value. This might suggest that larger objects like buses
are often discarded during collision checks because of their size, thus making them
less significant for sampling. The "Trailer" class shows a similar pattern. From this
hyper-parameter optimization, we adopted these specific Maximum Sample Count
values for all TUMTraf-i experiments that utilizes TA-GTP method.

53

5 Evaluation

In the second task, we conducted 25 trials, each following the configuration described
in Section 5.1.1, and assessed the mean Average Precision (mAP) metric on the valida-
tion set. Within these assessments, the mAP ranged from a minimum of 81.76% to a
maximum of 82.90%. We determined the optimal Rotation and Translation values for
each class in the TUMTraf-i dataset. These values, represented as µ(class), σ(class), t(class)

l ,

and t(class)
u respectively, are provided in the table 5.11.

Class µ(class) σ(class) t(class)
l t(class)

u

Car 0 0.0851 0 0.2114
Trailer 0 0.1919 0 2.061
Truck 0 0.1229 0 0.1922
Van 0 0.1880 0 0.1244
Pedestrian - - - -
Bus 0 0.1995 0 1.1107
Motorcycle - - - -
Bicycle 0 0.2163 0 0.5918
Emergency Vehicle 0 0.1328 0 0.6620

Table 5.11: Optimal Rotation and Translation values determined for each class in the
TUMTraf-i dataset. The values are characterized by µ(class) (rotation mean),
σ(class) (rotation standard deviation), t(class)

l (lower translation threshold), and

t(class)
u (upper translation threshold). The Pedestrian and Motorcycle classes

have missing values due to their exclusion from sampling, as determined by
prior hyper-parameter analysis shown in Table 5.10.

Based on the optimal Rotation and Translation values from Table 5.11, certain classes
exhibit limited translation freedom compared to others. For example, the "Car" class
can only move a maximum of 0.2114 meters from frame to frame. Given that the "Car"
class predominates the dataset and often remains stationary awaiting green lights,
the algorithm infers limited movement for this class. In contrast, the "Trailer" and
"Bus" classes, with their larger and longer dimensions, exhibit higher translation values.
This suggests that the algorithm likely shifts them to enhance the effectiveness of data
augmentation, possibly because their size and dimensions may limit their sampling
rate, leading to being discarded due to the collision check mechanism. Regarding the
rotation values, we anticipated minimal fluctuations because objects typically do not
undergo sharp rotations between sequential frames; thus, they appear marginally small
and consistent with one another.

54

5 Evaluation

OSDaR23 dataset

As for initial task designated for the OSDar23 dataset, the general search space was
smaller due to the reduced number of selected classes. We conducted 15 trials, each
following the configuration described in Section 5.1.1, and assessed the mean Average
Precision (mAP) metric on the validation set. Within these assessments, the mAP values
ranged from a minimum of 75.36% to a maximum of 79.73%. We determined the
optimal Maximum Sample Count values for each class in the OSDaR23 dataset. These
values, denoted as Aclass

N , are presented in Table 5.12.

Class Aclass
N Value Importance

Person 10 64%
Catenary Pole 6 18%
Signal Pole 2 8%
Road Vehicle 3 9%
Buffer Stop 0 1%

Table 5.12: Optimal Maximum Sample Count values (as defined in 4.3) are presented
alongside their respective importance percentages for each class in the OS-
DaR23 dataset. These importance values, derived from the search algorithm,
signify the impact of the corresponding parameter on improving perfor-
mance.

Based on the optimal Maximum Sample Count values from Table 5.12, the algorithm
determines the "Person" class should be sampled preferentially, followed by "Catenary
Pole" objects. The imperative of accurately detecting individuals within the railway
domain is necessary for ensuring safety, and the algorithm’s prioritization of the
"Person" class for sampling aligns well with this safety-critical objective. Given the
scarcity of "Buffer Stop" objects in the dataset, constituting only 3.8%, the algorithm
recommends against sampling them, as they are likely to be over-represented in
concentrated areas. In contrast, the algorithm recommends sampling "Signal Pole" and
"Road Vehicle" classes, which make up 6.7% and 5.7% of the dataset, respectively, even
though their representation is comparable to that of "Buffer Stop" objects. From this
hyper-parameter optimization, we adopted theses specific Maximum Sample Count
values for all OSDaR23 experiments that utilizes TA-GTP method.

55

5 Evaluation

In the second task, we conducted 20 trials, each following the configuration described
in Section 5.1.1, and assessed the mean Average Precision (mAP) metric on the valida-
tion set. Within these assessments, the mAP ranged from a minimum of 80.80% to a
maximum of 82.13%. We determined the optimal Rotation and Translation values for
each class in the OSDaR23 dataset. These values, represented as µ(class), σ(class), t(class)

l ,

and t(class)
u respectively, are provided in the table below:

Class µ(class) σ(class) t(class)
l t(class)

u

Person 0 0.1672 0 2.3655
Catenary Pole 0 0.0649 0 0.8370
Signal Pole 0 0.0671 0 3.3953
Road Vehicle 0 0.0709 0 0.8333
Buffer Stop - - - -

Table 5.13: Optimal Rotation and Translation values determined for each class in the
OSDaR23 dataset. The values are characterized by µ(class) (rotation mean),
σ(class) (rotation standard deviation), t(class)

l (lower translation threshold),

and t(class)
u (upper translation threshold). The Buffer Stop class has missing

values due to its exclusion from sampling, as determined by prior hyper-
parameter analysis shown in Table 5.12.

Based on the optimal Rotation and Translation values from Table 5.13, the algorithm
determined that the "Catenary Pole" and "Signal Pole" classes necessitate minimal
rotation for their sampled objects. This implies that their predominantly cylindrical
pole-like 3D structures remain largely unchanged by rotation, at least for the major part
of their shape. As for the translation values, notable disparities can be seen amongst
the classes. A subset of sequences in OSDaR23 dataset have slight ego positional shifts
as a consequence of the train’s modulation in velocity, either through deceleration or
acceleration. This could indicate that the elevated translation values in specific classes
are attributable to these variations.

56

5 Evaluation

5.3 Quantitative Studies

In this section, we did an extensive quantitative analysis on model performances
including the baseline model, described in Section 4.2.1, as well as our own temporal
models for both datasets: TUMTraf-i [Zim+23b] and OSDaR23 [Tag+23]. This analysis
presents an general overview of the results, detailing both class-specific outcomes and
findings across various distance categories.

5.3.1 General Results

TUMTraf-i

modality 2D mAP ↑ 2D IoU ↑ 3D IoU ↑ NDS ↑

baseline C 54.42 87.00 66.88 51.48
w/ TF C 55.26 87.09 68.22 51.88

baseline L 81.84 85.86 71.72 66.75
w/ TF L 85.73 85.97 71.60 68.87
w/ TF + TA-GTP L 86.91 86.19 71.90 69.59

baseline C+L 85.14 86.14 71.40 68.57
w/ TF C+L 86.73 86.17 71.79 69.48

Table 5.14: Quantitative evaluation of different model combinations across multiple
modalities using the TUMTraf-i test split. The "Baseline" denotes the model proposed
by [Liu+22], which has been adapted for the TUMTraf-i configuration. Here, "TF"
represents Temporal Fuser, highlighting the temporal component, and "TA-GTP" refers
to Temporally-Aware Ground Truth Paste Augmentation.

The overview of experiments on the TUMTraf-i dataset are presented in Table 5.14,
demonstrating that both the Temporal Fuser (TF) and Temporally-Aware Ground Truth
Paste (TA-GTP) methods significantly enhance performance across all modalities. In
camera-only and multi-modal scenarios, TF exhibits performance gains in all metrics,
while LiDAR-only stands out as the optimal modality, achieving the highest metrics
scores, especially at 2D mAP – our primary evaluation criterion – reaching a high
score of 86.91. On top of that, applying the TA-GTP method to LiDAR-only models
demonstrates that they can perform comparably or even surpass multi-modal versions
in terms of performance.

All of our models employ a bird’s-eye view representation (as described in Section
2.2), which serves as the output from the encoder networks and the input for the

57

5 Evaluation

decoder networks; hence, performance gains in metrics designed for 3D space are less
effective than their 2D equivalents. For example, 3D IoU does not exhibit marked
enhancements in LiDAR-based models, whereas 2D IoU clearly shows improvements
in 2D bounding box delineation within the bird’s eye view space, especially in the
LiDAR-only models. It should be noted that 2D and 3D Intersection over Union metrics
are calculated exclusively for matched bounding boxes. As a result, camera-only models
exhibit higher 2D IoU values than other models due to their narrower detection margins.
However, camera-only models produce lower values for some metrics when compared
to those that incorporate LiDAR. This is attributed to the dual-camera setup in the
TUMTraf-i dataset, which has a limited field of view (as detailed in Section 2.4). This
restricted view is expected to lead to a number of undetected objects within its range,
resulting in a marked decrease in performance.

OSDaR23

modality 2D mAP ↑ 2D IoU ↑ 3D IoU ↑ NDS ↑

baseline C 14.00 80.55 30.12 34.45
w/ TF C 18.83 85.15 29.99 38.20

baseline L 77.56 74.18 53.80 72.39
w/ TF L 81.79 77.20 59.67 73.75
w/ TF + TA-GTP L 82.12 77.53 59.47 75.57

baseline C+L 79.54 77.13 60.81 73.19
w/ TF C+L 81.77 79.37 61.14 74.26

Table 5.15: Quantitative evaluation of different model combinations across multiple
modalities using the OSDaR23 validation split. The "Baseline" denotes the model
proposed by [Liu+22], which has been adapted for the OSDaR23 configuration. Here,
"TF" represents Temporal Fuser, highlighting the temporal component, and "TA-GTP"
refers to Temporally-Aware Ground Truth Paste Augmentation.

In Table 5.15, we again observe that both the Temporal Fuser (TF) and Temporally-
Aware Ground Truth Paste (TA-GTP) methods significantly enhance performance across
all modalities. LiDAR-only and multi-modal models can be considered competitive
when the Temporal Fuser (TF) is added, with scores of 81.79% and 81.77% in 2D
mAP, respectively. However, the LiDAR-only model receives a significant performance
boost with the application of the Temporally-Aware Ground Truth Paste (TA-GTP)
method, achieving a score of 82.12%. On the other hand, the camera-only model suffers

58

5 Evaluation

immensely with the OSDaR23 dataset, as the dataset consists 43.7% of objects being at
distance greater than 50 meters, resulting in severe lack of depth information.

5.3.2 Class-wise Results

TUMTraf-i

For our experiments on the TUMTraf-i dataset, we only utilized nine out of ten classes,
detailed in Section 2.4, for both training and evaluation purposes. The 2D mean Average
Precision (2D mAP) values for each class are presented in Table 5.16.

2D mAP ↑

modality Car Trailer Truck Van Pedestrian Bus Motorcycle Bicycle Emergency

baseline C 72.58 34.42 52.41 63.29 58.99 50.45 94.47 50.10 13.04
w/ TF C 72.49 34.14 53.02 60.82 56.88 50.07 97.17 52.29 20.48

baseline L 89.59 81.02 83.33 83.43 83.46 95.40 86.50 67.94 65.85
w/ TF L 90.15 84.13 86.06 81.56 88.03 97.43 91.00 81.62 71.54
w/ TF + TA-GTP L 90.59 82.56 85.53 83.19 90.78 95.68 90.39 83.76 79.67

baseline C+L 89.85 82.86 85.47 81.53 86.92 95.67 89.16 77.25 77.60
w/ TF C+L 89.93 84.32 85.23 83.00 90.48 96.89 89.85 81.19 79.70

Table 5.16: Quantitative evaluation of different model combinations on labelled classes
across multiple modalities using the TUMTraf-i test split. The "Baseline" denotes the
model proposed by [Liu+22], which has been adapted for the TUMTraf-i configuration.
Label "Emergency" is short for "Emergency Vehicle".

With Temporal Fuser (TF), camera-only models see a notable improvement in the
"Motorcycle" and "Emergency" classes. This suggests that temporal information might
be providing richer feature representations for these categories, despite a slight decline
in performance for other classes like "Car" and "Van". On the other hand, modalities
that include LiDAR, TF contributes to significant improvements in mAP scores across
nearly all classes.

The addition of TA-GTP (only applied to the LiDAR-only modality) further enhances
the 2D mAP scores for most classes. Notably, "emergency vehicle" class sees a significant
increase, suggesting that incorporating TA-GTP is particularly beneficial for infrequent
objects.

Overall, the results in Table 5.16 suggest that the inclusion of Temporal Fuser (TF)
and Temporally-Aware Ground Truth Paste (TA-GTP) data augmentation significantly
enhances object detection performance across different modalities, with LiDAR and
combined modalities showing the most promise. Each class responds differently to
the model enhancements, which may inform future research on modality-specific
optimization in which drawbacks and strengths of sensors can be further observed.

59

5 Evaluation

The LiDAR-only and fusion modalities, combined with temporal aspect, appear to be
a particularly effective strategies for improving detection in a diverse set of classes,
showcasing the potential approaches in complex environments such as traffic scenar-
ios. However, considering that fusion modality introduces additional computational
overhead due to its camera structure, LiDAR-only modality is the clear winner here in
terms of effectiveness in both performance and cost-effectiveness.

OSDaR23

2D mAP ↑

modality person catenary pole signal pole road vehicle buffer stop

baseline C 28.76 0.01 4.66 20.06 16.53
w/ TF C 32.29 0.29 8.30 27.83 25.43

baseline L 79.99 90.33 75.63 59.57 82.26
w/ TF L 85.56 90.99 81.32 65.85 85.20
w/ TF + TA-GTP L 86.94 90.72 80.10 67.39 85.46

baseline C+L 86.79 88.85 73.36 64.87 83.83
w/ TF C+L 87.25 91.57 69.98 66.40 83.46

Table 5.17: Quantitative evaluation of different model combinations on labelled classes
across multiple modalities using the OSDaR23 validation split. The "Baseline" de-
notes the model proposed by [Liu+22], which has been adapted for the OSDaR23
configuration.

The addition of Temporal Fuser (TF) to the baseline model consistently improves
the 2D mean Average Precision (mAP) across all categories (person, catenary pole,
signal pole, road vehicle, and buffer stop) and modalities. This indicates that TF
significantly contributes to the model’s detection capabilities. For the LiDAR modality,
the introduction of Temporally-Aware Ground Truth Paste (TA-GTP) alongside TF
further enhances the performance, achieving the highest 2D mAP for the person
category and showing marginal improvements in road vehicle and buffer stop detection.

Overall, the OSDaR23 dataset results corroborate the findings from the TUMTraf-i
dataset in that TF and TA-GTP can provide significant performance enhancements. In
particular, the greatest benefits seem to be for dynamic objects such as "person" and
"road vehicle" compared to other objects that are static in the world.

60

5 Evaluation

5.3.3 Object Distance Category Results

The primary objective of this thesis is to improve the detection of distant objects.
Accordingly, this section consolidates experimental results from both datasets to assess
the effectiveness of our methods across various distance categories.

TUMTraf-i

number of ground truth objects

Distance Total Car Trailer Truck Van Pedestrian Bus Motorcycle Bicycle Emergency

< 30 446 194 98 67 50 20 16 0 1 0
30 − 50 2403 1455 141 208 207 160 66 77 89 0
50 − 75 818 435 100 31 159 29 34 0 10 20
> 75 121 35 0 0 80 0 6 0 0 0

Table 5.18: Distribution of Ground Truth Objects by Distance Categories on TUMTraf-I
test split.

The TUMTraf-i dataset, consisting nine classes, have varying class distributions
across different distance categories, as its test split is detailed in Table 5.18. Cars are
the most common object in all distance categories, with a particularly high presence
in the "30 - 50" meter range. Some object categories such as "Motorcycle", "Bicycle",
and "Emergency" are notably rare or even absent in certain distance ranges. There is a
significant increase in the total number of objects detected in the "30 - 50" meter range
whereas objects at distances greater than 75 meters are significantly less represented,
which indicates the potential boundaries of sensors or fewer occurrences of objects at
that range. Pedestrians are more frequently identified in the "30 - 50" meter range but
have a much lower presence beyond that. This could reflect the challenges in detecting
smaller objects at greater distances. With these in mind, it is likely that every distance
category has unique characteristics from which metric values can reflect.

Table 5.19 presents a comprehensive evaluation of various model combinations when
applied to the TUMTraf-i’s test split, with a focus on aforementioned object distance
categories and their performance across multiple modalities.

As the distance to objects increases, there is a corresponding decline in detection
performance, a trend commonly attributed to the reduced size of objects and diminished
feature information, such as point clouds, at extended ranges. Our temporal methods,
namely the Temporal Fuser (TF) and the Temporally-Aware Ground Truth Paste (TA-
GTP) augmentation, address this issue by incorporating temporal context, thereby
improving performance across different modalities. Notably, in the "50-75" meter

61

5 Evaluation

distance category, LiDAR-only models exhibit an increase of 5 to 6 points in 2D mean
Average Precision (2D mAP), a significant improvement given the presence of 818
detectable objects within this range.

Models incorporating temporal information through Temporal Fuser, typically ex-
hibit enhanced performance across most metrics when compared to their baseline
counterparts. In the distance category "<30" meter, values for the baseline of the camera
modality (C) declines harshly upon integrating the Temporal Fuser. This decline may
suggest that the camera baseline model predominantly targets objects proximal to
the sensors, resulting in significantly compromised detection of distant objects, hence,
over-fitting. In this case, however, TF helps generalization over various distances, as it
shows performance increases, especially in "30-50" meter distance category where most
of the objects lie in. Conversely, LiDAR-only and multi-modal models consistently
exhibit performance improvements in all distance categories with the adoption of
Temporal Fuser.

TA-GTP, applicable solely to LiDAR-based methods, yields optimal outcomes across
all distance categories except beyond 75 meters. Within this range, standalone Temporal
Fuser integration reduces 2D mAP performance by 3.42; however, the incorporation of
TA-GTP narrows this deficit to a mere 0.7, rendering it competitive with the baseline.

Overall, the TUMTraf-i dataset reveals the intricacies of object detection at various
distances, showcasing a diverse range of class distributions and highlighting the
challenges in identifying objects at greater ranges. The analysis indicates a sharp
decline in detection capabilities at distances beyond 75 meters, suggesting the limits
of sensor capabilities or the natural scarcity of objects. The integration of temporal
methods like Temporal Fuser (TF) and Temporally-Aware Ground Truth Paste (TA-GTP)
has proven to be significantly effective, especially for LiDAR-only and multi-modal
models, enhancing the detection performance and mitigating issues related to distance-
based detection. While TF shows the potential to improve generalization over various
distances, particularly evident in the "30-50" meter range, TA-GTP specifically enhances
LiDAR-based detection, maintaining strong performance up to 75 meters. The adoption
of temporal context in object detection models is a promising approach to improve
accuracy and reliability across different sensor modalities and object distances within
infrastructure environments like TUMTraf-i dataset.

62

5 Evaluation

Distance modality 2D mAP ↑ 2D IoU ↑ 3D IoU ↑ NDS ↑

< 30 baseline C 24.30 86.56 45.20 30.67
w/ TF C 12.58 86.61 41.60 23.32

baseline L 60.07 72.75 74.00 51.65
w/ TF L 62.69 73.10 73.71 53.28
w/ TF + TA-GTP L 63.86 74.43 73.82 54.06

baseline C+L 62.49 73.52 73.82 53.19
w/ TF C+L 61.98 73.61 73.01 52.93

30 - 50 baseline C 71.43 85.99 67.49 61.25
w/ TF C 73.74 86.49 69.25 62.58

baseline L 87.23 86.41 74.09 70.28
w/ TF L 91.15 86.74 74.42 72.39
w/ TF + TA-GTP L 91.72 86.70 74.66 72.74

baseline C+L 89.26 86.93 73.99 71.39
w/ TF C+L 91.49 86.65 74.29 72.65

50 - 75 baseline C 31.20 88.90 56.12 36.56
w/ TF C 26.75 88.84 56.00 33.83

baseline L 74.19 86.84 68.70 63.24
w/ TF L 79.66 86.84 66.82 66.49
w/ TF + TA-GTP L 80.39 86.85 67.80 66.60

baseline C+L 80.43 86.96 68.18 67.10
w/ TF C+L 81.37 86.97 67.77 67.44

> 75 baseline C 23.73 87.65 46.37 30.42
w/ TF C 23.96 88.55 49.70 30.91

baseline L 59.43 89.93 63.63 53.85
w/ TF L 56.01 88.47 57.65 50.94
w/ TF + TA-GTP L 58.70 88.99 59.98 51.92

baseline C+L 52.95 89.56 60.31 49.13
w/ TF C+L 53.41 89.91 61.12 49.51

Table 5.19: Quantitative evaluation of different model combinations on object distance
categories across multiple modalities using the TUMTraf-i test split. The "Baseline"
denotes the model proposed by [Liu+22], which has been adapted for the TUMTraf-i
configuration. Here, "TF" represents Temporal Fuser, highlighting the temporal compo-
nent, and "TA-GTP" refers to Temporally-Aware Ground Truth Paste Augmentation.

63

5 Evaluation

OSDaR23

number of ground truth objects

Distance Total Person Catenary Pole Signal Pole Road Vehicle Buffer Stop

< 50 2537 2302 100 70 65 0
50 − 100 750 382 179 58 73 58
100 − 150 413 70 221 70 0 52
150 − 200 266 60 166 20 20 0
> 200 300 25 62 38 85 90

Table 5.20: Distribution of Ground Truth Objects by Distance Categories on OSDaR23
validation split.

In Table 5.20, which details the distribution of ground truth objects by distance
categories in OSDaR23 validation split, we observe that the majority of the objects
(2537) are situated within a 50-meter range. Within this proximity, ’Person’ objects
constitute the most significant proportion, with 2302 individual objects, underscoring
the importance of accurately detecting pedestrians is crucial for overall performance.
As the distance increases, the frequency of ’Person’ detections decreases, with the
highest distance range (>200 meters) showcasing a notable diversity in the object types,
including a rise in the number of ’Buffer Stop’ objects to 90 instances, which is higher
than in any other category. This spread of objects suggests varying detection challenges
at different distances. The OSDaR23 dataset, to-be-utilized in train-based applications,
necessitates the detection of distant objects to enable timely preventive actions, given the
significant challenge of abrupt stopping due to the considerable weight and momentum
of trains.

In Table 5.21, we see the same pattern we saw in the TUMTraf-i case. The perfor-
mance generally diminishes with increasing distance. The models with Temporal Fuser
(TF) consistently outperform the baseline across almost all metrics and distance cate-
gories, emphasizing the effectiveness of incorporating temporal information into object
detection models. In particular, the combination of Temporal Fuser and Temporally-
Aware Ground Truth Paste Augmentation (TA-GTP) demonstrates superior results
in the LiDAR-only modality (L), especially in the "50-100" meter and ">200" meter
categories, reflected in almost all the metrics. Overall, the multi-modal (C+L) model
shows the best performance when it comes to the detection far away objects. These
enhancements suggest that temporal context and advanced data augmentation in which
sampled objects traverse with temporal context in mind can significantly bolster model
robustness, particularly in challenging scenarios involving more distant objects.

64

5 Evaluation

Distance modality 2D mAP ↑ 2D IoU ↑ 3D IoU ↑ NDS ↑

< 50 baseline C 20.20 55.62 43.11 29.68
w/ TF C 24.03 56.80 46.59 35.78

baseline L 73.91 62.57 44.68 69.68
w/ TF L 88.29 68.93 49.93 73.47
w/ TF + TA-GTP L 88.08 70.76 50.85 76.42

baseline C+L 81.37 68.43 51.56 71.37
w/ TF C+L 86.68 73.14 54.20 75.18

50 - 100 baseline C 38.85 84.39 38.73 47.99
w/ TF C 39.34 89.17 41.71 47.58

baseline L 85.05 81.63 60.42 74.27
w/ TF L 86.54 82.54 65.15 75.09
w/ TF + TA-GTP L 87.05 83.13 67.13 74.96

baseline C+L 86.25 82.66 66.95 74.22
w/ TF C+L 87.05 86.22 68.48 74.70

100 - 150 baseline C 0.48 60.54 32.99 22.35
w/ TF C 0.53 61.08 34.44 21.27

baseline L 73.87 59.33 46.11 71.07
w/ TF L 74.90 61.81 51.68 66.80
w/ TF + TA-GTP L 75.88 62.88 51.56 71.46

baseline C+L 74.02 61.52 51.41 67.71
w/ TF C+L 72.63 62.72 51.33 70.20

150 - 200 baseline C 0.00 0.00 0.00 0.00
w/ TF C 0.05 22.03 78.08 7.60

baseline L 49.75 41.03 52.70 50.66
w/ TF L 51.04 42.29 51.00 45.90
w/ TF + TA-GTP L 52.08 43.28 55.50 50.21

baseline C+L 50.56 42.32 55.47 43.99
w/ TF C+L 54.65 41.25 52.24 50.88

> 200 baseline C 0.00 0.00 0.00 0.00
w/ TF C 4.86 76.96 13.78 29.10

baseline L 78.40 80.76 59.58 73.62
w/ TF L 79.73 85.63 64.30 74.56
w/ TF + TA-GTP L 78.96 86.02 63.07 74.29

baseline C+L 76.32 85.53 62.75 72.58
w/ TF C+L 80.68 85.36 63.26 74.67

Table 5.21: Quantitative evaluation of different model combinations on object distance
categories across multiple modalities using the OSDaR23 validation split.

65

5 Evaluation

5.4 Ablation Studies

In this section, we show the results of our several ablation studies to see the impact of
our methods on performance using TUMTraf-i dataset.

5.4.1 Temporally-Aware Ground Truth Paste Augmentation

The one of the main contributions of our thesis is the Temporally-Aware Ground Truth
Paste (TA-GTP) augmentation method, which is highly configurable. Therefore, we
conducted an ablation study to assess the impact of incremental additions of these
components on our models’ performance.

Consistent Translation Rotation 2D mAP ↑ 2D IoU ↑ 3D IoU ↑ NDS ↑

- - - 86.15 86.02 71.21 69.02
✓ - - 86.56 86.04 71.06 69.32
✓ ✓ - 86.85 86.08 71.58 69.51
✓ ✓ ✓ 86.91 86.19 71.90 69.59

Table 5.22: The results of an ablation study examining the impact of various components
of the Temporally-Aware Ground Truth Paste (TA-GTP) method on the performance of
the LiDAR-only model using TUMTraf-i test split. The study incrementally introduces
consistency enforcement, translation and rotation techniques.

The base temporal model, with none of the TA-GTP components applied, establishes
the benchmark with a 2D mean Average Precision (mAP) of 86.15%, a 2D Intersection
over Union (IoU) of 86.02%, a 3D IoU of 71.21%, and a NDS of 69.02%. The feature
component "Consistent" ensures that once objects are sampled in the initial frame, they
are retained across subsequent frames. Thus, temporal frames do not individually
resample, but instead, utilize the initially sampled objects. When this feature is
introduced, there is a slight increase in 2D mAP to 86.56% and NDS to 69.32%, albeit
with a marginal decrease in 3D IoU, suggesting that while enforcing consistency can
slightly enhance overall detection precision, it may not significantly affect spatial
overlap in three dimensions.

Subsequent integration of translation component into the augmentation method
sees further improvements in both 2D mAP (86.85%) and NDS (69.51%), alongside a
more pronounced increase in 3D IoU (71.58%), indicating the importance of applying
translation transformation for sampled objects. Rotation component appears to be a
critical factor, as evidenced by the best recorded in all the metrics with 2D mAP of
86.91%, 2D IoU of 81.19%, 3D IoU of 71.90% and NDS of 69.59%. These enhancements

66

5 Evaluation

suggest that applying rotation transformation to sampled objects significantly aids in
the model’s ability to generalize over various object orientations and positions.

This ablation study reveals that each component of the TA-GTP method contributes
positively to the model’s performance. Table 5.22 effectively highlights how the in-
cremental inclusion of these components results in gradual improvements in key
performance indicators, thereby confirming the efficacy of the TA-GTP method in
enhancing LiDAR-only object detection task.

5.4.2 Temporal Loading

Queue Length (Q) Queue Gap (G) 2D mAP ↑ 2D IoU ↑ 3D IoU ↑ NDS ↑

2 1 86.46 85.80 71.45 69.30
3 1 86.91 86.19 71.90 69.59
4 1 87.36 86.10 71.18 69.92

3 2 86.70 85.99 71.28 69.54
3 1 86.91 86.19 71.90 69.59
3 0 87.30 86.06 71.47 69.86

Table 5.23: Comparative analysis of model performance metrics with varying queue
lengths (Q) and queue gaps (G) (both defined in 4.2.3) on TUMTraf-i test split.

From the Table 5.23, it is evident that as the queue length (Q) increases from 2
to 4 with a constant queue gap (G) of 1, there is a notable improvement in the 2D
mAP, peaking at 87.36% for a queue length of 4. This suggests that a longer queue
length may contribute to a more accurate object detection, possibly by providing the
model with more temporal context. However, the 2D IoU and 3D reach their highest
at a queue length of 3, indicating an optimal balance at this queue length for the
intersection-over-union accuracy between the predicted and actual object boundaries.

The NDS, which is a comprehensive metric incorporating several aspects of detection
performance, shows improvement as the queue length increases, with the highest score
observed at a queue length of 4. This suggests that overall detection performance,
taking into account factors such as proximity, size and orientation benefits from a
longer temporal queue.

When the queue gap (G) is varied with a constant queue length of 3, the performance
does not exhibit a consistent trend. The highest 2D mAP and NDS are observed at the
extremes of the gap range (G=0 and G=1), with the scores being 87.30% and 69.86% at
G=0, respectively. This implies that utilizing queue gap as a generalization technique

67

5 Evaluation

enhances overall detection performance; however, it does not yield a corresponding
increase in the accuracy of the predicted bounding boxes, which exhibit random
deterioration due to this generalization strategy.

Overall, the table indicates a complex relationship between queue length, queue gap,
and model performance. The optimal queue length and gap seem to be dependent on
the specific performance metric under consideration. The queue length of 3 with a gap
of 1 is a configuration that consistently results in high performance across most metrics,
suggesting it as a potential sweet spot for balanced model performance in both 2D
and 3D contexts. The nuances observed in this ablation study are critical for possible
fine-tuning the temporal loading aspect of the model to achieve optimal performance
on the TUMTraf-i.

5.4.3 Cloud Point Sparsity

In this ablation study, we manipulated the point cloud density by reducing the number
of points from the original TUMTraf-i data. Specifically, we considered three different
densities: the original density (same), a density reduced to half (halved), and a density
reduced to a quarter (quartered). This reduction was achieved by systematically sub-
sampling the original point cloud data, ensuring that the remaining points were evenly
distributed across the volume to maintain a representative subset of the original cloud.
As a result, the average count of point cloud data within the TUMTraf-i test split
decreased from 60,996 to 30,255 in the reduced by half version, and further diminished
to 14,642 in the quarter-size version.

As expected, the performance metrics indicate a trend where a decrease in point
cloud density leads to a loss in performance across all evaluated metrics (see Table
5.24). For instance, when the density is halved, there is a noticeable drop in 2D mAP
from 85.76% (same density) to 77.45% (halved), while the 3D IoU decreases marginally
from 71.68% to 71.04%. This trend is even more pronounced when the point cloud
density is quartered, with 2D mAP plummeting to 51.62% and 3D IoU to 62.62%. The
differing levels of decrease between 2D mAP and 3D IoU suggest that as the point
cloud becomes sparser, it’s more difficult for the models to accurately figure out the
height of the objects they’re mapping compared to how well they can measure the
width and depth.

Despite the significant reduction in point cloud density, incorporating temporal
version of Temporally-Aware Ground Truth Paste (TA-GTP) augmentation consistently
contributes to performance improvements in the models. This phenomenon is evident
in the comparison of metrics at each density level. For instance, even when the
density is halved, the inclusion of temporal information results in an increase in all the
metrics, and a similar pattern with higher gains holds for the quartered density. These

68

5 Evaluation

Cloud Point Density TA-GTP 2D mAP ↑ 2D IoU ↑ 3D IoU ↑ NDS ↑

same non-temporal 85.76 85.98 71.68 68.88
same temporal 86.91 86.19 71.90 69.59

halved non-temporal 77.45 86.32 71.04 64.12
halved temporal 77.98 86.36 71.05 64.35

quartered non-temporal 51.62 82.47 62.62 48.58
quartered temporal 52.85 82.61 63.93 49.38

Table 5.24: Performance metrics for varying point cloud densities with and without
the temporal version of TA-GTP using the TUMTraf-i dataset split. The non-temporal
TA-GTP algorithm samples objects independently at each frame, while the temporal
version maintains object consistency across sequential frames by initially sampling at
the first frame and subsequently adjusting the object trajectories through the sequence
using calculated rotation and translation values.

gains, although modest in the context of reduced point cloud density, underscore the
importance of temporal dynamics in the models’ ability to interpret and analyze the
scene. Temporal cues may provide critical information that aids in the continuity and
coherence of object detection and tracking, compensating to some extent for the loss of
spatial details due to sparser point clouds.

69

5 Evaluation

5.4.4 Temporal Fuser Networks

Temporal Fuser modality 2D mAP ↑ 2D IoU ↑ 3D IoU ↑ NDS ↑

ConvLSTM L 86.91 86.19 71.90 69.59
ConvGRU L 86.73 86.16 71.77 69.56

ConvLSTM C+L 86.73 86.17 71.79 69.48
ConvGRU C+L 86.27 86.34 72.55 69.26

Table 5.25: Performance comparison of Temporal Fuser Networks using Convolutional
LSTM and Convolutional GRU models across LiDAR-only and multi-modal modalities
using TUMTraf-i test split. Corresponding models are with Temporally-Aware Ground
Truth Paste (TA-GTP) augmentation method.

In Table 5.25, we can observe that Convolutional LSTM model outperforms the Con-
volutional GRU in the LiDAR-only modality, which indicates a stronger performance
in terms of both accuracy and consistency of object detection in 2D and 3D spaces.
However, when combining Camera and LiDAR modalities (C+L), the results are more
nuanced. The Convolutional LSTM still shows superiority in our main metric, 2D mAP,
suggesting better overall performance in a multi-modal scenario. Nevertheless, the
Convolutional GRU model exhibits a marginal improvement in 2D IoU and a notable
increase in 3D IoU over Convolutional LSTM in the combined modality. It should
be noted that the Convolutional GRU possesses approximately 33% fewer trainable
weights than the Convolutional LSTM, which accounts for the expected decline in per-
formance. This decrement is offset by an increase in inference speed, further examined
in Section 5.6.

70

5 Evaluation

5.5 Qualitative Studies

5.5.1 Features in Bird’s Eye View

In our models, encoders and associated components – such as Camera-to-Bird’s Eye
View (BEV) transformations in camera-based models – yield feature tensors in BEV
output. These tensors exhibit modality-specific variations stemming from the differing
fields of view inherent to each sensor. This phenomenon is illustrated in both Figure
5.2 and 5.2, which present a comparison of feature tensors derived from LiDAR-only
and camera-only models while demonstrating the corresponding limitations in fields
of view.

5.5.2 Predictions

Figure 5.3 presents a visual representation of the model’s predictions using the OSDaR23
validation split. This figure is significant as it highlights the model’s ability to detect
objects at varying distances. For instance, our model successfully detected all the
labelled objects within the 200 to 250-meter range, demonstrating its potential for
long-range detection. As for TUMTraf-i, Figure 5.4 demonstrates the capability of our
model on detecting objects under challenging conditions, such as a dark-colored car at
an approximate distance of 75 meters with sparse LiDAR point clouds.

Figure 5.5 further demonstrates the model’s capabilities in visual comparison to a
baseline using the TUMTraf-i test split. The comparison is structured in a two-column
format: the left column displays baseline predictions, while the right column shows
those from the TF + TA-GTP model. The top row offers a color-coded classification of
predictions. The bottom row highlights occlusion issues, with ground truth labels in
dark blue and predictions in red. Notably, our model predicts an additional bicycle,
marked in purple, behind the bus. This bicycle, partially occluded and detected by
only one of the two LiDAR sensors, illustrates our model’s ability to handle partial
occlusions and data sparsity.

Figure 5.6 continues the qualitative analysis, highlighting the model’s proficiency in
detecting occluded objects. It features two examples: a partially occluded bicycle and
one at a marginal distance, both marked in purple. Despite the challenges posed by
sparse LiDAR points on such targets, the TF + TA-GTP model’s accurate predictions
underscore its robustness in the infrastructural context of the TUMTraf-i dataset.

71

5 Evaluation

Figure 5.1: Feature visualization in Bird’s-Eye View of a sample from TUMTraf-i test
split. The left image showcases the feature output from a LiDAR-only temporal model,
while the right image showcases the feature output of the same sample from a Camera-
only temporal model. These visualizations were generated through normalization of
tensor values followed by their summation.

Figure 5.2: Feature visualization in Bird’s-Eye View of a sample from OSDaR23 valida-
tion split. The left image showcases the feature output from a LiDAR-only temporal
model, while the right image showcases the feature output of the same sample from a
Camera-only temporal model. These visualizations were generated through normaliza-
tion of tensor values followed by their summation.

72

5 Evaluation

Figure 5.3: Predictions from our best LiDAR-only model (TF + TA-GTP) trained on
OSDaR23 dataset. The left image shows predictions color-coded by class whereas the
middle image shows ground truth labels in dark blue and predictions in red.

73

5 Evaluation

Figure 5.4: Comparison of predictions between the baseline and our best model (TF +
TA-GTP) using LiDAR-only modality trained on TUMTraf-i dataset. The left column
displays the predictions from the baseline whereas the right column displays the
predictions from the best model. The upper images display annotated objects with
ground truth labels in dark blue and predictions in red. The lower images present the
camera’s perspective alongside a magnified bird’s eye view (BEV) of the areas outlined
by orange dashed boxes in the upper images. Notably, the magnified images together
with camera images illustrate that our model manages to predict a dark-colored car
despite the sparse LiDAR point clouds at that range.

74

5 Evaluation

Figure 5.5: Comparison of predictions between the baseline and our best model (TF +
TA-GTP) using LiDAR-only modality trained on TUMTraf-i dataset. The left column
displays the predictions from the baseline whereas the right column displays the
predictions from the best model. The top row displays images with predictions color-
coded by class. The bottom row shows images annotated with ground truth labels in
dark blue and predictions in red. The small image in the lower right corner is from the
future frame. In these images, we can observe that our best model predicts a partially
occluded bicycle (as only one of the LiDAR sensors produces sparse points on it) that
is not labeled, highlighting the model’s improved detection of objects with occlusion.
All the images are cropped versions of the originals.

75

5 Evaluation

Figure 5.6: Comparison of predictions between our baseline and best model (TF +
TA-GTP) using LiDAR-only modality trained on TUMTraf-i dataset. The left column
displays the predictions from the baseline whereas the right column displays the
predictions from the best model. The top row displays images with predictions color-
coded by class. The bottom row shows images annotated with ground truth labels in
dark blue and predictions in red. In these images, it is evident that our best model
accurately predicts both a partially occluded bicycle and a bicycle at a marginal distance,
despite the sparse LiDAR points typically associated with such objects. These images
underscore the model’s ability to generalize within the infrastructure domain like
TUMTraf-i dataset. All the images are cropped versions of the originals.

76

5 Evaluation

5.6 Run-time Measurements

In the field of autonomous systems and computer vision, the efficiency and performance
of prediction models are pivotal metrics that govern their practical deployment. The run-
time measurements presented in Table 5.26 provides critical insight into the comparative
performance and efficiency of various baseline and proposed models across different
datasets and modalities.

Dataset Model Modality Temporal Fuser VRAM ↓ FPS3090 ↑ FPS4090 ↑ 2D mAP ↑

TUMTraf-i baseline C - 3371 13.69 35.25 54.42
(ours) C Conv. LSTM 3371 12.87 32.49 55.26

baseline L - 3313 21.44 42.51 81.84
(ours) L Conv. LSTM 3613 12.68 24.62 86.91
(ours) L Conv. GRU 3455 13.60 26.21 86.73

baseline C+L - 3907 11.92 26.42 85.14
(ours) C+L Conv. LSTM 3929 8.47 17.53 86.73
(ours) C+L Conv. GRU 3915 9.05 18.50 86.27

OSDaR23 baseline C - 3667 13.10 28.35 14.00
(ours) C Conv. LSTM 3769 12.34 26.13 18.83

baseline L - 3273 10.68 19.53 77.56
(ours) L Conv. LSTM 3575 8.02 14.40 82.12

baseline C+L - 3751 7.41 16.53 79.54
(ours) C+L Conv. LSTM 3867 6.15 12.60 81.77

Table 5.26: Comparative run-time performance and efficiency metrics of baseline and
proposed models across different datasets and modalities. This table showcases the
Video RAM (VRAM) usage, frames per second (FPS) performance on NVIDIA GeForce
RTX 3090 and 4090 graphics cards, and the 2D mean Average Precision (2D mAP)
scores for each model configuration. Models are evaluated using Camera-only (C),
LiDAR-only (L), and combined (C+L) modalities, with and without temporal pipeline
indicated by a Temporal Fuser type. All of these models utilized Online Caching during
the inference.

One of the important aspect reflected in Table 5.26 is the Video RAM (VRAM) us-
age, a vital metric for assessing the memory efficiency of the models. Lower VRAM
consumption is indicative of a model’s ability to operate within the constraints of
limited-memory systems, which is particularly relevant for embedded systems or
applications with simultaneous workloads. The data shows that our models main-
tain comparable VRAM usage to the baseline models, indicating effective memory
management without compromising on model complexity or functionality.

77

5 Evaluation

Modality Online Caching FPS3090 ↑

C - 7.0
C ✓ 12.87

L - 7.6
L ✓ 13.6

C+L - 4.4
C+L ✓ 9.05

Table 5.27: Comparative performance metrics highlighting the impact of Online Caching
(described in Section 4.2.5) on frames-per-second (FPS) on an NVIDIA RTX 3090 GPU
across different modalities using TUMTraf-i test split.

Another important metric presented is the frames-per-second (FPS) performance,
which is especially important for time-sensitive applications. Higher FPS means that
a model is able to process and analyze data faster, a crucial factor for tasks such as
real-time video analysis or autonomous vehicle control, where delayed processing
can lead to outdated or irrelevant outputs. The table compares the performance of
each model on two high-end NVIDIA graphics cards, the GeForce RTX 3090 and 4090.
Notably, the introduction of Temporal Fuser resulted in a decline in FPS. Within these
networks, the Convolutional GRU marginally outperforms the Convolutional LSTM
in FPS, albeit at the cost of a slight decrease in 2D mAP, a performance metric. Multi-
modal models, integrating camera and LiDAR inputs, suffer the most as they go below
10 fps, specifically on Nvidia GeForce RTX 3090. The benchmark for acceptable FPS
is established at 10 or higher, which aligns with the synchronization rate of 10 Hz for
all datasets utilized in this research, namely TUMTraf-i and OSDaR23. It should be
noted that the average of number of 3D points in point cloud scans in the TUMTraf-i
test split is 60,996, while in the OSDaR23 validation split, it is 203,807. Consequently,
LiDAR-based models exhibit differences in frames per second (FPS) from one dataset to
another due to the varying loading and processing times associated with point clouds.

In Table 5.27, Online caching (described in Section 4.2.5) demonstrates its usefullness
by significantly improving FPS across all modalities: standalone C and L modalities see
increases from 7.0 to 12.87 and from 7.6 to 13.6 FPS respectively, while the combined
C+L modality’s FPS improves from 4.4 to 9.05.

Overall, the data indicates that our proposed models are highly competitive when
Online Caching is utilized. Several configurations demonstrate a balanced VRAM
usage and FPS performances, underscoring the advancements in creating models that
are both efficient and mindful of resource constraints.

78

6 Future Work

This thesis has presented methodologies that significantly enhance object detection
performance on TUMTraf-i [Zim+23b] and OSDaR23 [Tag+23] datasets, particularly
noting improvements in the detection of distant objects and those with occlusions. Our
experiments have validated the effectiveness of our approaches in multiple modalities;
however, the dynamic nature of object detection and machine learning at large presents
numerous avenues for future work to build upon the foundations laid by this research.

Our Temporal Fuser (TF) networks are crucial for integrating temporal information
and enhancing detection robustness, making them strong candidates for future up-
grades. As the field of deep learning progresses rapidly, increasingly sophisticated and
powerful networks are emerging. Subsequent research should prioritize the replace-
ment of the current Temporal Fuser networks with these advanced architectures. The
adoption of cutting-edge networks could lead to significant enhancements in perfor-
mance metrics, owing to their superior feature extraction abilities and a more nuanced
understanding of temporal dynamics. An improvement could involve incorporating a
deformable attention mechanism, as detailed in the work of [Zhu+21] and then further
improving such mechanism for both spatial and temporal aspects. Nonetheless, such
alternatives might impose more harsher requirements, potentially impacting memory
consumption or inference speed, depending on the application. Therefore, it may be
advisable to replace our current backbones – VoxelNet [ZT17] for LiDAR and Swin
Transformer [Liu+21] for the camera – with faster and more suitable networks like
the PointPillars network [Lan+19] for the LiDAR backbone or variants of the YOLO
network [TC23b]. In addition, our Camera-to-BEV transformation model LSS [PF20]
can be replaced with EA-LSS [Hu+23] for more accurate transformations.

The development of our Temporally-Aware Ground Truth Paste (TA-GTP) method
represents a leap forward in augmenting the training data for generalization purposes
in object detection. Future iterations of TA-GTP can benefit from transitioning the
random techniques to a learnable paradigm, like in the work of [Zha+23a]. By adopting
a machine learning or deep learning approaches to determine the placement of sampled
objects, the model can learn optimal augmentation strategies that go beyond fixed
positioning. Introducing learnable parameters to dictate translation and rotation values
for sampled objects can also enable the method to move and rotate objects through
temporal sequences in a more realistic manner.

79

6 Future Work

We down-sample our multi-view images to 256x704 pixels in our models, which is
considerably small; therefore, studies can be done using different resolution of images
in order to see the impact in performance.

The current implementation of the Temporal Fuser lacks an ego-motion calibration
step to align bird’s eye view features across sequential sequences. TUMTraf-i dataset
does not account for ego motion since the sensors are stationed on a stationary gantry.
On the other hand, OSDaR23 sensor setup, mounted on a train, does involve motion.
Nonetheless, in the sequences, this motion was minimal and did not deteriorate
performance. However, for deployment in production environments, incorporating an
ego-motion calibration step may be crucial to ensure feature alignment in the presence
of considerable displacement between sequential frames.

OSDaR23 dataset has several other sensors such as infrared cameras and radar. These
sensors can be integrated into multi-modal model for further potential improvements.
We utilized all the LiDARs in the dataset: three long-range, one medium-range, and
two short-range. An ablation study can be conducted using different combinations
of LiDAR sensors to assess the impact of varying specifications on scan’ range. We
excluded some of the classes in OSDaR23 datasets due to technical problems related
to bounding boxes; therefore, once these problems are fixed, models can be further
experimented again with more classes such as animals and trains.

Finally, models can be converted to the ONNX format and then optimized with
TensorRT to enhance inference speeds, a critical step for deployment in production.
Furthermore, TUMTraf-i models can be deployed to run on s110 gantry bridge [Krä+21]
whereas OSDaR23 models can be deployed on the trains to see the real-time capabilities
in full action as well as adverse scenarios such as different weather conditions.

80

7 Conclusion

In the thesis, we address several prevalent challenges in the domain of 3D object
detection, specifically the issues associated with the detection of distant objects and
those subject to occlusion. To mitigate these issues, we introduce a suite of methods and
techniques, each tailored to integrate temporal information and required functionalities
into distinct components of our pipeline. Through this integration process, we achieve
enhanced performance across both our single and multi-modal models applied to our
datasets – specifically, TUMTraf-i [Zim+23b] and OSDaR23 [Tag+23]. Demonstrating
comparable performance gains across these datasets is crucial, as they differ significantly
in terms of sensor configuration and the target domain they represent.

To properly evaluate our datasets, we introduced a novel algorithm, Temporal
Dataset Split Search, to identify optimal training, validation, and test sets that are
balanced in class number and custom attributes, including distance from the ego
position, point cloud count within bounding boxes, and occlusion levels. These sets
comprise numerous sequential frames, ensuring a sufficient basis for coherent temporal
training and evaluation using our Temporal Pipeline.

Our Temporal Fuser (TF) method has demonstrated improvements in model perfor-
mances by fusing features from preceding frames with those of the current frame. We
have chosen Convolutional LSTM and Convolutional GRU for this purpose. These
networks effectively integrate temporal information from past sequences, thereby en-
abling models to refine their predictions with increased accuracy. For the TUMTraf-i
dataset, increases in 2D mAP for camera-only, LiDAR-only, and multi-modal models
were observed as follows: 0.84 (from 54.42 to 55.26), 3.89 (from 81.84 to 85.73), and
1.59 (from 85.14 to 86.73), respectively, when compared to their baselines. In the case
of the OSDaR23 dataset, the improvements were more pronounced, with increases of
4.83 (from 14.00 to 18.83), 4.56 (from 77.56 to 82.12), and 2.23 (from 79.54 to 81.77) for
the same respective models. In addition to the Temporal Fuser, we introduced the
Temporally-Aware Ground Truth Paste (TA-GTP), a data augmentation method that
enhances training diversity by sampling and simulating the rotation and motion of
virtual objects, thereby improving the model’s generalization capability for LiDAR-only
models. Combining both methods yielded the highest performance, achieving 2D mAP
scores of 86.91 on TUMTraf-i and 82.12 on OSDaR23.

81

7 Conclusion

Upon examining the performance of our best models with respect to object distance,
we observe the anticipated trend of diminishing performance metrics with increas-
ing distance. Nonetheless, models utilizing our methods demonstrate significantly
improved performance, even at extreme distances – for instance, for objects located
200 meters or more away in the OSDaR23 dataset. As for the scenarios of significant
occlusion where object prediction becomes challenging, our methods provided an
advantage to the models over their baselines, as evidenced by our qualitative studies.

However, all of these improvements come at the cost of inference speed. To address
this issue at a reasonable level, our Online Caching mechanism integrated into our
Temporal Pipeline enables the features of sequential frames to be cached during
validation or testing, allowing future inference steps to utilize these caches without
the necessity of re-computation. Consequently, when tested on an Nvidia RTX 4090,
the models achieve run-time inference speeds varying between 17.53 and 32.49 FPS
(with multi-modal being the slowest and camera-only being the fastest), whereas our
multi-modal models perform at less than 10 FPS on an Nvidia RTX 3090.

In summary, this thesis has successfully tackled some of the most pressing challenges
in 3D object detection through the development and integration of temporal methods.
The significant performance enhancements in detecting distant and occluded objects
are testament to the efficacy of our Temporal Fuser and Temporally-Aware Ground
Truth Paste methods. Our innovative Temporal Dataset Split Search algorithm fur-
ther underscores our commitment to methodological rigor by ensuring balanced and
coherent dataset utilization. Despite the trade-off with inference speed, our Online
Caching strategy has proven effective in optimizing run-times, rendering our approach
as a compelling advancement in production. As we conclude, the contributions of this
thesis also open avenues for future research to build upon the robust foundation laid
herein. This thesis underscores the potential for continued innovation in multi-modal
sensor fusion and temporal analysis.

82

List of Figures

2.1 Image showing the positions of the sensors used in the TUMTraf Inter-
section Dataset (TUMTraf-i). Taken from [Zim+23b]. 6

2.2 Visualization of 3D box labels and tracks in the TUMTraf Intersection
Dataset (TUMTraf-i). The first row shows the labels projected into the
two camera images. Below a registered point cloud from two LiDARs
contains 3D box labels of the same scene. Taken from [Zim+23b]. 7

2.3 Image showing the positions of the sensors used in the Open Sensor
Data for Rail 2023 (OSDaR23). Taken from [Tag+23]. 8

2.4 Representative samples of high-resolution, low-resolution, and infrared
camera images, accompanied by radar and LiDAR data from the Open
Sensor Data for Rail 2023 Dataset (OSDaR23) [Tag+23]. 9

3.1 Comparison between one-stage (single-stage) RetinaNet [Lin+18] and
two-stage Faster-RCNN [Ren+16]. Taken from [Car+21]. 11

3.2 The LSS introduced in [PF20] processes multi-view images along with
their corresponding extrinsic and intrinsic parameters to produce a
frustum-shaped point cloud for each image. These point clouds, em-
bedded with computed depth values, are subsequently transformed into
bird’s-eye view (BEV) space and then processed for a task via CNN.
Taken from [PF20]. 12

3.3 An illustration of how voxelization works on cloud points [Xu+21]. . . 13
3.4 Late-fusion Multi-modal 3D object detection pipeline [Zim+23a]. 15
3.5 Comparison between deep-fusion models BEVFusion [Liu+22], TransFu-

sion [Bai+22], and CMT [Yan+23]. Taken from [Yan+23]. 17
3.6 An illustration of various temporal aggregation types for multi-frame

LiDAR sequences. Taken from [Mao+23]. 18
3.7 Overview of Multi-modal Virtual Point (MVP) generation framework.

Taken from [YZK21b]. 19

83

List of Figures

4.1 Overview of our temporal dataset split search algorithm. A list of
original sequences (denoted as So) is compiled and segmented into
pseudo-sequences of N f frames each. Np permutations are created by
rearranging these pseudo-sequences. Using operation D, as described
in 4.13, each permutation is split into sets: S(p)

train, S(p)
val , and S(p)

test. The
algorithm checks if these sets together satisfy the constraints using T
(4.14). When constraints are met, operation C (4.19) determines the cost,
guiding the algorithm to choose the optimal split with the minimum cost. 25

4.2 BEVFusion, our baseline model, extracts features from multi-modal
inputs and converts them into a shared bird’s-eye view (BEV) space
efficiently using view transformations. It fuses the unified BEV features
with a fully-convolutional BEV encoder and supports different tasks with
task-specific heads. Taken from [Liu+22]. 28

4.3 Visualization of temporal data loading for training pipeline. Sequen-
tial frames, which may contain gaps in their indices, are loaded as a
sequential sequence with a specified length denoted by Q. The sum of
individual g values must not exceed G. Subsequently, data augmentation
methods are applied to these sequences, with the manner of application
contingent on the specific configuration of the method, determining
whether the effects are applied uniformly across all sequential frames or
not. 29

4.4 An output sample image from Image Augmentation in 3D method. 31
4.5 An output sample image from Image Grid Mask method. 31
4.6 A comparison of bird’s eye view images of cloud points for Random Flip

3D method. Left image represent the original cloud points whereas the
right image represents the horizontally flipped version. 32

4.7 A comparison of bird’s-eye view images of point clouds using the Global
Transformation (Rotation, Scale and Translation) method. The upper-left
image presents the original point cloud; the upper-right image presents
its rotated version; the lower-left image presents the scaled version; and
the lower-right image presents the translated version. Coordinate lines
are colored red for the X-axis and green for the Y-axis to differentiate
effects. 33

4.8 Visualization of iterative online caching of frames’ feature tensors in
validation or test pipeline. Black arrows represent the current iteration
step while pointing to corresponding frame and its feature tensor. Each
block represents a feature tensor of a given frame denoted by f (k)i ∈ F(k)

where each F represents the set of frames in a temporal sequence. . . . 35

84

List of Figures

4.9 A comparison of ground truth objects and objects randomly sampled
via the Temporally-Aware Ground Truth Paste (TA-GTP) augmentation
method, as depicted in bird’s-eye view image derived from point clouds.
Objects delineated by blue bounding boxes indicate the ground truth,
while those with red boxes indicate the sampled objects. Sampled
objects are fully identical to their original ground truth attributes such
as position, rotation, dimensions and class. 38

4.10 A visualization of objects sampled via the Temporally-Aware Ground
Truth Paste (TA-GTP) augmentation technique is presented, showcas-
ing their historical positions and orientations in bird’s-eye view image
derived from point clouds. Varied shades of blue represent distinct tem-
poral frames, with darker shades signifying earlier frames. The object
inside the focus panel is classified as "Bus" in TUMTraf-i [Zim+23b]. . . 39

4.11 An overview of temporal fusion in the detection pipeline. Both the
camera and LiDAR backbones produce features in a bird’s eye view from
their respective inputs. These features are concatenated and represented
as BEVf eat in the figure. For each frame, denoted by f , in the temporal
sequence, features are generated. Beginning with the initial concatenated
features BEV(i−n)

f eat and progressing to the final one BEV(i)
f eat, consecutive

pairs of these features are fed into the Temporal Fuser for fusion across
the temporal dimension. 40

4.12 Flowchart of integration of Temporal Fuser (TF) on BEVFusion model.
Feature Fuser represent an operation that concatenates features of both
backbones. Such concatenated features are then given to Temporal
Fuser together with previous frames’ concatenated features. As a result,
temporally fused features are generated and fed into the Detection Head. 41

5.1 Feature visualization in Bird’s-Eye View of a sample from TUMTraf-i test
split. The left image showcases the feature output from a LiDAR-only
temporal model, while the right image showcases the feature output of
the same sample from a Camera-only temporal model. These visualiza-
tions were generated through normalization of tensor values followed
by their summation. 72

5.2 Feature visualization in Bird’s-Eye View of a sample from OSDaR23
validation split. The left image showcases the feature output from
a LiDAR-only temporal model, while the right image showcases the
feature output of the same sample from a Camera-only temporal model.
These visualizations were generated through normalization of tensor
values followed by their summation. 72

85

List of Figures

5.3 Predictions from our best LiDAR-only model (TF + TA-GTP) trained on
OSDaR23 dataset. The left image shows predictions color-coded by class
whereas the middle image shows ground truth labels in dark blue and
predictions in red. 73

5.4 Comparison of predictions between the baseline and our best model (TF
+ TA-GTP) using LiDAR-only modality trained on TUMTraf-i dataset.
The left column displays the predictions from the baseline whereas
the right column displays the predictions from the best model. The
upper images display annotated objects with ground truth labels in dark
blue and predictions in red. The lower images present the camera’s
perspective alongside a magnified bird’s eye view (BEV) of the areas
outlined by orange dashed boxes in the upper images. Notably, the
magnified images together with camera images illustrate that our model
manages to predict a dark-colored car despite the sparse LiDAR point
clouds at that range. 74

5.5 Comparison of predictions between the baseline and our best model (TF
+ TA-GTP) using LiDAR-only modality trained on TUMTraf-i dataset.
The left column displays the predictions from the baseline whereas the
right column displays the predictions from the best model. The top
row displays images with predictions color-coded by class. The bottom
row shows images annotated with ground truth labels in dark blue and
predictions in red. The small image in the lower right corner is from
the future frame. In these images, we can observe that our best model
predicts a partially occluded bicycle (as only one of the LiDAR sensors
produces sparse points on it) that is not labeled, highlighting the model’s
improved detection of objects with occlusion. All the images are cropped
versions of the originals. 75

86

List of Figures

5.6 Comparison of predictions between our baseline and best model (TF
+ TA-GTP) using LiDAR-only modality trained on TUMTraf-i dataset.
The left column displays the predictions from the baseline whereas
the right column displays the predictions from the best model. The
top row displays images with predictions color-coded by class. The
bottom row shows images annotated with ground truth labels in dark
blue and predictions in red. In these images, it is evident that our
best model accurately predicts both a partially occluded bicycle and a
bicycle at a marginal distance, despite the sparse LiDAR points typically
associated with such objects. These images underscore the model’s
ability to generalize within the infrastructure domain like TUMTraf-i
dataset. All the images are cropped versions of the originals. 76

87

List of Tables

5.1 Comparison of the number of class objects across the sets of TUMTraf-i.
The given percentages for each column correspond to their respective
column, except for the last row where the percentages correspond to its
row. 47

5.2 Comparison of the number of objects and their corresponding embed-
ded difficulty levels across the divided sets of TUMTraf-i. The given
percentages correspond to their respective rows. 47

5.3 Comparison of the number of objects and their corresponding categorized
distances across the divided sets of TUMTraf-i. The provided percentages
correspond to their respective rows. 48

5.4 Comparison of the number of objects and their corresponding categorized
number of points inside their bounding boxes across the divided sets of
TUMTraf-i. The provided percentages correspond to their respective rows. 48

5.5 Comparison of the number of objects and their corresponding categorized
occlusion levels across the divided sets of TUMTraf-i. The provided
percentages correspond to their respective rows. 48

5.6 Comparison of the number of class objects across the divided sets of
OsDAR23. The given percentages for each column correspond to their
respective column, except for the last row where the percentages corre-
spond to its row. 49

5.7 Comparison of the number of objects and their corresponding categorized
distances across the divided sets of OSDaR23. The provided percentages
correspond to their respective rows. 50

5.8 Comparison of the number of objects and their corresponding categorized
number of points inside their bounding boxes across the divided sets of
OSDaR23. The provided percentages correspond to their respective rows. 50

5.9 Comparison of the number of objects and their corresponding categorized
occlusion levels across the divided sets of OSDaR23. The provided
percentages correspond to their respective rows. 50

88

List of Tables

5.10 Optimal Maximum Sample Count values (as defined in 4.3) are presented
alongside their respective importance percentages for each class in the
TUMTraf-i dataset. These importance values, derived from the hyper-
parameter search algorithm, signify the impact of the corresponding
parameter on improving performance. 53

5.11 Optimal Rotation and Translation values determined for each class in
the TUMTraf-i dataset. The values are characterized by µ(class) (rotation
mean), σ(class) (rotation standard deviation), t(class)

l (lower translation

threshold), and t(class)
u (upper translation threshold). The Pedestrian

and Motorcycle classes have missing values due to their exclusion from
sampling, as determined by prior hyper-parameter analysis shown in
Table 5.10. 54

5.12 Optimal Maximum Sample Count values (as defined in 4.3) are pre-
sented alongside their respective importance percentages for each class
in the OSDaR23 dataset. These importance values, derived from the
search algorithm, signify the impact of the corresponding parameter on
improving performance. 55

5.13 Optimal Rotation and Translation values determined for each class in
the OSDaR23 dataset. The values are characterized by µ(class) (rotation
mean), σ(class) (rotation standard deviation), t(class)

l (lower translation

threshold), and t(class)
u (upper translation threshold). The Buffer Stop class

has missing values due to its exclusion from sampling, as determined by
prior hyper-parameter analysis shown in Table 5.12. 56

5.14 Quantitative evaluation of different model combinations across multiple
modalities using the TUMTraf-i test split. The "Baseline" denotes the
model proposed by [Liu+22], which has been adapted for the TUMTraf-i
configuration. Here, "TF" represents Temporal Fuser, highlighting the
temporal component, and "TA-GTP" refers to Temporally-Aware Ground
Truth Paste Augmentation. 57

5.15 Quantitative evaluation of different model combinations across multiple
modalities using the OSDaR23 validation split. The "Baseline" denotes the
model proposed by [Liu+22], which has been adapted for the OSDaR23
configuration. Here, "TF" represents Temporal Fuser, highlighting the
temporal component, and "TA-GTP" refers to Temporally-Aware Ground
Truth Paste Augmentation. 58

89

List of Tables

5.16 Quantitative evaluation of different model combinations on labelled
classes across multiple modalities using the TUMTraf-i test split. The
"Baseline" denotes the model proposed by [Liu+22], which has been
adapted for the TUMTraf-i configuration. Label "Emergency" is short for
"Emergency Vehicle". 59

5.17 Quantitative evaluation of different model combinations on labelled
classes across multiple modalities using the OSDaR23 validation split.
The "Baseline" denotes the model proposed by [Liu+22], which has been
adapted for the OSDaR23 configuration. 60

5.18 Distribution of Ground Truth Objects by Distance Categories on TUMTraf-
I test split. 61

5.19 Quantitative evaluation of different model combinations on object dis-
tance categories across multiple modalities using the TUMTraf-i test
split. The "Baseline" denotes the model proposed by [Liu+22], which
has been adapted for the TUMTraf-i configuration. Here, "TF" represents
Temporal Fuser, highlighting the temporal component, and "TA-GTP"
refers to Temporally-Aware Ground Truth Paste Augmentation. 63

5.20 Distribution of Ground Truth Objects by Distance Categories on OSDaR23
validation split. 64

5.21 Quantitative evaluation of different model combinations on object dis-
tance categories across multiple modalities using the OSDaR23 validation
split. 65

5.22 The results of an ablation study examining the impact of various compo-
nents of the Temporally-Aware Ground Truth Paste (TA-GTP) method
on the performance of the LiDAR-only model using TUMTraf-i test split.
The study incrementally introduces consistency enforcement, translation
and rotation techniques. 66

5.23 Comparative analysis of model performance metrics with varying queue
lengths (Q) and queue gaps (G) (both defined in 4.2.3) on TUMTraf-i test
split. 67

5.24 Performance metrics for varying point cloud densities with and without
the temporal version of TA-GTP using the TUMTraf-i dataset split. The
non-temporal TA-GTP algorithm samples objects independently at each
frame, while the temporal version maintains object consistency across se-
quential frames by initially sampling at the first frame and subsequently
adjusting the object trajectories through the sequence using calculated
rotation and translation values. 69

90

List of Tables

5.25 Performance comparison of Temporal Fuser Networks using Convolu-
tional LSTM and Convolutional GRU models across LiDAR-only and
multi-modal modalities using TUMTraf-i test split. Corresponding mod-
els are with Temporally-Aware Ground Truth Paste (TA-GTP) augmenta-
tion method. 70

5.26 Comparative run-time performance and efficiency metrics of baseline
and proposed models across different datasets and modalities. This
table showcases the Video RAM (VRAM) usage, frames per second (FPS)
performance on NVIDIA GeForce RTX 3090 and 4090 graphics cards,
and the 2D mean Average Precision (2D mAP) scores for each model
configuration. Models are evaluated using Camera-only (C), LiDAR-only
(L), and combined (C+L) modalities, with and without temporal pipeline
indicated by a Temporal Fuser type. All of these models utilized Online
Caching during the inference. 77

5.27 Comparative performance metrics highlighting the impact of Online
Caching (described in Section 4.2.5) on frames-per-second (FPS) on an
NVIDIA RTX 3090 GPU across different modalities using TUMTraf-i test
split. 78

91

Bibliography

[Aki+19] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A Next-
generation Hyperparameter Optimization Framework. 2019. arXiv: 1907.10902
[cs.LG].

[Alz+21] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan.
“Review of deep learning: concepts, CNN architectures, challenges, ap-
plications, future directions.” In: Journal of Big Data 8.1 (Mar. 2021). doi:
10.1186/s40537-021-00444-8.

[Bai+22] X. Bai, Z. Hu, X. Zhu, Q. Huang, Y. Chen, H. Fu, and C.-L. Tai. TransFusion:
Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers. 2022.
arXiv: 2203.11496 [cs.CV].

[Bal+16] N. Ballas, L. Yao, C. Pal, and A. Courville. Delving Deeper into Convolu-
tional Networks for Learning Video Representations. 2016. arXiv: 1511.06432
[cs.CV].

[Ber+11] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. “Algorithms for Hyper-
Parameter Optimization.” In: Advances in Neural Information Processing
Systems. Ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.
Weinberger. Vol. 24. Curran Associates, Inc., 2011.

[BL19] G. Brazil and X. Liu. M3D-RPN: Monocular 3D Region Proposal Network for
Object Detection. 2019. arXiv: 1907.06038 [cs.CV].

[Bra+20] G. Brazil, G. Pons-Moll, X. Liu, and B. Schiele. Kinematic 3D Object Detection
in Monocular Video. 2020. arXiv: 2007.09548 [cs.CV].

[BYC13] J. Bergstra, D. Yamins, and D. Cox. “Making a Science of Model Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures.” In: Proceedings of the 30th International Conference on Machine
Learning. Ed. by S. Dasgupta and D. McAllester. Vol. 28. Proceedings of
Machine Learning Research 1. Atlanta, Georgia, USA: PMLR, 17–19 Jun
2013, pp. 115–123.

92

https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://doi.org/10.1186/s40537-021-00444-8
https://arxiv.org/abs/2203.11496
https://arxiv.org/abs/1511.06432
https://arxiv.org/abs/1511.06432
https://arxiv.org/abs/1907.06038
https://arxiv.org/abs/2007.09548

Bibliography

[Cai+23] H. Cai, Z. Zhang, Z. Zhou, Z. Li, W. Ding, and J. Zhao. BEVFusion4D:
Learning LiDAR-Camera Fusion Under Bird’s-Eye-View via Cross-Modality
Guidance and Temporal Aggregation. 2023. arXiv: 2303.17099 [cs.CV].

[Car+21] M. Carranza-García, J. Torres-Mateo, P. Lara-Benítez, and J. García-Gutiérrez.
“On the Performance of One-Stage and Two-Stage Object Detectors in Au-
tonomous Vehicles Using Camera Data.” In: Remote Sensing 13.1 (2021).
issn: 2072-4292. doi: 10.3390/rs13010089.

[Che+19] Y. Chen, S. Liu, X. Shen, and J. Jia. Fast Point R-CNN. 2019. arXiv: 1908.
02990 [cs.CV].

[Che+20] Q. Chen, L. Sun, E. Cheung, and A. L. Yuille. “Every View Counts:
Cross-View Consistency in 3D Object Detection with Hybrid-Cylindrical-
Spherical Voxelization.” In: Advances in Neural Information Processing Sys-
tems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin.
Vol. 33. Curran Associates, Inc., 2020, pp. 21224–21235.

[Cho17] F. Chollet. Xception: Deep Learning with Depthwise Separable Convolutions.
2017. arXiv: 1610.02357 [cs.CV].

[Chu+14] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. 2014. arXiv: 1412.3555
[cs.NE].

[Con20] M. Contributors. MMDetection3D: OpenMMLab next-generation platform for
general 3D object detection. https://github.com/open-mmlab/mmdetection3d.
2020.

[Den+21] J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li. Voxel R-CNN: Towards
High Performance Voxel-based 3D Object Detection. 2021. arXiv: 2012.15712
[cs.CV].

[Fan+21] J. Fang, X. Zuo, D. Zhou, S. Jin, S. Wang, and L. Zhang. “LiDAR-Aug:
A General Rendering-based Augmentation Framework for 3D Object
Detection.” In: 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2021, pp. 4708–4718. doi: 10.1109/CVPR46437.2021.
00468.

[FZL16] R. Fu, Z. Zhang, and L. Li. “Using LSTM and GRU neural network
methods for traffic flow prediction.” In: 2016 31st Youth Academic Annual
Conference of Chinese Association of Automation (YAC). 2016, pp. 324–328.
doi: 10.1109/YAC.2016.7804912.

93

https://arxiv.org/abs/2303.17099
https://doi.org/10.3390/rs13010089
https://arxiv.org/abs/1908.02990
https://arxiv.org/abs/1908.02990
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://github.com/open-mmlab/mmdetection3d
https://arxiv.org/abs/2012.15712
https://arxiv.org/abs/2012.15712
https://doi.org/10.1109/CVPR46437.2021.00468
https://doi.org/10.1109/CVPR46437.2021.00468
https://doi.org/10.1109/YAC.2016.7804912

Bibliography

[Gao+23] Z. Gao, Q. Wang, Z. Pan, Z. Zhai, and H. Long. “PointPainting: 3D Object
Detection Aided by Semantic Image Information.” In: Sensors 23.5 (2023).
issn: 1424-8220. doi: 10.3390/s23052868.

[Gra14] A. Graves. Generating Sequences With Recurrent Neural Networks. 2014. arXiv:
1308.0850 [cs.NE].

[HS97] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory.” In: Neural
Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/
neco.1997.9.8.1735.

[Hu+23] H. Hu, F. Wang, J. Su, Y. Wang, L. Hu, W. Fang, J. Xu, and Z. Zhang.
EA-LSS: Edge-aware Lift-splat-shot Framework for 3D BEV Object Detection.
2023. arXiv: 2303.17895 [cs.CV].

[Hua+20a] R. Huang, W. Zhang, A. Kundu, C. Pantofaru, D. A. Ross, T. Funkhouser,
and A. Fathi. An LSTM Approach to Temporal 3D Object Detection in LiDAR
Point Clouds. 2020. arXiv: 2007.12392 [cs.CV].

[Hua+20b] T. Huang, Z. Liu, X. Chen, and X. Bai. EPNet: Enhancing Point Features with
Image Semantics for 3D Object Detection. 2020. arXiv: 2007.08856 [cs.CV].

[Hua+22] J. Huang, G. Huang, Z. Zhu, Y. Ye, and D. Du. BEVDet: High-performance
Multi-camera 3D Object Detection in Bird-Eye-View. 2022. arXiv: 2112.11790
[cs.CV].

[HZ01] R. Hartley and A. Zisserman. “Multiple View Geometry in Computer
Vision.” In: 2001.

[JK19] J. Johnson and T. Khoshgoftaar. “Survey on deep learning with class
imbalance.” In: Journal of Big Data 6 (Mar. 2019), p. 27. doi: 10.1186/
s40537-019-0192-5.

[JZH21] C. Janiesch, P. Zschech, and K. Heinrich. “Machine learning and deep
learning.” In: Electronic Markets 31.3 (Apr. 2021), pp. 685–695. doi: 10.
1007/s12525-021-00475-2.

[Kha+22] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah.
“Transformers in Vision: A Survey.” In: ACM Computing Surveys 54.10s
(Jan. 2022), pp. 1–41. doi: 10.1145/3505244.

[Krä+21] A. Krämmer, C. Schöller, D. Gulati, V. Lakshminarasimhan, F. Kurz, D.
Rosenbaum, C. Lenz, and A. Knoll. Providentia – A Large-Scale Sensor
System for the Assistance of Autonomous Vehicles and Its Evaluation. 2021.
arXiv: 1906.06789 [cs.RO].

[Lai+23] X. Lai, Y. Chen, F. Lu, J. Liu, and J. Jia. Spherical Transformer for LiDAR-based
3D Recognition. 2023. arXiv: 2303.12766 [cs.CV].

94

https://doi.org/10.3390/s23052868
https://arxiv.org/abs/1308.0850
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2303.17895
https://arxiv.org/abs/2007.12392
https://arxiv.org/abs/2007.08856
https://arxiv.org/abs/2112.11790
https://arxiv.org/abs/2112.11790
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1145/3505244
https://arxiv.org/abs/1906.06789
https://arxiv.org/abs/2303.12766

Bibliography

[Lan+19] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Point-
Pillars: Fast Encoders for Object Detection from Point Clouds. 2019. arXiv:
1812.05784 [cs.LG].

[LCS19] P. Li, X. Chen, and S. Shen. Stereo R-CNN based 3D Object Detection for
Autonomous Driving. 2019. arXiv: 1902.09738 [cs.CV].

[LH17] I. Loshchilov and F. Hutter. SGDR: Stochastic Gradient Descent with Warm
Restarts. 2017. arXiv: 1608.03983 [cs.LG].

[LH19] I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. 2019.
arXiv: 1711.05101 [cs.LG].

[Li+18] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun. DetNet: A Backbone
network for Object Detection. 2018. arXiv: 1804.06215 [cs.CV].

[Li+19] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. PU-GAN: a Point
Cloud Upsampling Adversarial Network. 2019. arXiv: 1907.10844 [cs.CV].

[Li+22a] Y. Li, A. W. Yu, T. Meng, B. Caine, J. Ngiam, D. Peng, J. Shen, B. Wu,
Y. Lu, D. Zhou, Q. V. Le, A. Yuille, and M. Tan. DeepFusion: Lidar-Camera
Deep Fusion for Multi-Modal 3D Object Detection. 2022. arXiv: 2203.08195
[cs.CV].

[Li+22b] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Q. Yu, and J. Dai. BEV-
Former: Learning Bird’s-Eye-View Representation from Multi-Camera Images
via Spatiotemporal Transformers. 2022. arXiv: 2203.17270 [cs.CV].

[Li+23] Z. Li, C. Zhang, W.-C. Ma, Y. Zhou, L. Huang, H. Wang, S. Lim, and
H. Zhao. VoxelFormer: Bird’s-Eye-View Feature Generation based on Dual-
view Attention for Multi-view 3D Object Detection. 2023. arXiv: 2304.01054
[cs.CV].

[LI20] Y. Li and J. Ibanez-Guzman. “Lidar for Autonomous Driving: The Prin-
ciples, Challenges, and Trends for Automotive Lidar and Perception Sys-
tems.” In: IEEE Signal Processing Magazine 37.4 (2020), pp. 50–61. doi:
10.1109/MSP.2020.2973615.

[Lia+20a] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun. Multi-Task Multi-Sensor
Fusion for 3D Object Detection. 2020. arXiv: 2012.12397 [cs.CV].

[Lia+20b] M. Liang, B. Yang, S. Wang, and R. Urtasun. Deep Continuous Fusion for
Multi-Sensor 3D Object Detection. 2020. arXiv: 2012.10992 [cs.CV].

[Lia+22] T. Liang, H. Xie, K. Yu, Z. Xia, Z. Lin, Y. Wang, T. Tang, B. Wang, and
Z. Tang. BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework.
2022. arXiv: 2205.13790 [cs.CV].

95

https://arxiv.org/abs/1812.05784
https://arxiv.org/abs/1902.09738
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1804.06215
https://arxiv.org/abs/1907.10844
https://arxiv.org/abs/2203.08195
https://arxiv.org/abs/2203.08195
https://arxiv.org/abs/2203.17270
https://arxiv.org/abs/2304.01054
https://arxiv.org/abs/2304.01054
https://doi.org/10.1109/MSP.2020.2973615
https://arxiv.org/abs/2012.12397
https://arxiv.org/abs/2012.10992
https://arxiv.org/abs/2205.13790

Bibliography

[Lin+17] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie.
Feature Pyramid Networks for Object Detection. 2017. arXiv: 1612.03144
[cs.CV].

[Lin+18] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal Loss for Dense
Object Detection. 2018. arXiv: 1708.02002 [cs.CV].

[Lin+22] T. Lin, Y. Wang, X. Liu, and X. Qiu. “A survey of transformers.” In: AI
Open 3 (2022), pp. 111–132. issn: 2666-6510. doi: https://doi.org/10.
1016/j.aiopen.2022.10.001.

[Liu+21] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin
Transformer: Hierarchical Vision Transformer using Shifted Windows. 2021.
arXiv: 2103.14030 [cs.CV].

[Liu+22] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, and S. Han. BEVFusion:
Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation.
2022. arXiv: 2205.13542 [cs.CV].

[Liu+23] Z. Liu, X. Yang, H. Tang, S. Yang, and S. Han. FlatFormer: Flattened Window
Attention for Efficient Point Cloud Transformer. 2023. arXiv: 2301.08739
[cs.CV].

[Luo+21] S. Luo, H. Dai, L. Shao, and Y. Ding. M3DSSD: Monocular 3D Single Stage
Object Detector. 2021. arXiv: 2103.13164 [cs.CV].

[LWW21] Z. Li, F. Wang, and N. Wang. LiDAR R-CNN: An Efficient and Universal 3D
Object Detector. 2021. arXiv: 2103.15297 [cs.CV].

[Mao+23] J. Mao, S. Shi, X. Wang, and H. Li. 3D Object Detection for Autonomous
Driving: A Comprehensive Survey. 2023. arXiv: 2206.09474 [cs.CV].

[MRP21] R. K. Mishra, G. Y. S. Reddy, and H. Pathak. “The Understanding of
Deep Learning: A Comprehensive Review.” In: Mathematical Problems in
Engineering 2021 (Apr. 2021). Ed. by A. Ahmadian, pp. 1–15. doi: 10.1155/
2021/5548884.

[Nin+] X. Ning, J. Zhou, J. Cheng, J. Wu, C. Wang, and L. Gu. “Guest Editorial:
Multi-view representation learning for computer vision.” In: IET Computer
Vision n/a.n/a (). doi: https://doi.org/10.1049/cvi2.12176. eprint:
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/
cvi2.12176.

[Pan+20] B. Pan, J. Sun, H. Y. T. Leung, A. Andonian, and B. Zhou. “Cross-View
Semantic Segmentation for Sensing Surroundings.” In: IEEE Robotics and
Automation Letters 5.3 (July 2020), pp. 4867–4873. doi: 10.1109/lra.2020.
3004325.

96

https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1708.02002
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.10.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.10.001
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2205.13542
https://arxiv.org/abs/2301.08739
https://arxiv.org/abs/2301.08739
https://arxiv.org/abs/2103.13164
https://arxiv.org/abs/2103.15297
https://arxiv.org/abs/2206.09474
https://doi.org/10.1155/2021/5548884
https://doi.org/10.1155/2021/5548884
https://doi.org/https://doi.org/10.1049/cvi2.12176
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/cvi2.12176
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/cvi2.12176
https://doi.org/10.1109/lra.2020.3004325
https://doi.org/10.1109/lra.2020.3004325

Bibliography

[Pen+20] W. Peng, H. Pan, H. Liu, and Y. Sun. “IDA-3D: Instance-Depth-Aware 3D
Object Detection From Stereo Vision for Autonomous Driving.” In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2020, pp. 13012–13021. doi: 10.1109/CVPR42600.2020.01303.

[PF20] J. Philion and S. Fidler. Lift, Splat, Shoot: Encoding Images From Arbitrary
Camera Rigs by Implicitly Unprojecting to 3D. 2020. arXiv: 2008 . 05711
[cs.CV].

[PMR20] S. Pang, D. Morris, and H. Radha. CLOCs: Camera-LiDAR Object Candidates
Fusion for 3D Object Detection. 2020. arXiv: 2009.00784 [cs.CV].

[PMR22] S. Pang, D. Morris, and H. Radha. “Fast-CLOCs: Fast Camera-LiDAR
Object Candidates Fusion for 3D Object Detection.” In: 2022 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV). 2022, pp. 3747–
3756. doi: 10.1109/WACV51458.2022.00380.

[Qi+18] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum PointNets for 3D
Object Detection from RGB-D Data. 2018. arXiv: 1711.08488 [cs.CV].

[QWL20] Z. Qin, J. Wang, and Y. Lu. MonoGRNet: A Geometric Reasoning Network for
Monocular 3D Object Localization. 2020. arXiv: 1811.10247 [cs.CV].

[RC20] T. Roddick and R. Cipolla. Predicting Semantic Map Representations from Im-
ages using Pyramid Occupancy Networks. 2020. arXiv: 2003.13402 [cs.CV].

[Ren+16] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. 2016. arXiv: 1506.01497
[cs.CV].

[RF18] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. 2018.
arXiv: 1804.02767 [cs.CV].

[RKC18] T. Roddick, A. Kendall, and R. Cipolla. Orthographic Feature Transform for
Monocular 3D Object Detection. 2018. arXiv: 1811.08188 [cs.CV].

[Shi+15] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo. Con-
volutional LSTM Network: A Machine Learning Approach for Precipitation
Nowcasting. 2015. arXiv: 1506.04214 [cs.CV].

[Shi+21] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li. PV-RCNN:
Point-Voxel Feature Set Abstraction for 3D Object Detection. 2021. arXiv:
1912.13192 [cs.CV].

[Shi+22] X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen, and T.-K. Kim. Geometry-based
Distance Decomposition for Monocular 3D Object Detection. 2022. arXiv: 2104.
03775 [cs.CV].

97

https://doi.org/10.1109/CVPR42600.2020.01303
https://arxiv.org/abs/2008.05711
https://arxiv.org/abs/2008.05711
https://arxiv.org/abs/2009.00784
https://doi.org/10.1109/WACV51458.2022.00380
https://arxiv.org/abs/1711.08488
https://arxiv.org/abs/1811.10247
https://arxiv.org/abs/2003.13402
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1811.08188
https://arxiv.org/abs/1506.04214
https://arxiv.org/abs/1912.13192
https://arxiv.org/abs/2104.03775
https://arxiv.org/abs/2104.03775

Bibliography

[Shi+23] F. M. Shiri, T. Perumal, N. Mustapha, and R. Mohamed. A Comprehensive
Overview and Comparative Analysis on Deep Learning Models: CNN, RNN,
LSTM, GRU. 2023. arXiv: 2305.17473 [cs.LG].

[Sim+19] A. Simonelli, S. R. R. Bulò, L. Porzi, M. López-Antequera, and P. Kontschieder.
Disentangling Monocular 3D Object Detection. 2019. arXiv: 1905 . 12365
[cs.CV].

[Smi17] L. N. Smith. Cyclical Learning Rates for Training Neural Networks. 2017. arXiv:
1506.01186 [cs.CV].

[Sun+22] P. Sun, M. Tan, W. Wang, C. Liu, F. Xia, Z. Leng, and D. Anguelov.
SWFormer: Sparse Window Transformer for 3D Object Detection in Point Clouds.
2022. arXiv: 2210.07372 [cs.CV].

[SWL19] S. Shi, X. Wang, and H. Li. PointRCNN: 3D Object Proposal Generation and
Detection from Point Cloud. 2019. arXiv: 1812.04244 [cs.CV].

[Tag+23] R. Tagiew, M. Köppel, K. Schwalbe, P. Denzler, P. Neumaier, T. Klockau,
M. Boekhoff, P. Klasek, and R. Tilly. OSDaR23: Open Sensor Data for Rail
2023. 2023. arXiv: 2305.03001 [cs.CV].

[TC23a] J. Terven and D. Cordova-Esparza. A Comprehensive Review of YOLO: From
YOLOv1 and Beyond. 2023. arXiv: 2304.00501 [cs.CV].

[TC23b] J. Terven and D. Cordova-Esparza. A Comprehensive Review of YOLO: From
YOLOv1 and Beyond. 2023. arXiv: 2304.00501 [cs.CV].

[TL20] M. Tan and Q. V. Le. EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. 2020. arXiv: 1905.11946 [cs.LG].

[Tod+17] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, and
M. Covell. Full Resolution Image Compression with Recurrent Neural Networks.
2017. arXiv: 1608.05148 [cs.CV].

[Tou+21] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou.
Training data-efficient image transformers distillation through attention. 2021.
arXiv: 2012.12877 [cs.CV].

[Vor+20] S. Vora, A. H. Lang, B. Helou, and O. Beijbom. PointPainting: Sequential
Fusion for 3D Object Detection. 2020. arXiv: 1911.10150 [cs.CV].

[Wan+20] Y. Wang, A. Fathi, A. Kundu, D. Ross, C. Pantofaru, T. Funkhouser, and
J. Solomon. Pillar-based Object Detection for Autonomous Driving. 2020. arXiv:
2007.10323 [cs.CV].

98

https://arxiv.org/abs/2305.17473
https://arxiv.org/abs/1905.12365
https://arxiv.org/abs/1905.12365
https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/2210.07372
https://arxiv.org/abs/1812.04244
https://arxiv.org/abs/2305.03001
https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1608.05148
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/1911.10150
https://arxiv.org/abs/2007.10323

Bibliography

[Wan+21] Z. Wang, Z. Zhao, Z. Jin, Z. Che, J. Tang, C. Shen, and Y. Peng. “Multi-Stage
Fusion for Multi-Class 3D Lidar Detection.” In: 2021 IEEE/CVF International
Conference on Computer Vision Workshops (ICCVW). 2021, pp. 3113–3121.
doi: 10.1109/ICCVW54120.2021.00347.

[Wan+23] H. Wang, C. Shi, S. Shi, M. Lei, S. Wang, D. He, B. Schiele, and L. Wang.
DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets. 2023. arXiv:
2301.06051 [cs.CV].

[WBL22] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. YOLOv7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors. 2022. arXiv:
2207.02696 [cs.CV].

[WJ19] Z. Wang and K. Jia. Frustum ConvNet: Sliding Frustums to Aggregate Local
Point-Wise Features for Amodal 3D Object Detection. 2019. arXiv: 1903.01864
[cs.CV].

[WR17] H. Wang and B. Raj. On the Origin of Deep Learning. 2017. arXiv: 1702.07800
[cs.LG].

[XAJ18] D. Xu, D. Anguelov, and A. Jain. PointFusion: Deep Sensor Fusion for 3D
Bounding Box Estimation. 2018. arXiv: 1711.10871 [cs.CV].

[Xu+21] J. Xu, R. Zhang, J. Dou, Y. Zhu, J. Sun, and S. Pu. RPVNet: A Deep and Effi-
cient Range-Point-Voxel Fusion Network for LiDAR Point Cloud Segmentation.
2021. arXiv: 2103.12978 [cs.CV].

[Yan+21] Z. Yang, Y. Zhou, Z. Chen, and J. Ngiam. 3D-MAN: 3D Multi-frame Atten-
tion Network for Object Detection. 2021. arXiv: 2103.16054 [cs.CV].

[Yan+23] J. Yan, Y. Liu, J. Sun, F. Jia, S. Li, T. Wang, and X. Zhang. Cross Modal
Transformer: Towards Fast and Robust 3D Object Detection. 2023. arXiv: 2301.
01283 [cs.CV].

[Yif+19] W. Yifan, S. Wu, H. Huang, D. Cohen-Or, and O. Sorkine-Hornung. Patch-
based Progressive 3D Point Set Upsampling. 2019. arXiv: 1811.11286 [cs.CV].

[Yin+20] J. Yin, J. Shen, C. Guan, D. Zhou, and R. Yang. LiDAR-based Online 3D
Video Object Detection with Graph-based Message Passing and Spatiotemporal
Transformer Attention. 2020. arXiv: 2004.01389 [cs.CV].

[YML18] Y. Yan, Y. Mao, and B. Li. “SECOND: Sparsely Embedded Convolutional
Detection.” In: Sensors 18 (Oct. 2018), p. 3337. doi: 10.3390/s18103337.

[Yos+20] O. Yoshihiko, T. Yuki, W. Shuhei, and O. Masaki. “Multiobjective Tree-
structured Parzen Estimator for Computationally Expensive Optimiza-
tion Problems.” In: The Genetic and Evolutionary Computation Conference
(GECCO2020). 2020.

99

https://doi.org/10.1109/ICCVW54120.2021.00347
https://arxiv.org/abs/2301.06051
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/1903.01864
https://arxiv.org/abs/1903.01864
https://arxiv.org/abs/1702.07800
https://arxiv.org/abs/1702.07800
https://arxiv.org/abs/1711.10871
https://arxiv.org/abs/2103.12978
https://arxiv.org/abs/2103.16054
https://arxiv.org/abs/2301.01283
https://arxiv.org/abs/2301.01283
https://arxiv.org/abs/1811.11286
https://arxiv.org/abs/2004.01389
https://doi.org/10.3390/s18103337

Bibliography

[Yu+18] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. PU-Net: Point Cloud
Upsampling Network. 2018. arXiv: 1801.06761 [cs.CV].

[Yua+20] Z. Yuan, X. Song, L. Bai, W. Zhou, Z. Wang, and W. Ouyang. Temporal-
Channel Transformer for 3D Lidar-Based Video Object Detection in Autonomous
Driving. 2020. arXiv: 2011.13628 [cs.CV].

[YZK21a] T. Yin, X. Zhou, and P. Krähenbühl. Center-based 3D Object Detection and
Tracking. 2021. arXiv: 2006.11275 [cs.CV].

[YZK21b] T. Yin, X. Zhou, and P. Krähenbühl. Multimodal Virtual Point 3D Detection.
2021. arXiv: 2111.06881 [cs.CV].

[Zam+21] G. Zamanakos, L. Tsochatzidis, A. Amanatiadis, and I. Pratikakis. “A
comprehensive survey of LIDAR-based 3D object detection methods with
deep learning for autonomous driving.” In: Computers Graphics 99 (2021),
pp. 153–181. issn: 0097-8493. doi: https://doi.org/10.1016/j.cag.2021.
07.003.

[ZCH22] Y. Zhang, J. Chen, and D. Huang. CAT-Det: Contrastively Augmented
Transformer for Multi-modal 3D Object Detection. 2022. arXiv: 2204.00325
[cs.CV].

[Zha+17] X. Zhang, X. Zhou, M. Lin, and J. Sun. ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices. 2017. arXiv: 1707.01083
[cs.CV].

[Zha+20] Z. Zhang, J. Gao, J. Mao, Y. Liu, D. Anguelov, and C. Li. STINet: Spatio-
Temporal-Interactive Network for Pedestrian Detection and Trajectory Prediction.
2020. arXiv: 2005.04255 [cs.CV].

[Zha+23a] J. Zhan, T. Liu, R. Li, J. Zhang, Z. Zhang, and Y. Chen. Real-Aug: Realistic
Scene Synthesis for LiDAR Augmentation in 3D Object Detection. 2023. arXiv:
2305.12853 [cs.CV].

[Zha+23b] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng. Deep Long-Tailed Learning:
A Survey. 2023. arXiv: 2110.04596 [cs.CV].

[Zhu+19] B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu. Class-balanced Grouping and
Sampling for Point Cloud 3D Object Detection. 2019. arXiv: 1908.09492
[cs.CV].

[Zhu+21] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai. Deformable DETR: De-
formable Transformers for End-to-End Object Detection. 2021. arXiv: 2010.
04159 [cs.CV].

100

https://arxiv.org/abs/1801.06761
https://arxiv.org/abs/2011.13628
https://arxiv.org/abs/2006.11275
https://arxiv.org/abs/2111.06881
https://doi.org/https://doi.org/10.1016/j.cag.2021.07.003
https://doi.org/https://doi.org/10.1016/j.cag.2021.07.003
https://arxiv.org/abs/2204.00325
https://arxiv.org/abs/2204.00325
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/2005.04255
https://arxiv.org/abs/2305.12853
https://arxiv.org/abs/2110.04596
https://arxiv.org/abs/1908.09492
https://arxiv.org/abs/1908.09492
https://arxiv.org/abs/2010.04159
https://arxiv.org/abs/2010.04159

Bibliography

[Zhu+23] Z. Zhu, Y. Zhang, H. Chen, Y. Dong, S. Zhao, W. Ding, J. Zhong, and
S. Zheng. Understanding the Robustness of 3D Object Detection with Bird’s-
Eye-View Representations in Autonomous Driving. 2023. arXiv: 2303.17297
[cs.CV].

[Zim+23a] W. Zimmer, J. Birkner, M. Brucker, H. T. Nguyen, S. Petrovski, B. Wang,
and A. C. Knoll. InfraDet3D: Multi-Modal 3D Object Detection based on
Roadside Infrastructure Camera and LiDAR Sensors. 2023. arXiv: 2305.00314
[cs.CV].

[Zim+23b] W. Zimmer, C. Creß, H. T. Nguyen, and A. C. Knoll. A9 Intersection Dataset:
All You Need for Urban 3D Camera-LiDAR Roadside Perception. 2023. arXiv:
2306.09266 [cs.CV].

[ZT17] Y. Zhou and O. Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based
3D Object Detection. 2017. arXiv: 1711.06396 [cs.CV].

101

https://arxiv.org/abs/2303.17297
https://arxiv.org/abs/2303.17297
https://arxiv.org/abs/2305.00314
https://arxiv.org/abs/2305.00314
https://arxiv.org/abs/2306.09266
https://arxiv.org/abs/1711.06396

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Input Data
	Multi-View Images
	LiDAR Cloud Points

	Bird's Eye View Data Representation
	Deep Learning
	3D Object Detection

	Datasets
	TUMTraf Intersection Dataset
	OSDaR23 Dataset

	Related Works
	3D Object Detection
	Camera-only
	LiDAR-only
	Multi-modal

	Temporal 3D Object Detection
	Data Augmentation

	Methodology
	Temporal Dataset Split Search
	Definitions
	Execution Parameters
	Algorithm Overview

	Temporal Pipeline
	General Structure
	Data Sampling
	Data Loading
	Augmentation Methods
	Online Caching

	Temporally-Aware Ground Truth Paste Data Augmentation
	Temporal Fusion Networks
	Convolutional LSTM
	Convolutional GRU

	Evaluation
	Experiment Setup
	Configurations
	Temporal Dataset Splits
	Evaluation Metrics

	Hyper-parameter Tuning
	Quantitative Studies
	General Results
	Class-wise Results
	Object Distance Category Results

	Ablation Studies
	Temporally-Aware Ground Truth Paste Augmentation
	Temporal Loading
	Cloud Point Sparsity
	Temporal Fuser Networks

	Qualitative Studies
	Features in Bird's Eye View
	Predictions

	Run-time Measurements

	Future Work
	Conclusion
	List of Figures
	List of Tables
	Bibliography

