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Abstract

The leading cause of death for people aged 5-29 years is road traffic injuries resulting in
approximately 1.19 million total deaths each year [23]. Mitigating human errors such as
speeding, driving under the influence, and distracted driving as well as reducing the delay in
detecting accidents and providing care for the involved participants is inevitable to reduce
the number of road traffic fatalities [23]. Since modern vehicles are equipped with Light
Detecting and Ranging (LiDAR) and Radio Detection and Ranging (radar) sensors, accident
detection systems have gained considerable popularity. However, this view is often limited due
to other vehicles or objects blocking the Field of View (FOV). Therefore, this paper proposes
firstly an event log consisting of anomalous traffic situations recorded with roadside sensors,
secondly a scenario mining approach, which detects maneuvers in the recorded data focusing
on finding accidents with the help of a rule-based approach and thirdly an automated accident
detection process to mine large amount of traffic data and extract important features. The
automated accident detection was executed on the rosbags recorded in 5 months, where a
total of 831,969 unique vehicles, 3,748 standing vehicles in a driving lane, 138 standing
shoulder vehicles, 120 breakdowns, and 1 accident were detected. On a test dataset from
the event log, the rule-based accident detection achieves a precision of 100% and a recall of
33% due to its limitation of only detecting rear-end collisions, which can be extended in the
future. Additionally, one new accident was found in the recorded data of five months due to
the automated accident detection.

Zusammenfassung

Die führende Todesursache für Menschen im Alter von 5-29 Jahren sind Verkehrsunfälle, die
jedes Jahr zu etwa 1,19 Millionen Todesfällen führen [23]. Die Minderung menschlicher
Fehler wie erhöhte Geschwindigkeit, Fahren unter dem Einfluss von Alkohol oder Ablenkung
sowie die Verringerung der Verzögerung bei der Unfallerkennung und der Bereitstellung von
Hilfe für die Beteiligten ist unvermeidlich, um die Anzahl der Verkehrstoten zu reduzieren
[23]. Da moderne Fahrzeuge häufig mit LiDAR- und Radarsensoren ausgestattet sind, haben
Unfallerkennungssysteme erhebliche Popularität erlangt in den letzen Jahren. Jedoch ist das
Sichtfeld der Kameras oft von anderen Fahrzeugen oder Objekten begrenzt. Daher schlägt
diese Arbeit erstens ein Ereignisprotokoll vor, das aus anomalen Verkehrssituationen besteht,
die mit Straßensensoren aufgezeichnet wurden. Zweitens wird ein Szenario-Mining-Ansatz
vorgestellt, der Manöver in den aufgezeichneten Daten erkennt und sich darauf konzentriert,
Unfälle mithilfe eines regelbasierten Ansatzes zu finden. Drittens wird ein automatisierter
Unfallerkennungsprozess vorgestellt, um eine große Menge von Verkehrsdaten zu analysieren
und wichtige Merkmale zu extrahieren. Die automatisierte Unfallerkennung wurde auf den in
5 Monaten aufgezeichneten Rosbags durchgeführt, wobei insgesamt 831.969 unterschiedliche
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Fahrzeuge, 3.748 stehende Fahrzeuge auf einer Fahrspur, 138 stehende Fahrzeuge auf dem
Seitenstreifen, 120 Pannen und 1 Unfall erkannt wurden. Auf dem Testdatensatz aus dem
Ereignisprotokoll erreicht die regelbasierte Unfallerkennung eine Präzision von 100% und eine
Rückrufquote von 33%, aufgrund ihrer Begrenzung auf die Erkennung von Auffahrunfällen,
welche in der Zukunft erweitert werden kann. Zusätzlich wurde ein neuer Unfall in den
aufgezeichneten Daten von fünf Monaten aufgrund der automatisierten Unfallerkennung
gefunden.
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Chapter 1

Introduction

1.1 Context

In this era of rapid technological advancements, road safety has gained extraordinary signifi-
cance. Figure 1.1 depicts the number of road traffic fatalities in the EU from 2000 up to 2022.
With cars as well as roads getting safer over the years, an immense decrease in road traffic
fatalities can be supervised in the last 20 years going from 51.400 in 2001 down to 18.800 in
2020. However, EU’s target is to reduce the number of casualties even more down to 11.400
in the year 2030, since the leading cause of death for people aged 5-29 years is road traffic
injuries [23].

Figure 1.1: Trend in the number of road traffic fatalities in the EU [6].

The risk factors on the road comprise speeding, driving under the influence, distracted
driving, etc. [23]. Accommodating these human errors is inevitable to ensure road safety. An
additional risk factor, which is not related to humans, is the delay in detecting accidents and
providing care for the involved participants [23]. Traditional accident reporting mechanisms
such as radio or Google Maps suffer from delays and rely on humans reporting accidents
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[32]. The integration of advanced technologies such as artificial intelligence and real-time
sensor recordings presents a promising solution for an automated accident detection model
mitigating these challenges.

1.2 Problem

To ensure safer traffic behavior and faster emergency response time, an accident detection
model must be developed. With the help of an accident detection model, an anomaly traffic
dataset can be created with which different accidents can be analyzed to create an accident
prediction model extending the Advanced Driver Assistance Systems (ADAS) of autonomous
vehicles. However, this requires the autonomous vehicles to perceive their environment.

Therefore, this paper is written in cooperation with ATUOtech.agil, which is a research
project in the area of autonomous driving. Nowadays, modern vehicles are equipped with
LiDAR and radar sensors to record the environment around the vehicle. However, this view is
often limited due to other vehicles or objects blocking the FOV. This project aims to tackle
this challenge by recording the environment with roadside LiDAR, radar, and camera sensors,
which are placed on sign bridges above the vehicles along the highway. With this approach, a
digital twin can be created in real-time mimicking the traffic on the highway by detecting and
tracking traffic participants. The digital twin can then be sent and integrated into the traffic
participants’ sensory system to ensure safer autonomous behavior on roads by suggesting safer
traffic routes early on or warning of potential accidents. [3]

To train the accident detection model for this use case, a dataset consisting of accidents on
the A9 test stretch is needed. However, only 3 accidents are known in the recordings. Due
to the lack of training data for the accident detection model, the need for a simple approach,
that can detect potential dangerous traffic situations, arises. With the help of this approach, a
larger anomaly traffic dataset can be created to train a more sophisticated accident detection
and prediction model in the future. The goal is to develop an accident detection model, which
can detect accidents reliably, meaning it achieves a minimum precision of 0.7 and a recall
of 0.85. The recall is more important since the aim is to find as many accidents as possible.
Additionally, the accident detection model should be real-time capable meaning it can analyze
at least 25 Frames Per Second (FPS). Therefore, the following research question arises for the
simple accident detection approach:

1. "Is it possible to reliably detect accidents on the A9 test stretch using roadside sensors?"

2. "Is it possible to detect accidents on the A9 test stretch in real-time using roadside
sensors?"

1.3 Contribution

The focus of this work is the creation of an automated rule-based accident detection on the
recorded rosbags from the A9 test stretch. The aim is to enable the creation of an anomaly
traffic dataset, which enables a more thorough analysis of road anomalies, especially accidents.
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This paper extends the work of Aaron Kaefer [1] and is closely related to the work of Daniel
Lehmberg. It consists of the following 3 contributions:

1. Event Log: An event log containing all detected anomalies in the recorded rosbags from
the A9 test stretch and functioning as training data for the scenario mining.

2. Scenario Mining: A scenario mining approach, which firstly extracts the raw recordings
from the rosbags, secondly extracts features such as the lane ID of traffic participants
and the distance to the leading and following vehicle and then thirdly detects important
maneuvers on the recorded data. The focus lies on maneuvers, which help to detect
accidents in the rosbags, such as standing vehicles on the shoulder lane, traffic jams, slow-
moving traffic, and most importantly accidents themselves. Once the maneuver detection
is finished, the scenario statistics can be created from the detected maneuvers to label
all rosbags into different categories such as traffic jams, breakdowns, or accidents.

3. Automated Accident Detection: With the help of the scenario mining, a framework for
an automated analysis process for the detection of accidents in an arbitrary amount of
rosbags, stored in a cloud storage, is being proposed. This framework can be used to
classify rosbags to create a larger anomaly traffic dataset in the future.





Chapter 2

Terms and Definitions

2.1 Robot Operating System (ROS)

The Robot Operating System (ROS) is a meta operating system consisting of a set of software
libraries and tools to build robot applications [26]. The general idea of ROS is to have different
ROS Nodes, which communicate with each other via ROS Topics or ROS Services to transfer
data. Firstly, to use ROS, a ROS Node needs to be created, which is an executable file in a
ROS package programmed in C++ or Python. ROS Nodes are then communicating with each
other over ROS Topics. This means every ROS Node can subscribe to a ROS Topic to receive
all data, which is being sent on the ROS Topic, and every ROS Node can publish to a ROS
Topic to send all subscribing ROS Nodes data. The data sent over the ROS Topics is called a
ROS Message. Multiple ROS Messages can then be stored in a single Bag. Tools like rosbag
are used nowadays to create Bags, which store all serialized data published to specific ROS
Topics in a file. The ROS Bags can then be played back, once the need arises.

2.2 Data and Scenario Mining

Scenario mining is closely correlated to data mining. The goal of data mining is to process
large volumes of data with modern computing devices [21]. With the help of sophisticated
automated techniques, the hidden information, which can provide deeper insights and reveal
invaluable knowledge, can be extracted from these large databases [21]. On the other hand,
scenario mining defines the process of finding scenarios in a scenario data set, which fulfill
certain criteria e.g. an accident occurred or a standing vehicle is present in the scenario [10].

2.3 OpenDRIVE

OpenDRIVE is a widespread and well-established standard that defines the xodr file format.
With the help of the Extensible Markup Language (XML) syntax, it defines a common base for
describing the geometry of roads, lanes, road marks, road signs, etc. [2].

2.4 Rule-based Approach

A rule-based approach is a heuristic approach, which is built upon hand-constructed rules by
analyzing the deviations of generic properties of a good product [7, 29]. Due to the experts’
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knowledge, which was analyzed to extract the rules, they work well for the problems they are
intended for [14]. Compared to other machine learning approaches or even deep learning
approaches, rule-based approaches require fewer data to generate these rules making them
applicable to use cases with a lack of training and test data [5].

2.5 Deep Learning

Deep learning is a subfield of machine learning focusing on artificial neural networks and
algorithms inspired by the structure and function of the human brain. The difference to
machine learning is that deep learning refers to neural networks, which have multiple layers
enabling the neural networks to learn to represent data with multiple levels of abstraction and
the structure in large datasets [24]. This is done by using the backpropagation algorithm to
change the internal parameters specifying which features should be learned from the input.
However, compared to machine learning algorithms deep learning requires a large amount of
training data to achieve desirable results. Nowadays, deep learning is used in state-of-the-art
speech recognition, visual object recognition, object detection, and many other domains [17].



Chapter 3

Related Work

Accident detection and prediction in transportation systems is a critical aspect of ensuring
road safety and reducing the impact of road incidents. This chapter reviews existing literature
and research on current state-of-the-art accident detection systems, shedding light on various
approaches, methodologies, and technologies employed in this domain.

3.1 Scenario Mining

Kaefer et al. [1] proposed a scenario catalog, a scenario generation framework, a scenario
extraction pipeline, a scenario augmentation framework, a maneuver detection as well as
scenario mining, scenario statistics, and lastly scenario simulation and visualization. While
their work did not focus on accident detection and prediction, they solved the questions of how
to create an extensive collection of driving scenarios, which are relevant for the assessment of
automated vehicles. Therefore, they proposed a scenario mining strategy, which is responsible
for analyzing raw data recordings stored in rosbags and then applying a feature extraction.
The implemented features are lane ID, offset from lane center, and distance to leading and
following vehicle. With the help of the features, different maneuvers are then detected, which
are lane change, cut-in and cut-out, tailgate, speeding, standing vehicle, weather, right, left,
and U-turns, straight at crossing as well as enter and exit the highway. Due to the structure,
the scenario mining approach is easily extendable of an accident detection and the respective
necessary features and maneuvers [1].

3.2 Rule-based Systems

Rule-based accident detection and prediction systems leverage predefined sets of rules and
conditions to identify, classify, and predict accidents or anomalous events. These systems often
rely on a combination of vehicle dynamics, environmental data, and surveillance technologies
to formulate rules for accurate accident detection and prediction. Nowadays, the domain of
rule-based accident detection systems based on data, which monitors the traffic situation, is a
popular research field [4, 12, 15].
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3.2.1 Rule-based Accident Prediction

Ye et al. [35] proposed a solution for traffic accident prediction by considering the improve-
ment of traffic safety efficiencies. They use the extended belief rule-based system, which is
one of the most popular data-driven systems and was first introduced by Liu et al. [20]. The
extended belief rule-based system is responsible for constructing the rules from input-output
data pairs and calculating the rule weights for every rule based on the Euclidean distance.
The advantages of the extended belief rule-based system are the ability to exploit experts’
knowledge to enhance data analytics and having a visible inference traffic accident prediction
process as well as interpretable prediction results. However, for the extended belief rule-based
system to formulate these rules the recorded accident data from the A9 test stretch is not
sufficient [35].

3.2.2 Rule-based Accident Detection

A real-time and rule-based traffic accident detection system, which uses wireless sensor net-
works, was proposed by Sherif et al. [30]. This approach uses sensors, which are installed
in the vehicle, to detect accidents and the vehicles right before as well as the amount of
passengers in the vehicle. Then, this information is sent to a monitoring station, which is
responsible for tracking the location, where the accident occurred, and directly alerts the
authorities of the potential injuries to save as many lives as possible. However, this approach
requires every vehicle to have the necessary equipment of sensors present in the vehicle
making it costly to implement [30].

Another approach for a rule-based accident detection system was proposed by Sheu et al.
[31], which consists of three different components. Firstly, incident symptom identification,
which uses knowledge-based logical rules to recognize anomalous changes in raw traffic data
differing from incident-free cases. Secondly, a signal processing step is executed which uses
stochastic estimation of incident-related lane traffic characteristics and thirdly, the pattern
recognition for the incident detection is applied to the output of the second step. Additionally
to the incident detection, this approach provides information on the blocked lanes, the start
and end time of the incident, lane-changing fractions, queue lengths in blocked lanes, and
the number of vehicles in each adjacent lane. However, it was specifically implemented for
the use of point detectors to estimate real-time lane-changing probabilities and the change in
queue-length [31].

3.3 Machine and Deep Learning-based Accident Detection

Recent years have witnessed a paradigm shift with the widespread adoption of machine and
deep learning for accident detection [18]. Decision trees, naive Bayes, Multilayer Percep-
tron (MLP)s, Convolutional Neural Network (CNN)s, Recurrent Neural Network (RNN)s, etc.
have demonstrated remarkable capabilities in learning intricate patterns and representations
from raw sensor data [11, 16, 36]. Several studies have explored the application of machine
and deep learning in accident detection using different types of input data, including images,
videos, and sensor readings [22, 28, 33].
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Pillai et al. [27] propose a real-time image enhancement for an automatic accident detec-
tion through the use of Closed Circuit Television (CCTV) footage using deep learning. Their
approach is split up into three stages and takes images as input. Firstly, for the detection
stage Mini-You Only Look Once (YOLO) is implemented, which is a deep learning model
architecture with reduced model size and computational overhead compared to its big brother
YOLO. It was trained using knowledge distillation and achieves comparable accuracy to
YOLO. Secondly, the tracking stage uses Simple Online Real-time Tracking (SORT) to track
the detected vehicles and their status of the damage variable, which is triggered once the
vehicle is involved in a crash. Thirdly, in the classification stage each segmented vehicle from
the images is classified based on the damage variable. Multiple machine learning algorithms
were compared in this stage with a Support Vector Machine (SVM) with a radial basis kernel
yielding the best performance. However, their approach is limited to the static notion of
accidents by classifying damaged vehicles [27].

A similar approach which takes videos as input instead of images is proposed by Li et al.
[18]. It comprises the following modules: a detection module, which uses a Faster Region-
based Convolutional Neural Network (R-CNN) for object detection, a background modeling
module responsible for removing driving cars from the background by using Mixture of Gaus-
sian (MOG), a mask extraction module, which extracts the parts of the road where anomalies
are likely to occur and most importantly a multi-granularity tracking, which comprises of a
box level tracking branch and a pixel level tracking branch. This approach does not only focus
on accidents, but detects anomalies in the road network such as vehicle breakdowns, standing
vehicles, etc. [18].

Another approach, which uses videos as input to detect anomalies, is the fast and unsuper-
vised anomaly detection in traffic videos from Doshi et al. [8] consisting of three modules.
Firstly, the preprocessing module outputs all stationary objects detected in the input video.
Then, the candidate selection module applies the nearest neighbor approach to remove any
misclassified stationary objects and afterward makes use of K-means clustering to spot po-
tential anomalous regions. Finally, the backtracking anomaly detection algorithm computes
the structural similarity between the region of interest and the traffic participants to classify
anomalies [8].

While current accident detection systems utilize state-of-the-art machine and deep learning-
based accident detection systems, the amount of traffic anomaly and accident datasets are
scarce [14]. Therefore, the need for an automated accident detection system arises, which
only requires a few training instances and can detect accidents in the recorded data from the
A9 test stretch.
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Methodology

In this section, the methodology for an automated rule-based accident detection approach on
the A9 test stretch is shown in detail. It consists of the following contributions:

1. Event Log

The Event Log consists of 32 rosbags, which were labeled by hand. They cover multi-
ple traffic scenarios such as standing vehicles on the shoulder lane, breakdowns, and
accidents, which are being used to create the rules for the different maneuvers in the
Scenario Mining.

2. Scenario Mining

The Scenario Mining is responsible for first extracting the raw recordings from the ros-
bags into data frames from which the necessary features for the use case of autonomous
driving such as the lane the vehicles are driving on, the distance to the leading and
following vehicle, and the overall average velocity on the highway can be calculated.
Next, it considers the features to detect maneuvers, such as standing vehicles on the
shoulder lane, traffic jams or slow-moving vehicles, any potential breakdowns, and most
importantly accidents. Afterward, the scenario statistics can be created for every rosbag
comprising all detected maneuvers. With the help of the statistics, a dataset containing
anomalous traffic situations can be generated.

3. Automated Accident Detection

The Automated Accident Detection is responsible for executing the accident detection
on a specified amount of recorded rosbags. The aim is to filter out all rosbags, which
are not relevant for the creation of an anomaly traffic dataset. Therefore, the scenario
statistics are being calculated and stored for every rosbag. Additionally, the images in
which a breakdown or accident is detected are extracted from the rosbags to get a better
understanding of detected anomalies.

4.1 Event Log

Figure 4.1 depicts the Event Log containing 14 different traffic situations recorded from the
test stretch on the A9 highway. For each traffic situation the date, event, and description is
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being stored to ensure easy use of the rosbags in Section 4.2. The following labels are present
in the Event Log to split the rosbags into important traffic situations:

• Emergency Vehicle: An emergency vehicle, which is in operation, can foreshadow a
potential accident.

• Vehicle Transport: A vehicle transporter might be detected as multiple vehicles. This can
lead to False Positive (FP)s in the accident detection.

• Tow Truck: A tow truck might be detected as multiple vehicles if it is towing another
vehicle. This can lead to FPs in the accident detection.

• Shoulder: The shoulder label specifies a vehicle standing on the shoulder lane of the
highway.

• Traffic Jam: With a traffic jam present, the chance of finding an accident is pretty high.

• Breakdown: Breakdowns on the shoulder lane and especially on a driving lane, can
foreshadow accidents on the highway.

• Accident: The accident label shows all accidents, which were found in the recordings
from the A9 test stretch.

Figure 4.1: Overview of the Event Log.

From the Event Log the following four traffic situations were used to construct the rules in
Subsection 4.2:

(a) Accident event on the 08.04.2021:

Figure 4.2 illustrates the time series of the accident on the 08.04.2021, which was used
to fine-tune the accident detection in Section 4.2.2.4. The cause of the accident was the
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(a) Illustration of the traffic situation before the accident.(b) Illustration of the traffic situation where the yellow
vehicle drove into the guard rail.

(c) Illustration of the traffic situation where the yellow
vehicle drove into the white van.

(d) Illustration of the traffic situation after the accident.

Figure 4.2: Time series for the accident event on the 08.04.2021, where a yellow vehicle crashed into a standing
white van on the highway.

white van on the rightest lane of the left side of the highway, which had a breakdown
and therefore had to stop on a driving lane. The yellow vehicle was driving 180 km/h
and lost control of the vehicle whilst trying to evade crashing into the white van, which
is visible in Figure 4.2(a). In Figure 4.2(b), the yellow vehicle crashed into the guard
rail and still had enough momentum to crash into the white van in Figure 4.2(c). Figure
4.2(d) then shows the end of the accident, where both vehicles are standing still.

(b) Accident event on the 21.10.2021:

Figure 4.3 depicts the time series of a breakdown event on the 21.10.2021 on the
left side of the highway. Whilst Figure 4.3(a) illustrates the traffic situation right
before the breakdown, Figure 4.3(b) shows the moment in which the trailer of the
blue van is about to be knocked over by the wind. In Figure 4.3(c) the trailer fell over
completely, leading to the blue van being knocked over as well as shown in Figure 4.3(d).

(c) Accident event on the 28.03.2022:

Figure 4.4 illustrates the second recorded crash between multiple vehicles. Figure 4.4(a)
depicts the traffic situation right before the accident occurred. Due to a traffic jam, the
taxi driver is slowing down on the farthest left lane of the right highway side. The black
vehicle behind the taxi realizes this too late, evades to the right lane and crashes into
the blue vehicle in Figure 4.4(b). Afterward, the black vehicle also crashes into the taxi
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(a) Illustration of the traffic situation before the break-
down.

(b) Illustration of the traffic situation where the trailer
of the blue van is about to fall over.

(c) Illustration of the traffic situation after the trailer
of the blue van fell over.

(d) Illustration of the traffic situation after the trailer
and the blue van fell over.

Figure 4.3: Time series for the breakdown on 21.10.2021, where a blue van was knocked over by the wind.

(a) Illustration of the traffic situation before the acci-
dent.

(b) Illustration of the traffic situation where the black
vehicle drove into the side of the blue vehicle.

(c) Illustration of the traffic situation where a black
vehicle drove into the taxi.

(d) Illustration of the traffic situation after the acci-
dent.

Figure 4.4: Time series for the accident event on the 28.03.2022, where a black vehicle is driving into the side of a
blue vehicle and spinning it 360 degrees.
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as shown in Figure 4.4(c). While the black vehicle and the taxi are coming to a standstill
after the crash, the blue vehicle does a 360-degree spin before it stops moving in Figure
4.4(d).

(d) Breakdown event on the 22.05.2022:

Figure 4.5 shows a breakdown event on the 22.05.2022, where a vehicle on the left
shoulder lane burned down and afterward got transported away by a truck. While the
vehicle looks completely fine in Figure 4.5(a), a few minutes later in figure 4.5(b) the
vehicle is smoking. Figure 4.5(c) then shows the vehicle burning down and omitting
even more smoke. Lastly in Figure 4.5(d), the vehicle burnt down completely and a
vehicle transporter arrived to transport the burning vehicle away safely.

(a) Illustration of the traffic situation before the vehicle
burns.

(b) Illustration of the traffic situation where the vehicle
starts to smoke.

(c) Illustration of the traffic situation where the vehicle is
burning.

(d) Illustration of the traffic situation after the vehicle
burned down.

Figure 4.5: Time series for the breakdown event on the 22.05.2022, where a burning vehicle is standing on the
shoulder lane.

4.2 Scenario Mining

The aim of the scenario mining is to create an automated approach, which labels the input
scenarios into different types. The input scenarios in this case are the recorded rosbags from
the A9 test stretch. Firstly, the raw recordings from the rosbags have to be extracted into
data frames to then apply the feature extraction and afterward the maneuver detection. The
extraction of the raw recordings, the lane ID as well as the distance to leading and following
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vehicle feature extraction and the cut in/out, speeding, standing, and tailgate maneuver detec-
tion has already been implemented by Aaron Kaefer [1]. Therefore, this section follows the
previous work of Aaron Kaefer closely and improves as well as extends his work of numerous
features and maneuvers. However, this approach strongly depends on accurate input data
such as the continuous detection of vehicles, their 3D position estimation as well as the speed,
which comes from a perception pipeline using YOLOv4 for object detection and object tracking.

4.2.1 Feature Extraction

The feature extraction is responsible for extracting all features, which are necessary for the
maneuver detection, from the extracted raw recordings of the rosbags. Necessary features
for accident detection are the lane ID in which the vehicles are driving, the corresponding
distance to the leading and following vehicle in the respective lane as well as the average
velocity on both sides of the highway.

4.2.1.1 Feature: Lane ID

To detect maneuvers such as standing vehicles on the shoulder lane and rear-end collisions,
the lane ID of each vehicle in every frame has to be extracted from the raw recordings. Figure
4.6 shows a section of the A9 test stretch from the bird’s eye view. The values for the different
lane IDs are distributed according to the OpenDRIVE format, meaning the lane between the
highway sides has lane ID 0. The lanes towards the bottom range from 1 to 6 and the lanes
towards the top range from -1 to -6.

Figure 4.6: Illustration of the different lane IDs on the highway.

The lanes are split up into 3 diffent kinds:

(a) The driving lanes are visualized in green.

(b) The shoulder lanes are visualized in yellow.
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(c) The boulevards are visualized in red.

Instead of Kaefer’s approach [1], where one polygon was used to model one lane and
afterward it was checked if the center of the vehicles’ bounding box was inside one of the
polygons, a faster approach was needed to process as many rosbags in a short period of time
as possible. Therefore, the proposed solution only checks the y position of the vehicle’s center
of the bounding box to label the lane ID, since this avoids computational heavy checks e.g. if
a polygon contains a specific point. Taking the center of the bounding box of each vehicle is
crucial to circumvent any ambiguous lane ID labels in cases where the vehicle is driving in
multiple lanes simultaneously, which would lead to unwanted behavior.

Figure 4.7 visualizes the same section of the A9 test stretch with additional vehicles. In this
case, the vehicles with ID 1, 2 and 3 would get the label 4 for lane ID and vehicles 4, 5 and 6
the label -1 for lane ID. Since the center of the bounding box is used for labeling, vehicle 2
only gets label 4 instead of having label 4 and label 5, even though the vehicle is driving in
both lanes.

Figure 4.7: Example of the lane ID labeling.

4.2.1.2 Feature: Distance to Leading and Following Vehicle

The distance to the leading and following vehicle is crucial to detect multiple maneuvers
such as cut-ins and cut-outs and especially accidents. While a possible solution was already
proposed by Kaefer [1], the computation time was not scalable for bigger projects. Therefore,
this section focuses on a new approach.

1. Firstly, all traffic participants are being split up according to their lane ID. Whilst this
does limit the use case, it speeds up the computation time drastically.

2. Secondly, the traffic participants in each lane are sorted by their x value of the bounding
box center.

3. Then the Euclidean Distance Matrix (EDM) between neighboring traffic participants
is calculated and stored as distance to the leading and following vehicle respectively.
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Neighboring traffic participants are the vehicles at index 0 and index 1, index 1 and
index 2 all the way to index N-1 and index N.

This approach achieves two significant speed-ups compared to Kaefer’s approach:

1. Instead of computing the EDM between every traffic participant in a lane, it is now only
being computed for the necessary neighboring vehicles.

2. Instead of interpolating the driven trajectory of two vehicles and calculating the cor-
responding Euclidean distance, the new approach takes the location from the raw
recordings and only calculates the EDM, which does not take the square root in the end,
unlike the euclidean distance.

Figure 4.8 visualizes an example of the distance to leading and following vehicle calculation.
There are three traffic participants currently driving in lane ID -2. Instead of calculating the
EDM for every possible traffic participant permutation, which would be (1,2), (2,3), and
(1,3), it is computationally faster to sort their x value and only calculate the EDM for (1,2)
and (2,3). While this does not make a noticeable difference in this case, the computational
cost grows exponentially with the amount of traffic participants in the corresponding lane. A
disadvantage to this approach is the fact that vehicle 2 and vehicle 5 are driving relatively
close to one another and since they do not share a lane, their respective distance is not being
calculated. However, in this solution, the computational overhead for calculating the EDM in
such cases would exceed the scalability.

Figure 4.8: Example of the distance to leading and following vehicle calculation.

4.2.1.3 Feature: Average Velocity / Average Velocity per Frame

Additionally, to the lane ID and distance to leading and following vehicle, the average velocity
as well as the average velocity per frame is necessary to detect maneuvers such as traffic jams,
slow-moving traffic, and breakdowns on a driving lane:

• Average Velocity:

The average velocity on the highway is split up into two different categories:
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– average_velocity_north: average velocity on the side driving towards the
northern direction

– average_velocity_south: average velocity on the side driving towards the
southern direction

The calculation is then done as follows:

1. Fetch all velocities of each frame and store them corresponding to which side the
traffic participant is driving on

2. Calculate the mean of the velocity for both highway sides

Both values are important for the scenario statistics, which is going to be covered in
Section 4.2.3, since the average velocity on a side of the highway is directly correlated
to traffic jams, slow-moving traffic, and potential accidents.

• Average Velocity per Frame:

Figure 4.9 illustrates the split of the average velocity per frame on the highway into four
different categories:

– average_velocity_per_frame_north_0: average velocity per frame on the side
driving towards the northern direction and in the x value interval [0, 250)

– average_velocity_per_frame_north_250: average velocity per frame on the
side driving towards the northern direction and in the x value interval [250, 500]

– average_velocity_per_frame_south_0: average velocity per frame on the side
driving towards the southern direction and in the x value interval [0, 250)

– average_velocity_per_frame_south_250: average velocity per frame on the
side driving towards the southern direction and in the x value interval [250, 500]

Figure 4.9: Illustration of the split of the average velocity per frame into four different categories.

The calculation is then done as follows:
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1. Iterate over each frame and fetch for each frame all velocities of the single frame.
Store them corresponding to which of the four categories the traffic participant is
currently driving on

2. Calculate the mean of the velocity for the specific frame for all four categories

The average velocity per frame values are needed to calculate the traffic jams, slow-
moving traffic as well as breakdowns on driving lanes in Section 4.2.2.

4.2.2 Maneuver Detection

The goal of the maneuver detection is to detect maneuvers on the highway with the help of
the extracted features from Section 4.2.1. Possible maneuvers are cut-ins, cut-outs, standing
events, breakdowns, traffic jams, and most importantly accidents.

4.2.2.1 Label: Standing Shoulder

Since in Figure 4.6 the differences between driving lanes, shoulder lanes, and boulevards
were already illustrated in detail and Kaefer [1] implemented a label for standing traffic
participants, the approach for the standing shoulder label was straight forward:

1. Check if any traffic participant has either lane ID 6 or lane ID -5, but is not on the
highway exit, which can be done by checking the x value of the traffic participant.

2. Check if the traffic participant from above has a velocity below 0.04, which was used as
a threshold by Kaefer [1] to determine standing vehicles.

3. If both conditions above are met, classify the traffic participant as a standing shoulder
vehicle.

4.2.2.2 Label: Traffic Jam / Slow-moving traffic

While there are many different definitions of traffic jams and slow-moving traffic on the
highway, the label for traffic jams as well as for slow-moving traffic takes this definition1 as
the baseline:

• Traffic jam: Throughout 1 km, multiple traffic participants have to drive below 20 km/h
for at least 5 minutes.

• Slow-moving traffic: Throughout 1 km, multiple traffic participants have to drive
between 20 km/h and 40 km/h for at least 5 minutes.

Due to the characteristics of the A9 test stretch, the following changes have to be made:

• Since the A9 test stretch is only 500 m long, the stretch for traffic jams and slow-moving
traffic is being reduced to 500 m.

• Since multiple recorded rosbags are only 1 minute long, the time constraint is being
lowered from 5 minutes to 30 seconds.

1https://www.leasingmarkt.de/magazin/reisen/stau-tipps#:~:text=Um%20einen%20Stau%20handelt%
20es,man%20hingegen%20von%20stockendem%20Verkehr.

https://www.leasingmarkt.de/magazin/reisen/stau-tipps#:~:text=Um%20einen%20Stau%20handelt%20es,man%20hingegen%20von%20stockendem%20Verkehr.
https://www.leasingmarkt.de/magazin/reisen/stau-tipps#:~:text=Um%20einen%20Stau%20handelt%20es,man%20hingegen%20von%20stockendem%20Verkehr.
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• Since the average velocity per frame was already calculated in Section 4.2.1.3, instead
of checking if multiple traffic participants drive below 20 km/h or 40 km/h the average
velocity per frame has to be below the mentioned threshold.

The implementation for traffic jams and slow-moving traffic is done as follows:

1. Execute the traffic jam and slow-moving traffic calculation for both the northern and
southern sides of the highway.

2. Since the definition of a traffic jam and slow-moving traffic specifies that the average
velocity per frame throughout 500 m has to be analyzed, it is necessary to split the
stretch into multiple parts, which are being examined separately. Therefore, fetch the
average velocity per frame for the corresponding highway side in the interval [0, 250)
and in the interval [250, 500].

3. Check if both average velocities per frame are either below 20 km/h (traffic jam) or
between 20 km/h and 40 km/h (slow-moving traffic).

4. Check if the average velocity per frame fulfills the same case for at least 30 seconds.

5. Classify if a traffic jam or slow-moving traffic occurred.

4.2.2.3 Label: Breakdown

Additionally, to traffic jams and slow-moving traffic, breakdowns can be closely correlated to
accidents as already shown in Figure 4.2, where the white van broke down on a driving lane
causing an accident.

• Breakdown shoulder:

Most commonly, the traffic participant having the breakdown changes lanes towards the
shoulder lane and stops there. Therefore, all traffic participants standing for at least 30
s on a shoulder lane get the breakdown shoulder label. The implementation is done as
follows:

1. Iterate over each actor and check the standing shoulder label in each frame.

2. If the vehicle stands for at least 30s on the shoulder lane, it is being labeled as a
breakdown shoulder event

• Breakdown driving lane:

In some rare cases, the breakdown vehicle can not change lanes towards the shoulder
lane and stops on a driving lane, causing the accident probability to increase drastically.
Therefore, all traffic participants standing for at least 30s on a driving lane, while there
is no traffic jam, are being labeled as a breakdown driving lane.

1. Iterate over each actor and check if the traffic participant is standing, but not on a
shoulder lane.

2. Check if the average velocity per frame on the corresponding side of the highway
and in the interval of the traffic participant itself is above 20 km/h to avoid FP
detections during traffic jams.

3. If the condition above is met for at least 30 s, it is being labeled as a breakdown
driving lane event.
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4.2.2.4 Label: Accident

The main contribution of this paper is a rule-based approach for accident detection on the
recorded data from the A9 test stretch in order to create an anomaly traffic dataset, which
can be used with a more sophisticated model in the future, which achieves a higher precision
and recall. As of now the rule-based accident detection is limited to finding crashes between
two vehicles, which are driving in the same lane. After careful consideration and analysis
of the recorded accident on the 08.04.2021 shown in Figure 4.2, the following rules were
established:

veloci t yi ≥
15 km/h

3.6
(4.1)

veloci t yi > veloci t y_leadi (4.2)

veloci t yi ≥ veloci t y j ∀ i < j ≤ N (4.3)

distance_leadi ≥ distance_threshold (4.4)

distance_leadi < (
(veloci t yi − veloci t y_leadi)

30
)2 (4.5)

t tc_leadingi ≤ t tc_threshold (4.6)

The rules are responsible for calculating if a specific traffic participant was involved in an
accident. It is done by iterating through each frame the actor was recorded in and checking
the respective values for that frame. Let i be the frame, which is currently being checked for
accidents, and N the number of frames the specific traffic participant was in the range of the
sensors.

1. Firstly, in Equation 4.1 the velocity of the traffic participant has to be at least 15 km/h.
This is done to filter out potential FP in traffic jams or slow-moving traffic scenarios
since the object detection used in the perception pipeline is not capable of estimating
the 3D position of the traffic participants accurately.

2. Secondly, in Equation 4.2 the velocity of the traffic participant has to be greater than the
velocity of the vehicle in front, because otherwise the traffic participant in the back is not
going to catch up with the one in front and is therefore not going to cause an accident.

3. Equation 4.3 adds the constraint that the velocity of the traffic participant can not
increase after the accident, since it is unusual to continue driving after a crash.

4. Equation 4.4 ensures that the distance to the leading vehicle is higher than a cer-
tain threshold. This is necessary, because the digital twin was created using YOLOv4.
Therefore, the object detection from YOLO detects multiple FP traffic participants. The
bounding boxes of these FP and the actual traffic participants often overlap or are
relatively close to each other. After fine-tuning the distance_threshold, the most
promising results on the rosbags covered in the event log were achieved with 0.1.

5. Equation 4.5 defines the constraint for the distance between the two accident traffic
participants. Since the distance, which should be kept between vehicles on the highway,
is correlated to both the own velocity and the velocity of the leading traffic participant,
the ∆veloci t y is used to check the distance. Additionally, the ∆veloci t y is divided by
30, since this yielded the best result on the rosbags of the event log. Last but not least,
the term on the right side needs to be squared, because the distance to the leading
vehicle was calculated using EDM as covered in Section 4.2.1.2, which means the square
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root was neglected while calculating the euclidean distance.

For a better understanding of the distance constraint, Equation 4.7 is being transformed
into Equation 4.8 by squaring both sides. As already covered above, taking the square
root of the distance to the leading vehicle is the same as calculating the Euclidean
distance between the (x,y) points of the two traffic participants. Since the value of the
Euclidean distance is always positive as well as the right side of Equation 4.7, which is
both due to the square and Equation 4.2, the transformation is mathematically correct.

distance_leadi < (
(veloci t yi − veloci t y_leadi)

30
)2 (4.7)

∥point − point_lead∥2 < (
(veloci t yi − veloci t y_leadi)

30
) (4.8)

Example of the accident on 08.04.2021:

If actor1 drives 33 m/s and actor2 drives 0 m/s, then as shown in Equation 4.9 once
the distance between the two traffic participants is below 1.1 an accident is classified
according to the rule. In the real accident, the distance between the two vehicles was
0.75 m.

threshold =
33− 0

30
= 1.1m (4.9)

6. Additionally, Equation 4.6 checks wheter the Time-to-collision (TTC), which was already
implemented by Kaefer [1] is below the ttc_threshold being set to 0.1.

If and only if all six rules apply simultaneously, the corresponding traffic participant is
classified as an accident event.

4.2.3 Scenario Statistics

After the feature extraction and the maneuver detection are finished, a statistical summary
is created and stored in a JavaScript Object Notation (JSON) file for every executed rosbag.
The statistics contain the information of all maneuvers, which occurred in the rosbag such as
standing vehicles on the shoulder lane, traffic jams, slow-moving traffic, and accidents as well
as the statistics, which were already implemented by Aaron Kaefer [1]. Table 4.1 shows all
statistics, which were added in this paper.

4.3 Automated Accident Detection

With the working rule-based approach for accident detection, an automated approach for
the accident detection on the rosbags of multiple years, which were recorded on the A9 test
stretch and are stored online in a cloud storage, can be developed. The automated accident
detection consists of the following steps:

1. Firstly, list all directory contents from the remote cloud storage and store them in a list.
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Statistics Description
Total Vehicles Sum of all detected vehicles
Total Vehicle Classes Amount of different detected vehicle classes, e.g. such as car, bus,

truck, motorcycle etc.
Total Standing Vehicles
Shoulder

Sum of all detected standing shoulder vehicles

Average Velocity North Average Velocity of all detected vehicles on the northern highway
side

Average Velocity South Average Velocity of all detected vehicles on the southern highway
side

Traffic Jam North Flag specifying if a traffic jam occurred on the northern highway
side

Traffic Jam South Flag specifying if a traffic jam occurred on the southern highway
side

Slow-moving Traffic North Flag specifying if there is slow-moving traffic on the northern
highway side

Slow-moving Traffic South Flag specifying if there is slow-moving traffic on the southern
highway side

Total Breakdowns Shoulder Sum of all detected breakdowns on a shoulder lane
Total Breakdowns Driving
Lane

Sum of all detected breakdowns on a driving lane

Total Breakdowns Sum of all detected breakdowns
Total Accidents Sum of all detected accidents

Table 4.1: Overview of the statistics added to Kaefers [1] scenario statistics.

2. Iterate over the contents and check the following conditions for every content:

(a) Check if the content is a rosbag file.

(b) Check if the rosbag file takes place after the download_start value, which specifies
a timestamp for which the download of the rosbag should start. For example
if download_start="/year_2021/month_12/day_20", then all rosbags taking
place before the 20.12.2021 are not being downloaded and therefore the accident
detection is not being executed for them. This helps to skip rosbags, which were
already executed in earlier stages.

(c) Check if the rosbag takes place during a specific time interval. In this paper due
to limited time, the time interval is chosen according to the sunrise and sunset in
each month, because the object detection is not working as accurately in rosbags,
which take place during the night.

3. If all three conditions above are being met, the rosbag file is then downloaded from the
cloud storage.

4. Since the execution of the scenario mining for the recorded data on an entire year is not
scalable, a separate script is being executed on the downloaded rosbag, which checks if a
standing vehicle is detected. This will filter all anomalous rosbags, since in all important
cases such as traffic jams, breakdowns, and accidents, at least one standing vehicle has
to be present.

5. Next, the scenario mining is being executed on all rosbags, where a standing vehicle was
detected in the step before. The scenario statistics are being calculated for every rosbag
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in this step to analyze all standing shoulder vehicle events, traffic jams, slow-moving
traffic, breakdowns, and accidents.

6. In the end, the rosbag is being deleted, since the used Solid State Drive (SSD) is not big
enough to store all 200,000 recorded rosbags from the A9 test stretch, which takes up a
total of 100 TB.





Chapter 5

Evaluation

This work proposes a simple rule-based approach for accident detection on the A9 test stretch
on the highway. This approach is included in an automated accident detection script to find
accidents in large datasets. With the help of the automated accident detection and other
labels such as standing shoulder vehicles, traffic jams, slow-moving traffic and breakdowns an
anomaly traffic dataset can be created to train a more sophisticated deep learning model for
accident detection, which achieves a higher precision and recall rate. In this chapter, the main
contributions, which consist of the scenario mining and afterward the automated accident
detection, are being evaluated based on the two research questions if it is possible to reliably
detect accidents on the A9 test stretch using roadside sensors and if this procedure can be
executed in real-time.

5.1 Metrics

To evaluate both the scenario mining approach with all its features and labels as well as the
automated accident detection, the following metrics are being used:

• Scenario Mining

Firstly, the scenario mining approach is being evaluated based on the achieved speedup
and its functional correctness.

– Speedup: With the automated accident detection being used to analyze big datasets,
keeping the computational performance of the scenario mining as low as possible
is crucial for real-world applicability. The speedup is defined as follows, where the
execution time of Kaefer’s approach t_K is divided by the execution time of the
proposed approach t_P:

speedup =
tK

tP
(5.1)

Additionally, the speedup can be split up into the speedup of the lane ID extraction
shown in Equation 5.2 and the speedup of the distance extraction, shown in
Equation 5.3, for a more detailed analysis:
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speedup_lane_I D =
tK_laneI D

tP_laneI D
(5.2)

speedup_distance =
tK_distance

tP_distance
(5.3)

– Functional Correctness: Before evaluating the automated accident detection, the
functional correctness of the labels in the maneuver detection has to be ensured.
Therefore, the scenario mining is being evaluated on the four rosbags, which were
already explained in Section 4.1.

• Automated Accident Detection

After evaluating the real-world applicability of the scenario mining and its functional
correctness, the whole automated accident detection procedure can be evaluated on
unseen data from the A9 test stretch. The automated accident detection is evaluated
based on precision and a false negative analysis.

– Precision: The precision is widely used to evaluate how often a machine learning
model correctly predicts the positive class [9] in correlation to all positive class
predictions. Equation 5.4 shows the definition for the precision.

precision=
True Posi t ives

True Posi t ives + False Posi t ives
(5.4)

– False Negative Analysis: Since the scenario mining stores the scenario statistics
for every executed rosbag, the occured breakdowns can be analyzed manually to
detect potential false negatives in the accident detection.

• Comparison with Deep Learning-based Accident Detection

After evaluating the automated accident detection using the rule-based approach, it can
be compared to a deep learning-based accident detection, which was implemented by
Daniel Lehmberg in parallel to this work.

– Precision: After evaluating the precision on the recorded data from the A9 test
stretch, the precision of both approaches is being compared on a manually created
test set.

– Recall: Additionally to the precision, the recall of both approaches is being com-
pared. The recall defines how often the model correctly classifies positive instances
from all positive instances. Equation 5.5 shows the definition for the recall.

recal l =
True Posi t ives

True Posi t ives + False Negatives
(5.5)

• Runtime: Last but not least, the runtime for both approaches is being analyzed to make
a meaningful statement about the scalability of both approaches.
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5.2 Structure

To evaluate the contribution with the metrics mentioned in Section 5.1, Lehmberg implemented
an image extraction in the scenario mining step. Additionally, a deep learning-based accident
detection was written for the comparison with the rule-based accident detection, which was
trained on frames of the available accidents as well as online data1.

5.2.1 Image Extraction

To evaluate the labels in the scenario mining, it was extended of an image extraction, which is
responsible for extracting the images for specific labels. The following labels can be passed as
command line arguments:

• standing_shoulder: Extract the images for each vehicle, which stands on the shoulder
lane.

• breakdown: Extract the images for each vehicle, which has a breakdown.

• accident: Extract the images for each detected accident.

• accident_breakdown: Extract the images for each vehicle, which has a breakdown as
well as for each detected accident.

To speed up the process of the image extraction only three images are being extracted for
a single event. The image 4.8 seconds before the event, the image of the frame, where the
event occurred, and the image 4.8 seconds after the event, since this is enough to evaluate the
event correctly.
Figure 5.1 depicts the output folder structure if four rosbags are being executed and the
accident command line argument is set. If a rosbag contains an event, for which the image
extraction was enabled, a folder is being created for this rosbag. In Figure 5.1 three different
accidents were detected, two in rosbag_0 and one in rosbag_3. Therefore, a folder was cre-
ated for both rosbags. Each detected event is being stored in a separate folder to differentiate
between multiple events in a single rosbag. As a consequence, rosbag_0 has two folders for
the two detected accidents, and rosbag_3 has only one folder. Each event folder then consists
of four folders, which represent the four cameras and contain the three extracted images of
the corresponding camera each. Additionally, the calculated scenario statistics are stored as
a JSON file in the folder of the corresponding rosbag. Since the statistics for the rosbags,
which do not have the specified event such as an accident, are still important to analyze the
data, they are stored in a separate statistics folder. Therefore, in Figure 5.1 the statistics for
rosbag_1 and rosbag_2 are being stored in the statistics folder.

In the evaluation, the scenario mining is executed with the accident_breakdown com-
mand line argument. The accident value is necessary to evaluate the accidents and the
breakdown value helps to find potential false negatives in the accident detection since acci-
dents have a high occurrence probability in scenarios with breakdowns.

1https://universe.roboflow.com/accident-detection-model/accident-detection-model/dataset/2

https://universe.roboflow.com/accident-detection-model/accident-detection-model/dataset/2
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Figure 5.1: Illustration of the folder structure of the image extraction.

5.2.2 Deep Learning-based Accident Detection

Since state-of-the-art accident detections mostly use deep learning-based models, Daniel
Lehmberg implemented such an approach for the project, which uses images as input to detect
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accidents. Firstly, the YOLOv8x2 model was used as the baseline model, which was pre-trained
on Common Objects in Context (COCO). COCO is a large-scale dataset for the use case of
object detection, segmentation, and captioning from Microsoft [19]. To detect accidents, the
pre-trained YOLOv8x model was then fine-tuned on a dataset consisting of manually labeled
accident images from the recorded data and accident images, which were already used for the
training process of other deep learning-based accident detection models3.

5.3 Results

This section illustrates and analyzes the measured results for the mentioned metrics from
Section 5.1. The results were measured on a system using Ubuntu 20.04.4 Long Term
Support (LTS) with an Intel Core i9-9900KF Central Processing Unit (CPU), 3.6 GHz and 8
cores, 32 GB Random Access Memory (RAM) and a NVIDIA Corporation TU104 [GeForce RTX
2080 SUPER] graphics card.

5.3.1 Scenario Mining

5.3.1.1 Speedup

To analyze as many rosbags as possible in a short time period, improving the computational
performance of the scenario mining is crucial for the real-world applicablity.

Table 5.1 illustrates the average runtime of the scenario mining for both Kaefer’s approach
[1] and the approach proposed in this paper. The scenario mining was executed 20 times for
the 15-minute rosbag on the 22.05.2022 and the runtime values were averaged.

Since the scenario extraction was not changed in this paper, the average runtime is
approximately the same for Kaefer’s approach and the proposed approach with a runtime
difference of 0.6 s. However, the lane ID extraction was reduced from 937.49 s from Kaefer’s
approach [1] to only 2.22 s in the proposed approach from Section 4.2.1.1. This leads to a
lane ID extraction speedup of 422.29 as shown in Equation 5.6:

speedup_lane_I D =
937.49 s

2.22 s
= 422.29 (5.6)

In addition to the speedup of the lane ID extraction, the distance to leading and following
vehicle extraction has also been improved significantly. While Kaefer’s approach [1] needs
3371.73 s to extract the distance values, the proposed approach in Section 4.2.1.2 only takes
178.02 s leading to a speedup of the distance to leading and following vehicle extraction of
18.94 as shown in Equation 5.7:

speedup_distance =
3371.73 s
178.02 s

= 18.94 (5.7)

Due to additional features such as the average velocity extraction and labels such as traffic
jams, slow-moving traffic, breakdowns, and accidents, the runtime of the average velocity

2https://docs.ultralytics.com/de/tasks/detect/
3https://universe.roboflow.com/accident-detection-model/accident-detection-model/dataset/2

https://docs.ultralytics.com/de/tasks/detect/
https://universe.roboflow.com/accident-detection-model/accident-detection-model/dataset/2
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extraction, maneuver detection, accident detection, and the statistics creation proposed in
this paper is higher than Kaefers [1] runtime. All in all, the scenario mining approach for
a 15-minute rosbag takes now instead of 4403.27 s only 234.25 s even with the additional
features and labels. Therefore, an overall speedup of 18.8 was achieved with this paper as
shown in Equation 5.8:

speedup =
4403.27 s
234.25 s

= 18.80 (5.8)

Kaefers approach Proposed approach
Scenario Extraction 46.25s 46.85s
Lane ID Extraction 937.49s 2.22s
Distance to Leading / Following
Vehicle Extraction

3371.73s 178.02s

Average Velocity Extraction not implemented 4.38s
Maneuver Detection 0.59s 0.92s
Accident Detection not implemented 0.15s
Statistics Creation 0.40s 0.53s
Overall Runtime 4403.27s 234.25s

Table 5.1: Average performance comparison of Kaefer’s approach with the approach proposed in this paper using
the 15-minute rosbag on the 22.05.2022.

5.3.1.2 Functional Correctness

For the automated accident detection to work properly, the added labels such as standing
shoulder vehicles, breakdowns, slow-moving traffic, traffic jams as well as accidents have to
be functionally correct. Therefore, the functional correctness is being analyzed on the four
rosbags from section 4.1:

• Accident event on the 08.04.2021:

Listing 5.1 shows the JSON containing the scenario statistic of the minute right before
the accident on the 08.04.2021, which was already illustrated in Figure 4.2. In the
minute before the accident, there was one standing vehicle in a driving lane, which was
the white van standing on the farthest right lane of the left highway side. Additionally,
this vehicle was also classified as a breakdown vehicle on a driving lane, which ensures
the functional correctness of the breakdown label.

{
"total_vehicles": 245,
"total_vehicle_classes": 3
"total_lane_changes_left": 17,
"total_lane_changes_right": 75,
"total_lane_changes": 92,
"max_lane_changes": 3,
"total_cut_ins_left": 0,
"total_cut_ins_right": 1,
"total_cut_ins": 1,
"total_cut_outs_left": 1,
"total_cut_outs_right": 1,
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"total_cut_outs": 2,
"total_tail_gates_1": 37,
"total_tail_gates_2": 10,
"total_tail_gates_3": 5,
"total_speeding_vehicles": 32,
"total_standing_vehicles": 1,
"total_standing_vehicles_shoulder": 0,
"top_speed": 49.76776123046875,
"average_velocity_north": 16.591909942654368,
"average_velocity_south": 30.73570799615174,
"traffic_jam_north": 0,
"traffic_jam_south": 0,
"slow_moving_traffic_north": 0,
"slow_moving_traffic_south": 0,
"total_trajectories": 245,
"total_breakdowns_shoulder": 0,
"total_breakdowns_driving_lane": 1,
"total_breakdowns": 1,
"total_accidents": 0
}

Listing 5.1: Scenario statistics of the minute before the accident rosbag on the 08.04.2021

Listing 5.2 illustrates the JSON file for the accident on the 08.04.2021, which occurred
in second 13 of 60. While the average velocity on the southern side is almost 29 m/s,
the average velocity on the northern side is only 12 m/s. However, the average velocity
was at around 17 m/s a minute before hinting at the possibility of a potential accident.
Since the rosbag is only 1 minute long, there was not enough time to form a traffic jam
or slow-moving traffic on the whole 500 m of the test stretch. However, the average
velocity on the northern side is already fairly close to slow-moving traffic. Additionally,
43 vehicles were standing out of all 301 total detected vehicles in the rosbag, which is
also an indication of an accident. Moreover, no breakdowns were detected since the
crash already occurred in second 13 and the object detection from YOLOv4 was not able
to detect the two accident vehicles continuously after the crash. In addition, the accident
was detected making the rule-based approach applicable to find new accidents in the
recorded rosbags.

{
"total_vehicles": 301,
"total_vehicle_classes": 3
"total_lane_changes_left": 8,
"total_lane_changes_right": 50,
"total_lane_changes": 58,
"max_lane_changes": 3,
"total_cut_ins_left": 0,
"total_cut_ins_right": 0,
"total_cut_ins": 0,
"total_cut_outs_left": 0,
"total_cut_outs_right": 0,
"total_cut_outs": 0,
"total_tail_gates_1": 30,
"total_tail_gates_2": 8,
"total_tail_gates_3": 8,
"total_speeding_vehicles": 37,
"total_standing_vehicles": 43,
"total_standing_vehicles_shoulder": 0,
"top_speed": 50.79204307919363,



34 5 Evaluation

"average_velocity_north": 12.275952080722998,
"average_velocity_south": 28.856717723740825,
"traffic_jam_north": 0,
"traffic_jam_south": 0,
"slow_moving_traffic_north": 0,
"slow_moving_traffic_south": 0,
"total_trajectories": 301,
"total_breakdowns_shoulder": 0,
"total_breakdowns_driving_lane": 0,
"total_breakdowns": 0,
"total_accidents": 1

}

Listing 5.2: Scenario statistics of the accident rosbag on the 08.04.2021

• Accident event on the 21.10.2021:

Listing 5.3 shows the JSON file containing the scenario statistics of the accident rosbag
on the 21.10.2021, which was already depicted in Figure 4.3. While this event does not
have any standing vehicles, traffic jams, slow-moving traffic, and breakdowns, it does
have an accident. This is not being detected, since the rules proposed in Section 4.2.2.4
are only able to find accidents between two vehicles. However, in this case, the wind
knocked over the blue van. Additionally, no standing vehicles are present meaning the
current object detection is not able to detect the accident vehicle. Therefore, this case
can not be detected by the proposed rule-based accident detection.

{
"total_vehicles": 151,
"total_vehicle_classes": 3
"total_lane_changes_left": 11,
"total_lane_changes_right": 29,
"total_lane_changes": 40,
"max_lane_changes": 4,
"total_cut_ins_left": 0,
"total_cut_ins_right": 0,
"total_cut_ins": 0,
"total_cut_outs_left": 0,
"total_cut_outs_right": 0,
"total_cut_outs": 0,
"total_tail_gates_1": 3,
"total_tail_gates_2": 1,
"total_tail_gates_3": 9,
"total_speeding_vehicles": 35,
"total_standing_vehicles": 0,
"total_standing_vehicles_shoulder": 0,
"top_speed": 49.008790563263396,
"average_velocity_north": 31.39239954986089,
"average_velocity_south": 21.478301163652848,
"traffic_jam_north": 0,
"traffic_jam_south": 0,
"slow_moving_traffic_north": 0,
"slow_moving_traffic_south": 0,
"total_trajectories": 151,
"total_breakdowns_shoulder": 0,
"total_breakdowns_driving_lane": 0,
"total_breakdowns": 0,
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"total_accidents": 0
}

Listing 5.3: Scenario statistics of the accident rosbag on the 21.10.2021

• Accident event on the 28.03.2022:

Listing 5.4 depicts the JSON file for the accident on the 28.03.2022, where a black
vehicle is driving into the side of a blue vehicle as shown in Figure 4.4. The two standing
vehicles on a driving lane as well as the average velocity difference of 20 m/s between
the northern and the southern side of the highway already hints at a potential accident
in the recorded rosbag. A traffic jam or slow-moving traffic is not detected, since the
slow-moving traffic is only occurring on a certain area of the A9 test stretch and not
over the full length of the 500 m. Moreover, no breakdowns were present in the rosbag.
However, similar to the accident event on the 21.10.2021 the occurred accident was not
detected, because the developed rule-based approach can only detect rear-end collisions
and not accidents, where the participants are driving in different lanes. Nonetheless,
two standing vehicles were detected in a driving lane hinting at this possible accident.

{
"total_vehicles": 3019,
"total_vehicle_classes": 3
"total_lane_changes_left": 598,
"total_lane_changes_right": 464,
"total_lane_changes": 1062,
"max_lane_changes": 10,
"total_cut_ins_left": 5,
"total_cut_ins_right": 13,
"total_cut_ins": 18,
"total_cut_outs_left": 5,
"total_cut_outs_right": 5,
"total_cut_outs": 10,
"total_tail_gates_1": 1129,
"total_tail_gates_2": 103,
"total_tail_gates_3": 138,
"total_speeding_vehicles": 265,
"total_standing_vehicles": 2,
"total_standing_vehicles_shoulder": 0,
"top_speed": 50.89402821182269,
"average_velocity_north": 10.254699696022493,
"average_velocity_south": 30.311626097422366,
"traffic_jam_north": 0,
"traffic_jam_south": 0,
"slow_moving_traffic_north": 0,
"slow_moving_traffic_south": 0,
"total_trajectories": 3019,
"total_breakdowns_shoulder": 0,
"total_breakdowns_driving_lane": 0,
"total_breakdowns": 0,
"total_accidents": 0

}

Listing 5.4: Scenario statistics of the accident rosbag on the 28.03.2022

• Breakdown event on the 22.05.2022:
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Listing 5.5 illustrates the JSON file with the scenario statistics of the breakdown rosbag
on the 22.05.2022, where a burning vehicle is standing on the shoulder lane as shown
in figure 4.5. In this rosbag, a total of 5 vehicles are standing on the shoulder lane one
of them being the burning vehicle ensuring the functional correctness of the standing
shoulder label. Out of the 5 standing vehicles, 3 were standing continuously for 30s.
Therefore, 3 breakdowns on the shoulder lane were detected ensuring the functional
correctness of the breakdown. Additionally, slow-moving traffic on the southern side of
the highway was recorded as well.

{
"total_vehicles": 2663,
"total_vehicle_classes": 3
"total_lane_changes_left": 326,
"total_lane_changes_right": 362,
"total_lane_changes": 688,
"max_lane_changes": 4,
"total_cut_ins_left": 2,
"total_cut_ins_right": 0,
"total_cut_ins": 2,
"total_cut_outs_left": 1,
"total_cut_outs_right": 0,
"total_cut_outs": 1,
"total_tail_gates_1": 678,
"total_tail_gates_2": 77,
"total_tail_gates_3": 42,
"total_speeding_vehicles": 230,
"total_standing_vehicles": 5,
"total_standing_vehicles_shoulder": 5,
"top_speed": 51.28070425043302,
"average_velocity_north": 27.593186592863535,
"average_velocity_south": 15.574619147758387,
"traffic_jam_north": 0,
"traffic_jam_south": 0,
"slow_moving_traffic_north": 0,
"slow_moving_traffic_south": 1,
"total_trajectories": 2663,
"total_breakdowns_shoulder": 3,
"total_breakdowns_driving_lane": 0,
"total_breakdowns": 3,
"total_accidents": 0

}

Listing 5.5: Scenario statistics of the accident rosbag on the 22.05.2022

All in all, this section presented the functional correctness of the standing shoulder label,
the breakdown label, the slow-moving traffic, traffic jam as well as the accident label based on
the data of the event log.

5.3.2 Automated Accident Detection

After presenting the real-world applicability of the scenario mining and the functional correct-
ness of the maneuver detection, the automated accident detection is being evaluated. For the
evaluation, the script was executed on the recorded rosbags from the A9 test stretch from the
04.12.2021 until the 30.04.2022, which consisted of 12,290 rosbags.
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As already explained in Section 4.3, a standing script is being executed on the downloaded
rosbag first to process the rosbags faster. Figure 5.2(a) shows a box plot, where the square
inside the box represents the arithmetic mean, the horizontal line inside the box the median,
the bottom line of the box the first quartile, which is the 25th percentile (this means, that
25% of the data lies below the line and the corresponding 75% above the line), the top line
of the box the third quartile or 75th percentile, and the huskers on the bottom and on the
top visualize the 5th (bottom) and 95th (top) percentile [25] [13]. The data points below or
above the whiskers are the outliers. Figure 5.2 shows the runtime for the standing detection as
well as for the scenario detection, which were executed in the automated accident detection
framework. Figure 5.2(a) shows the runtime the standing script needs for the rosbags. The
runtime for the standing script varies between the 5th percentile at 0.55 s and the 95th
percentile at 18.65 s with a median of 6.55 s and an arithmetic mean of 6.58 s. Additionally,
an outlier is present at 43.57 s. Executing the standing script on all 12,290 rosbags takes
67,754 s, which is approximately 18.8 h.

(a) Runtime needed for the script, which checks for
standing vehicles in the rosbag.

(b) Runtime needed for the scenario mining, which
checks for any potential accidents in the rosbag.

Figure 5.2: Runtime needed for the computation of the standing vehicle detection and scenario detection for
rosbags in the time interval of 5 months.

From the 12,290 executed rosbags, 336 rosbags contained standing vehicles, which cor-
responds to 2.73% meaning every 550 min a standing vehicle was detected. Therefore, the
scenario mining was executed on those 336 rosbags individually. The runtime for the executed
rosbags is shown in Figure 5.2(b), which ranges from the 5th percentile at 32.23 s to the 95th
percentile at 345.20 s with a median of 190.67 s and an arithmetic mean of 187.72 s. Two
outliers were recorded at 14.47 s and 22.66 s. The execution of the scenario mining for all
336 rosbags takes 63,073 s, which is roughly 17.52 h.

The scenario mining recorded the statistics shown in Figure 5.3 for the 336 executed
rosbags. In those rosbags, a total amount of 831,969 unique vehicles were detected leading
to 165 detected vehicles per minute. On average, every 4.5th vehicle changed the lane,
since a total of 183.686 lane changes were recorded. According to Kaefer’s statistics, 1,982
cut-ins and 1,659 cut-outs were detected. Additional important statistics from Kaefer are the
tailgate events, where every fourth vehicle is responsible for a minor tailgate event, 5.9% were
responsible for a moderate tailgate event and 5.6% vehicles were involved in a severe tailgate
event. Out of the 831,969 recorded vehicles, a total of 72,000 are speeding, which comprise
8.7% and a total of 3,886 are standing summing up to 4.7%. Then, the standing vehicles can
be split up again into standing vehicles on a driving lane, which are 3,748 or 96.4%, and
standing vehicles on a shoulder lane, which are 138 or 3.6%. Additionally, the maximum
recorded velocity was 73.45 m/s, which equals 264.42 km/h and is a newly recorded high
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score on the A9 test stretch. Furthermore, the lowest recorded average velocity per rosbag on
the northern side was 8.47 m/s and on the southern side 6.45m/s. Just as important, 120
breakdowns were recorded of which 19 occurred on a shoulder lane and 101 on a driving
lane. Moreover, the scenario mining labeled 25 slow-moving traffic situations as well as 10
traffic jams in the 336 rosbags. While the A9 test stretch often records a traffic jam on the
two highway exit lanes towards the south side, these were not recorded as traffic jams, since
the vehicles on the other 3 lanes were driving fast enough that the average velocity was not
below 20km/h. Last but not least, the rule-based accident detection found one accident in the
recorded data.

Figure 5.3: Recorded scenario statistics on the 336 executed rosbags in the automated accident detection.

5.3.2.1 Precision

To evaluate the precision of the accidents, the extracted images were analyzed by hand. Out
of the 26 detected accidents, 25 were false positives and 1 was a true positive. Therefore, the
rule-based accident detection achieves a precision of 4% as shown in Equation 5.9.

precision=
1

1+ 26
= 0.04 (5.9)

Figure 5.4 illustrates the time series of the true positive accident, which was detected due
to the automated accident detection. On the bottom left of Figure 5.4(a), a vehicle is shown,
that turned on the hazard warning lights and was coming close to a standstill on a driving
lane due to a traffic jam forcing the traffic behind to slow down as well. However, in Figure
5.4(b) three vehicles behind this vehicle, a vehicle is being hit by the following vehicle whilst
trying to change the lane, since it forgot to signal the lane change.

Figure 5.5 depicts different traffic situations, which the rule-based accident detection
evaluated as an accident even though no accident occurred. Most of the false positive
accidents are similar to Figure 5.5(a), Figure 5.5(c), and Figure 5.5(d), where a traffic jam
occurs. Due to the close gap between vehicles, the YOLOv4 object detection is not able to
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(a) Illustration of the traffic situation before the accident.(b) Illustration of the traffic situation during the accident.

Figure 5.4: Time series for the accident event on the 12.02.2022, which was detected due to the automated
accident detection.

(a) Illustration of a false positive accident, where a traffic
jam is recorded on the northern highway side.

(b) Illustration of a false positive accident, where construc-
tion workers are blocking multiple lanes on the southern
highway side.

(c) Illustration of a false positive accident, where a traffic
jam is recorded on the southern highway side.

(d) Illustration of a false positive accident, where a traffic
jam is recorded on the southern highway side.

Figure 5.5: Illustration of multiple false positive accidents.

calculate the x and y position of the vehicles perfectly leading to bounding boxes that overlap.
This often results in false positive accidents. Additionally, due to the limited training data,
which was available to fine-tune the rules of the rule-based accident detection, such cases
could not be filtered out. Other false positive cases are similar to the one in Figure 5.5(b),
where construction workers are working on the highway and closing multiple lanes. This
also leads to slow-moving traffic, which is hard to distinguish from accidents due to the used
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YOLOv4 object detection.

5.3.2.2 False Negative Analysis

To detect additional accidents in the executed rosbags, the detected breakdowns were also
analyzed, since they cover anomalous traffic behavior, which are likely to lead to accidents.
With the help of the breakdown analysis, false negative accidents may be detected in the
process. Out of the 120 breakdowns, 4 were false positives due to false positive detection
from the YOLOv4 object detection and 116 true positives leading to a precision of 97% as
shown in Equation 5.10:

precision=
116

116+ 4
= 0.97 (5.10)

Figure 5.6 depicts four different traffic situations, which contain breakdown events. The
first traffic situation is shown in Figure 5.6(a), where a police car is standing on the shoulder
lane with blue lights. Secondly, Figure 5.6(b) depicts a standing vehicle on the leftest lane.
Additionally, the accident on the 28.03.2022, which was shown in Figure 4.4, is visible on the
right side of the picture. The third traffic situation is illustrated in Figure 5.6(c), where similar
to the false positive accidents a traffic jam occurred, and lastly, Figure 5.6(d) shows a traffic
situation, where construction work is being done. With the help of such anomalous traffic
situations, potential interesting rosbags can be filtered out and analyzed by hand.

(a) Illustration of a true positive breakdown, where a po-
lice vehicle is standing on the shoulder lane.

(b) Illustration of a true positive breakdown, where a
vehicle is standing on the shoulder lane.

(c) Illustration of a true positive breakdown, where a traf-
fic jam occurred.

(d) Illustration of a true positive breakdown, where con-
struction work is being done on a lane.

Figure 5.6: Illustration of multiple true positive breakdowns, which may lead to potential anomalous behavior or
accidents.
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5.3.3 Comparison with a Deep Learning-based Accident Detection

For the comparison of the rule-based and deep learning-based accident detection, a test set
is created from the rosbags in the event log. To have a balanced test set with all important
events, the following rosbags are being used:

• 11.02.2021 at 11:32: vehicle transporter present

• 08.04.2021 at 11:31: breakdown event on a driving lane right before the accident event

• 08.04.2021 at 11:32: accident event

• 15.05.2021 at 15:40: no event

• 15.05.2021 at 15:52: standing shoulder event

• 30.07.2021 at 09:25: traffic jam event

• 21.10.2021 at 10:21: accident event

• 28.03.2022 at 17:19: accident event

• 22.05.2022 at 17:14: breakdown event on the shoulder lane

5.3.3.1 Precision

After creating the test set, the rule-based and deep learning-based accident detection was
executed on all rosbags to calculate the precision of the accident detection. As already covered
in Section 5.3.1.2, the proposed rule-based approach detects 1 out of the 3 accidents, since the
goal was to detect the majority class of accidents, which are the detected rear-end collisions
and then focus on finding new accident to train a deep learning-based accident detection.
However, it does not falsely classify any traffic situations as accidents leading to 0 false
positives. Therefore, the rule-based approach achieves a precision of 100% on the test set as
shown in Equation 5.11. On the other hand, the deep learning-based accident detection can
find all 3 out of 3 accidents and falsely classifies 1 traffic situation as an accident resulting in a
precision of 75% as shown in Equation 5.12:

precision_r b =
1

1+ 0
= 1.00 (5.11)

precision_dl =
3

3+ 1
= 0.75 (5.12)

5.3.3.2 Recall

In addition to the precision, both approaches were also compared using the recall on the
provided test set. As already covered in Section 5.3.1.2, the proposed rule-based approach
detects 1 out of the 3 accidents leading to a recall of 33% as shown in Equation 5.13. On
the other hand, the deep learning-based accident detection can find all 3 out of 3 accidents
resulting in a recall of 100% as shown in Equation 5.14:

recal l_r b =
1

1+ 2
= 0.33 (5.13)

recal l_dl =
3

3+ 0
= 1.00 (5.14)
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5.3.3.3 Runtime

Additionally, the runtime of both approaches was compared, since the accident detection needs
to analyze a large amount of recorded rosbags in as few time as possible. For the runtime
evaluation, 4 different 1-minute rosbags from the event log were executed 10 times each:

• 08.04.2021 at 11:31: Rosbag comprising the sensor data of 4 different cameras

• 08.04.2021 at 11:32: Rosbag comprising the sensor data of 4 different cameras

• 11.05.2022 at 16:14: Rosbag comprising the sensor data of 2 different cameras

• 11.05.2022 at 16:29: Rosbag comprising the sensor data of 2 different cameras

Table 5.2 shows the runtime comparison for the four different 1-minute rosbags. The
runtime of the rule-based accident detection fluctuates between 5.02 s and 8.63 s for the four
rosbags because of the amount of vehicles in the rosbag, since the distance to leading and
following vehicle scales exponentially with the amount of detected vehicles in a lane. However,
the runtime of the deep learning-based approach needs for the same rosbags between 240.43
s and 484.69 s, because the images for the deep learning-based approach have to be extracted
first and the model itself is more complex. Therefore, the average runtime for a rosbag with
two cameras is 5.17 s for the rule-based approach and 244.30 s for the deep learning-based
approach. For rosbags with four cameras, the runtime is then 7.61 s and 479.69 s respectively.
Overall, the rule-based approach achieves an average runtime on all four rosbags of 6.39 s,
while the deep learning-based approach takes 361.99 s. Therefore, the rule-based accident
detection is 56.65 times faster than the deep learning-based approach.

Event Runtime rule-based ap-
proach

Runtime deep learning-
based approach

08.04.2021 at 11:31 8.63 s 484.69 s
08.04.2021 at 11:32 6.60 s 474.69 s
11.05.2022 at 16:14 5.02 s 240.43 s
11.05.2022 at 16:29 5.33 s 248.16 s
Average runtime for a ros-
bag with 2 cameras

5.17 s 244.30 s

Average runtime for a ros-
bag with 4 cameras

7.61 s 479.69 s

Overall average runtime 6.39 s 361.99 s

Table 5.2: Comparison of the runtime of the rule-based and the deep learning-based approach on four different
1-minute rosbags.

5.4 Discussion

With the results for the metrics presented in Section 5.1, the question if the scenario mining is
performant enough to be used on multiple years of recordings and if the accident detection
yields desirable results to create a training set containing anomalous traffic situations can be
answered.

Firstly, the results for the scenario mining approach showed a significant runtime speedup
of 18.80 compared to the previous work by Kaefer [1]. Additionally, the functional correctness
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of the scenario mining was shown, since it can detect standing vehicles on the shoulder lane,
slow-moving traffic, traffic jams, breakdowns, and most importantly accidents on the provided
rosbags from the event log. However, it was also shown that the rule-based accident detection
is limited to detecting crashes between two or more vehicles, which are on the same lane.

With a scalable and real-world applicable scenario mining, the contributions are extended
of an automated accident detection, which was executed on 12,290 unseen rosbags from the
A9 test stretch. During this 5-month recording interval, 831,969 vehicles, 120 breakdowns,
35 slow-moving traffic situations, 10 traffic jams, and 26 accidents were detected by the
automated accident detection. In summary, the total runtime for the standing script and
the scenario mining took roughly 36.32 h, which is feasible for the analysis of the recorded
rosbags in the 5-month interval making the scenario mining applicable to analyze new data
of multiple years. Additionally, the rule-based accident detection achieves a precision of 4%,
which is compared to state-of-the-art approaches fairly low. Moreover, the reason for the low
precision is the lack of training data to fine-tune the rules of the accident detection and the
misclassification of the bounding boxes from the YOLOv4 object detection since most of the
false positives occur in traffic jam scenarios. Additionally, due to the limited training data
from the A9 test stretch, current state-of-the-art accident detections are not applicable to
this use case causing the need for this simple first accident detection prototype to find more
accidents, which can be used as training data for more complex models in the future. To detect
false negatives of the rule-based accident detection, which are actual accidents that were
not classified as an accident, the scenario mining and therefore also the automated accident
detection extracted the images of all breakdown events. After analyzing the images by hand,
116 out of the 120 detected breakdowns were true positives resulting in a precision for the
breakdown detection of 97%. While only one accident was found in the breakdown events by
accident as shown in Figure 5.6, all breakdown rosbags contain anomalous traffic situations,
which are useful for an anomaly traffic dataset. Additionally, deeper analyses of the origin of
the breakdown events may lead to the finding of additional accidents. However, it is impor-
tant to consider the possibility that the recorded data may not contain any additional accidents.

After evaluating the potential of the automated accident detection to find new accidents, it
is being compared with a state-of-the-art deep learning-based accident detection written by
Lehmberg in parallel to this work. The comparison was done using a subset of rosbags from the
event log as test data. While the rule-based accident detection achieved a precision on the test
data of 100%, the deep learning-based accident detection only achieved a precision of 75%.
However, the deep learning-based accident detection has a better recall of 100% compared
to the recall of 33% of the rule-based approach, because the deep learning-based accident
detection can find all kinds of accidents since it is based on images, while the rule-based
approach is only able to find rear-end collisions. Additionally, the runtime performance of
both approaches was compared, where the rule-based accident detection achieves an average
runtime of 6.39 s, while the deep learning-based accident detection needs on average 361.99
s for a single rosbag. Therefore, the proposed approach from Lehmberg is not suitable for
the analysis of large amounts of recorded data making the rule-based accident detection the
preferred approach to analyze the recorded data from the A9 test stretch.

Additionally, the two research questions have to be covered:

1. "Is it possible to reliably detect accidents on the A9 test stretch using roadside sensors?"

According to the previous definition of reliable in Section 1.2, the accident detection
needs to achieve a precision of 0.7 and a recall of 0.85. While both approaches yield a
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precision higher than 0.7, the rule-based accident detection only has a recall of 33%,
while the deep learning-based accident detection has a recall of 100%. Therefore, only
the deep learning-based accident detection can reliably detect accidents on the A9 test
stretch using roadside sensors making it the preferred choice to analyze anomalous
traffic situations.

2. "Is it possible to detect accidents on the A9 test stretch in real-time using roadside
sensors?"

As shown in Table 5.2 the rule-based accident detection needs 6.39 s to analyze a
1-minute rosbag, while the deep learning-based accident detection needs on average
361.99s . Therefore, only the rule-based accident detection is capable of analyzing 25
FPS in real-time making it the preferred choice to go over a large dataset of unseen
traffic data.

All in all, the proposed rule-based accident detection achieves a significant performance
speedup compared to both Kaefer’s scenario mining approach and Lehmberg’s accident
detection and can detect multiple anomalous events such as breakdowns, traffic jams, and
accidents. Therefore, the proposed accident detection can be applied to detect accidents in
the unseen data from the A9 test stretch.



Chapter 6

Outlook

While the proposed automated accident detection together with the rule-based approach
yielded promising results, further improvement can be achieved by extending it of the following
features:

• As of now, the rule-based accident detection is only able to detect rear-end collisions.
However, extending the approach for different accident scenarios helps in creating a
larger anomaly traffic dataset. Therefore, instead of only calculating the distance be-
tween vehicles in a lane, also checking the distance between vehicles in neighbored lanes
extends the Operational Design Domain (ODD) of the accident detection. Additionally,
analyzing the trajectory of every vehicle can help detect accidents between a vehicle and
an object such as traffic barriers, trees, utility poles or even accidents like the one on the
21.10.2021, where the vehicle was knocked over by the wind.

• The automated accident detection was only executed on a time interval of 5 months
due to limited time, which only covers approximately 6.5% of the total 200.000 rosbags
stored on the LRZ storage taking up 100 TB storage. Therefore, executing the automated
accident detection on the additional unseen data could lead to multiple new accidents,
with which the rule-based and the learning-based approach could be fine-tuned further.
Additionally, analyzing and visualizing the accident found in this paper can help to
improve both accident detections.

• The digital twin was created multiple years ago and used YOLOv4 for object detection.
Executing the perception pipeline with a newer YOLO version to create a new digital twin
with improved object detection and tracking can lead to better 3D position estimation
and velocity estimation. This directly influences the accuracy of the scenario mining,
since labels such as breakdowns and accidents depend on the continuous detection of
vehicles as well as correct position estimation to make reliable predictions.

• Extending the digital twin of features such as police lights and hazard warning lights
can help in detecting more anomalous traffic situations. For example, police lights are
an indication of accidents and hazard warning lights can be used to detect breakdown
events in a driving lane even during traffic jams, which can not be detected at the
moment.

• Extend the image extraction of traffic jams in the scenario mining approach to further
analyze such anomalous traffic situations, since accidents are one of the top 5 causes of
traffic jams [34].

• Coupling the rule-based accident detection with the deep learning-based accident de-
tection from Lehmberg can yield desirable results in the future. The idea is to first



46 6 Outlook

execute the automated accident detectidon on the unseen recorded data and to extract
images for anomalous events such as breakdowns, traffic jams and accidents. Afterward,
the deep learning-based accident detection can be executed on the rosbags from the
rule-based accident detection to make a final and reliable classification if an accident is
present or not.

• Additionally, the rule-based and deep learning-based accident detection can be integrated
into the live system as shown in Figure 6.1. The live system gets the data from the A9
test stretch as input and applies the scenario mining approach to each frame individually,
which is responsible for calculating all features and maneuvers. Most importantly, it then
calls the rule-based accident detection, which as shown in Table 5.2 is real-time capable.
Therefore, after the scenario mining is finished and the rule-based accident detection
annotated a frame as anomalous or not, the next frame is analyzed. Additionally, the
rule-based accident detection calls the learning-based accident detection from Lehmberg
if an anomalous behavior was detected to make a reliable prediction. The problem of the
learning-based accident detection not being able to detect accidents in real-time is being
solved by only executing it on the few anomalous frames. Therefore, by combining both
accident detections the proposed approach can reliably detect accidents in real-time in
the live system.

Figure 6.1: Integration of the rule-based and deep learning-based accident detection into the live system.

• After a thorough analysis of the highway recordings, the accident detection can also be
applied to the recordings of intersections, since the project is also recording urban areas.

Therefore, with an improved automated accident detection, a larger anomaly traffic dataset
can be created. With the help of such a dataset, Lehmberg’s deep learning-based accident
detection can be fine-tuned to outperform the rule-based approach in the long run leading to
safer traffic behavior and faster emergency response time.



Chapter 7

Conclusion

This paper tackles the critical aspect of ensuring road safety and reducing the impact of road
incidents by proposing an automated accident detection, which can be used for safer traffic
behavior and faster emergency response time. Firstly, an event log was created from the
anomalous rosbags, which were recorded on the A9 test stretch and already labeled manually.
Secondly, the scenario mining approach from Kaefer [1] was used as baseline model for the
rule-based accident detection. Due to Kaefer’s slow feature extraction, the runtime of the
lane ID and distance to leading and following vehicle extraction was improved. Afterward,
the maneuver detection was extended of standing shoulder events, slow-moving traffic as
well as traffic jams, breakdowns and most importantly accidents, which was trained on the
rosbags provided by the event log. Thirdly, an automated accident detection was proposed,
which downloads rosbags from a cloud storage, runs a standing vehicle classification and
if standing vehicles are detected in the rosbag, runs the scenario mining approach with the
rule-based accident detection. For all rosbags, on which the scenario mining was executed,
images for the breakdown and accident events are extracted and the scenario statistics are
generated to analyze the rosbags afterward and to create an anomaly traffic dataset from them.
In the evaluation, the scenario mining approach achieved a speedup of 18.80 compared to
Kaefer’s approach [1]. Additionally, the functional correctness for all implemented maneuvers
was shown with the help of the event log. Moreover, the automated accident detection was
executed on 12,290 rosbags ranging over a time interval of 5 months. The script took roughly
36.32 h for the standing classification and the scenario mining approach achieving a precision
of 4%, since only one accident was detected due to the automated accident detection. The
detected false positives were due to the outdated YOLOv4 object detection and limited training
data. Furthermore, a false negative analysis was done by examining all detected breakdowns.
While multiple different anomalous traffic situations were found including an already known
accident, no new accidents were established. Last but not least, the precision, recall and
runtime of the rule-based accident detection was directly compared with a deep learning-based
accident detection on a manually created test set from the event log. While the rule-based
accident detection achieves a higher precision of 100% compared to the 75% of the deep
learning-based approach, a lower recall of 33% compared to 100% was recorded, because the
rule-based accident detection is limited to rear-end collisions, where both vehicles drive on
the same lane. However, the rule-based approach achieves a significant runtime speedup of
56.65, since it only needs 6.39 s to process a single rosbag compared to the 361.99 s the deep
learning-based approach takes on average making the rule-based accident detection more
suitable for the analysis of large amounts of recorded data. Therefore, the rule-based accident
detection is real-time capable, while the deep learning-based accident detection can detect
accidents reliably making the combination of both approaches attractive for future projects.
In conclusion, the exploration of this automated rule-based accident detection on the A9 test
stretch using roadside sensors aids in creating a larger anomaly traffic dataset, which can be
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used in the future to fine-tune a more sophisticated deep learning-based accident detection,
which achieves a higher accuracy, to enhance the road safety and emergency response time.



List of Abbreviations

LiDAR Light Detecting and Ranging

radar Radio Detection and Ranging

FOV Field of View

FP False Positive

XML Extensible Markup Language

EDM Euclidean Distance Matrix

YOLO You Only Look Once

TTC Time-to-collision

JSON JavaScript Object Notation

ADAS Advanced Driver Assistance Systems

SSD Solid State Drive

CNN Convolutional Neural Network

RNN Recurrent Neural Network

ROS Robot Operating System

CCTV Closed Circuit Television

SORT Simple Online Real-time Tracking

SVM Support Vector Machine

R-CNN Region-based Convolutional Neural Network

MOG Mixture of Gaussian

MLP Multilayer Perceptron



50 7 Conclusion

CPU Central Processing Unit

LTS Long Term Support

RAM Random Access Memory

COCO Common Objects in Context

ODD Operational Design Domain

FPS Frames Per Second



List of Figures

1.1 Trend in the number of road traffic fatalities in the EU [6]. . . . . . . . . . . . . 1

4.1 Overview of the Event Log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Time series for the accident event on the 08.04.2021, where a yellow vehicle

crashed into a standing white van on the highway. . . . . . . . . . . . . . . . . . . 13
4.3 Time series for the breakdown on 21.10.2021, where a blue van was knocked

over by the wind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Time series for the accident event on the 28.03.2022, where a black vehicle is

driving into the side of a blue vehicle and spinning it 360 degrees. . . . . . . . 14
4.5 Time series for the breakdown event on the 22.05.2022, where a burning

vehicle is standing on the shoulder lane. . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Illustration of the different lane IDs on the highway. . . . . . . . . . . . . . . . . . 16
4.7 Example of the lane ID labeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8 Example of the distance to leading and following vehicle calculation. . . . . . . 18
4.9 Illustration of the split of the average velocity per frame into four different

categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Illustration of the folder structure of the image extraction. . . . . . . . . . . . . . 30
5.2 Runtime needed for the computation of the standing vehicle detection and

scenario detection for rosbags in the time interval of 5 months. . . . . . . . . . . 37
5.3 Recorded scenario statistics on the 336 executed rosbags in the automated

accident detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Time series for the accident event on the 12.02.2022, which was detected due

to the automated accident detection. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Illustration of multiple false positive accidents. . . . . . . . . . . . . . . . . . . . . 39
5.6 Illustration of multiple true positive breakdowns, which may lead to potential

anomalous behavior or accidents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 Integration of the rule-based and deep learning-based accident detection into
the live system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46





List of Tables

4.1 Overview of the statistics added to Kaefers [1] scenario statistics. . . . . . . . . 24

5.1 Average performance comparison of Kaefer’s approach with the approach pro-
posed in this paper using the 15-minute rosbag on the 22.05.2022. . . . . . . . 32

5.2 Comparison of the runtime of the rule-based and the deep learning-based
approach on four different 1-minute rosbags. . . . . . . . . . . . . . . . . . . . . . 42





Bibliography

[1] Aaron Kaefer Walter Zimmer, A. K. “Deep Traffic Scenario Mining, Detection, Clas-
sification and Generation on the Autonomous Driving Test Stretch using the CARLA
Simulator”. In: SUMO User Conference 2022 (2022), pp. 1–175.

[2] ASAM. ASAM OpenDRIVE. URL: https://www.asam.net/standards/detail/opendrive/
(visited on 01/08/2024).

[3] AUTOtech.agil. URL: https://www.mos.ed.tum.de/ftm/forschungsfelder/team-av-safe-
operation/autotechagil/ (visited on 01/03/2024).

[4] Bacon, J., Bejan, A. I., Beresford, A. R., Evans, D., Gibbens, R. J., and Moody, K. “Using
Real-Time Road Traffic Data to Evaluate Congestion”. In: Dependable and Historic
Computing: Essays Dedicated to Brian Randell on the Occasion of His 75th Birthday.
Ed. by Jones, C. B. and Lloyd, J. L. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 93–117. ISBN: 978-3-642-24541-1. DOI: 10.1007/978-3-642-24541-1_9.
URL: https://doi.org/10.1007/978-3-642-24541-1_9.

[5] Cheng, C.-H., Yang, J.-H., and Liu, P.-C. “Rule-based classifier based on accident fre-
quency and three-stage dimensionality reduction for exploring the factors of road
accident injuries”. In: PLOS ONE 17 (Aug. 2022), e0272956. DOI: 10.1371/journal.
pone.0272956.

[6] Commission, E. Road safety statistics 2022 in more detail. URL: https://transport .
ec.europa.eu/background/road-safety-statistics-2022-more-detail_en (visited on
01/15/2024).

[7] Darwish, A. and Jain, A. “A rule based approach for visual pattern inspection”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 10.1 (1988), pp. 56–68. DOI:
10.1109/34.3867.

[8] Doshi, K. and Yilmaz, Y. “Fast Unsupervised Anomaly Detection in Traffic Videos”.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). 2020, pp. 2658–2664. DOI: 10.1109/CVPRW50498.2020.00320.

[9] EvidentlyAI. “Accuracy vs. precision vs. recall in machine learning: what’s the differ-
ence?” In: (). URL: https://www.evidentlyai.com/classification-metrics/accuracy-
precision-recall (visited on 01/27/2024).

[10] Gelder, E. d., Manders, J., Grappiolo, C., Paardekooper, J.-P., Camp, O. O. d., and
Schutter, B. D. “Real-World Scenario Mining for the Assessment of Automated Vehicles”.
In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC).
IEEE, Sept. 2020. DOI: 10.1109/itsc45102.2020.9294652. URL: http://dx.doi.org/10.
1109/ITSC45102.2020.9294652.

[11] Ghosh, S., Sunny, S. J., and Roney, R. “Accident Detection Using Convolutional Neural
Networks”. In: 2019 International Conference on Data Science and Communication
(IconDSC). 2019, pp. 1–6. DOI: 10.1109/IconDSC.2019.8816881.

https://www.asam.net/standards/detail/opendrive/
https://www.mos.ed.tum.de/ftm/forschungsfelder/team-av-safe-operation/autotechagil/
https://www.mos.ed.tum.de/ftm/forschungsfelder/team-av-safe-operation/autotechagil/
https://doi.org/10.1007/978-3-642-24541-1_9
https://doi.org/10.1007/978-3-642-24541-1_9
https://doi.org/10.1371/journal.pone.0272956
https://doi.org/10.1371/journal.pone.0272956
https://transport.ec.europa.eu/background/road-safety-statistics-2022-more-detail_en
https://transport.ec.europa.eu/background/road-safety-statistics-2022-more-detail_en
https://doi.org/10.1109/34.3867
https://doi.org/10.1109/CVPRW50498.2020.00320
https://www.evidentlyai.com/classification-metrics/accuracy-precision-recall
https://www.evidentlyai.com/classification-metrics/accuracy-precision-recall
https://doi.org/10.1109/itsc45102.2020.9294652
http://dx.doi.org/10.1109/ITSC45102.2020.9294652
http://dx.doi.org/10.1109/ITSC45102.2020.9294652
https://doi.org/10.1109/IconDSC.2019.8816881


56 Bibliography

[12] Harlow, C. and Wang, Y. “Automated Accident Detection System”. In: Transportation
Research Record 1746.1 (2001), pp. 90–93. DOI: 10.3141/1746-12. eprint: https:
//doi.org/10.3141/1746-12. URL: https://doi.org/10.3141/1746-12.

[13] Herbein, S., Ahn, D., Lipari, D., Scogland, T., Stearman, M., Grondona, M., Garlick, J.,
Springmeyer, B., and Taufer, M. “Scalable I/O-Aware Job Scheduling for Burst Buffer
Enabled HPC Clusters”. In: May 2016, pp. 69–80. DOI: 10.1145/2907294.2907316.

[14] Hozhabr Pour, H., Li, F., Wegmeth, L., Trense, C., Doniec, R., Grzegorzek, M., and
Wismüller, R. “A Machine Learning Framework for Automated Accident Detection
Based on Multimodal Sensors in Cars”. In: Sensors 22.10 (2022). ISSN: 1424-8220. DOI:
10.3390/s22103634. URL: https://www.mdpi.com/1424-8220/22/10/3634.

[15] Kamijo, S., Matsushita, Y., Ikeuchi, K., and Sakauchi, M. “Traffic monitoring and accident
detection at intersections”. In: IEEE Transactions on Intelligent Transportation Systems
1.2 (2000), pp. 108–118. DOI: 10.1109/6979.880968.

[16] Le, T.-N., Ono, S., Sugimoto, A., and Kawasaki, H. “Attention R-CNN for Accident
Detection”. In: 2020 IEEE Intelligent Vehicles Symposium (IV). 2020, pp. 313–320. DOI:
10.1109/IV47402.2020.9304730.

[17] LeCun, Y., Bengio, Y., and Hinton, G. “Deep learning”. In: nature 521.7553 (2015),
pp. 436–444.

[18] Li, Y., Wu, J., Bai, X., Yang, X., Tan, X., Li, G., Wen, S., Zhang, H., and Ding, E.
“Multi-Granularity Tracking with Modularlized Components for Unsupervised Vehicles
Anomaly Detection”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). 2020, pp. 2501–2510. DOI: 10.1109/CVPRW50498.
2020.00301.

[19] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ra-
manan, D., Zitnick, C. L., and Dollár, P. Microsoft COCO: Common Objects in Context.
2015. arXiv: 1405.0312 [cs.CV].

[20] Liu, J., Martinez, L., Calzada, A., and Wang, H. “A novel belief rule base representation,
generation and its inference methodology”. In: Knowledge-Based Systems 53 (2013),
pp. 129–141. ISSN: 0950-7051. DOI: https://doi.org/10.1016/j.knosys.2013.08.019.
URL: https://www.sciencedirect.com/science/article/pii/S0950705113002554.

[21] Malik, M. B., Ghazi, M. A., and Ali, R. “Privacy Preserving Data Mining Techniques:
Current Scenario and Future Prospects”. In: 2012 Third International Conference on
Computer and Communication Technology. 2012, pp. 26–32. DOI: 10.1109/ICCCT.2012.
15.

[22] Mehrannia, P., Bagi, S. S. G., Moshiri, B., and Al-Basir, O. A. “Deep Representation of
Imbalanced Spatio-temporal Traffic Flow Data for Traffic Accident Detection”. In: CoRR
abs/2108.09506 (2021). arXiv: 2108.09506. URL: https://arxiv.org/abs/2108.09506.

[23] Organization, W. H. Road traffic injuries. URL: https://www.who.int/news-room/fact-
sheets/detail/road-traffic-injuries (visited on 01/15/2024).

[24] Raroque, C. Differences Between Machine Learning, Artificial Intelligence, and Deep
Learning. URL: https://aloa.co/blog/differences-between-machine-learning-artificial-
intelligence-and-deep-learning (visited on 02/05/2024).

[25] Ribecca, S. “Box and whisker plot”. In: (). URL: https://datavizcatalogue.com/methods/
box_plot.html (visited on 01/26/2024).

[26] Robotics, O. ROS - Robot Operating System. URL: https://www.ros.org/ (visited on
01/18/2024).

https://doi.org/10.3141/1746-12
https://doi.org/10.3141/1746-12
https://doi.org/10.3141/1746-12
https://doi.org/10.3141/1746-12
https://doi.org/10.1145/2907294.2907316
https://doi.org/10.3390/s22103634
https://www.mdpi.com/1424-8220/22/10/3634
https://doi.org/10.1109/6979.880968
https://doi.org/10.1109/IV47402.2020.9304730
https://doi.org/10.1109/CVPRW50498.2020.00301
https://doi.org/10.1109/CVPRW50498.2020.00301
https://arxiv.org/abs/1405.0312
https://doi.org/https://doi.org/10.1016/j.knosys.2013.08.019
https://www.sciencedirect.com/science/article/pii/S0950705113002554
https://doi.org/10.1109/ICCCT.2012.15
https://doi.org/10.1109/ICCCT.2012.15
https://arxiv.org/abs/2108.09506
https://arxiv.org/abs/2108.09506
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://aloa.co/blog/differences-between-machine-learning-artificial-intelligence-and-deep-learning
https://aloa.co/blog/differences-between-machine-learning-artificial-intelligence-and-deep-learning
https://datavizcatalogue.com/methods/box_plot.html
https://datavizcatalogue.com/methods/box_plot.html
https://www.ros.org/


Bibliography 57

[27] S Pillai, M., Chaudhary, D.-G., Khari, M., and Gonzalez Crespo, R. “Real-Time Image
Enhancement for an Automatic Automobile Accident Detection through CCTV using
Deep Learning”. In: Soft Computing In Press (Sept. 2021), pp. 1–12. DOI: 10.1007/
s00500-021-05576-w.

[28] Sabry, K. and Emad, M. “Road Traffic Accidents Detection Based On Crash Estimation”.
In: 2021 17th International Computer Engineering Conference (ICENCO). 2021, pp. 63–
68. DOI: 10.1109/ICENCO49852.2021.9698968.

[29] Shaalan, K. and Khaled. “Rule-based Approach in Arabic Natural Language Processing”.
In: the International Journal on Information and Communication Technologies (IJICT) 3
(June 2010), pp. 11–.

[30] Sherif, H. M., Shedid, M. A., and Senbel, S. A. “Real time traffic accident detection
system using wireless sensor network”. In: 2014 6th International Conference of Soft
Computing and Pattern Recognition (SoCPaR). 2014, pp. 59–64. DOI: 10.1109/SOCPAR.
2014.7007982.

[31] Sheu, J.-B. “A sequential detection approach to real-time freeway incident detection and
characterization”. In: European Journal of Operational Research 157.2 (2004), pp. 471–
485. ISSN: 0377-2217. DOI: https://doi.org/10.1016/S0377-2217(03)00209-1. URL:
https://www.sciencedirect.com/science/article/pii/S0377221703002091.

[32] Tseng, S. New ways to report driving incidents on Google Maps. URL: https://blog.
google/products/maps/new-ways-report-driving-incidents-google-maps/ (visited on
10/17/2023).

[33] Wang, T., Kim, S., Ji, W., Xie, E., Ge, C., Chen, J., Li, Z., and Luo, P. DeepAccident: A
Motion and Accident Prediction Benchmark for V2X Autonomous Driving. 2023. arXiv:
2304.01168 [cs.CV].

[34] What causes traffic jams: 5 reasons for congestion. URL: https://www.financialexpress.
com/auto/car-news/what-causes-traffic-jams-5-reasons-for-congestion/3003344/
(visited on 01/29/2024).

[35] Ye, F.-F., Yang, L.-H., Wang, Y.-M., and Lu, H. “A data-driven rule-based system for
China’s traffic accident prediction by considering the improvement of safety efficiency”.
In: Computers and Industrial Engineering 176 (2023), p. 108924. ISSN: 0360-8352. DOI:
https://doi.org/10.1016/j.cie.2022.108924. URL: https://www.sciencedirect.com/
science/article/pii/S0360835222009123.

[36] Zheng, M., Li, T., Zhu, R., Chen, J., Ma, Z., Tang, M., Cui, Z., and Wang, Z. “Traffic
Accident’s Severity Prediction: A Deep-Learning Approach-Based CNN Network”. In:
IEEE Access PP (Mar. 2019), pp. 1–1. DOI: 10.1109/ACCESS.2019.2903319.

https://doi.org/10.1007/s00500-021-05576-w
https://doi.org/10.1007/s00500-021-05576-w
https://doi.org/10.1109/ICENCO49852.2021.9698968
https://doi.org/10.1109/SOCPAR.2014.7007982
https://doi.org/10.1109/SOCPAR.2014.7007982
https://doi.org/https://doi.org/10.1016/S0377-2217(03)00209-1
https://www.sciencedirect.com/science/article/pii/S0377221703002091
https://blog.google/products/maps/new-ways-report-driving-incidents-google-maps/
https://blog.google/products/maps/new-ways-report-driving-incidents-google-maps/
https://arxiv.org/abs/2304.01168
https://www.financialexpress.com/auto/car-news/what-causes-traffic-jams-5-reasons-for-congestion/3003344/
https://www.financialexpress.com/auto/car-news/what-causes-traffic-jams-5-reasons-for-congestion/3003344/
https://doi.org/https://doi.org/10.1016/j.cie.2022.108924
https://www.sciencedirect.com/science/article/pii/S0360835222009123
https://www.sciencedirect.com/science/article/pii/S0360835222009123
https://doi.org/10.1109/ACCESS.2019.2903319

	Introduction
	Context
	Problem
	Contribution

	Terms and Definitions
	Robot Operating System (ROS)
	Data and Scenario Mining
	OpenDRIVE
	Rule-based Approach
	Deep Learning

	Related Work
	Scenario Mining
	Rule-based Systems
	Rule-based Accident Prediction
	Rule-based Accident Detection

	Machine and Deep Learning-based Accident Detection

	Methodology
	Event Log
	Scenario Mining
	Feature Extraction
	Feature: Lane ID
	Feature: Distance to Leading and Following Vehicle
	Feature: Average Velocity / Average Velocity per Frame

	Maneuver Detection
	Label: Standing Shoulder
	Label: Traffic Jam / Slow-moving traffic
	Label: Breakdown
	Label: Accident

	Scenario Statistics

	Automated Accident Detection

	Evaluation
	Metrics
	Structure
	Image Extraction
	Deep Learning-based Accident Detection

	Results
	Scenario Mining
	Speedup
	Functional Correctness

	Automated Accident Detection
	Precision
	False Negative Analysis

	Comparison with a Deep Learning-based Accident Detection
	Precision
	Recall
	Runtime


	Discussion

	Outlook
	Conclusion
	List of Abbreviations
	List of Figures
	List of Tables
	Bibliography

