
TUM School of Computation, Information and Technology
Technical University of Munich

Bachelor’s Thesis in Informatics

3D Tracking on Roadside LiDARs

3D Tracking anhand von straßenseitigen LiDARs

Supervisor Prof. Dr.-Ing. habil. Alois C. Knoll

Advisor Walter Zimmer, M.Sc.

Author Vitus Becker

Date February 15, 2024 in Munich

Disclaimer

I confirm that this Bachelor’s Thesis is my own work and I have documented all sources and
material used.

Munich, February 15, 2024 (Vitus Becker)

Abstract

This thesis explores 3D Multi-Object Tracking on Roadside LiDARs within the AUTOtech.agil
project, the successor of the Providentia++ project. The goal is to improve tracking per-
formance in urban environments. Using PolyMOT as a baseline, known for its success in
the nuScenes tracking challenge, this work adds features like dynamic association threshold
determination and an angular difference penalty to enhance robustness. The evaluation on
the TUM Traffic Intersection dataset shows that PolyMOT achieves significant improvements
of over 16% in HOTA and over 13% in MOTA. Although the added features only slightly
improve MOTA and HOTA by 1%, qualitative analysis underscores their impact. PolyMOT
demonstrates remarkable performance in managing complex traffic scenarios and mitigating
the impact of noisy detections, particularly when tracking smaller objects. However, SORT3D
outperforms PolyMOT clearly in inference speed with 700-800 FPS compared to 30 FPS.
Proposed enhancements for future work include integrating learning-based approaches and
incorporating map information. Overall, the thesis validates PolyMOT’s selection, highlights
the added features’ impact, and suggests areas for future research.

Zusammenfassung

In dieser Arbeit wird 3D-Multi-Objekt Tracking anhand von straßenseitigen LiDARs im Rah-
men des AUTOtech.agil-Projekts, dem Nachfolger des Providentia++-Projekts, untersucht.
Ziel ist es, die Tracking Performanz in urbanen Umgebungen zu verbessern. Auf der Grund-
lage von PolyMOT, das für seinen Erfolg bei der nuScenes Tracking Challenge bekannt ist,
werden in dieser Arbeit Funktionen wie die dynamische Bestimmung von Assoziationsgren-
zwerten und eine Winkeldifferenzstrafe hinzugefügt, um die Robustheit des Tracking Systems
zu verbessern. Die Auswertung auf dem TUM Traffic Intersection Dataset zeigt, dass Poly-
MOT signifikante Verbesserungen von über 16% in HOTA und über 13% in MOTA erreicht.
Auch wenn die hinzugefügten Funktionen die Metriken MOTA und HOTA nur geringfügig
um 1% verbessern, unterstreicht die qualitative Analyse die Wirkung der hinzugefügten Fea-
tures. PolyMOT schneidet beim Tracking in komplexen Verkehrssituationen und der Kom-
pensation verrauschter Detections sehr gut ab, vor allem beim Tracking von kleineren Ob-
jekten. Die Inferenzgeschwindigkeit von SORT3D übertrifft jedoch die von PolyMOT klar,
mit 700-800 FPS im Vergleich zu 30 FPS. Vorgeschlagene Verbesserungen für zukünftige
Arbeiten beinhalten die Integration von lernbasierten Ansätzen und die Einbeziehung von
Umgebungsinformationen. Insgesamt bestätigt die Arbeit die Wahl von PolyMOT, hebt die
Auswirkungen der hinzugefügten Funktionen hervor und schlägt Bereiche für zukünftige
Verbesserungsmöglichkeiten vor.

Contents

1 Introduction 1
1.1 Motivation and Context . 1
1.2 Problem Statement . 2
1.3 Outline . 3

2 Background 5
2.1 Multi-Object Tracking . 5
2.2 Pipeline . 7

2.2.1 General . 7
2.2.2 Tracking by Detection . 8
2.2.3 Learning and Learning-Free . 9

2.3 Kalman Filter . 10
2.3.1 General . 10
2.3.2 Mathematical Computation . 11
2.3.3 Extended Kalman Filter . 11

2.4 Generalized Intersection over Union . 12
2.5 Metrics . 12

2.5.1 Evaluation Process . 12
2.5.2 Common Errors . 14
2.5.3 Simple Metrics . 14
2.5.4 Advanced Metrics for Performance measurement 14

3 Related Work 17
3.1 Tracking before Detection . 17
3.2 Joint Tracking and Detection . 17
3.3 Tracking by Detection . 19

3.3.1 Based on Kalman Filters . 19
3.3.2 Based on Attention Mechanism . 22
3.3.3 Based on Graphs . 24
3.3.4 Further Approaches . 25

3.4 Other Works . 26

4 Tracking Approach 29
4.1 Baseline . 30

4.1.1 3D Detector and Pre-Processing Module . 30
4.1.2 Multi-Category Trajectory Motion Module 30
4.1.3 Multi-Category Data Repetition Association Module 32
4.1.4 Trajectory Management Module . 32

4.2 Limitations . 33
4.2.1 Imperfect Object Detection . 33
4.2.2 Influence of Orientation . 33

vi Contents

4.2.3 Occlusions and Missed Detections . 35

5 Evaluation and Results 39
5.1 Setup . 39
5.2 Intersection Data . 40

5.2.1 Data Description . 40
5.2.2 Quantitative Results . 41
5.2.3 Qualitative Results . 44

5.3 Highway Data . 47
5.3.1 Data Description . 47
5.3.2 Quantitative Results . 48
5.3.3 Qualitative Results . 49

5.4 Tracking Speed . 50
5.5 Hyperparameter Search . 51
5.6 Effect of Added Features . 53

6 Future Work 57
6.1 Enhancements . 57
6.2 Extensions . 58

7 Conclusion 61

Bibliography 63

Chapter 1

Introduction

In recent years, the field of autonomous driving has experienced remarkable progress, hold-
ing the potential to transform transportation by reducing or eliminating the requirement for
human involvement in vehicle control. Enabled by the latest technology, new cars from BMW
or Mercedes-Benz can perform overtaking maneuvers on highways without any help from
the driver behind the steering wheel using the Automatic Lane Change assistence system, see
here. In the United States, there are even driverless taxis services like Waymo One that can
be ordered via smartphone like an average Uber driver, with the difference that there is no
driver sitting inside.

This thesis also falls within the field of autonomous driving research. It aims to contribute
to the ongoing advancements in autonomous driving technology by addressing critical chal-
lenges in multi-object tracking. This chapter introduces the thesis by first explaining the
motivation and context of the work, then defining the concrete task that has to be realized
in the course of the work, followed by a quick outline of the complete thesis explaining the
consecutively conducted steps.

1.1 Motivation and Context

One of the critical challenges in achieving fully autonomous vehicles is the reliable detec-
tion and tracking of multiple objects in the vehicle’s surroundings. As autonomous vehicles
navigate complex urban environments, accurately tracking and anticipating the movements
of pedestrians, vehicles, and other objects becomes essential for ensuring safety and applica-
bility. Improving and enabling the possibility of autonomous driving was also the target of
the Providentia++ project. In the context of this project, the team created a digital twin to
replicate the traffic conditions at a section of the Autobahn A9 near Garching (Munich). The
specific objective is to facilitate the exchange of traffic-related information among all par-
ticipants in particular situations. This thesis is part of the successor project AUTOtech.agil,
which aims to improve the existing system and, in this way, enable it to be also applicable in
more urban areas. For that reason, cameras and LiDAR sensors collect data about the traffic
at an urban intersection. This data is then processed to deliver helpful information about
traffic participants and their interplay. LiDAR sensors deliver 3D data of the environment in
the form of point clouds which are unordered sets of measured 3D points in space, see Figure
1.1. In contrast to camera data in the form of images, LiDAR data has the advantage of being
more precise and delivering direct 3D information for which camera images first would have
to be processed somehow. In this project, we utilize data recorded from a roadside infrastruc-
ture perspective rather than a vehicle perspective, offering several advantages. Data recorded
in vehicle-view typically contains many occlusions since the sensors capture their data at the

https://www.arrowheadmb.com/blog/mercedes-benz-automatic-lane-change/
https://waymo.com/waymo-one/

2 1 Introduction

Figure 1.1: This figure presents an illustration of captured image data and projected point cloud data at the
mentioned intersection. The visible points represent the 3D structure of the point cloud, projected onto the image
for visualization.

same height where all other traffic participants are, while infrastructure-view data typically
is recorded from a top-down perspective, decreasing the number of occlusions. Furthermore,
infrastructure-view data allows for the incorporation of information about the environment
into computations or interpretations. The reason for that is the fixed position of the sensors
and cameras, leading to improved performance.

1.2 Problem Statement

Using the data mentioned in the paragraph above, performing tasks like object detection,
object segmentation or object tracking is then possible. Even if object detection is deeply
involved in object tracking, we direct the primary focus of this research towards the task
of multi-object tracking based on 3D LiDAR data. More specifically, the task is to get the
detections produced by an object detector, track them, and output them. Section 2.1 describes
the task of Multi-Object Tracking in detail. Performing these tasks in the 3D domain instead
of the 2D domain delivers many advantages:

• 3D data delivers direct depth information, as already mentioned.
• It helps to get an improved understanding of the scene.
• It allows the correct computation of real-world velocities.
• Occlusions occurring during the tracking task can be handled more easily.
• One same object captured from different sensors at different positions in space can be

associated easily with each other
A more straightforward tracker is already included and used in the urban environment in
the currently existing project this thesis is part of. However, the basis of this tracker is the
reliance on simple physical properties, which can lead to weaknesses in urban areas. Tracking

1.3 Outline 3

in urban environments comes with more complex challenges due to the increased complexity
and the dynamic environment than e.g. tracking on highways. Therefore, the ultimate target
is to find another tracking approach that is performing better than the current one, especially
in urban environments. However, additionally to its application on the intersection data, in
the optimal case the tracker is also able to produce good results when applied to data from
highway scenarios. Ultimately, we should be able to integrate the working tracking system
into the project’s existing toolchain pipeline. Including a well-performing 3D tracking system
will help the AUTOtech.agil project improve performance and enable it to create a digital twin
in the urban environment. Additionally, object tracking can also improve existing features in
the existing project, like object detection and segmentation.

1.3 Outline

This thesis is structured as follows to provide a comprehensive exploration of multi-object
tracking within the realm of autonomous driving. Chapter 2 introduces the necessary back-
ground to correctly understand the topics covered in the following chapters. It explains
the general task of Multi-Object Tracking and different approaches, introduces mathematical
concepts used for computations necessary for tracking, and specifies the metrics used for eval-
uating the tracking system. In the following Chapter 3, many related works are presented
structured according to the used approach and the used model architectures, like physical
models, graph models, or attention-based models. It shows the diversity of possible solutions
for the problem of Multi-Object Tracking. After that, in Chapter 4, the chosen approach we
want to use to solve the problem statement is explained in detail. Following is a description
of the features that expand upon the chosen approach. Having explained how we realize
the tracking task, we execute it on data recorded in more urban and less urban areas in
Chapter 5. This chapter compares the results of the existing tracker used in the project to
those from the proposed tracker. In Chapter 6, we give an outlook on the current system’s
weaknesses. Future work can include addressing these issues or further improving already
well-performing features. Finally, a conclusion is drawn in Chapter 7 to summarize the thesis
results.

Chapter 2

Background

This chapter gives the reader an overview of the basic knowledge of things used or applied in
the following parts of the thesis. This knowledge includes different general and concrete con-
cepts, including explanation of the performance metrics used for evaluating the performance
of the implementation.

2.1 Multi-Object Tracking

Problem Formulation

One can generally subdivide object Tracking into Single-object Tracking and Multi-Object
Tracking. In both cases, the input is a video sequence in the form of consecutive snapshots
of the observed environment at consistently distanced timestamps. These snapshots are pri-
marily in the form of images or point clouds, depending on whether 2D or 3D Tracking is
performed. In Single Object Tracking, the tracking algorithm fixes its target on the same
object through the whole sequence. An additional input or an arbitrary choice of an object
determines the object to track. This object is then tracked across a given sequence of frames,
which means that the algorithm returns the exact position of the considered object at every
timestep. Single-object Tracking is simple and efficient, but, as the name already says, it
can only track one object at a time. Therefore, the more exciting problem formulation is the
task of Multi-Object Tracking. In Multi-Object Tracking, we consider an arbitrary number of
objects at each frame, and the target is to assign these objects a consistent ID across multiple
frames if they already occurred in a previous frame. In Figure 2.1, we consider two timesteps
and present the objects at every timestep. In this concrete case, the object’s IDs correspond
to the colors of the surrounding bounding boxes. The target is now, e.g., that the woman
with the red jacket in the right image is assigned the same bounding box color as in the left
image, and the two other men in the left image are also assigned the same color in the right
image. The man with the purple bounding box in the right image has not been there before.
Therefore, we assign him an arbitrary color. So, the goal is to find the correct positions of
the objects already identified in previous frames. An alternate formulation of the goal is to
find the optimal sequence of states for each occurring object. In the concrete case of fol-
lowing the Tracking by detection approach, see Section 2.2.2, we can formulate the problem
mathematically as a maximum-a-posteriori (MAP) estimation problem[16]:

Ŝ1:t = arg max
S1:t

P(S1:t |O1:t)

Here, O1:t represents all the sequential observations of all objects from frame F1 up until
frame Ft , i.e. the detected objects. S denotes all possible sequential states of all objects from

6 2 Background

the first Frame F1 until Frame Ft . Ŝ1:t are the predicted states for the objects.
As mentioned earlier, we can also distinguish between 2D and 3D Tracking. The actual
difference is mostly simply the data format of the given input. If the input data is in 2D
format, i.e., images, we typically perform 2D Object Tracking. If the input data is in 3D
format, i.e., in point clouds, we usually employ 3D Object Tracking. Additionally the output
is different, of course. 2D Tracking returns bounding boxes describing an area of the image
in the form of positions in the images, while 3D Tracking returns cuboid bounding boxes
including 3D coordinates.

Figure 2.1: These two images from [12] illustrate the fundamental concept of Multi-Object Tracking. In the left
image, three individuals are present. The right image shows four people, including the three from the left image
and a new person. Multi-Object Tracking involves identifying which individuals in the right image correspond to
those in the left image and determining the occurrence of new individuals, as indicated by the colored boxes.

Online and Offline Tracking

The difference between online and offline tracking lies in the information the tracker uses
to perform the tracking task. Online Tracking only uses information from the current frame
and past frames since, in real-world applications, it does not have information about future
frames. Offline Tracking, also called Batched Tracking, uses information originating from
all input frames. Processing one single frame can use previous and future frames for more
accurate results. Online Tracking is used in applications or scenarios requiring a system’s
real-time performance or immediate reactions. For example, autonomous vehicles have to
track the movement of other vehicles to be able to react to changes in the environment
immediately. Also, video surveillance needs online tracking to get immediate information
about objects or persons of interest. On the contrary, we use batched tracking when there are
no timing constraints. For example, in performing video analysis or behavior analysis, the
consecutive positions of objects need to be computed. Another use case for offline tracking
can be post-processing of annotations or detections for dataset curation. However, the result
is not immediately needed but consumed as a total in the analysis phase afterward.

Challenges

Multi-Object Tracking is a challenging task. It brings many problems and challenges one must
consider in the solution approach for the problem. Some of the main challenges are:

• Occlusions: An occlusion occurs if a specific object is visible at frame Ft , is not visible
at frame Ft+1, but is visible again at frame Ft+2 or a later one, e.g., as illustrated in
Figure 2.2. These occlusions can be partial or complete. For the tracking algorithm to
deliver good performance results, the used algorithm has to handle these occlusions

2.2 Pipeline 7

to track the objects over extended periods. One way to realize this is, e.g., to model
occlusion relationships between objects. Another possibility is to keep information on
disappeared objects for a few following frames to be able to track them if they appear
again in a later frame.

• Similarity of Objects: Another challenge for a tracking algorithm is the fact that multiple
objects can look similar to each other in the current frame. More precisely, this problem
mainly occurs when the tracking algorithm works with the appearance features of the
considered objects. Then, two objects that look pretty similar could switch their IDs
without the tracker recognizing the mismatch.

Figure 2.2: An occlusion scenario in crowded scenes with objects of varying sizes. Image 1 depicts a visible
bicycle crossing the intersection, followed by the bus overtaking it in the second image. In the third image, the
bicycle becomes visible again. Multi-Object Tracking aims to determine whether the bicycle in the third image
corresponds to the one in the first image.

• Real-time constraints: Object Tracking must fulfill real-time requirements in many
cases. In these cases, the tracking algorithm has to have a short inference time since
multiple frames per second usually have to be processed by the tracking system. In the
best case, the tracker should produce results in the frequency corresponding to the time
difference between consecutive frames.

• Detector: Many approaches to Object Tracking utilize an object detector alongside the
actual tracking algorithm. The tracker then uses the detections delivered by the de-
tector. The first challenge is that the detector also needs a certain amount of time
to complete its computations, making the real-time constraint even more challenging.
Furthermore, the tracking algorithm works based on the detections delivered by a spe-
cific detector. In that case, the quality of the tracking results will depend significantly
on how accurate the delivered detections are.

2.2 Pipeline

2.2.1 General

In most cases, when performing object tracking, object detection is also done or even re-
quired for tracking. There are different paradigms of how the two components of Object
Detection and Object Tracking play together. It is possible to do Tracking before detection. In
that case, the latter object detection typically utilizes the tracking results. A frequent reason
for using this strategy are objects to track that are hard to observe. Another reason is to set
the tracking task free from the fixed category that a detector gives its detected objects [37].
Often, tracking before detection is also used as a pre-processing step for object detection to
improve the performance of the object detector.
Another possibility is to do joint Tracking and Detection. In that case, one algorithm consid-
ers object detection and object tracking simultaneously within a unified framework. Suppose

8 2 Background

we use a learning-based approach for joint object detection and tracking. In that case, the
whole pipeline, including detection and Tracking, can be optimized jointly, simplifying the
training of the Multi-Object Tracker. Joint Tracking and detection aims to use complementary
information and improve the overall performance and robustness of the Multi-Object Track-
ing systems in dynamic environments.
However, the predominant strategy at the time is to use a tracking-by-detection approach.
The detections are delivered to the tracker by the detector, so the tracking task happens after
the detection task. Therefore, the two tasks are mostly independent of each other. Since it is
the most prominent approach at the time, the following section explains the concept in more
detail.

2.2.2 Tracking by Detection

Generally, we can distinguish the Tracking-by-detection strategy into five main parts. The
tracking algorithm then executes these five parts sequentially [20]:

Motion

Prediction

Data

Association

Object

Detection

Pre-

processing

Trajectory

Management

Predicted Positions

Detections

Preprocessed

Detections

Matching Results

Figure 2.3: Illustration of the tracking-by-detection paradigm, depicting its individual steps.

1. Object Detection: While the primary focus of this work lies in 3D multi-object Tracking,
it is essential to acknowledge the integral role of object detection within the overall
pipeline. Typically, tracking-by-detection employs a well-established and effective de-
tector. Significant to mention is that the detector operates independently of the subse-
quent tracking process. Once the detector completes the object detection task, it pro-
vides bounding boxes outlining the detected objects. These bounding boxes commonly
include information such as position, dimensions, orientation, category, and confidence
score. It is also possible that the detector delivers additional information about the
bounding boxes in the form of appearance information, which can originate from im-
age data as well as from LiDAR data.

2. Pre-Processing: The Pre-processing step is not strictly necessary but is often used to
reduce the number of false positive detections delivered by the detector. Ultimately, the
tracker chooses the bounding boxes used for tracking at this stage. Popular methods
are, e.g., Non-Maximum-Suppression or a Score Filter. The latter checks the confidence
score of a detection. If the score is below a certain fixed threshold, it discards the detec-
tion. Non-maximum-suppression aims to prevent the same object from being detected
multiple times, resulting in multiple bounding boxes for one object. Ultimately, Non-
Maximum-Suppression discards all bounding boxes with an Intersection over Union
above a certain threshold.

3. Motion Prediction: A 3D Multi-Object Tracker usually uses a motion prediction module
to predict the state by including the position of the objects tracked in the last frame for

2.2 Pipeline 9

the state update of the current frame. The state includes the bounding box informa-
tion from the detector. It often uses the object’s location, orientation and velocity from
the last couple of frames to estimate where the object will be moving to and in which
state it will be in. 3D object tracking commonly uses physical models like the constant
acceleration model. Various methods, such as Extended and Unscented Kalman Fil-
ters, Particle Filtering, or Probabilistic approaches, can realize motion prediction. They
provide a dynamic representation of how the objects move in consecutive frames.

4. Data association: After the predicted states of the tracked objects from the past frames
are available, the goal is to associate these tracked objects with the object detections
from the current frame. The objects get the same ID as the associated tracked objects
from the past frames. Principally, two parts have to be considered [16]. First, the track-
ing algorithm computes the similarity of the detections and the tracked objects from
past frames rationally. Secondly, based on the similarity of objects, the identification of
the new detections has to be realized, i.e., the tracked objects must be matched with the
detections optimally. The following Subsection 2.2.3 gives a more detailed classification
of data association strategies.

5. Trajectory Management: The last part is to decide what trajectories are declared dead,
which are newly created, and which ones will be output [20]. In the process of Multi-
Object Tracking, declaring a trajectory as dead means that the object represented by
the track is no longer present in the perception field of the used sensor and, therefore,
will no longer be tracked and removed from the list of tracked objects. Creating a
new track happens if a new detection is not very similar to any tracked object and,
therefore, cannot be associated with an existing track. So, it will be assigned a new, to
this point, unused ID representing a newly initialized trajectory. Concerning the Multi-
Object Tracking system output, a decision about which trajectories are returned to the
caller or output to a result file is required. For example, it could only return trajectories
matched in the current frame or also ones matched in the past frame to the caller for a
specific frame.

A problem that can occur while using this strategy is the dependence of the tracking per-
formance on the detection performance, as previously mentioned. If the detector produces
many incorrect or imprecise detections or misses many detections, the tracker must try to
compensate for these errors somehow.

2.2.3 Learning and Learning-Free

An essential distinction of Multi-Object Trackers to make is if the tracker uses an approach de-
pending on a machine learning model or if it is learning-free, meaning that it can be realized
by only doing simple mathematical computations that do not require a lot of computational
resources like, e.g., neural networks do. This distinction relates mainly to the process of
motion prediction as well as the process of data association.

• Motion Prediction: To predict the motion of an object in future frames, one can either
choose to use a physical model or a learning-based approach. An example of a physical
model is the constant acceleration model. This simple linear motion model assumes that
the object is moving with a velocity influenced by a constant acceleration in the same
direction in one time step. It does not take into account the orientation of an object.
On the other hand, another way to predict the state of an object in the future frame is
the usage of, e.g., Recurrent Neural Networks. The input to this network would then
be the object’s location, orientation and other kinematic properties from the previous
frames. The advantage of the physical models is that they are more interpretable since
their results are explicitly defined based on physical principles. Often, they are also

10 2 Background

faster to compute. On the other hand, learned models can learn complex patterns and
adapt to many circumstances that the physical models could not represent.

• Data Association: As mentioned in Section 2.2.2, the data association in multi-object
tracking is usually composed of computing the affinity of detections and tracks and
afterward getting a good matching between the detections and the tracks.

– Affinity Computation: In this part, the tracking algorithm computes the affinity or
similarity between the past frames’ tracks and the current frames’ detections. 2D
Tracking often uses a convolutional deep-learning model to get a representation
of the objects. It can then compare these representations. Siamese networks, e.g.
[2], are neural networks that can compute the similarity between two objects by
using the images of the detections and the tracks. Their goal is to minimize the
distance between pairs of detections and tracks that are very similar and maximize
the distance between dissimilar pairs. Since the input data is often in LiDAR format
in 3D Tracking, training Siamese networks is not a common choice for affinity
computation. In that case, an often-used alternative are graph neural networks
[27], which model the relations between detections and tracks as a graph. By that,
they can model complex dependencies and relationships. Apart from the learned
affinity computation, simple distance measurements between the bounding boxes
can also check which detections and tracks are likely to correspond to the same
object. For example, Euclidean distance or the intersection over union metric are
common choices to check how far apart and how similar two bounding boxes are.
These metrics usually can be applied in the 2D as well as in the 3D domain.

– Matching: The matching between the old tracks and the latest detected objects
usually happens without machine learning. It uses the computed affinities in the
previous step to perform bipartite graph matching [16], leveraging known match-
ing algorithms like the greedy or Hungarian algorithm. Most of the available
multi-object tracking systems use the latter one. It guarantees an optimal solution
that minimizes the total cost of the assignment.

2.3 Kalman Filter

2.3.1 General

Generally, a Kalman Filter is used to solve the filtering problem by estimating the state of a
system. External inputs and measurements of outputs performed by devices or sensors prin-
cipally determine the system’s behavior. Based on this information, the Kalman Filter tries to
estimate the current state of a system [23] by also considering the noise in the measurements
that originate from a noisy environment. In the context of Multi-Object Tracking, the state
of every tracked object is managed by a Kalman Filter. This Kalman Filter internally keeps
the object’s state updated, i.e., usually the position, dimension and rotation of the bounding
box corresponding to the object. Using the state of the object and applying the previously set
system model, e.g., the constant acceleration model, it tries to predict the internal state of the
object, i.e., the position and rotation, for the following frame. These considerations consti-
tute the prediction step of the Kalman Filter. After the tracked object was assigned a detection
in the current frame, the Kalman Filter incorporates the information from the assigned de-
tection as the noisy measurement to adjust its prediction. While doing that, it considers the
uncertainties in the measurements and the system model, labeled as the update step. Since
the object’s state is now up-to-date for the current frame, the filter is then ready to process
the next frame. If there is no assigned detection in a frame to the tracked object, the tracker

2.3 Kalman Filter 11

skips the update step of the filter, assuming the predicted state is the correct state. Motion
prediction in 3D object tracking often uses the principle of the Kalman Filter.

𝑥t+1𝑥t

ො𝑥𝑡+1 ො𝑥𝑡+1 & yt+1

Synchronize

Prediction Update

Measure

Figure 2.4: Illustration of the Kalman Filter’s operating principle. The Filter predicts the system’s next state (x̂ t+1)
based on its current state, then corrects this prediction using real-world measurements (yt) to synchronize with
the actual state (x t+1).

2.3.2 Mathematical Computation

The general Kalman Filter assumes that the state of a system changes in a way such that a
linear equation looking like this [23] can describe it:

Predic t ion : x̂k+1 = Ak xk + Bkuk + Gwk

U pdate : xk+1 = x̂k+1 − Kt ∗ (yt −H ∗ x̂k+1)

yk = Ck xk + vk

where xk is the state of the system at step k, yk is the measurement given the state xk and
wk and vk is Gaussian noise with zero mean. A is the state transition matrix, B is the control
input matrix and u is the control input. Kt is a timestep dependent computed factor and H is
the measurement matrix.
One can see that the Equation 2.3.2 is a linear function. The Kalman Filter operates recur-
sively, updating its estimate as new measurements become available at each time step. The
result is a Gaussian density function that represents the current estimated state of the system.

2.3.3 Extended Kalman Filter

In the case of nonlinear system dynamics, including states and observations, we can no longer
use the standard Kalman Filter. The problem is that the standard Kalman Filter relies on
linear system dynamics and measurements. It assumes Gaussian distributions for the state
and measurement noise. If the system dynamics are nonlinear, the resulting density function
describing the estimated state is not Gaussian, and therefore, the preconditions for using
the Kalman filter are violated [23]. Instead, extending the Kalman Filter to also represent
nonlinear system models is possible. The Extended Kalman filter includes two steps:

1. Linearization: The nonlinear functions in the system dynamics and measurement mod-
els are locally approximated by linear functions using the Jacobian matrices. This ap-
proximation provides a linearized representation of the system in its current state.

12 2 Background

2. Kalman Filter: The Extended Kalman Filter then uses the linearized models to execute
the standard Kalman Filter. This involves predicting the state and covariance based
on the linearized system dynamics, the update based on the linearized measurement
model, and the computation of the Kalman gain, as mentioned before.

Since the Extended Kalman Filter uses an approximation of the system dynamics in the form
of a linearized model, it introduces errors in the state estimation process, mainly if the system
exhibits significant nonlinear behavior.

2.4 Generalized Intersection over Union

The Generalized Intersection over Union (GIoU) or the basic Intersection over Union (IoU)
can compute the overlap between two spaces of elements. In the object detection and track-
ing context, these two spaces of elements are the bounding boxes of two detections. In
2D, the bounding boxes are rectangles at specified positions; in 3D, the bounding boxes are
cuboids. So, all forms of Intersection over Union compute the overlap of two areas or two
cuboids. The IoU is the most used metric, which can be computed by:

IoU =
|A∩ B|
|A∪ B|

where A and B would be the bounding boxes. The weakness of the standard Intersection
over Union is that two elements that do not overlap with an observed third element are
defined to have an equal distance to the target, also if one is near to it and the other not.
Figure 2.5 illustrates this problem. To overcome the weakness [22] proposed the Generalized
Intersection over Union (GIoU) to improve the standard Intersection over Union. The GIoU
is defined as follows:

GIoU = IoU −
|C \ (A∪ B)|
|C |

Where C is the smallest convex shape enclosing A and B [22]. This principle was generalized
to 3D by [20]. The value of the GIoU can be between −1 and 1, where −1 is the worst case
where the two boxes are entirely separated, and 1 is a perfect overlap of the bounding boxes.
This metric can avoid the previously mentioned problem, pictured in Figure 2.5.

2.5 Metrics

Meaningful metrics must be defined and used to evaluate the tracking system’s performance.
To do that and to understand how these metrics work, we present relevant error sources that
occur in the tracking task. We also explain some more advanced metrics after some basic
and straightforward metrics. Important to mention is that to evaluate a tracking system, we
always require a consecutive sequence of frames.

2.5.1 Evaluation Process

To evaluate the performance of an algorithm, one has to possess the algorithm’s results and
the ground truth values. We assume the ground truth values to be the correct values repre-
senting real-world happenings. The tracking algorithm delivers the results of its algorithm
as a set of hypotheses, which are the positions it thinks the objects with specified IDs are at

2.5 Metrics 13

0 5 10
2

4

6

8

10

12

A

B

C

IoU(A, B) = 0.1809 IoU(A, C) = 0

GIoU(A, B) = 0.0161 > GIoU(A, C) = 0.2632

0 5 10
IoU(A, B) = 0 IoU(A, C) = 0

GIoU(A, B) = 0.011 > GIoU(A, C) = 0.0379

A

B

C

IoU Limitation

Figure 2.5: Illustration of the advantage of Generalized Intersection over Union (GIoU) over Intersection over
Union (IoU). The goal is to determine the proximity of objects. In both images, objects A and B are closer than
A and C ." The left image shows an intersection between A and B, resulting in larger IoU and GIoU for A and B
compared to A and C ." In the right image with no intersection, IoU is 0 for both pairs, but GIoU considers the
smallest area containing both objects, resulting in a non-zero GIoU for A and B and claiming them to be closer
than A and C .

X

FNY

Tracking Errors

GT Position Ocolor Predicted Position Ocolor

FP

Frag

IDSW

Figure 2.6: The paths of three objects are depicted, with ground truth positions at consecutive timesteps shown by
dots and connected by colored lines. The transparent surroundings of the dots represent the tracker’s prediction
of the object ID. An ID-switch (IDSW) occurs when the tracker changes the IDs of the red and blue objects.
False Positives (FP) arise when the tracker predicts a yellow object that does not exist. The tracker misses two
predictions for the green object but later associates it with the correct color, resulting in fragmentation. One of
these missed predictions is considered a False Negative (FN).

14 2 Background

the current frame. The evaluation itself happens frame-by-frame. At each frame, we consider
the results from the tracker in the current frame and the results from the ground truth in
the corresponding frame. Given these two quantities of positions and bounding boxes, the
evaluation functionality has to match the hypotheses with the elements of the ground truth.
These correspondences between the predicted objects from the tracker and the ground truth
objects are the basis for the following sections.

2.5.2 Common Errors

First of all, this section explains the typical mentioned and occurring errors to prevent mis-
understandings; Figure2.6 provides a more intuitive explanation:

• False Positives (FP): The tracker predicts a hypothesis for the position of an object that
could not be associated with an object from the ground truth.

• False Negatives (FN): The ground truth contains an object that is not matched to a
predicted object from the tracker, meaning the tracker has not tracked this object in the
current frame. Such a case is also called a miss.

• ID Switches (IDSW): An ID switch occurs if the same object that the tracker predicts
in two or more consecutive frames switches ID from one frame to another, although it
should have kept its ID according to the ground truth. It effectively counts the num-
ber of times an object got a new ID, although it should have maintained the old one.
The source of an ID switch are often objects that look pretty similar or very crowded
situations.

• Fragmentations (FRAG): An object’s position with a consistent ID is tracked, but the
track is lost, e.g., due to an occlusion. After some frames, the object is tracked again,
but with a different ID. Such a scenario constitutes the definition of a fragmentation.

All these errors can also represent a metric. Keeping them as low as possible indicates a good
tracking performance, achieving the ultimate goal.

2.5.3 Simple Metrics

Some metrics are rather simple and mainly used to get a rough overview of how good the
results of the tracking system are. This work uses the following ones:

• Total Track Length: The sum of all single track lengths. We define one track as the
positions at which one object with a consistent ID was tracked.

• Total number of tracks: The number of IDs given to objects across a whole sequence.
It is the number of different objects in the real world. We can then compare the total
number of tracks to the total in the ground truth. The nearer these two numbers are
together, the better the performance of the tracker.

• Average Track Length: Total track length divided by the total number of tracks. It
shows how long an object’s track is on average. A higher value often corresponds to a
better-performing tracking system.

2.5.4 Advanced Metrics for Performance measurement

As already said, the metrics above only give a rough impression of how well the tracking
system performs. We use more advanced metrics to evaluate a tracker and compare the
results to those from different trackers and benchmarks. These metrics use the error cases
mentioned in Section 2.5.2. A set of widely used metrics that provide a comprehensive

2.5 Metrics 15

assessment of the tracking performance are the CLEAR MOT metrics [1]. These metrics
include the IDSW, FRAG, MOTA and MOTP. AMOTA and AMOTP are further advanced metrics
originating from the CLEAR MOT metrics. Apart from that, the HOTA metric is also an
important performance indicator that gives a more complete estimation of the performance
than MOTA and MOTP. AMOTA and AMOTP are integral metrics proposed by [30] to deal
with the problem that the other evaluation metrics do not consider the confidence score of a
track.

• Multiple Object Tracking Accuracy (MOTA): MOTA focuses on evaluating the overall
accuracy performance of a tracking system. It returns a comprehensive evaluation that
reflects the ability to detect and track objects correctly and maintain the correct identity
of objects over time. The definition of the MOTA computation is as follows:

MOTA= 1−
∑

t |FNt + |F Pt |+ |I DSWt |
∑

t |T Pt |

The MOTA metric is probably the most popular metric to evaluate the tracking perfor-
mance, also if it may not be sufficient if used alone.

• Multiple Object Track Precision (MOTP): MOTP focuses more on the localization perfor-
mance of the tracker. It is the average distance between the predicted and the matched
ground-truth objects. The formula for its computation is:

MOT P =

∑

i,t d i
t
∑

t |T Pt |

where d i
t is the distance between a predicted object and its matched ground truth.

• Higher Order Tracking Accuracy (HOTA): This metric considers a multi-object tracking
system’s detection, identity and robustness performance. The computation comprises
the computations of the localization, detection and association accuracy [15]. It gener-
ally is defined as follows:

HOTA=

∫ 1

0

HOTAαdα≈
1

19

∑

α∈0.05,0.1,...,0.9,0.95

HOTAα

HOTAα =

√

√

√

∑

c∈{T Pα} Aα(c)

|T P|α + |FN |α + |F P|α
A(c) is a metric assessing the actual association performance in the predictions. More
precisely, it measures the alignment between the ground truth trajectories and the pre-
dicted trajectories [15].

• Average Multiple Object Tracking Accuracy (AMOTA), Average Multiple Object Tracking
Precision (AMOTP): AMOTA and AMOTP are MOTA and MOTP values integrated inte-
grated over the recall value [30]. The integration is usually approximated by summing
over a discrete set of recall values. Recall values in that context mean the tracking
system’s confidence score for output tracks. With this information, we compute the
AMOTA like this [30]:

AMOTA=
1
L

∑

r∈{
1
L

,
2
L

,...,1}

1−
|F Pr |+ |FNr |+ |I DSWr |

|T P|

where L is the number of thresholds we integrate about. The formula under the sum
is the MOTA value at the specified recall level. The computation of AMOTP works
analogously with MOTP at the specified recall value instead of MOTA.

16 2 Background

• Mostly Tracked(MT), Partially Tracked(PT), Mostly Lost(ML): these metrics keep the
number of track IDs that were tracked for at least 80% (MT) or at most 20% (ML). We
count the tracks in between of that range as partially tracked (PT).

Chapter 3

Related Work

As mentioned in Section 2, 3D Multi-Object Tracking approaches can be divided into the
three categories of tracking-before-detection, joint-tracking and Detection, and tracking-by-
detection (TBD). The chapter introduces some concrete works following the named theoretic
principles to get an impression of how these topics are approached practically by researchers
in the real world.

3.1 Tracking before Detection

Tracking before Detection is the approach that is used least often in the world of Multi-Object
Tracking. Most of the works are relatively old; therefore, the following examples only try to
glance at how to realize the tracking-before-detection approach. Works using the tracking-
before-detection mostly use dynamic programming algorithms, multi-Bernoulli random set
filter or particle-filter-based methods [34]. E.g., [34] uses a dynamic programming approach
by performing Bayesian filtering after discretizing the state space. It tries to track an un-
known number of objects by processing multiple consecutive frames simultaneously. How-
ever, this approach requires solving a high-dimensional optimization problem and, therefore,
is computationally intensive, although they [34] proposed a method to reduce the computa-
tion complexity. [17] proposes another work pursuing the tracking-before-detection strategy.
This work realized the track-before-detection approach to also track objects from unknown
categories instead of objects originating only from known categories. They extract regions of
interest using a stereo setup and segment them into candidate objects. These regions of inter-
est are then independently tracked over consecutive frames using the iterative-closest-point
method. After tracking a region of interest, the tracker passes its results on to an object de-
tector to determine the category of the tracked object. The authors claim that their tracking
algorithm performs well, also in very crowded scenes. Such a strategy has the positive side
effect that a tracked object only has to be detected once, unlike in a tracking-by-detection
approach in every frame, thereby saving computational resources.

3.2 Joint Tracking and Detection

Nowadays, many works also realize Multi-Object Tracking through the joint Tracking and
Detection paradigm. It aims to improve the overall performance and accuracy of the tracking
system. Different strategies exist, including using Transformer architectures, Kalman Filters,
or Graphs. Many of the existing Joint Tracking and Detection approaches require image data
as input, including the ones presented in the following:

18 3 Related Work

PF-Track

Figure 3.1: From [19], PF-Track represents objects, existing tracks, and new detections as queries. The approach
employs Past and Future Reasoning to enhance spatio-temporal coherence. Past reasoning utilizes historical
information to refine object queries, while Future Reasoning aims to improve motion prediction for future object
states.

[19] propose an end-to-end multi-camera 3D multi-object tracking framework. Contrary
to the target of this thesis, it uses image data only. Their approach, called PF-Track, uses
a tracking-by-attention paradigm, i.e. utilizing the attention mechanism. An object query
represents every object, the tracked objects from the past frame, and new detections in the
current frame. These queries then depict the corresponding object by a feature vector and
the 3D position of the object. The following parts subdivide the overall procedure:

1. To process a frame, the queries for all object tracks from previous frames are required,
which are then extended by a fixed number of new detection queries to be able to track
newly detected objects.

2. In the next step, the decoder of the framework uses the object queries to decode the
image features of the current frame. The decoder outputs the detected bounding boxes
for all tracks in the current frame and the updated query features kept internally.

3. To refine the detected bounding boxes and the query features in the current frame, PF-
Track applies Past Reasoning. A combination of a cross-frame-attention module and a
cross-object-attention module refines the queries. The cross-attention is applied across
the time and the instances, setting the queries in relation to its tracks from previous
frames and other objects in the current frame. A simple MLP refines the positions of the
tracks’ bounding boxes output in the current frame. The tracker writes these outputs to
the result file.

4. Future reasoning is used to improve the propagation of track queries across frames.
The authors realize this by applying a cross-frame attention module to get the motion
embeddings of the tracks. An MLP then produces the decoded embeddings that repre-
sent the future trajectories of objects. Predictions from the trajectories resulting from
future reasoning replace low-confidence detections to handle occlusions.

The PF-Track reaches an AMOTA value of 0.43 in the nuScenes tracking benchmark, ranking
78th in the nuScenes tracking challenge, see Table 3.1. It notably minimizes the number
of identity switches and improving overall spatio-temporal coherence. They show that the
approach can propagate the positions of occluded objects over several frames and re-associate
them with the correct ID.

3.3 Tracking by Detection 19

3D DetecTrack

[10] tries to solve the task of Multi-Object Tracking by realizing a joint object detection and
multi-object tracking framework based on the fusion of camera and LiDAR data. The detector
generates spatio-temporal features, which the tracker then uses to associate the objects from
the previous frames with those in the current frame. Principally, the overall pipeline separates
the detection stage from the tracking stage.

• Detection stage: They use an existing 3D detector which computes 2D and BEV features
from LiDAR data, delivers spatiotemporal features. The 2D and BEV features are then
fused to a single feature map using a feature aggregation network. After that, a Re-
gion Proposal Network detects the objects and their confidence scores. Another neural
network refines the detection and the score. In both of these processes, by incorporat-
ing the track information from the previous frame into the computation for the current
frame they want to improve the performance.

• Tracking stage: The spatiotemporal features delivered by the detector are used to match
the detections with the tracks from previous frames. After computing RoI-aligned fea-
tures for the detections in the current frame and the tracks from the previous frame, the
features of each object are fed into the Spatial-temporal Gated GNN (SG-GNN). A node
represents every object, and the graph itself is fully connected. The SG-GNN, in the
end, outputs an affinity matrix, which the Hungarian algorithm then uses to generate
the matching between detections and tracks.

This approach has some characteristics of a tracking-by-detection framework but with the
critical difference that the detector incorporates the tracks from the previous frames to re-
configure the detection output. So, the detector and tracker collaborate to optimize the object
detection and object tracking jointly. DetecTrack is only evaluated on the nuScenes valida-
tion set reaching an AMOTA value of 0.11. Therefore it is also not ranked in the nuScenes
tracking benchmark.

3.3 Tracking by Detection

Tracking by Detection is by far the most popular and most used approach for tackling the
problem of Multi-Object Tracking. Existing research and projects implement different ap-
proaches in the tracking component of the pipeline. The options for approaches to realize mo-
tion prediction or data association include Kalman Filters, Transformer architecture, Graph-
based approaches, Deep-Learning approaches, and more. The following sections present a
few existing works structured after their computation technique.

3.3.1 Based on Kalman Filters

SimpleTrack

SimpleTrack [20] breaks the tracking functionality down into the parts described in Section
2.2.2 and tries to improve the performance of the Tracking by investigating each of these
functionalities individually for possible enhancements.

1. Pre-processing: SimpleTrack proposes to use stricter Non-Maximum-Suppression to the
detections received from the detector to filter out false positives and prevent the tracker
from selecting these false positives to form tracks.

2. Motion Prediction: A Kalman filter is applied to predict the motion of existing tracks
since it performs better on high-frequency data that [20] uses and does not need veloc-
ity measurements performed by the detector to make the prediction.

20 3 Related Work

3. Data association: For the association between the detections in a current frame and
the tracks from the previous frame, they apply the generalized intersection over union
metric as explained in Section 2.4. For the matching part, they argue that the Hungarian
algorithm and the greedy algorithm perform with similar strength when working with
an IoU-based association metric.

4. Trajectory Management: SimpleTrack uses a two-stage association strategy. In the first
stage, they match only detections with a confidence score higher than a threshold. The
matched detections of this stage are then also the ones that are output. If a detection is
still successfully associated in stage two, it is not declared dead, but it is also not used
for the update step of the Kalman filter that is realizing the motion prediction.

Integrating the mentioned improvements into the Multi-Object tracking framework mitigates
some weaknesses occurring in other works. For example, the principle of two-stage data
association significantly reduces the number of ID switches by reducing the number of early
terminated trajectories. SimpleTrack reaches an AMOTA value of 0.67 on the nuScenes test
set, ranking 32nd in the nuScenes tracking challenge, see Table 3.1.

ByteTrackV2

The approach proposed by [38] aims to improve the overall tracking performance by making
use of all detection boxes independent of their confidence score, resulting in a detection-
driven hierarchical data association strategy [38]. This approach is not limited to 2D or 3D
Tracking but is applicable for both tasks. Once more, they divide the framework into the
components explained in Section 2.2.2. The approach reaches an AMOTA value of 0.56 on
the nuScenes test set, ranking 61st in the nuScenes tracking challenge, see Table 3.1.

1. Detection: ByteTrackV2 uses CenterPoint and TansFusion-L as its 3D detector process-
ing LiDAR input. As a 3D camera-based detector, they mention the PETRv2 detector,
while for 2D Detection, they use the YOLOX detector.

2. Motion Module: As the motion model, ByteTrackV2 uses a simple Kalman Filter, keep-
ing an internal state vector whose dimensionality depends on the kind of Tracking
performed, 2D or 3D. A complementary motion prediction is applied in 3D motion pre-
diction to handle abrupt motions and object occlusions. Forward prediction uses the
Kalman Filter for long-term prediction to recover from missing detections. In contrast,
backward prediction, responsible for the short-term association of current tracks, uses
the detected velocity.

3. Data association: The unified 2D and 3D data association strategy first associates the
detection boxes with a confidence score above a certain threshold with the existing
tracks. After that, the still unmatched tracks are associated with the detection boxes
not surpassing the mentioned threshold.

4. Trajectory Management: tracks still unmatched after the second association stage are
removed from the active tracks but kept for a fixed number of frames. If they are
unmatched for that number of frames, they get removed finally. The boxes output at
each frame are the matched existing tracks and those created by unmatched detections
in the current frame.

This approach approaches the problem of missing objects and fragmented trajectories by
using a generic data association and a complementary motion prediction. Furthermore, it can
be used with various detectors since it showed no clear preference for a particular detector
in the experiments done by [38].

3.3 Tracking by Detection 21

Figure 3.2: From [29]. The illustration showcases the three main modules of CAMO-MOT. The first module
processes image features to estimate the occlusion state of objects, producing an affinity matrix based on object
appearances. The second module creates object motion features, predicts the motion, and generates an affinity
matrix based on these features. The third module combines appearance and motion affinities to establish an
optimal matching between current detections and existing tracks.

CAMO-MOT

CAMOT-MOT, published by [29], is a Multi-Object Framework that uses both an appearance
and a motion model, leveraging the advantages of images and point cloud data. The overall
framework consists of three main modules:

1. Optimal Occlusion State-based Object Appearance Module: This includes the image
feature extraction, which produces a fixed number of feature maps. After that, an oc-
clusion head takes the feature maps and the bounding boxes of the objects detected by
the LiDAR detector and tries to estimate the occlusion state of the objects. The subse-
quent matching head acts as an end-to-end module outputting the final cost matrix for
the association between detections and existing tracks. It uses the differences between
the object features in both frames and a CNN to output the final appearance-based
association matrix.

2. Confidence Score-based Motion Module: CAMO-MOT uses a Kalman Filter to predict
objects’ trajectories. The output of this module is also an association cost matrix be-
tween the predicted trajectory states and the detections resulting from the 3D detector.
The key idea is to extend the Kalman Filter to output a confidence score of their pre-
diction together with the computed trajectory state. So, a lower confidence score in
the prediction will also decrease the probability that this prediction will be matched
with an incoming detection, resulting in a lower value at the corresponding entry in
the motion-based association matrix.

3. Multi-category Multi-modal Fusion Association Module: This module uses cost matri-
ces originating from the appearance and motion models to produce the final tracking
results for the current frame. First of all, a category loss is added to both of the in-
coming cost matrices to prevent detections and tracks from different categories from
being associated. After that, it uses the motion cost matrix to overcome the limitations
of the 2D detector in the form of possible occlusions. Subsequently, the appearance
cost matrix is used to correct tracking errors introduced, e.g., by unexpected motion of
objects.

The essential new strategy introduced by this work, according to [29], is the use of the occlu-
sion head and the introduction of confidence scores of trajectory predictions, as mentioned

22 3 Related Work

above. The approach reaches a very high AMOTA value of 0.75 on the nuScenes test set,
ranking second in the nuScenes tracking challenge, see Table 3.1. Due to the multi-modality
of the explained approach, it is unsuitable for realizing this work’s task. However, the intro-
duced features are still exciting possibilities for improving performance.

3.3.2 Based on Attention Mechanism

InterTrack

Figure 3.3: The figure provides a detailed view of the tracking process from [31]. Following the computation of
features for all tracks and detections at the current frame, InterTrack employs the Interaction Transformer. This
transformer applies self-attention for feature attenuation within a single frame and cross-attention to exchange
information among multiple frames. To compute the affinity matrix crucial for the final matching, as described in
Section 2.2.2, InterTrack utilizes the resulting features.

Intertrack [31] introduces the concept of an Interaction Transformer. [28] has proposed
the general transformer architecture. The architecture of [31] computes characteristic rep-
resentations of the detected and tracked objects. The focus here is on learning the affinity
between existing trajectories and incoming detections to perform the data association effec-
tively. The approach reaches an AMOTA value of 0.69 on the nuScenes test set, ranking
15th in the nuScenes tracking challenge, see Table 3.1. The following steps summarize the
implemented tracking strategy:

1. Feature Extraction: The feature extractor takes the feature vectors of all tracks and
detections with the frame-wise point clouds and computes new features for detections
and tracks.

2. Interaction Transformer: The computed features are then fed into the Interaction Trans-
former to produce interaction-aware track and detection features [31]. It is composed
of a self-attention block and a cross-attention block. The self-attention block computes
the relation of object features within one frame, while the cross-attention block per-
forms object feature attenuation across multiple frames. The result of the transformer
are features for the objects and tracks that include intra-frame and inter-frame relations
in their computation.

3.3 Tracking by Detection 23

3. Affinity Head: The first step of calculating the output affinity matrix is concatenat-
ing each detection and track’s state and shape features. A feed-forward network then
consumes these features to produce probabilities representing the similarities between
tracks and detections.

After that process, the optimal affinity matrix is computed and used to continue the tracking
task. Now, 3D detections are projected onto the images to match them with the 2D detections
in a greedy manner. InterTrack uses a two-stage data association. Based on the affinity matrix
in the first stage, they compare all detections with all existing trajectories from the previous
frame. The trajectories are computed by propagating them from the last frame using the
motion prediction strategy proposed by [35]. After obtaining the assignment, matching pairs
with an Euclidean distance over a threshold are removed. In the second stage, unmatched 2D
detections and unmatched trajectories projected on the image are the inputs for the matching
using IoU. After that, tracks are rejected based on 3D IoU with the other tracks.

TrajectoryFormer

[5] also uses the attention mechanism as its core part. It is a multi-object tracking framework
that works only on LiDAR data. The work focuses on compensating missed detections deliv-
ered by the detector. It tries to recover these by generating multiple trajectory hypotheses
with hybrid candidate boxes. The overall tracking is composed of the following steps:

1. Generation of multiple trajectory hypotheses: For each tracked object, the Trajectory-
Former generates multiple possible trajectories that try to predict the object’s move-
ment. Before doing that, an MLP that uses the history trajectory of a track is used to
predict the states of the track for a fixed number of frames. TrajectoryFormer associates
each existing track from the previous frames with its predicted boxes and the detections
boxes from the current frame to generate Multiple Trajectory hypotheses.

2. Long Short-Term Hypothesis Feature Encoding: The multiple trajectory hypotheses are
transformed into the feature space by fusing a long-term motion encoding with a short-
term appearance encoding. The long-term motion encoding takes a sequence of the
generated trajectory hypotheses for a track and computes its motion features utiliz-
ing a PointNet-like Neural Network. The short-term encoding encodes the appearance
of each box of each trajectory hypothesis, incorporating points from the point cloud
corresponding to the given box. This is done usig MPPNet. Self-attention achieves in-
formation interaction between all points of the box, and cross-attention generates the
final appearance features. Another MLP takes the concatenation of motion embedding
and appearance embedding as input to compute the long-short term embedding for
each trajectory hypothesis of a track.

3. Global-local Feature Interaction of Multiple Trajectory Hypothesis: The computed fea-
ture encoding explained in the previous bullet point can capture each hypothesis’s ap-
pearance and motion information but does not see the interaction between multiple
hypotheses. A transformer with self-attention achieves this information interaction,
which uses keys, values, and queries generated using the embeddings from the previ-
ous step.

After the last step, the confidence score computed by an MLP is extending the overall confi-
dence score of each hypothesis feature. TrajectoryFormer chooses which trajectory hypothesis
is best for each tracked object based on the hypothesis’ confidence. The work by [5] is very
interesting, considering that it only takes LiDAR data as input and still uses appearance in-
formation for performing the tracking task. TrajectoryFormer is only evaluated Waymo Open
dataset [24] testing split where it achieves an MOTA value of 0.65 for tracking vehicles, a
MOTA of 0.66 for tracking pedestrians and a MOTA of 0.65 for tracking Cyclists.

24 3 Related Work

3.3.3 Based on Graphs

3DMOTFormer

The approach proposed by [8] called 3DMOTFormer is a 3D Multi-Object Tracking framework
that combines Graphs and the transformer architecture to complete the tracking task. It
models the tracking problem at a specific frame as a graph with the current detections and
the existing tracks at nodes and the relations between them as edges. After the transformation
operation, it updates the existing tracks by doing edge classification.
The Graph Representation, as already mentioned, is designed such that the nodes include
all detections and all existing tracks. In the end, the work uses three graphs:

1. Detection graph: The detection graph models the interaction among all detections in
the current frame; the state vector of the detection determines the initial node embed-
ding.

2. Track graph: The track graph models the interaction among all existing tracks from the
previous frames.

3. Association graph: The association graph models the relation between the current de-
tections and the existing tracks. Here, an edge can only exist if a detection and a track
are objects from the same category.

After building the graphs, the initial track features from the track graph, the initial edge fea-
tures from the association graph, and the initial detection features from the detection graph
are fed into the centerpiece of the framework, the Edge-augmented Graph Transformer.
[36] explains the principle of Graph Transformers :

1. Encoder: The encoder models the interaction between the existing tracks using self-
attention.

2. Decoder: The decoder uses graph self-attention to produce intermediate detection fea-
tures. These intermediate detection features are used in the edge-augmented graph
cross-attention as queries, while the keys and values originate from the encoder results.
The computation of the cross-attention also includes the edges from the association
graph.

In the end, the 3DMOTFormer tries to estimate the affinity between detections and existing
tracks, represented as the association graph’s final edge features. An MLP takes these fea-
tures and performs edge classification to output the probability that the detection and the
track refer to the same object. The tracks and detections are subsequently associated greedily
according to the computed probability. Using the resulting track features, matched, inactive,
and new tracks can be determined. The velocity computed by another MLP using the detec-
tion features can be used to predict the position of the center points in future frames.
This work is also very interesting for the task in this thesis because it only uses 3D data, as
well, and does not rely on image data. Furthermore, the authors of the work claim that this
tracking approach generalizes well across various 3D detectors; hardware accelerators like
GPUs are necessary to use this approach for real-time applications. This approach reaches
an AMOTA value of 0.68 on the nuScenes test set, ranking 29th in the nuScenes tracking
challenge, see Table 3.1.

PolarMOT

[9] proposes another strategy to tackle the task of 3D Multi-Object Tracking based on graphs
or, more exactly, graph neural networks. They perform tracking using only the geometric
relationships between objects. The graph consists of the detections, current and from previ-
ous frames, as the nodes and edges as the relations between different objects. The edges are
either inter-frame edges modeling the temporal relations or intra-frame edges modeling the

3.3 Tracking by Detection 25

Figure 3.4: The figure elucidates the strategy employed by PolarMOT from [9]. The process begins with creating
a graph, where detections from multiple consecutive frames serve as nodes, and the edges represent the number
of pairs of these detections. Subsequently, Message Passing is applied to the graph to classify edges as active
or inactive. An active edge can only connect two objects from different frames, indicating correspondence to the
same real-world object.

spatial relation between detections. The following points describe the step-by-step procedure
of this approach:

1. Graph Construction: During graph construction, nodes across any number of frames
are connected, assuming that the geometrical distance between them can be covered
in the interval between the number of frames in between for inter-frame edges. For
intra-frame edges, they connect nodes if they can collide in the next frame.

2. Message Passing: A predetermined sequence of alternating updates on edges and nodes
follows the general message-passing algorithm after constructing the graph. The edge
update is executed by concatenating the edge features with the features of the end
nodes and feeding the result into an MLP. The node update takes the max incoming
message from the past, from the current time step, and, in the case of offline tracking,
from the future time steps, concatenates them and uses an MLP to produce the wanted
node update.

3. Edge Classification: After the message passing, they classify all edges, excluding intra-
frame edges. If the classification result is positive, the edge represents a connection of
the same object in two frames.

An important property of the framework is that localized polar coordinates instead of global
cartesian coordinates represent the relative poses between detections. These poses then rep-
resent the edge features. The pose difference depends on the two detections instead of an
additional reference frame. Since only the geometric states of the detection are required,
PolarMOT is not coupled to a specific object detector. However, there is a clear difference in
the performance between online and offline tracking since the message passing can use ge-
ometric cues from future frames as an additional source of information. PolarMOT achieves
an AMOTA value of 0.66 on the nuScenes test set, ranking 42nd in the nuScenes tracking
challenge, see Table 3.1.

3.3.4 Further Approaches

GNN-PMB

The GNN-PMB tracker [14] is a Multi-Object Tracking framework that uses Bernoulli Pro-
cesses and Poisson Point Processes to model the state of objects in the tracking task. The
Bernoulli process estimates the probability that a tracked object exists in the current frame.

26 3 Related Work

Otherwise, it would be occluded. The Poisson Point Process gives the probability that a new
object appears in the current frame. First, the 3D detection boxes are projected into Birds
Eye View to get 2D bounding boxes. The remaining steps of the tracking process performed
by the GNN-PMB tracker can then be summarized as follows:

1. Hypothesis Management for Data Association: Using the detections in the current
frame, the propagated tracks from the previous frame, and possible new tracks that the
Poisson Point Process initiated, the association cost matrix is created, which contains
the probability that a certain detection corresponds to a specific track. After applying
the Hungarian algorithm, there is an optimal matching. Matching probabilities result-
ing from that matching below a certain threshold are pruned and no longer seen as
associated.

2. Update: After the final matching, they update the states of the existing and newly
created tracks using the matched detections using a classical Kalman Filter.

3. Track Maintenance: If a detection is matched with a newly created track, it gets a
new ID and is output; if it is associated with an existing track, it maintains its ID. If
a track is not matched with a detection at one frame, the probability parameter of
the Bernoulli process for that track decreases. If the adapted probability falls below a
certain threshold, the track may be pruned and no longer considered a track.

This approach pursues a different strategy than that of most other works mentioned. How-
ever, it also achieves pretty good results compared to other LiDAR-based and Fusion-based
approaches. More precisely, it achieves an AMOTA value of 0.68 on the nuScenes test set,
ranking 26th in the nuScenes tracking challenge, see Table 3.1.

Approach Year Ranking AMOTA ↑ AMOTP ↓ IDSW ↓ FRAG ↓ FP ↓ FN ↓
SimpleTrack [20] 2021 32 0.67 0.55 575 591 17,514 23,451
ByteTrackV2 [38] 2023 61 0.56 1.00 704 1,016 18,939 33,531
Camo-MOT [29] 2022 2 0.75 0.47 324 511 17,269 18,192
Polar-MOT [9] 2022 42 0.66 0.57 242 332 17,856 21,414

3DMOTFormer [8] 2023 29 0.68 0.50 438 529 18,322 23,337
PF-Track [19] 2023 78 0.43 1.25 249 839 19,048 42,758

GNN-PMB [14] 2023 26 0.68 0.56 770 431 17,071 21,521
InterTrack [31] 2023 15 0.69 0.56 1402 710 16,663 23,755
PolyMOT [13] 2023 1 0.75 0.42 292 297 19,673 17,956

Table 3.1: The tracking results of the approaches on the nuScenes test set. The ones that were described but are
not in the Table have not been evaluated on the nuScenes test set. PolyMOT will be described in detail in Section
4. The ranking refers to the ranking in the nuScenes tracking benchmark and is taken from the paperswithcode
website on Feb, 11 2024.

3.4 Other Works

Apart from the mentioned general approaches, there are some other concrete interesting
works based on the mentioned principles. These works are especially interesting when con-
sidering the project this thesis is part of.

DMSTrack

The study proposed by Chiu et al. [6] introduces an innovative approach to cooperative track-
ing within autonomous driving systems. Cooperative tracking involves conducting tracking
tasks using data from multiple sensors. While much of the existing literature in cooperative

https://paperswithcode.com/sota/3d-multi-object-tracking-on-nuscenes

3.4 Other Works 27

perception focuses on object detection, DMSTrack takes a different approach by leveraging
detections from individual sensors and producing overall tracking results. The methodology
is detailed as follows: Each sensor resides on a connected autonomous vehicle (CAV), with
each CAV transmitting its sensor data to an object detector and a neural network responsible
for predicting the mean and covariance of detected object states. The central computing unit
then receives and processes all detections, including their object states and covariances. The
central unit manages sequential data associations, updates states, and initializes tracks using
detections and covariances from each Connected Autonomous Vehicle (CAV). Upon process-
ing data from all CAVs, the central unit generates the final tracking results. The subsequent
Kalman Filter uses the results in its update step to propagate tracked objects to the next time
step. The functionalities of the submodules mentioned in the tracking by detection approach,
see Section 2.2.2, include:

1. Object Detection: A late fusion PointPillar model serves as the 3D object detector in
each CAV [26].

2. Motion Prediction: The Constant Velocity Model is employed for motion prediction,
enabling the utilization of the standard Kalman Filter due to its linear nature.

3. Data Association: To compute the affinity between detections and tracks, they utilize
the 3DIoU method, and for the matching task, they utilize the Hungarian Algorithm.

Upon matching completion, the multi-sensor Kalman Filter incorporates the predicted covari-
ance matrix of each CAV into its update step. They repeat the process of matching existing
tracks with detections and performing CAV-specific Kalman Updates for each CAV in the same
order. After processing data from the final CAV, matched tracks and detections are output,
while unmatched ones are handled similarly to previous methods, such as in the work by
Weng et al. [30]. The neural network designed to predict object states’ covariances is a
significant aspect of the study. This Covariance Neural Network utilizes local and positional
object features to estimate the covariance of detection states. Training this neural network
involves computing a regression loss on the final tracking results obtained after processing
data from the last CAV. Since the approach is working in a different setup as the approaches
described before due to the usage of multiple sensors, it is also evaluated on another dataset.
Overall, DMSTrack achieves a performance AMOTA of 0.44 on the test set of the V2V4Real
dataset [33].

Real-Time Multi-Object Tracking in Cloud-Based Environment

The approach proposed by [26] aims to address the challenges of real-time multi-object track-
ing in a cloud-based environment, mainly focusing on scalability and data synchronization
from multiple sources. The Multi-Object Tracking framework achieves similar accuracy to the
AB3DMOT tracking approach [30] while being 588%faster. It uses separate threads for all
available sensors to increase inference speed. A Pre-Tracker thread is started for every sensor,
keeping a local object list. The Pre-Tracker predicts the states of the objects from the previous
frames, associates it with all current detections, updates the predicted states using a Kalman
Filter, and passes the matched and new objects to a main fuser component. Each Pre-Tracker
resembles a usual separate Multi-Object Tracking system. The main fuser maintains a global
object list, which represents the aggregated information of all tracked objects across different
sensors. Once the object lists are sorted and filtered based on age and quantity, the main
fuser updates the global object list accordingly. This update involves integrating new object
detections, associating them with existing tracks, and deleting tracks for objects that are no
longer detected or are considered lost. Object association matches detections from differ-
ent sensors to existing tracks in the global object list. This process helps in maintaining the
identity of objects across different sensor views. Fusion combines information from multiple
sensors about the same object to improve tracking accuracy. For example, the fusion com-

28 3 Related Work

Figure 3.5: The figure depicts the DMSTrack procedure, illustrating the sequential processing of detections and
covariances from all CAVs, along with the execution of Kalman Updates. Additionally, it highlights the point where
the loss function, employed for training the Covariance Neural Networks, is computed.

bines position and velocity information from radar and lidar sensors. After association and
fusion, the main fuser updates the state of existing tracks and initializes new tracks for newly
detected objects. Lost tracks are deleted based on probabilistic estimations. The resulting
algorithm runs at real-time speed, reaching very high frame rates. Applying the approach
on the nuScenes test set results in an AMOTA value of 0.26 and 0.15 depending on which
motion model is used internally by the tracking system.

Chapter 4

Tracking Approach

In this chapter, the tracking approach realized to solve the task of 3D Multi-Object Tracking
is introduced and described in detail. Since the chapter is about the complete tracking ap-
proach, the Section 4.1 first describes the tracking pipeline proposed by [13] in detail. The
Sections 4.1.1, 4.1.2, 4.1.3, 4.1.4 are only explanations of the already existing tracking ap-
proach of [13] as is, without any modifications. This is important to then better understand
the features the baseline approach is extended with. Subsequent sections then present prob-
lems, failure patterns, and shortcomings of the adopted approach and analyze their impact
on the tracking performance. Bringing our examination to a close, we introduce tailored
solutions designed to address the identified issues, offering enhancements to the resilience
and effectiveness of our tracking system. The Figure 4.1 shows the final overall architecture
of the tracking system including the added features that are illustrated in the red boxes.

P
o

in
t

C
lo

u
d

3
D

 D
et

ec
to

r

S
co

re
 F

il
te

r

N
o
n
-M

ax
im

u
m

-

S
u

p
p

re
ss

io
n

A
ct

iv
e

T
ra

je
ct

o
ri

es

C
at

eg
o

ry
-S

p
ec

if
ic

S
ta

te
 P

re
d

ic
ti

o
n

Category Specific 2nd

Data Association

3DGIoU BEVGIoU

Matched

Pairs

Unmatched

Trajectories

Unmatched

Detections

A
n

g
u

la
r

D
if

fe
re

n
ce

 P
en

al
ty

A
ss

o
ci

at
io

n

T
h

re
sh

o
ld

D
et

er
m

in
at

io
n

H
u

n
g
ar

ia
n

A
lg

o
ri

th
m

Category Specific 1st

Data Association

3DGIoU BEVGIoU

A
n

g
u

la
r

D
if

fe
re

n
ce

 P
en

al
ty

A
ss

o
ci

at
io

n

T
h

re
sh

o
ld

D
et

er
m

in
at

io
n

H
u

n
g
ar

ia
n

A
lg

o
ri

th
m

Unmatched

Detections

Unmatched

Trajectories

Orientation

Correction

Track

Output

Discard

Judgement

Confidence

Decay Delete

Confidence-Based

Trajectory Init

State Update

Active

Trajectories

CTRA

BICYCLE

CA

Tt-1

Tt-1

D´t Dt

Tt

𝑇𝑡

𝐷𝑇𝑡
𝑢

𝐷𝑡
𝑢 𝑇𝑡

𝑢

𝐷𝑡
𝑢1

𝑇𝑡
𝑢1

Multi-Category Trajectory Motion Module

3D Detector & Pre-Processing Module

Trajectory Management Module

Multi-Category Data Repetition Association Module

Figure 4.1: The figure shows the complete architecture of the realized tracking system. Most of it originates from
the Baseline [13]. The added features are illustrated in the red boxes. Tt−1 depict the existing tracks at frame t−1
while Dt and Tt depict the detections and existing tracks in the current frame t . T̂t are the predicted states for the
existing tracks at frame t .

30 4 Tracking Approach

4.1 Baseline

The tracking approach developed for 3D Multi-Object Tracking in this work is building upon
the Polyhedral Multi-Object Tracking Framework proposed by [13]. We choose the baseline
framework for multiple reasons:

• Efficiency through Learning-Free approach
• Best performance in the NuScenes Multi-Object Tracking challenge, see Table 3.1[4]
• Exclusive reliance on LiDAR data
• Precision in motion features through the use of LiDAR data

These attributes collectively contribute to the framework’s effectiveness in meeting real-time
constraints, making it a good choice for achieving our 3D Multi-Object Tracking objectives.

The mentioned approach is realizing the tracking-by-detection paradigm, explained in de-
tail in Section 2.2.2. The core concept behind this approach involves the differentiation be-
tween various categories when performing the tracking tasks. Subsequent sections delve into
the specifics of how this idea implements the tracking process. However, to further extend
and improve the baseline work, additional features are added including a dynamic threshold
determination and an angular difference penalty, explained in Section 4.2, compensating for
some of the weaknesses observed during the execution of the basic approach.

4.1.1 3D Detector and Pre-Processing Module

As mentioned, the Polyhedral Multi-Object Tracking Framework is realizing the tracking-by-
detection baseline. Therefore, an arbitrary 3D LiDAR detector delivers its detections to the
tracking system. Each detection contains only geometric information about the object, like
the position, the dimensions, or the orientation. Based on the information of the detections,
the tracker then tracks them across multiple frames, assigning each object a consistent ID.
As part of the pipeline, [13] realizes two preprocessing strategies to fortify and simplify the
task. Standard object detectors used in autonomous driving output a confidence score in
addition to the spatial information like position, dimensions, rotation, and the specification
of the category of the detected object. The confidence score indicates how sure the detector
is that the detection is indeed a True Positive. Based on the confidence, the PolyMOT tracker
neglects all detections residing below a specified threshold as a preprocessing step and does
not consider them in the tracking process. This threshold’s magnitude depends on the object’s
concrete category following the essential idea of [13]. The main target of the Score Filter is
to reduce the number of False Positive tracks. In addition, PolyMOT applies Non-Maximum-
Suppression over all detection bounding boxes in one frame. This avoids tracking two objects,
although only one of them exists in reality, resulting in a lower number of False Positives.

4.1.2 Multi-Category Trajectory Motion Module

The trajectory motion module’s task is to predict objects’ position. This happens by apply-
ing motion prediction models incorporating the last positions of the considered object. The
tracking system’s list of tracks includes all objects tracked over the last frames. Based on
the motion history and a computed internal state, it uses specific physical motion models to
predict where the object will move in the next time step. The exact choice of the motion
model for an object is category-specific. The used model for each category is specified based
on the typical motion patterns of an object of the respective category. Predicting the position
constitutes the prediction step of the Kalman Filter, mentioned in 2.3. The plot 4.2 shows the
used motion models. The following motion models are available:

4.1 Baseline 31

X

Y

Motion Models

CTRA
BICYCLE
CA

Figure 4.2: The figure illustrates a typical path predicted by three employed motion models. The initial yaw
orientation of the object in radians is set to 1 in this illustration. The plots demonstrate that the Constant Turn
Rate and Acceleration (CTRA) and Bicycle (BICYCLE) models account for orientation changes, allowing them to
represent curved motion patterns. In contrast, the Constant Acceleration (CA) model does not have this capability.

• Constant Turn Rate and Acceleration Model: The CTRA model predicts the position,
the velocity v, the orientation θ , the acceleration a, and the turn rate ω while a and
ω stay constant [25]. The predicted orientation is computed by θk+1 = θk +ω · T ; the
predicted velocity is vk+1 = vk+a·T , where T is the time difference between two frames.
Sine and cosine are applied to the position and velocity in the preceding timestep to
compute the position. By assuming a steady acceleration in rotation and position, the
model can capture non-linear motion patterns of objects, which traffic participants in
urban areas often perform.

• Bicycle Model: The bicycle model assumes the vehicle to have only one wheel in the
front and one in the back, imitating a bicycle. As described in [21], the motion pre-
dicted by the Bicycle model depends on the steering angle of the vehicle as well as
on the acceleration. Using the steering angle δ and the rotation θ to compute the di-
rection of the velocity allows us to compute the change in position in x as well as in
y-direction: ẋ = v ∗ cos (θ + β(δ)) and ẏ = v ∗ cos (θ + β(δ)). β(δ) is the slip angle at
the center of gravity as explained in [21]. Like the CTRA model, the Bicycle model can
model non-linear motion patterns of vehicles.

• Constant Acceleration Model: This model predicts the position of an object by assum-
ing a constant acceleration between two consecutive timesteps. The prediction can be
described by: x t = x t−1+vt−1 ·∆t+0.5·at−1 ·(∆t)2. In contrast to the other two models,
it cannot capture non-linear motion.

The tracking process’s next step uses the Kalman Filter’s predicted position. This step is
elucidated in section 4.1.3. An important initialization step for the motion models is the
velocity at the beginning of a track. This initialization is important and independent of the
motion model used in the concrete case. Performing tracking in scenarios where the vehicles
normally have high speed, e.g., on highways, the velocity initialization is far more important
than in scenarios where the vehicles move rather slowly. This is because fast objects travel
more meters in the same time interval as slow objects. Therefore, the distance between the
position of an object at two consecutive timesteps is much bigger. If the position prediction
assumes a far too low velocity, it will predict a position that is not close to the actual position.
In the intersection scenario, a velocity initialization with a speed of 0 m

s is sufficient, while for
the high-speed scenarios, a relatively high initialization speed produces valuable results.

32 4 Tracking Approach

4.1.3 Multi-Category Data Repetition Association Module

The system performs the data association using the preprocessed detections from 4.1.1 and
the predicted position for the currently tracked objects. More precisely, the goal is to asso-
ciate each of the detections with an existing track by computing their affinity. This affinity
resembles the probability that the detection and the track correspond to the same real-world
object. There are various ways to measure the affinity between two objects. This work
computes affinity by calculating distance metrics between detections and tracks. The dis-
tance metric used in the concrete case is category-specific to be as flexible as possible and
accommodate different object characteristics. Possible metrics include the 3DGIoU and the
BEVGIoU. These metrics are based on the Generalized Intersection over Union as explained
in 2.4. BEVGIoU uses the BEV projected area as input to the 2D-IoU, while 3DGIoU directly
uses the cuboid volumes. The affinity matrix C for one category is created by computing the
distances between all pairs of detections and tracks within this category. A pair of detection
d and track e is considered unreachable in C if the distance d(d, e) exceeds the category-
specific threshold. Each category’s affinity matrix C is then fed into the Hungarian Algorithm
to generate an optimal matching.

An additional feature is the two-stage data association. Its idea is to always compute the
distance between a pair of detection and track with two different distance metrics resulting
in C1 and C2. Furthermore, the thresholds for the two different stages can be different. The
following order then summarizes the process of the data association:

1. Compute the affinity C1 between all pairs of detections and tracks for all categories and
use the first threshold to prevent wrong matches.

2. Apply the Hungarian algorithm to C1 for all categories.
3. Take all detections and tracks not matched in the first stage, compute their affinity

matrices C2, and use the second threshold to prevent wrong matches.
4. The matched detections and tracks are now fixed, while the unmatched tracks and

detections are handled by the next module explained in 4.1.4.
After that, the matched pairs between detections and tracks have been determined, and the
information about the detection bounding box is used to update the state information of the
tracked object. This state information update corresponds to the update step of the object’s
Kalman Filter 2.3. Consequently, the states of unmatched tracks cannot be updated. In these
cases, the updated states correspond to the predicted state.

4.1.4 Trajectory Management Module

The Trajectory Management Module takes the matched pairs of detections and tracks, the
unmatched detections and the unmatched tracks, and decides which tracks to remove, which
to add, and which to output. [13] includes the following features:

• Tentative Trajectories: A track is only outputted at a specific frame if matched with a
detection in the last N consecutive frames. N is a category-specific fixed parameter.

• Dead Trajectories: A track is only declared dead and no longer considered in the data
association if the tracking algorithm has not matched it with a detection in the last M
frames. Again, M is a handcrafted category-specific parameter.

• Valid Trajectories: Valid trajectories include all tracks that are no longer tentative but
are not yet dead.

• Track Output: Additionally to the tracks matched in the current frame, it is possible
to specify the number of frames for which the track is output after the last frame the
tracker matched it with a detection. Therefore, the information on the object’s bound-
ing box is solely based on the prediction from the Kalman Filter.

4.2 Limitations 33

Figure 4.3: The figure illustrates the state management of tracked objects. Given the currently tracked objects
and the detections in the current frame, the tracker attempts to establish a matching between them, as explained
in Section 4.1.3. Subsequently, we categorize the objects into matched detections, unmatched detections, and
existing tracks that have not been matched with a detection. The diagram outlines the process of determining
which objects are no longer considered for tracking, which we still consider in the next frame, and which objects
are output in the current frame. The #F mentioned in one box denotes the length of the track of a tracked object
in frames. M is a constant representing the minimum length of the track of an object in frames to be considered
for output.

• Post-NMS: PolyMOT also applies Non-Maximum-Suppression to all tracked bounding
boxes output at the current frame.

4.2 Limitations

Several considerations became apparent after implementing the adopted tracking system and
performing initial evaluations. This section explains some important aspects influencing the
overall tracking performance in detail and how these aspects are interrelated with general
tracking challenges elucidated in 2.1.

4.2.1 Imperfect Object Detection

As mentioned, the presented tracking system works based on detections predicted by the 3D
LiDAR object detector integrated into the project. Like every other detector, its results could
be better, leading to wrong information about the object’s state or missed detection of objects.
E.g., in the left column of Figure 5.5, one can see that if the detector detects an object in one
frame, it does not necessarily detect it in the following frames. Another example is Figure
5.12, where object information, more precisely the object’s orientation, is mispredicted in the
upper images in Frame 414.

4.2.2 Influence of Orientation

The first conclusion drawn from that is the awareness of the intricate relationship between
the orientation of detected objects and the performance of the presented multi-object tracking
system. Understanding the impact of the orientation of the detected objects is crucial for

34 4 Tracking Approach

enhancing the robustness and accuracy of the tracking system. As elucidated in Section
4.1.2, the PolyMOT tracker employs specific motion models that leverage object orientation
for predicting the position of known tracks. Two of the mentioned motion models require the
object orientation of the detection to update the Kalman Filter’s internal state. While the CA
model disregards the object orientation, focusing solely on velocity prediction, the CTRA and
the BICYCLE models use the orientation to predict the potential curve the object will move
along. A wrongly assumed object orientation leads the motion prediction to produce a wrong
state update following a wrong and lousy motion prediction. Using this incorrect prediction
from the last frame for the affinity computation in the current frame can be difficult. Even
if the detector detects the real-world object corresponding to the lousy prediction in the
current frame, it is likely that the matching algorithm cannot match them since the distance
might have gotten too big in the meantime. Hence, wrong object orientations make the data
association immensely worse.

Problem

The importance and possible resulting failures become apparent based on the example shown
in 4.4. The orientation of the detected car in the first image of frame 413 is correct, while it is
incorrect in the following frame 414. The missing detection of the car in frame 415 leads to
a wrongly predicted trajectory illustrated in the lower row in frame 415 4.4. The predicted
motion takes a turn to the left, although the car follows a straight trajectory in the real
world. If the car gets detected in a later frame again, comparing it to the predicted position
can then be challenging. The reason is that the two objects are now very distanced from
each other, resulting in a low affinity between them. Applying the association mechanism
explained in Section 4.1.3 will not lead to a match, resulting in a new ID for the car. The
frequency of occurrence of this pattern, characterized by instances of both missing detections
and inaccurately predicted orientations, is notable.

Figure 4.4: A sequence of three consecutive frames is presented. The three upper images display the detections
delivered by the detector without tracking, while the three lower images depict the detections after being processed
by the tracker. In frame 413, the detector detects the car correctly, but in frame 414, the detector predicts a wrong
orientation. In frame 415, the detector completely misses the object. Consequently, the tracker attempts to predict
the motion of the car for frame 418 based on prior information. Since the orientation was incorrect in frame 414,
the tracker assumes the car to take a left turn, inaccurately capturing the object’s actual motion.

4.2 Limitations 35

Orientation Plausibility Check

To address the issue of wrongly predicted object orientations presented in Section 4.2.2, the
addition of an orientation plausibility check is suggested. The basic idea to decrease the
influence of incorrect detection orientations on the tracking performance is pretty straight-
forward. After the two-stage data association, all matches between detections and existing
tracks are determined. Since the detection is now matched, it is associated with an existing
track. Therefore, it has a history of states, including past positions, velocities, and orienta-
tions. These are now used to check the correctness of the current detection orientation. We
only consider the orientation of the tracked object from the last frame θe and the orientation
of the detection in the current frame θd . The added feature compares the two orientations
to each other. If the difference between them differs more than a certain amount, i.e. more
than 0.35 radians, the orientation of the detection box θd_new is assumed to be wrongly pre-
dicted. In that case, the bounding box of the detection is set to have the same orientation
as the internal state of the tracked object proposed. A manual parameter search determines
the exact maximal value of the angular difference. Concisely formulated, this idea looks as
follows:

θd_new =

¨

θe, if θe − θd > α

θd , otherwise

The basis of this check is the assumption that an object cannot change its orientation over
more than α in one timestep between two frames. Extreme orientation changes within one
timestep are unlikely, especially since the difference in time is usually far smaller than one
second. After updating the detection orientation, the Kalman Filter and the motion model
should be able to produce more valuable predictions.

Moving Average Filter for Rotation

As an alternative solution to the solution proposed in Section 4.2.2 we added another way
of handling the challenge of wrongly predicted orientations. The idea is to apply a simple
moving average filter to the orientations of a tracked object in the last frames. The number
of past considered frames is fixed. The resulting orientation of an object is then computed
by:

θd_new =
1
p
∗

t
∑

i=t−p+1

θi

θi is the orientation of the object in the frame at time i, p is the number of past orienta-
tions that is taken into account when applying the moving average filter and θd_new is the
orientation which is then used as the update orientation of the object.

4.2.3 Occlusions and Missed Detections

The concept of occlusions elucidated in Section 2.1 is similar to the problem of missed detec-
tions by the detector. In both cases, the tracking system has to predict the object’s position
correctly, such that it can be associated with a frame where the object is detected again. In the
case of an occlusion, this frame would be the third image of Figure 2.2 while in the example
of missed detections, it would be at the left column of Figure 5.5 in frame 148. This associa-
tion is usually very challenging since the time difference between the two frames where the
object is detected can be multiple seconds, resulting in a multiple of tens of frames where the
tracker has to predict the object’s state. The goal is to avoid association failures due to lousy
motion predictions, especially in occlusion situations. The orientation of the last detection

36 4 Tracking Approach

of the object is never wholly correct. Minor deviations already strongly influence the motion
prediction for an object, resulting in a position prediction that does not correspond to the
proper position. For every missed detection, the tracker skips the update step of the Kalman
Filter. Consequently, the deviation is getting bigger and bigger with every frame for which
the detector reports no detection for the tracked object. The reason for that is the classical
principle of fault propagation. As already explained, lousy quality in position predictions
affects the ability to generate a correct association in the frame where the object is first de-
tected again. We propose the following two strategies to enable and enhance the required
association.

Adaptive Threshold

The first idea is to use adaptive dynamic thresholds in the two-stage data association instead
of fixed static ones. This idea was also realized by [32]. Figure 4.5 illustrates this strategy.
With every time step where the Kalman Filter is only predicting but not updating its internal
state, we decrease the association threshold, making it easier for objects to be associated. The
fact that the track of an object is kept alive for a certain number of frames, although not being
matched with a detection, enables us to realize that idea. For every consecutive frame where
the matching algorithm can not match the track with a detection, the association threshold
δc_new is dynamically altered and determined by:

δc_new = λ ∗δc

where the factor λ is determined manually. Figure 4.5 shows the intended effect.

X

Y

Dynamic Association Threshold

Predicted Trajectory
True Trajectory
Detections

Predictions
Association Threshold

Figure 4.5: Adopted from [32]. As elaborated in Section 4.1.4, information about a tracked object is retained even
when it goes undetected for several frames. During this period, the object’s position relies solely on predictions
from the motion model. However, as the motion model cannot accurately predict the object’s motion without mea-
surement information for the Kalman Update step for a long time, the prediction quality degrades with each missing
measurement. Consequently, when a measurement becomes available after a certain number of timesteps, the
predicted position may be so distant from the true position, making the correct data association challenging. In-
creasing the threshold with each missing measurement could enhance the likelihood of correctly re-establishing
the match with the object.

Angular Difference

Another point to start is to directly modify the computation of the affinity used for the asso-
ciation. The key idea is to adjust the affinity based on an additional distance metric applied
between the detection position and the last position of the tracked object associated with the

4.2 Limitations 37

detection. When predicting a moving object’s position, its uncertainty is more significant in
the direction of motion than perpendicular to it. As the detector itself used in this work does
not provide velocity information, the velocity for motion prediction is estimated or computed
based on the object’s last positions and orientations. Since an object primarily moves along
the direction of the estimated velocity vector, the predicted position in that direction may
not be completely accurate. Conversely, movements perpendicular to the motion direction
are typically small, as objects usually do not exhibit such behavior. Consequently, penaliz-
ing movements perpendicular to the motion direction more heavily than movements along
it makes sense. The resulting computation of the affinity measurement between an existing
track e and a detected object d can be defined as:

Cd,e = GIoU(pd , pe)− γ ∗ ang_di f f

where Cd,e is the assignment cost between d and e, γ is a fixed pre-factor and ang_di f f is
computed as:

ang_di f f = |θt − θd |

where θd is computed by
θd = atan2(xd , yd)

and xd and yd by
�

xd
yd

�

= pd − pe

Here, pd is the position of the incoming detection, and pe,θe are the position, and orientation
of the predicted position of an existing track. The resulting Cd,e is then compared against
the same threshold as before to determine the association between detections and tracks.
The factor γ is manually fixed through an extensive parameter search and remains constant
across all categories. The accompanying Figure 4.6 provides a visual representation and
further detailed explanation.

Last Known Position
Possible Next Position

Figure 4.6: This illustration pictures the concept behind the angular difference penalty. The velocity vector of an
object usually aligns with the direction of motion. Consequently, motion occurring perpendicular to this direction
is unlikely, implying increased uncertainty in the predicted position along this perpendicular direction. The affinity
between two objects is heightened if one lies in the motion direction of the other and penalized otherwise. While
the red object in the left lane might have a higher affinity with the green object than the red object in the right lane,
the latter is more likely to move toward the position of the green object due to the smaller value of λ compared to
φ.

The just explained computation of the angular difference can also be used as part of
an additional similarity metric itself. Combining the simple euclidean distance metric with

38 4 Tracking Approach

the angular difference results in a similarity metric which does not require to compute the
Generalized Intersection over Union metric. That can be of advantage since the computation
of it requires determining the convex hull which is a computationally intensive task. The
following distance metric could then look like the following when we want to compute the
similarity between an existing track e and a detected object d:

Cd,e = deucl(d, e) + deucl(d, e) ∗ ang_di f f

The computation of the ang_di f f is performed the same way as described above. The com-
putation of the metric only requires the computation of the euclidean distance as well as the
angular difference which are two quite easy computations.

Modification of Trajectory Lifecycle

In Section 4.1.4 the concept of tentative tracks as well as the concept of tracks that are not
matched at a current frame but still output is introduced as intended by [13]. Tentative tracks
have a number Nmin_hit which states the number the track has to be matched with a detection
to be output. In this way, false positive output tracks are avoided. However, if Nmin_hit is set
too high, the number of false Negative objects also increases. To mitigate the influence of a
high number of false negatives, we propose to only use Nmin_hit when initializing a track with
a detection with a confidence score above a certain threshold γ. If a detection d that is used
to initialize a new track t has a confidence score above a certain threshold, we set this track
to active immediately:

Nmin_hit =

¨

1, if γ < CS(d)
Nmin_hit , otherwise

CS(d) tells the confidence score of detection d. We set γ to 0.9. Therefore a detection has to
have a confidence score of at least 0.9 to be output as a track immediately.
We propose another modification to the trajectory management module proposed by [13]
concerning the output of tracks. In the basic adopted version of the tracking system a num-
ber of frames M can be specified for which a track t is output after it was last matched with
a detection, see Section 4.1.4. Additionally, the trajectory management module of [13] de-
creases the confidence score of a track for each frame it was not matched with a certain factor.
We use this confidence score decay to determine the concrete value of M . This happens simi-
lar like the principle of the tentative trajectories are modified. We output the track as long as
its confidence score is above a certain threshold. So, an object which was last detected with
a high confidence score will be output for more frames than an object with a low score:

Output(t) =

¨

True, if ν < CS(t)
False, otherwise

CS(t) again depicts the current confidence score of track t while ν determines the confidence
threshold for a track to be output.

Chapter 5

Evaluation and Results

In this chapter, the adopted and extended 3D Multi-Object Tracking system initiated by [13]
is evaluated on two different datasets: 1) TUM Traffic A9 Highway dataset [7] and 2) TUM
Traffic Intersection dataset [39]. The main focus of this work is on intersection data. However
it is interesting to check if the tracker also performs well on highway data. The performance
of the tracker in both scenarios is compared to the currently used tracker to check if this
tracker outperforms it. This comparison gives us a more general ranking of the tracker’s
performance. The results are reported in quantitative and qualitative aspects. Additionally,
we illustrate the search for the optimal hyperparameters necessary for tracking. After that,
the added features to the tracking system are analyzed and checked to see if they can further
improve the overall performance of the adopted tracker in specific more complex scenarios.

5.1 Setup

The evaluation of the tracking system works based on detections generated by a 3D detec-
tor. The detections for the intersection scenarios, as well as for the highway scenarios, are
generated in advance and are used for every run of the tracking. The detector delivers the
detections in OpenLABEL [18] format, and the tracking system outputs the detections in the
same format but with rectified track IDs. The output detections are then used to compute
the basic metrics described in Section 2.5.3 and the advanced metrics like MOTA or MOTP,
explained in Section 2.5.4. The motmetrics Python library builds the base of the implemen-
tation of the evaluation. It is a prevalent Python library that facilitates the computation of
standard Multi-Object Tracking metrics based on the CLEAR MOT metrics [1]. Initially de-
termined for 2D Multi-Object Tracking, it can also perform the evaluation for 3D Tracking by
feeding its central accumulator element with the list of IDs of the predictions, the list of IDs
of the ground truth, and a cost assignment matrix at each frame. The computed metrics rank
the quality of the tracking results in multiple aspects. We calculate the metrics for the newly
adopted trackers and the currently used 3D tracker, i.e., a modified SORT tracker (SORT3D).
The original SORT tracker [3] is used for 2D Tracking but was extended in previous work of
the project to also handle 3D detections. Apart from comparing the performance results pro-
duced by the motmetrics library, given visualizations compare the tracking results in specific
scenarios. These visualizations are generated using the tum-traffic-dataset-dev-kit. Since the
tracker presented in Section 4 is only using physical computations, the configuration of the
tracker includes many parameters that need to be optimized. The optimization can present
an elaborate task, mainly because executing the tracking system in the urban intersection
scenario requires different parameters than in the highway scenario. Section 5.5 illustrates
the search for the optimal hyperparameters. The tracker uses category-specific parameters,

https://github.com/tum-traffic-dataset/tum-traffic-dataset-dev-kit

40 5 Evaluation and Results

see Section 4, as well as general parameters. We use a M of 3, see Section 4.1.4, an angu-
lar difference factor λ of 0.3 and a threshold θSA of 1.1 in the second association stage for
all categories; the parameter search concluded that the second stage association threshold
is independent of the category. Furthermore we use 3DGIoU in the first association stage
and BEVGIoU in the second stage. We use the orientation plausibility check instead of the
moving average filter, see Section 4.2.2 since it produces better results. We also do not use
the modified output strategy depending on the confidence score of the track but use the stan-
dard output decision process of [13] for the same reason. The confidence threshold ν for
directly initializing a detection as an active track is set to 0.9. The category specific param-
eters including the first association threshold θFA which is a scalar value since the metric is
Generalized Intersection over Union, Score Filter θSF , minimal hit number Nmin_hit , maximal
age number Nmax_age are listed here:

Bike Bus Car M.Cycle Ped. Trailer Truck Van Emerg. Other

θFA 1.5 1.4 1.1 1.4 1.1 1.5 1.3 1.3 1.3 1.3
θSF 0.39 0.45 0.41 0.41 0.41 0.4 0.45 0.41 0.41 0.41

Nmin_hit 3 2 3 2 2 3 3 3 3 3
Nmax_age 15 14 15 15 15 12 12 15 20 10

Table 5.1: Used hyperparameters for the intersection data used for the evaluation of the given sequences.

5.2 Intersection Data

5.2.1 Data Description

Figure 5.1: This image depicts the intersection from which the utilized data originates. It also illustrates the con-
cept of the infrastructure view, where cameras and sensors are mounted on a sign gantry, consistently observing
the same environment.

The tracker is applied to the sequences from the TUM Traffic Intersection Dataset [39] to
test the tracking system in an urban environment. It contains sequences of different lengths
recorded at a busy intersection at Garching near Munich. Figure 5.1 shows the setup at the

5.2 Intersection Data 41

intersection and the intersection itself. The intersection equipment includes two LiDAR sen-
sors and multiple cameras. Using the LiDAR data, a 3D detector, based on the principle of the
primary PointPillar [11] detector used in the Providentia project, is applied to generate the
detections for the tracking. The data is available at a frequency of 10 Hz. All four mentioned
sequences include labeled tracks in the ground truth, making it very easy to measure the
performance of the applied tracker. The first two sequences are relatively short and recorded
in usual traffic situations. The third one is quite long, with 1,033 frames, including very
crowded and relatively sparse scenarios, while the fourth is a sequence recorded at night.
Hence, the third sequence is the most interesting one. More detailed information about the
dataset including category specific numbers about the number of objects and track lengths
can be found in [39].

5.2.2 Quantitative Results

In the following two subsections, we compute and compare the performance metrics of
the modified PolyMOT tracker and the existing SORT3D tracker. The results are compared
against each other and interpreted. The first subsection includes the comparison using basic
tracking metrics, see Section 2.5.3. The basic metrics evaluation results are compared with
the ground truth values. The second subsection shows the results from applying the advanced
CLEAR-MOT metrics of Section 2.5.4.

Basic Metrics

The tables 5.2, 5.3, 5.4, 5.5 show the evaluation results of the basic metrics evaluated on
the four mentioned sequences. The goal is to keep the tracking results as close as possible
to the values computed from the ground truth. Firstly noticeable is that the number of track
IDs of the PolyMOT-Tracker is always quite similar to the number of ground truth IDs, very
in contrast to the number of Track IDs returned by the SORT3D tracker, which is very high in
each of the scenarios. Also, the average track length in meters and frames computed from the
used tracker’s results are much higher and more similar to the ground truth values compared
to the results of the SORT3D tracker. This observation is accurate for each one of the four
sequences. Using the Trajectory Management Module, see Section 4.1.4, is the reason for the
better number of total track IDs of the PolyMOT-Tracker. The module judges the correctness
of the object to be a new tracked object. This judgment also influences the total length of
all tracks, leading to a better result for the SORT3D tracker. The SORT3D tracker assumes
every delivered detection to be part of a correct track, leading to many different tracks that
are partly incorrect and mostly incomplete.

Figure 5.2(a) shows again the clear advantage in the average track length per object of
the PolyMOT-Tracker. The difference is especially immense in the cases of small objects like
bicycles, motorcycles, and pedestrians. One reason for that is likely to be the choice of the
distance metric used for the affinity computation. The SORT3D tracker uses the Intersection
over Union, which leads to the case of an affinity of zero if the objects do not have an
intersection at all. At the same time, the PolyMOT-Tracker has a measurement of the affinity
of two objects even if they do not have an intersection because of the Generalized Intersection
over Union, see Section 2.4.

CLEAR-MOT Metrics

The Tables 5.6, 5.7, 5.8, 5.9 show the results of the CLEAR MOT metrics computation. Here,
the arrows next to the metric’s name indicate if the desired value for this metric is high or

42 5 Evaluation and Results

BIC
YCLE

BUS
CAR

MOTORCYCLE

PEDESTRIA
N

TRAIL
ER

TRUCK
VAN

EMERGENCY_V
EHIC

LE

OTHER

Object Classes

0

10

20

30

40

50

Av
er

ag
e

Tr
ac

k
Le

ng
th

 [m
]

1236%

260%

454%

4700%

1130%

250%

129%
122%

-39%

inf%

Category Specific Average Track Lengths

POLY
SORT

(a) The percentage of the increase of the average track
length of the SORT3D tracker to the PolyMOT-Tracker.

BIC
YCLE

BUS
CAR

MOTORCYCLE

PEDESTRIA
N

TRAIL
ER

TRUCK
VAN

EMERGENCY_V
EHIC

LE

OTHER

Object Classes

0.0

0.2

0.4

0.6

0.8

M
O

TA
 V

al
ue

29.58%
1.29%

28.02%

5.26%

22.10%

-0.66%
0.45%

4.58%

0.00%

0.00%

Category Specific MOTA Values

POLY
SORT

(b) The percentage of the increase of the MOTA metric of
the SORT3D tracker to the PolyMOT-Tracker.

Figure 5.2: category specific tracking results originating from the evaluation on the third sequence R02_S03.

5.2 Intersection Data 43

#Track Total Track Total Track Avg. Track Avg Track
IDs Length[m] Length[frame] Length[m] Length[frame]

SORT3D 183 702 4466 3.8 24.4
PolyMOT 41 684 4450 16.7 108.5

GT 41 1088 5178 26.5 126.23

Table 5.2: Results Sequence R02_S01.

#Track Total Track Total Track Avg. Track Avg Track
IDs Length[m] Length[frame] Length[m] Length[frame]

SORT3D 188 1113 3604 5.9 19.2
PolyMOT 47 1115 3521 23.7 74.9

GT 57 3362 4953 59.0 86.9

Table 5.3: Results Sequence R02_S02.

#Track Total Track Total Track Avg. Track Avg Track
IDs Length[m] Length[frame] Length[m] Length[frame]

SORT3D 989 4487 13843 4.5 14.0
PolyMOT 177 4453 11336 25.1 75.3

GT 153 5453 15334 35.6 100.2

Table 5.4: Results Sequence R02_S03.

#Track Total Track Total Track Avg. Track Avg Track
IDs Length[m] Length[frame] Length[m] Length[frame]

SORT3D 181 906 3401 5.0 18.8
PolyMOT 27 844 3407 31.2 126.1

GT 26 1301 5018 50.0 193.0

Table 5.5: Results Sequence R02_S04.

low. The precision of the tracking algorithms given as MOTP is similar for both trackers in
all sequences, while the PolyMOT-Tracker has clear advantages in the MOTA metric. Also,
the HOTA metric, which evaluates the tracking performance more completely by incorpo-
rating the assessment of the localization accuracy and the association accuracy, is higher
in all sequences for the results of the PolyMOT-Tracker. Reasons for the higher HOTA are,
among others, the much lower number of ID-switches happening and the lower number of
false negatives and false positives. Also, the number of fragmentations in the results of the
SORT3D tracker is much higher. The low number of ID switches could already be assumed
since the total number of track IDs, as explained in Section 5.2.2, is very low and compara-
ble to the number of ground truth IDs. Also, the comparison of the category-specific MOTA
values shown in Figure 5.2(b) shows the advantage of the PolyMOT-Tracker for almost every
category. However, again, the difference between PolyMOT and SORT3D is especially notice-
able for objects from categories with typically lower dimensions like bicycles, motorcycles, or
pedestrians, as already mentioned in 5.2.2.

44 5 Evaluation and Results

FN ↓ FP ↓ MT ↑ PT ↑ ML ↓ IDSW ↓ FRAG ↓ HOTA ↑ MOTA ↑ MOTP ↓
SORT3D 1069 357 19 7 15 88 77 0.77 0.71 0.25
PolyMOT 886 158 19 8 14 5 17 0.86 0.80 0.26

Table 5.6: Results Sequence R02_S01.

FN ↓ FP ↓ MT ↑ PT ↑ ML ↓ IDSW ↓ FRAG ↓ HOTA ↑ MOTA ↑ MOTP ↓
SORT3D 1536 187 13 25 19 96 84 0.64 0.63 0.34
PolyMOT 1547 115 15 20 22 4 13 0.76 0.66 0.32

Table 5.7: Results Sequence R02_S02.

FN ↓ FP ↓ MT ↑ PT ↑ ML ↓ IDSW ↓ FRAG ↓ HOTA ↑ MOTA ↑ MOTP ↓
SORT3D 4388 2897 54 61 38 351 307 0.57 0.50 0.45
PolyMOT 4177 2179 60 53 40 26 75 0.68 0.58 0.45

Table 5.8: Results Sequence R02_S03.

FN ↓ FP ↓ MT ↑ PT ↑ ML ↓ IDSW ↓ FRAG ↓ HOTA ↑ MOTA ↑ MOTP ↓
SORT3D 1820 203 9 10 7 105 107 0.52 0.57 0.59
PolyMOT 1672 61 10 8 8 5 34 0.72 0.65 0.58

Table 5.9: Results Sequence R02_S04.

5.2.3 Qualitative Results

In this section, we demonstrate some specific scenarios that illustrate the strong tracking
performance of the PolyMOT-Tracker that has already been described in Section 5.2.2.

Tracking of Smaller Objects

Figure 5.3: The tracking results of both considered trackers are compared in a concrete scenario involving the
Tracking of numerous small objects, such as pedestrians. The left image displays the results from the PolyMOT-
Tracker, while the right image shows the results of the SORT-Tracker.

Figure 5.3 shows the qualitative comparison between the PolyMOT-Tracker and the SORT3D
tracker in a concrete case where many small objects like pedestrians are present. The track-
ing results from the PolyMOT-Tracker are illustrated in the left image, and the results from
the SORT3D tracker are in the right image. The line behind each bounding box depicts
the object’s past position with the bounding box’s concrete track ID. These lines are clearly

5.2 Intersection Data 45

longer for objects in the left image than in the right image. This fact underlines the fact that
PolyMOT-Tracker has significant advantages if it comes to the task of tracking pedestrians or
generally smaller objects.

Occlusion Recovery

Figure 5.4: The images depict a time span during which a small car is occluded by a van driving next to it. The
three upper images display the tracking results of the PolyMOT-Tracker, while the three lower pictures show the
tracking results of the SORT3D tracker. The small car is occluded for 14 frames. PolyMOT still has the track of
the small car in memory since 14 frames is lower than the used maximal age parameter of 15. However it does
not outputs it only for the first couple frames of the occlusion. SORT3D has a maximal age of 1. After not being
matched with a detection for more than one frame, a track is directly removed from memory.

Figure 5.4 shows another scenario where the PolyMOT-Tracker performs better than the
SORT3D tracker. The upper three images visualized the results of the PolyMOT-Tracker, while
the lower three originate from the results of the SORT3D tracker. The considered scenario
includes a small car temporarily fully occluded by a van. Therefore, the detector cannot
detect the small car for a few frames. The goal is to assign the same ID to the small car in
frame 257 as it has in frame 214. The challenge is to correctly predict the object’s motion for
a couple of frames. One can see that the object keeps its ID in the upper images, while the
small car in the lower images changes its ID after the occlusion.

Effect of the Trajectory Management Module

The trajectory management module explained in Section 4.1.4 enables the tracking system
to compensate for missing detection by predicting their motion and keeping the objects in
memory, also when the detector can not detect them for several frames. The example in
Figure 5.5 shows a case where the detector misses a bicycle in 3 consecutive frames and then
detects it again. The PolyMOT-Tracker can track the object over the whole sequence of 5
frames with a consistent ID, like in the ground truth, while the SORT3D tracker can keep the
track for another frame but then loses it and assigns the bicycle a new ID in the frame where
it is detected again. Cases like these lead to many ID switches in the tracking results of the
SORT3D tracker mentioned in Section 5.2.2.

Overall, the tracking system presented in this work clearly outperforms the existing SORT3D
tracker when interpreting the quantitative numbers and the qualitative illustrations in the in-

46 5 Evaluation and Results

Figure 5.5: Presented is a sequence of five consecutive frames. The first column displays the detections, the
second column showcases the tracked detections of SORT3D, the third column exhibits the tracked detections of
PolyMOT and the fourth column are the ground truth objects.

5.3 Highway Data 47

tersection scenario. After examining the visualized tracking results, we searched the scenarios
for cases where an object incorrectly changes its ID. The visualization of the untracked detec-
tions shows that the reason for most of these incorrect ID switches are noisy detections: either
detections with wrongly predicted orientations or missing detections over several frames.

5.3 Highway Data

5.3.1 Data Description

The evaluation utilizes data from the TUM Traffic A9 highway dataset [7]; more specifically,
it uses the R0_S02 sequence of the dataset. This dataset captures real-world scenarios along
a segment of the A9 highway near the exit of Garching Süd. The R0_S02 sequence consists of
60 frames, each separated by a time interval of 0.4 seconds, resulting in a sampling frequency
of 2.5 Hz. Although slightly slower compared to the data used in the intersection scenario,
see Section 5.2, this sequence offers a rich source of information crucial for evaluating multi-
object tracking algorithms. The highway section under consideration is equipped with LiDAR
sensors and cameras, enabling the collection of point cloud and image data. However, for
the R0_S02 sequence, only image data is available. The dataset only contains the labels of
the 3D object bounding boxes but does not include consistent track IDs across the sequences.
The track IDs are necessary to evaluate the performance of the trackers. The tracker was
executed on the ground truth detection boxes to generate the necessary consistent track IDs,
thereby enabling the tracking performance evaluation. This process ensures that each object
is assigned a unique identifier throughout the sequence, enabling an accurate assessment
of the tracker’s ability to maintain object identities over time. Without LiDAR point cloud
data for the R0_S02 sequence, we apply a monocular 3D detector to generate detections for
the tracking evaluation. Despite the thesis’ focus on LiDAR-based tracking, the monocular
detector offers comparable geometric motion features, including object position, dimensions,
and orientation. However, it still does not include appearance information about the objects
gained from the images. As the data from the TUM Traffic A9 highway dataset originates
from a highway, the orientation of the objects usually aligns with the direction of the lanes.
Therefore, as an additional preprocessing step, the orientation of all detections is corrected to
point in the right direction depending on which side of the highway the object is. Additionally,
the initial velocity of the objects was not set to zero, as in the intersection scenario, but set
to a fixed value, listed in Table 5.10. Modifications of the parameters are listed in Table
5.10. Also, we use Nmin_hit of 1 and a second association threshold θSA of 1.5. The other
parameters stay the same as in the intersection scenario. These modifications allow the
tracker to produce improved tracking results. By leveraging the A9 highway dataset and
using the aforementioned preprocessing technique, the evaluation aims to provide insights
into the performance of the two trackers in highway scenarios.

Bike Bus Car M.Cycle Ped. Trailer Truck Van Emerg. Other

θFA 1.55 1.55 1.8 1.55 1.7 1.45 1.5 1.6 1.5 1.5
Velocity[km

h] 0 100 150 120 0 90 90 140 140 140

Table 5.10: Used hyperparameters for the intersection data used for the evaluation of the given sequences.

48 5 Evaluation and Results

5.3.2 Quantitative Results

The following section considers the quantitative results of the PolyMOT-Tracker for the high-
way scenario. As before, we compute the metrics for the PolyMOT-Tracker output and the
SORT3D tracker output. Again, the first subsection considers the basic metrics explained in
Section 2.5.3 while the second one considers the CLEAR-MOT metrics explained in Section
2.5.4.

Basic Metrics

#Track Total Track Total Track Avg. Track Avg Track
IDs Length[m] Length[frame] Length[m] Length[frame]

SORT3D 1711 1845 3676 1.1 2.1
PolyMOT 120 24357 1748 203.0 14.6

GT 128 31335 2404 244.8 18.8

Table 5.11: Results Short Highway Sequence.

Table 5.11 shows the evaluation results of the basic metrics of the PolyMOT-Tracker and
the SORT3D tracker compared to the ground truth. As mentioned, the goal is to have the
calculated metrics as close as possible to the ground truth values. One can see that the
results from the PolyMOT-Tracker are, again, pretty accurate compared to the ground truth.
The number of track IDs differs only by eight IDs. Also, the average track length in meters
and frames is in the same range as the ground truth values, indicating that the tracker also
produces valid results on the highway. However, the SORT3D tracker is not able to produce
valuable results. The very high number of track IDs of 1711 suggests that the SORT3D tracker
can not track the detected objects correctly or at all. Additionally, the average track length in
meters of 1.1 m and the average track length in frames of 2.1 frames shows that applying the
SORT3D tracker in the highway scenario does not make sense. The cause for that is similar to
the cause for the lousy tracking results on small objects of the SORT3D tracker mentioned in
Section 5.2.2. Since the objects on the highway are typically faster than objects at an urban
intersection, they put back more meters between two frames, especially in this concrete case,
due to the lower frequency of frames. Because of the limited capability of the distance metric
for the association used by the SORT3D tracker, i.e., the IoU, the SORT3D tracker is incapable
of associating objects with an IoU of zero. This problem has been elucidated in Section 2.4.
Because of this, the SORT3D tracker is not further considered in the following quantitative
analysis since the results do not produce any valuable insights.

CLEAR-MOT Metrics

FN ↓ FP ↓ MT ↑ PT ↑ ML ↓ IDSW ↓ FRAG ↓ HOTA↑ MOTA ↑ MOTP ↓
PolyMOT 1313 657 20 58 50 19 50 0.45 0.18 1.63

Table 5.12: Results Short Highway Sequence.

As stated in Section 5.3.2 in the following, only the CLEAR-MOT results for the PolyMOT-
Tracker are enumerated and analyzed. The results in Table 5.12 show the calculated metrics.
The first thing that stands out is that the results are generally worse than the evaluated results
from the intersection scenario. However, we can not compare both results unconditionally

5.3 Highway Data 49

since different object detectors generated the detections used by the tracker to produce its re-
sults. Additionally, the same reason described in Section 5.3.2, that the objects’ velocities are
higher, influences the higher value of MOTP. We also perform the computation of the CLEAR-
MOT metrics classwise to further analyze the reason for the difference in performance. The
table 5.13 shows parts of the CLEAR-MOT results for every class separately.

GT FN ↓ FP ↓ MOTA ↑ MOTP ↓
BUS 8 6 15 -1.6 2.9
CAR 1641 591 339 0.43 1.60

PEDESTRIAN 0 0 37 - -
TRUCK 179 140 266 -1.3 2.55

TRAILER 282 282 0 0 -
VAN 294 294 0 0 -

Table 5.13: Classwise Results Short Highway Sequence.

Only classes that occur at least once in the ground truth or the tracking results are listed.
Also, the number of listed metrics is lower for simplification. One can see that the results
for the car category, which is the most frequently present, are pretty good, with a MOTA
of 0.43 and a MOTP of 1.60. However, the poorer performance in other categories drags
down the good result for the car category. Many pedestrians are tracked, although there
are no pedestrians in the ground truth. The reason for that is false positive detections of
the used 3D detector. Furthermore, the PolyMOT-tracker does not track objects of the trailer
and van classes at all in the considered sequence, leading to MOTAs of 0. The reason for
this is missing detections for those objects. The computed MOTA values for the other two
categories, bus and truck, are below -1. MOTA can be lower than zero due to how the MOTA
metric calculation is performed, see Section 2.5.4. The reason for the bad results in the bus
category could be the low number of occurrences of buses in the considered sequence. In the
case of trucks, the problem is likely wrong detections. Since the MOTP can only be computed
if a matched pair between a predicted object and a ground truth object exists, we cannot
compute it for the mentioned classes. Concluding the quantitative analysis, we can say that
the tracker also works well when applied to highway data, assuming a certain standard of
detection quality.

5.3.3 Qualitative Results

As mentioned in Section 5.3.2, it does not make sense to consider the SORT3D tracker in the
highway scenario. Therefore, we show the qualitative illustrations of the tracking results only
for the PolyMOT-Tracker. Figure 5.6 shows the tracking results and the labels at one frame
in the roadside view as an image and once in a BEV view. The visualization encourages the
claim for the applicability of the PolyMOT-Tracker on highway data. On the image and the
BEV plot, it is evident that the tracker returns smooth and long tracks for the objects. Also,
lane changes, like for the object marked with the green square, are registered and smoothly
tracked. Another point to emphasize is the nicely tracked curve taken by the car marked
by the yellow square exiting the highway. The limited amount of ground truth tracks on the
highway allows us to only give an impression of how well the tracker works on highway data.
However, summarizing the qualitative analysis, the tracker also produces good results on the
highway based on the illustration 5.6 and the preceding quantitative analysis in Section 5.3.2.

50 5 Evaluation and Results

Figure 5.6: Visualized tracking results and labels at one frame of the highway data. The labels are visualized on
the right while the tracked detections are visualized on the left. The roadside images are shown in the upper row,
the time corresponding BEV plot is shown in the lower row.

5.4 Tracking Speed

All experiments were conducted on an i7-11370H Intel Processor. The inference speed of
the tracking system varies depending on the scenario in which the tracker operates. In the
intersection scenario, it achieves an average inference speed of around 30 FPS, whereas in
the highway scenario, the speed is notably slower at around 8-10 FPS. This discrepancy
is primarily attributed to the higher number of objects in a single frame in the highway
scenario than in the intersection scenario. The primary computational bottleneck is attributed
to the computation of the Generalized intersection over Union (GIoU), which involves the
calculation of the convex hull in 3D, a highly computationally intensive task. We compute
the GIoU at one frame between every pair of detections and the existing tracks in that frame.
So, the computational intensity depends on the number of such pairs. Figure 5.7 plots the
tracking speed for all four intersection sequences and two highway sequences. It concludes
that the number of detections and tracks determines the overall tracking speed. More exactly,
the inference speed decreases with the rising number of tracks and detections. The high
number of outliers is probably due to the background process running on the system.

In contrast, the SORT3D tracker excels in speed, requiring only a fraction of the time
for its operations. It achieves an impressive inference speed in the range of 700-800 FPS.
Consequently, the SORT3D tracker holds a distinct advantage over the evaluated 3D multi-
object tracking system regarding speed. On the highway scenario, the SORT3D tracker also
maintains a competitive speed of around 200 FPS, but as mentioned in Section 5.3.2, it does
not produce helpful tracking results.

5.5 Hyperparameter Search 51

0 10 20 30 40 50 60
#Detections

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
in

 S
ec

on
ds

Tracking Speed for one Frame

0 10 20 30 40 50 60
#Tracks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
in

 S
ec

on
ds

Tracking Speed for one Frame

Intersection Frame
Highway Frame

Figure 5.7: The tracking speed of the PolyMOT-Tracker as a function of the number of detection and and as a
function of the number of tracks within a single frame. Each data point represents a unique frame. The figure
visually depicts the correlation between tracking speed and the quantity of number of detections and number of
tracks.

5.5 Hyperparameter Search

This section illustrates the elaborate task of the hyperparameter search. The resulting pa-
rameters are used in the final tracking algorithm. The search of the optimal parameters is
based on the three metrics MOTA, MOTP and HOTA, described in Section 2.5.4. The rest of
the parameters are kept constant during one evaluation, only the considered parameter is
altered. More, exactly we use the same parameters as defined in Section 5.1 for the remain-
ing parameters. The first two of the following three parameters are category-specific. Since
describing the search for all categories, we only handle the car category since it occurs most
often. The parameters used are the same as stated in Section 5.1 apart from the parameter
that is varied in the single searches.

Maximal Age Parameter

As elucidated in Section 4.1.4, the max_age parameter defines how long the state of a tracked
object is kept in memory after it has last been matched with a detection. Important to men-
tion is the difference to the punish_num parameter: the latter one defines how long a tracked
object will be output, while the max_age only defines for how many frames it will be consid-
ered in the data association. The outcomes of the core metrics upon applying the tracker to
sequence R02_S03 are depicted in Figure 5.8. It’s noticeable that the metrics’ values stabilize
after Nmaxa ge = 9. To accommodate occlusions lasting beyond 0.9 second, we establish the
Nmaxa ge threshold at 15. Figure 5.8 shows that extending this threshold beyond 15 frames
is not improving the performance and at some point even decreases the performance with
increasing MOTP and decreasing MOTA and HOTA. The increase in MOTP is a logical conse-
quence since when matching a track with a new detection after a higher number of frames
the position of the predicted position will get more inaccurate with every missing update step
of the Kalman Filter, see Section 2.3.

Minimal Hit Parameter

The min_hit parameter determines the number of consecutive frames in which a tracked
object has to be matched with a detection before it is written to the output file, see Section
4.1.4. The results of the primary metrics when the tracker is applied to the sequence R02_S03
are depicted in Figure 5.9, with varying values of the Nmin_hit parameter for the car category.
Following observation, the MOTA value ceases to improve beyond Nmin_hit = 3, while the
HOTA value experiences a slight decrease. Consequently, we set the Nminh i t parameter for the

52 5 Evaluation and Results

0 1 3 6 9 12 15 20 25 30
Nmax_age

0.40

0.45

0.50

0.55

0.60

0.65

Va
lu

e

Nmax_ageSearch

MOTA
MOTP
HOTA

Figure 5.8: The figure shows the result of the MOTA, MOTP and HOTA metric when varying the Nmax_age Param-
eter for the car category. One can see the results are not getting better after Nmax_age = 15. At some point MOTP
and MOTA are even getting worse.

1 2 3 4 5
Nmin_hit

0.45

0.50

0.55

0.60

0.65

Va
lu

e

Nmin_hitSearch

MOTA
MOTP
HOTA

Figure 5.9: The figure shows the result of the MOTA, MOTP and HOTA metric when varying the Nmin_hit Parameter
for the car category. One can see the results are the best for Nmin_hit = 3

5.6 Effect of Added Features 53

car category to 3. This decision is influenced by the increasing number of False Negatives
with each increment in the Nminh i t parameter, as detections are only output after the fifth hit,
even if they are True Positives from the first hit onward.

Angular Difference Penalty Parameter

The idea of the angular difference penalty is defined in Section 4.2.3. Here the search for the
optimal λ parameter is illustrated in Figure 5.10. The parameter is the same for all categories.
Figure 5.10 demonstrates that the optimal MOTA and HOTA scores are attained with an

0 0.15 0.3 0.6 0.9

0.45

0.50

0.55

0.60

0.65

Va
lu

e

Search

MOTA
MOTP
HOTA

Figure 5.10: The figure shows the result of the MOTA, MOTP and HOTA metric when varying the general λ
Parameter for the angular difference penalty computation 4.2.3. One can see the results are the best for λ= 0.3

angular difference penalty factor λ of 0.3. Larger factors elevate MOTP but simultaneously
reduce MOTA and HOTA, as they render the matching of new detections with existing tracks
more challenging. Hence, we set the parameter to λ= 0.3 for consistency.

The performance of the tracking system is significantly impacted by the variation of its
parameters, making parameter optimization a crucial aspect of achieving optimal results. As
such, conducting a comprehensive parameter search is essential. This search process entails
exploring all necessary parameters across all categories utilized by the tracking system. The
resulting optimized parameters are documented in Section 5.1.

5.6 Effect of Added Features

The tracking results of the PolyMOT-Tracker used in Section 5.2 and in Section 5.3 are pro-
duced using the added features elucidated in Section 4.2. The following two sections show
these features’ impact on the overall tracking performance using the R2_S03 sequence as the
sequence to track.

Quantitative Analysis

The tracking results with and without the added features are listed to show that the features
have a quantitive advantage against the basic version of the tracker. First, we execute the
tracker without the features. After that, the tracker’s results using the orientation correction
are captured. At last, the feature determining the association threshold dynamically, includ-
ing the angular difference penalty, is applied. Table 5.2.2 compares the performance of both

54 5 Evaluation and Results

results. Although the difference in the quantitive results of HOTA, MOTA, and MOTA is not

FN ↓ FP ↓ IDSW ↓ FRAG ↓ HOTA↑ MOTA ↑ MOTP ↓
Without Features 4278 2292 22 71 0.67 0.57 0.45

Orientation Correct. 4248 2267 21 73 0.68 0.57 0.45
Dynamic Threshold 4253 2454 23 76 0.66 0.56 0.44
Angular Difference 4280 2198 23 76 0.67 0.58 0.45

Confidence Tentative 4214 2296 24 74 0.67 0.57 0.45
Combined Version 4177 2179 26 75 0.68 0.58 0.45

Improvement 101 113 4 4 0.01 0.01 0

that high, it clearly reduces the number of False Negatives and False Positives. The important
metrics HOTA and MOTA are also improved. The small changes in the quantitative results
are not surprising since the basic version of the tracking system already performs quite well.
Most of the remaining failure cases can be traced back to wrong predictions by the detector.
The added features, therefore, mainly aim to mitigate the influence of such predictions and
solve single failure patterns observed during the evaluation.

Qualitative Analysis

Since the difference in the quantitative results is insignificant, the qualitative analysis shows
single cutouts of the R02_S03 sequence. These sections show problems in scenarios that the
modified version can solve but the basic version cannot.

The scenario pictured in Figure 5.11 shows a van driving into the blind spot of the LiDAR
sensor at the intersection. A blind spot in this context means a space where the LiDAR sensor
cannot capture data. Therefore, objects located in that area are invisible to the sensor. The
goal is to still be able to match the van to the correct ID when it leaves this spot again.
The figures show that the basic version does not keep the ID, while the modified version
accomplishes the goal precisely. The reason for this is the incorrectly predicted orientations
of the van in the frames right before driving into the blind spot. These bad predictions lead
to an incorrect motion prediction and failure in the data association. By trying to correct
the orientation and loosen the association threshold in the motion direction of the van, the
tracking system can correctly identify the van when it is first detected again.

Correct orientation predictions in the scenario pictured in Figure 5.12 also show possible
consequences of wrong motion predictions and high association thresholds. The upper row
shows the results from the tracker without the included features. The lower row shows them
with the features applied. One can see the car’s motion in the upper images is mispredicted
starting at Frame 8. This results in the predicted position of the car in frame 14 not being
very close to the object’s actual position. Therefore, when detected again in frame 19, the
detection can no longer be matched with the tracked object (there is no bounding box at all
in frame 19 for the results without features because of the trajectory management module,
which decided that the object will not be output at that frame). However, the version using
the added features corrects the car’s orientation correctly and, therefore, can produce a better
motion prediction and, in the end, can associate the detection of the car in frame 19 with the
initially tracked object. One can see in the lower images that the ID of the car in frame 8 is
the same as the ID in frame 19.

5.6 Effect of Added Features 55

Figure 5.11: The images depict a scenario where a van traverses through the blind spot of the LiDAR sensor.
The upper row illustrates the tracking results of the tracker executed with the features while the lower row shows
the results of the basic PolyMOT-tracker. The basic version struggles to maintain track IDs, whereas the modified
version demonstrates improved capability in preserving track continuity.

Figure 5.12: This scenario illustrates how incorrect predicted orientations of objects, coupled with missed de-
tections, can result in ID switching. Videos of the four tracked sequences can be found here: R02_S01 https:
//youtu.be/1PZsXaw3HXY, R02_S02 https://youtu.be/_urCH_QfGCw, R02_S03 https://youtu.be/c2NNmaYrcl4,
R02_S04 https://youtu.be/xvhGeZozXo0.

https://youtu.be/1PZsXaw3HXY
https://youtu.be/1PZsXaw3HXY
https://youtu.be/_urCH_QfGCw
https://youtu.be/c2NNmaYrcl4
https://youtu.be/xvhGeZozXo0

Chapter 6

Future Work

As we conclude the evaluation of the proposed 3D Multi-Object Tracking system and reflect on
the presented findings, considering avenues for future enhancements and research directions
is of the greatest importance. This chapter outlines potential enhancements, extensions, or
novel investigations to improve the existing approach further.

6.1 Enhancements

Learning-based Modules

A way to improve the tracking performance of the tracker by pursuing the strategy proposed
by [20] is to divide the tracking process into subtasks and consider each separately. An idea
would be to replace existing non-learning-based modules with learning-based approaches. In
this case, replacing the physical motion prediction models with trained models for trajectory
prediction would be imaginable. Neural networks, primarily Recurrent Neural Networks or
LSTMs, are widely used in trajectory prediction to capture complex motion patterns of objects
from different categories. To use the idea introduced by [13], it also makes sense to have a
separate motion model for different categories since a pedestrian carries out different motions
than a car, for instance. Currently the motion of most categories are modelled using the CTRA
model. The motion of bicycles and motorcycles is modelled using the BICYCLE model while
the CA model models the motion of the trailer category. Another module to replace could
be the data association. In general, Multi-Object Tracking research, as explained in Chapter
3 learning-based approaches like Graph Neural Networks or Transformer architectures, are
an advanced method to compute the affinity between objects. Purely distance-based metrics
show weaknesses in some cases since they do not consider the tracked object’s past positions.
Although these changes could improve the tracker’s performance, they also influence the
execution speed and hardware requirements for the execution. Neural networks generally
require intensive computations and are usually executed on hardware accelerators like GPUs.

Bounding Box Refinement

As outlined before, in most cases, the tracking failure can be traced back to missing or flawed
detections delivered by the detector. Therefore, to improve the tracker, it is helpful to try to
improve the quality of detections. Missing detections cannot be recovered since that is the
task of the detector. What is possible is to do a more advanced bounding box refinement as
suggested in Section 4.2.2 to improve the quality of objects the detector detected. Especially
in the concrete case of this project, because the tracking system has to perform well in a fixed
environment, bounding box refinement is a promising feature. Bounding box refinement aims

58 6 Future Work

Start Points of Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr

aj
ec

to
ry

 E
nd

s

Figure 6.1: The plotted start points of trajectories in the
ground truth.

End Points of Trajectories

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Tr

aj
ec

to
ry

 E
nd

s

Figure 6.2: The plotted end points of trajectories in the
ground truth.

to improve the accuracy of some of the bounding box’s attributes. Feeding map information
about the environment to the tracker is an idea to correct the orientation of an object to, e.g.,
point in the correct direction. Also, through training a model with data from the concrete
environment the tracker is used in, we could create a deep-learning-based bounding box
refinement feature.

Initial Velocity Estimation

As previously noted (see Section 5.3), employing an initial velocity estimation is essential
for enhancing PolyMOT-Tracker’s performance on highway data. However, relying on a fixed
value for velocity estimation may introduce challenges, particularly in traffic jams, where ve-
locities differ significantly from typical highway speeds. In such cases, the difference between
the estimated and actual velocities can influence the tracking performance. Adopting a more
sophisticated velocity estimation approach is warranted to address this issue. Two potential
strategies could be applied. One approach involves dynamically adjusting the velocity esti-
mation based on contextual factors, like the number of objects in the current frame. Given
that the considered section is always the same, i.e., it always observes the same environment,
a higher density of traffic participants might indicate a slower velocity of the single objects.
Conversely, fewer traffic participants in the considered section might indicate a lower velocity
of the objects. The second idea is to make the velocity estimation depending on the lane an
object is currently moving in. Due to traffic regulations, vehicles typically gravitate toward
specific lanes based on their velocity. Vehicles that want to overtake others have to do that by
using the next lane on the left. Therefore, vehicles traveling on the left lanes can be assigned
higher velocity estimates.

6.2 Extensions

Furthermore, the current approach can be extended by other promising techniques to im-
prove the robustness and stability of the system. To accomplish this, e.g., future work could
add a more advanced trajectory management module, taking knowledge about the environ-
ment of the scenario into account to decide whether trajectories should be newly initialized,
declared as dead, or still kept in the memory. Usually, objects appear and disappear in the

6.2 Extensions 59

same areas of the considered environment depending on the range that the LiDAR sensor can
cover. The heatmaps 6.1 and 6.2 illustrate the distribution of geometric start and end points
of trajectories derived from all ground truth data. Each trajectory’s start and end points were
individually plotted, and their densities were visualized. Brighter regions indicate higher
concentrations of trajectory origins or destinations. However, an object finally disappearing
in the middle of the intersection, e.g., is similarly as unlikely as one appearing in the middle,
assuming no occlusions exist. In the highway scenario, tracks beginning in the middle of
the observed section equally are less likely to represent the real beginning of a track for an
object. So, including known map information in trajectory management can be a promis-
ing strategy. Another extension to the presented tracking system is to include appearance
information in the tracking system. This appearance information can be acquired solely us-
ing LiDAR data. Also, the tracker could use appearance information resulting from image
data to get additional information next to the already present motion features, resulting in
multi-modal, multi-object tracking approaches.

While including map information in the tracking process might cause improvements, the
algorithm would have to be adapted to each location where the tracking algorithm is used.
Also, using multiple modalities comes with the same trade-off of deep-learning approaches
as explained in Section 6.1.

Chapter 7

Conclusion

To enhance the capabilities of 3D multi-object tracking, this bachelor thesis incorporated a
state-of-the-art 3D Multi-Object Tracking system into the already existing toolchain discussed
in Chapter 1. The primary goal was to assess the performance of the chosen tracking system
and conduct a detailed comparative analysis with its predecessor. The overall work involved
thoroughly exploring the background knowledge required for understanding Multi-Object
Tracking, including metrics for the evaluation and other relevant mathematical concepts.
The literature review encompassed numerous tracking with diverse strategies. The approach
from [13], identified as the top performer in the nuScenes tracking challenge with relatively
low resource requirements, served as the baseline for this work. Initial evaluations iden-
tified and analyzed specific failure patterns and scenarios where the tracking system could
not produce accurate results. Subsequently, the basic version was enhanced with additional
features to improve its robustness and extend its capability to track objects in more complex
scenarios. Features such as the correction of detection orientation and a dynamic determina-
tion of the association threshold in the data association stage aimed to improve the already
high-performing tracker. Validation of the new tracker’s superior performance compared to
the existing SORT3D tracker was conducted in two distinct environments: a busy intersection
and a highway. Highway objects usually have a higher velocity than objects at an urban in-
tersection. Furthermore, there are usually more objects to track on a highway since the street
is bigger. Therefore, it makes sense to differentiate between those two environments. After
producing the tracking results for each scenario and computing the tracking metrics, it was
possible to check if the new tracker outperformed the existing one. The quantitative results
of the intersection scenario, see Section 5.2.2, conclusively demonstrate that the PolyMOT-
Tracker outperforms the existing tracker, particularly for objects with relatively small dimen-
sions. The qualitative comparison, see Section 5.2.3, revealed the PolyMOT-Tracker’s ability
to address challenges introduced by demanding scenarios, such as occluded objects or noisy
detections, with whom the SORT3D tracker struggled. Considering the highway scenario, the
quantitative analysis, see Section 5.3.2, showed the acceptable performance of the PolyMOT-
Tracker. At the same time, we concluded the SORT3D tracker to be not applicable in the
highway scenario due to the limitations of the distance metric used. The qualitative analysis,
see Section 5.3.3, of the PolyMOT-Tracker encourages the mentioned quantitative results and
shows some strengths of the tracker in the highway scenario. The added features were also
found to contribute to correct tracking in these scenarios. However, it is crucial to note that
the SORT3D tracker exhibits superior speed due to less computationally intensive mathemat-
ical computations compared to the PolyMOT-Tracker, i.e., the Generalized Intersection over
Union.

In summary, the PolyMOT-Tracker delivers superior results to the SORT3D tracker: when
tracking the most complex sequence R02_S03 the PolyMOT-Tracker achieves a 16.2% higher
HOTA value as well as a 13,8% higher MOTA value than the SORT3D tracker. Nevertheless,

62 7 Conclusion

the overall performance of a tracking system realizing the tracking-by-detection paradigm
heavily relies on the quality of the available object detections. This work successfully miti-
gated the influence of poor detections to make the tracking more robust, which succeeded in
some scenarios. However, the chosen tracker still needs to be optimal, opening certain as-
pects to be improved in future work. E.g., incorporating map information into the trajectory
management module, replacing physical motion models with learning-based approaches, or
adding appearance features of the objects to the affinity computation of detections and exist-
ing tracks.

Bibliography

[1] Bernardin, K. and Stiefelhagen, R. “Evaluating multiple object tracking performance:
the clear mot metrics”. In: EURASIP Journal on Image and Video Processing 2008 (2008),
pp. 1–10.

[2] Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., and Torr, P. H. “Fully-convolutional
siamese networks for object tracking”. In: Computer Vision–ECCV 2016 Workshops:
Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14.
Springer. 2016, pp. 850–865.

[3] Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. “Simple online and realtime track-
ing”. In: 2016 IEEE international conference on image processing (ICIP). IEEE. 2016,
pp. 3464–3468.

[4] Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y.,
Baldan, G., and Beijbom, O. “nuscenes: A multimodal dataset for autonomous driving”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2020, pp. 11621–11631.

[5] Chen, X., Shi, S., Zhang, C., Zhu, B., Wang, Q., Cheung, K. C., See, S., and Li, H. “Tra-
jectoryFormer: 3D Object Tracking Transformer with Predictive Trajectory Hypothe-
ses”. In: arXiv preprint arXiv:2306.05888 (2023).

[6] Chiu, H.-k., Wang, C.-Y., Chen, M.-H., and Smith, S. F. “Probabilistic 3D Multi-Object
Cooperative Tracking for Autonomous Driving via Differentiable Multi-Sensor Kalman
Filter”. In: arXiv preprint arXiv:2309.14655 (2023).

[7] Creß, C., Zimmer, W., Strand, L., Fortkord, M., Dai, S., Lakshminarasimhan, V., and
Knoll, A. “A9-dataset: Multi-sensor infrastructure-based dataset for mobility research”.
In: 2022 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2022, pp. 965–970.

[8] Ding, S., Rehder, E., Schneider, L., Cordts, M., and Gall, J. “3dmotformer: Graph trans-
former for online 3d multi-object tracking”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 2023, pp. 9784–9794.

[9] Kim, A., Brasó, G., Ošep, A., and Leal-Taixé, L. “PolarMOT: How far can geometric
relations take us in 3D multi-object tracking?” In: European Conference on Computer
Vision. Springer. 2022, pp. 41–58.

[10] Koh, J., Kim, J., Yoo, J. H., Kim, Y., Kum, D., and Choi, J. W. “Joint 3d object detection
and tracking using spatio-temporal representation of camera image and lidar point
clouds”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. 1.
2022, pp. 1210–1218.

[11] Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., and Beijbom, O. “Pointpillars:
Fast encoders for object detection from point clouds”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019, pp. 12697–12705.

64 Bibliography

[12] Leal-Taixé, L., Milan, A., Reid, I., Roth, S., and Schindler, K. “Motchallenge 2015: To-
wards a benchmark for multi-target tracking”. In: arXiv preprint arXiv:1504.01942
(2015).

[13] Li, X., Xie, T., Liu, D., Gao, J., Dai, K., Jiang, Z., Zhao, L., and Wang, K. “Poly-mot: A
polyhedral framework for 3d multi-object tracking”. In: 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2023, pp. 9391–9398.

[14] Liu, J., Bai, L., Xia, Y., Huang, T., Zhu, B., and Han, Q.-L. “GNN-PMB: A simple but ef-
fective online 3D multi-object tracker without bells and whistles”. In: IEEE Transactions
on Intelligent Vehicles 8.2 (2022), pp. 1176–1189.

[15] Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixé, L., and Leibe, B.
“Hota: A higher order metric for evaluating multi-object tracking”. In: International
journal of computer vision 129 (2021), pp. 548–578.

[16] Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., and Kim, T.-K. “Multiple object tracking:
A literature review”. In: Artificial intelligence 293 (2021), p. 103448.

[17] Mitzel, D. and Leibe, B. “Taking mobile multi-object tracking to the next level: People,
unknown objects, and carried items”. In: Computer Vision–ECCV 2012: 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V
12. Springer. 2012, pp. 566–579.

[18] OpenLABEL Format for Object Detection. https://www.asam.net/standards/detail/
openlabel/. Accessed: February 12 2024.

[19] Pang, Z., Li, J., Tokmakov, P., Chen, D., Zagoruyko, S., and Wang, Y.-X. “Standing Be-
tween Past and Future: Spatio-Temporal Modeling for Multi-Camera 3D Multi-Object
Tracking”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2023, pp. 17928–17938.

[20] Pang, Z., Li, Z., and Wang, N. “Simpletrack: Understanding and rethinking 3d multi-
object tracking”. In: European Conference on Computer Vision. Springer. 2022, pp. 680–
696.

[21] Polack, P., Altché, F., d’Andréa-Novel, B., and La Fortelle, A. de. “The kinematic bicycle
model: A consistent model for planning feasible trajectories for autonomous vehicles?”
In: 2017 IEEE intelligent vehicles symposium (IV). IEEE. 2017, pp. 812–818.

[22] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., and Savarese, S. “Gen-
eralized intersection over union: A metric and a loss for bounding box regression”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2019, pp. 658–666.

[23] Ribeiro, M. I. “Kalman and extended kalman filters: Concept, derivation and proper-
ties”. In: Institute for Systems and Robotics 43.46 (2004), pp. 3736–3741.

[24] Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou,
Y., Chai, Y., Caine, B., et al. “Scalability in perception for autonomous driving: Waymo
open dataset”. In: Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition. 2020, pp. 2446–2454.

[25] Tao, L., Watanabe, Y., Yamada, S., and Takada, H. “Comparative evaluation of Kalman
filters and motion models in vehicular state estimation and path prediction”. In: The
Journal of Navigation 74.5 (2021), pp. 1142–1160.

[26] Thomsen, F., Ortmann, M., and Eckstein, L. “Scalable Real-Time Multi Object Tracking
for Automated Driving Using Intelligent Infrastructure”. In: 2023 International Con-
ference on Electrical, Computer and Energy Technologies (ICECET). 2023, pp. 1–6. DOI:
10.1109/ICECET58911.2023.10389193.

https://www.asam.net/standards/detail/openlabel/
https://www.asam.net/standards/detail/openlabel/
https://doi.org/10.1109/ICECET58911.2023.10389193

Bibliography 65

[27] Touska, D., Gkountakos, K., Tsikrika, T., Ioannidis, K., Vrochidis, S., and Kompatsiaris,
I. “Graph-Based Data Association in Multiple Object Tracking: A Survey”. In: Interna-
tional Conference on Multimedia Modeling. Springer. 2023, pp. 386–398.

[28] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., and Polosukhin, I. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).

[29] Wang, L., Zhang, X., Qin, W., Li, X., Gao, J., Yang, L., Li, Z., Li, J., Zhu, L., Wang,
H., et al. “Camo-mot: Combined appearance-motion optimization for 3d multi-object
tracking with camera-lidar fusion”. In: IEEE Transactions on Intelligent Transportation
Systems (2023).

[30] Weng, X., Wang, J., Held, D., and Kitani, K. “3d multi-object tracking: A baseline
and new evaluation metrics”. In: 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE. 2020, pp. 10359–10366.

[31] Willes, J., Reading, C., and Waslander, S. L. “Intertrack: Interaction transformer for
3d multi-object tracking”. In: 2023 20th Conference on Robots and Vision (CRV). IEEE.
2023, pp. 73–80.

[32] Wu, H., Han, W., Wen, C., Li, X., and Wang, C. “3D Multi-Object Tracking in Point
Clouds Based on Prediction Confidence-Guided Data Association”. In: IEEE Transac-
tions on Intelligent Transportation Systems 23.6 (2022), pp. 5668–5677. DOI: 10.1109/
TITS.2021.3055616.

[33] Xu, R., Xia, X., Li, J., Li, H., Zhang, S., Tu, Z., Meng, Z., Xiang, H., Dong, X., Song,
R., et al. “V2v4real: A real-world large-scale dataset for vehicle-to-vehicle cooperative
perception”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2023, pp. 13712–13722.

[34] Yi, W., Morelande, M. R., Kong, L., and Yang, J. “An efficient multi-frame track-before-
detect algorithm for multi-target tracking”. In: IEEE Journal of Selected Topics in Signal
Processing 7.3 (2013), pp. 421–434.

[35] Yin, T., Zhou, X., and Krahenbuhl, P. “Center-based 3d object detection and tracking”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2021, pp. 11784–11793.

[36] Yun, S., Jeong, M., Kim, R., Kang, J., and Kim, H. J. “Graph transformer networks”. In:
Advances in neural information processing systems 32 (2019).

[37] Zhang, J., Xiao, W., and Mills, J. P. “Optimizing moving object trajectories from road-
side Lidar data by joint detection and tracking”. In: Remote Sensing 14.9 (2022),
p. 2124.

[38] Zhang, Y., Wang, X., Ye, X., Zhang, W., Lu, J., Tan, X., Ding, E., Sun, P., and Wang, J.
“ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every Detection Box”.
In: arXiv preprint arXiv:2303.15334 (2023).

[39] Zimmer, W., Creß, C., Nguyen, H. T., and Knoll, A. C. “A9 Intersection Dataset: All You
Need for Urban 3D Camera-LiDAR Roadside Perception”. In: arXiv preprint arXiv:2306.09266
(2023).

https://doi.org/10.1109/TITS.2021.3055616
https://doi.org/10.1109/TITS.2021.3055616

	Introduction
	Motivation and Context
	Problem Statement
	Outline

	Background
	Multi-Object Tracking
	Pipeline
	General
	Tracking by Detection
	Learning and Learning-Free

	Kalman Filter
	General
	Mathematical Computation
	Extended Kalman Filter

	Generalized Intersection over Union
	Metrics
	Evaluation Process
	Common Errors
	Simple Metrics
	Advanced Metrics for Performance measurement

	Related Work
	Tracking before Detection
	Joint Tracking and Detection
	Tracking by Detection
	Based on Kalman Filters
	Based on Attention Mechanism
	Based on Graphs
	Further Approaches

	Other Works

	Tracking Approach
	Baseline
	3D Detector and Pre-Processing Module
	Multi-Category Trajectory Motion Module
	Multi-Category Data Repetition Association Module
	Trajectory Management Module

	Limitations
	Imperfect Object Detection
	Influence of Orientation
	Occlusions and Missed Detections

	Evaluation and Results
	Setup
	Intersection Data
	Data Description
	Quantitative Results
	Qualitative Results

	Highway Data
	Data Description
	Quantitative Results
	Qualitative Results

	Tracking Speed
	Hyperparameter Search
	Effect of Added Features

	Future Work
	Enhancements
	Extensions

	Conclusion
	Bibliography

