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Abstract

This work focuses on developing an automatic accident detection for the A9 test stretch,
which is a test stretch for autonomous driving near Munich. The time between the occur-
rence of an accident and the arrival of medical assistance significantly impacts whether the
passengers of a vehicle survive an accident. As an automatic accident detection would re-
duce this time, it has the potential to help save lives. However, most of the existing accident
detection methods have never been tested on real traffic data of a test stretch. Therefore,
this thesis investigates whether it is possible to reliably detect accidents on the A9 test stretch
in real-time using roadside sensors. To achieve this, two accident detection methods have
been implemented: a rule-based and a learning-based accident detection. Both have been
integrated into the A9 test stretch and optimized. The conducted experiments show that the
learning-based accident detection achieves a precision of 0.8 and a recall of 1.0 on the A9 test
data and thus a high accident detection accuracy. Furthermore, the runtime of the learning-
based accident detection for one second of a recording does not exceed 127 ms which makes
it fast enough to detect accidents in real-time. Based on these results, it can be concluded
that it is possible to reliably detect accidents on the A9 test stretch in real-time.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Entwicklung einer automatischen Unfallerkennung für
die A9 Teststrecke, die eine eine Teststrecke für autonomes Fahren in der Nähe von München
ist. Die Zeit zwischen dem Auftreten eines Unfalls und dem Eintreffen medizinischer Hilfe
hat einen erheblichen Einfluss darauf, ob die Insassen eines Fahrzeugs einen Unfall überleben
oder nicht. Da eine automatische Unfallerkennung diese Zeit verringern würde, hat sie das
Potenzial dazu beizutragen, Leben zu retten. Die meisten der bisher existierenden Unfall-
erkennungsmethoden wurden jedoch noch nie mit echten Verkehrsdaten einer Teststrecke
getestet. Deshalb wird in dieser Arbeit untersucht, ob es möglich ist, Unfälle auf der A9
Teststrecke mittels sich am Straßenrand befindenden Sensoren zuverlässig und in Echtzeit zu
erkennen. Dazu wurden zwei Unfallerkennungsmethoden entwickelt: eine regelbasierte und
eine auf Deep Learning basierende Unfallerkennung. Beide Unfallerkennungen wurden in die
Softwarearchitektur der A9-Teststrecke integriert und für diese optimiert. Die durchgeführten
Experimente zeigen, dass die lernbasierte Unfallerkennung eine Präzision von 0,8 und einen
Recall von 1,0 erreicht und damit eine hohe Unfallerkennungsgenauigkeit. Außerdem be-
trägt die Laufzeit der regelbasierten Unfallerkennung maximal 127 ms, was diese schnell
genug macht, um Unfälle in Echzeit zu erkennen. Basierend auf diesen Ergebnissen kann die
Schlussfolgerung gezogen werden, dass es möglich ist, Unfälle auf der A9 Teststrecke mittels
sich am Straßenrand befindenden Sensoren zuverlässig und in Echtzeit zu erkennen.
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Chapter 1

Introduction

1.1 Motivation

Each year over a million people die from the consequences of road traffic accidents. In 2021,
there were "an estimated 1.19 million road traffic deaths" [13, page 16] according to the
World Health Organisation. This makes road traffic injuries one of the most common causes
of death. In fact, it was the twelfth leading cause of death in 2019 when all ages are consid-
ered. In the age group from five to 29 years, it was even the main cause of death in 2019
[13, page 16]. Also in Germany, there are still many people dying from the consequences of
an accident. In 2021, for example, there were 2562 road traffic deaths [2].

However, the number of road traffic deaths could be reduced if post-crash care would
be provided more quickly. This is because post-crash care is extremely time-sensitive. Even
a delay of just a few minutes "can make the difference between life and death" [13, page
50] after an accident. Consequently, timely and proper post-crash care would increase the
likelihood of survival following a crash. Furthermore, also the risk for lifelong disability or
other long-term impacts of road traffic injuries could be reduced by faster post-crash care
[13, page 50]. Making post-crash care faster would therefore have significant benefits. It
could be achieved by using automatic accident detection, which in turn could automatically
notify the emergency services immediately after an accident happens.

1.2 Problem Statement

However, such a system is not used in practice yet. In some countries like the ones in the EU
there already is a similar, but less powerful system called eCall. This system automatically
connects the occupants of a vehicle to the closest emergency-response network in case of a
serious accident and transmits important information like the current location. Nevertheless,
the system is limited to serious accidents and does not exist in many countries. Furthermore,
there are still many cars without it as it has only been mandatory in the EU since April 2018
[22].

Therefore, there is still the need for an accident detection system that works for all cars, in
all countries, and for all kinds of accidents. In recent years many accident detection methods
have been published. However, most of them have never been tested on real traffic data of a
test stretch.
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1.3 Objectives

This thesis investigates whether it is possible to reliably detect accidents on the A9 test stretch
using roadside sensors. Furthermore, it is investigated whether it is possible to detect acci-
dents on the A9 test stretch in real time using roadside sensors. For this purpose, automatic
accident detection has to be implemented for this test stretch. The accident detection should
be able to reliably detect accidents, focusing on the freeway section of the A9 test stretch.
Furthermore, it should be possible to use it to search for accidents in the recorded traffic
data of the A9 test stretch. This would make it possible to collect accident data for the future
creation of an accident dataset. After implementing such an accident detection, extensive
experiments must be conducted to investigate the accident detection accuracy of the imple-
mented accident detection as well as its runtime. Based on the results of these experiments,
the research questions of this thesis regarding the reliability and real-time capability of acci-
dent detection for the A9 test stretch can be answered.

1.4 Contribution

The main contribution of this thesis is summarized as follows:

• I improve the scenario detection of the A9 test stretch by making it possible to apply
it to a large amount of data and by adding an image extraction feature and a logging
feature for detected accidents and standing vehicles.

• Together with the work achieved by Marc Pavel we provide a complete pipeline for
investigating the 100 TB of recordings from the freeway section of the A9 test stretch.
Our experiments show that this pipeline works for detecting new accidents in the stored
recordings.

• I realize a learning-based accident detection for the A9 test stretch that could be used
for detecting accidents in the recorded data. For optimizing the learning-based accident
detection, among other things, a custom accident dataset is created and an extensive
empirical analysis is carried out.

• My created event log of special events in selected recordings of the A9 test stretch can
be used for identifying appropriate training data for various detection tasks.

• Finally, I evaluate the learning-based accident detection and compare it to the rule-
based accident detection using recordings from the A9 test stretch. For this comparison,
recordings from the created event log are used. The results show that it is possible to
reliably detect accidents on the A9 test stretch using roadside sensors. In fact, the
learning-based accident detection even achieves a precision of 0.8 and a recall of 1.0
on the test data. The rule-based accident detection does not achieve such high accuracy
values, but in return has a much lower runtime, as it only needs 127 ms to process one
second of a recording. This shows that it is also possible to detect accidents on the A9
test stretch in real time using roadside sensors.
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Background

2.1 A9 Test Stretch

The A9 test stretch is a test stretch for research on autonomous driving that is part of the
Chair of Robotics, Artificial Intelligence and Real-time Systems of the Technical University
of Munich (TUM). It has seven measuring points distributed over a total length of 3.5 km
along the B471 federal highway and the A9 freeway near Munich [5]. With that, a total of
75 sensors are located at these measuring points, including several RGB cameras [4]. These
cameras cover three different types of traffic situations: a freeway, a highway, and a crossing.
Figure 2.1 shows an example image for each of these types.

Freeway Highway Crossing

Figure 2.1: Example images taken by the RGB cameras of the A9 test stretch.

The collected traffic data is used to create real-time digital twins of all traffic participants
and to automatically detect them. The information about the detected objects is stored as
so-called rosbags, together with other data like the images taken by the RGB cameras. These
images have a resolution of 1920x1200 pixels and show streets from a slightly elevated front
view, also called a steep elevated view.

There are four cameras located on the freeway section of the test stretch. Two of them
are recording the respective section of the A9 freeway in the northern direction. They are
both located at the same measurement point and differ in their focal length. The other
two cameras are recording the same section of the A9 freeway but in the southern direction.
They also differ in their focal length and are both located at a second measurement point [5].
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2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) play an important role in many accident detection
methods. CNNs are a special form of Deep Neural Networks (DNNs) and are typically used
for image recognition tasks [7, page 445]. They are usually composed of a few convolutional
layers, followed by a pooling layer, then again a few convolutional layers, followed by a pool-
ing layer, and so on [7, page 460]. In the end, a feedforward neural network, composed of
one or more fully connected layers, is added [7, page 460f.]. This architecture is illustrated
in Figure 2.2.

Figure 2.2: Typical architecture of a CNN (based on [7, page 461]).

The main building blocks of a CNN are convolutional layers, pooling layers, and fully con-
nected layers. Convolutional layers learn specific features of an image by so-called kernels.
Unlike in normal Artificial Neural Networks (ANNs), the neurons of a convolutional layer are
only connected to a small region of the previous layer [11]. Pooling layers "aggregate the in-
puts [of its neurons] using an aggregation function such as the max or mean" [7, page 457].
This way, the number of parameters and, therefore, also the computational load and memory
usage are reduced [7, page 457]. The fully connected layers then work like in normal ANNs
and provide the prediction of the CNN [7, page 461].

One of the most famous CNNs used for object detection tasks is You Only Look Once
(YOLO). YOLO is an "extremely fast and accurate object detection architecture" [7, page
489] originally proposed by Joseph Redmon et al. in 2015 [16]. It is a Convolutional Neural
Network (CNN) with several improvements like skip connections and using images of different
scales for training [7, page 489f.]. In the last years, several YOLO implementations have
been published like YOLOv8 or YOLOv9. There are also pre-trained models available of the
different YOLO versions which can be used as a baseline for training own models.

2.3 Accident Detection

Accident detection is the process of automatically detecting accidents in given traffic sensor
data. This sensor data is usually images or the frames of a video. However, also other kinds
of traffic sensor data are possible like audio recordings or GPS data. The accident detection
can be performed in the vehicle itself, based on the vehicle’s sensor data, or in some kind of
traffic infrastructure based on roadside sensor data.

In recent years, many different accident detection methods have been published. In gen-
eral, they can be categorized into two different types: rule-based accident detection methods
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and learning-based accident detection methods. This differentiation is shown in Figure 2.3.

Accident detection

Rule-based

Anomaly 

detection

Predictive 

modelling

Object 

detection

Trajectory 

prediction

Frame 

prediction

Learning-based

Object 

classification

Image 

captioning

Figure 2.3: Overview of the taxonomy of accident detection methods.

Rule-based accident detection methods use hand-crafted predefined rules to detect ac-
cidents in the input data. When creating these rules, it is therefore possible to build on
knowledge about accidents and convert it into rules. However, rule-based accident detection
methods have the drawback that they can never cover all possible accident scenarios. As the
rules used to detect accidents are hand-crafted and there are theoretically an infinite number
of possible accident scenarios, you can never have a rule for every possible accident. There-
fore, it is not possible to detect all accidents by a rule-based accident detection [7, page 2f.].

This problem is solved by learning-based accident detection methods. The reason for this
is that they do not need handcrafted, predefined rules for detecting accidents. Instead, they
use labeled accident data to learn the rules for detecting accidents in the input data itself.

Learning-based accident detection methods can be differentiated into five different types:
anomaly detection, predictive modeling, object classification, object detection, and image
captioning. If anomaly detection is used to detect accidents, it is tried to recognize inputs
that look "abnormal or novel to the model according to previously seen normal samples dur-
ing training" [18, page 1]. There are several features in which accident detection can search
for anomalies. Commonly used features are the trajectory of vehicles, the acceleration of
vehicles [17], or the class labels of detected objects in a video frame [25].

Another type of frequently used learning-based method for detecting accidents is based
on predictive modeling. The idea of predictive modeling is "to make an accurate prediction"
[10, page 1] based on some input data. This idea can be used for accident detection by
predicting how a traffic situation will develop. If the predicted traffic situation deviates from
the actual traffic situation by a certain amount it is assumed that an accident has happened.
Because otherwise, the actual traffic situation would be similar to the predicted one. The
most common information predicted for detecting accidents is the frames of a video and the
trajectories of the vehicles.

Also, object classification is a commonly used method for learning-based accident detec-
tion. Usually, a binary classification is then applied to each vehicle present in the input data.
This classifier then predicts for each vehicle whether it is damaged or not. If a damaged car
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is found an accident is detected [15].

A similar learning-based accident detection approach is to use object detection. It is real-
ized by applying an object detection model that has been trained to detect accidents in input
images. By doing so, it is not only detected whether there are accidents in the input data but
also the location of the accidents in the respective input images [21].

Recently, a new accident detection approach based on image captioning has started to
be explored. The image captioning process is done using visual language models like GPT-
4V [12]. Such approaches generate descriptive captions for input images that answer the
question of whether or not there is an accident in it. This way accidents can be detected in
input images. Additionally, these kinds of approaches can also provide a description of the
detected accident as well as possible reasons why it happened [24].
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Related Work

3.1 Accident Detection Methods

In recent years, many different accident detection methods have been published. As de-
scribed in Chapter 2.3, they can be categorized into rule-based accident detection methods
and learning-based accident detection methods. The latter can be based on anomaly de-
tection, predictive modeling, object classification, object detection, and image captioning.
Sometimes several of these approaches are combined into a single accident detection method.

The Self-Supervised Consistency learning framework (SSC-TAD) is a predictive model using
frame prediction and object location prediction to detect accidents. The idea behind SSC-TAD
is that there is a spatial-temporal consistency of features over multiple frames of a video. In
particular, the temporal consistency of the location of road participants plays an important
role in detecting accidents. Based on the previous frames SSC-TAD predicts the current frame
as well as the bounding boxes of the objects in the current frame. The predicted results are
then compared with the actual results, namely the current frame and the bounding boxes of
the objects in the current frame. If the predictions are not consistent with the actual results
it is concluded that an accident must have happened. Therefore, an accident is then detected
by SSC-TAD [6].

A completely different approach for detecting accidents is used by the accident detec-
tion method proposed by Sabry et al. in 2021. It combines rule-based crash estimation and
learning-based object classification. First, YOLOv3 is used to detect all vehicles in every tenth
frame of an input video. Then, the MOSSE tracker is used to track the detected vehicles
through the frames of a video. Using the results of the MOSSE tracker, a crash estimation
is performed by calculating the location of the tracked objects ten frames ahead. Afterward,
the distance of the calculated future center of each vehicle pair is calculated. If it falls below
a certain threshold the vehicle pair is marked as a potential accident candidate. The final
step is to apply a state vector machine (SVM) on an optical flow vector to perform a binary
classification of whether there is an accident in the input data or not. This approach has the
huge drawback that it only works for accidents in which two or more vehicles crash with each
other [17].

This problem is solved by the accident detection method proposed by Pillai et al. in 2021.
It is achieved by just checking whether a vehicle is damaged and not even considering other
vehicles for the accident detection task. In general, the accident detection process is split into
three stages: vehicle detection, vehicle tracking, and accident classification. First, Mini-YOLO,
a custom object detection model based on the pre-trained MobileNet-v2 model, performs ob-
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ject detection on the input images. Then, Simple Online Real-time Tracking (SORT) is applied
to track the detected vehicles. Each of the tracked vehicles has a damage status variable,
indicating whether the vehicle is damaged or not. In addition to the tracking algorithm, the
detection results are also used to extract an image of each detected vehicle in the input data.
This image is extracted using the predicted bounding box and therefore only contains the
respective vehicle. The extracted images of the vehicles are then all individually fed into
an SVM that performs a binary classification of whether the vehicle in the input image is
damaged or not. If the classification step concludes that a vehicle is damaged, it checks the
damage status variable stored for each vehicle. If the vehicle has not been damaged be-
fore, an accident is detected. Otherwise, the vehicle has already been damaged, therefore no
accident is detected. Using this approach makes accident detection rather computationally
inexpensive and therefore suitable for real-time usage [15].

Another accident detection method fast enough for real-time usage is the one proposed
by Zhou et al. in 2022. In the first step, a multilayer neural network encodes the temporal
features of a video. Then, the frames of the input video are clustered to detect potential
accident frames. On these potential accident frames Faster-RCNN is applied to detect the
vehicles in the frame. The spatial relationship of these detected vehicles is then encoded with
the CNN features received from the last convolutional layer of the Faster-RCNN model. This
results in coding matrices that are classified using an SVM. The classification results then
correspond to the accident detection results for a given input frame [25].

3.2 Accident Datasets

For learning-based accident detection methods, it is important to have enough high-quality
training data. Therefore, this chapter gives an overview of some publicly available accident
datasets. The most important information about these datasets is summarized in Table 3.1.

All datasets consist of images or videos as most learning-based accident detection meth-
ods use some kind of visual information as input. Apart from the type of data and the year
of publication, the datasets also differ in where the data was taken and therefore in the view
perspective. Images and videos taken by a dashcam correspond to the vehicle view. If they
were taken by roadside cameras on the ground they show the roadside view and if they were
taken by elevated roadside cameras they correspond to the steep elevated view. Some of the
datasets contain a mix of all three mentioned recording locations. Additionally, the datasets
also differ in the content of the data. In some datasets, only the accidents themselves are
visible in the images or videos, in other datasets, the whole street can be seen, including the
accident. All presented datasets are allowed to be used for research purposes except for the
yoloaccident dataset which does not provide any information about its license.

Image Datasets

Many accident datasets are image datasets. That means that they only contain images of acci-
dents and the respective labels. One rather big image dataset is the Accident-Images-Analysis
dataset. It consists of 2,398 accident images taken by roadside cameras on the ground. All
the images only contain the accident itself. This means that no further context of the whole
scene is provided. A big drawback of the Accident-Images-Analysis-Dataset is that its images
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Name Data Year #Accidents Perspective Image content Labels

AIAD [8] images 2018 2,398 R accident A
YA [9] images 2022 50 R accident A, BB
CCTVF [3] images 2020 462 SE street A
ADM [20] images 2023 1,741 mixed mixed A, BB
AC [14] images 2020 13,338 mixed mixed none
DA [23] images 2023 691 V + R mixed A, BB

CCD [1] videos 2020 1,500 V street A, E
Argus [17] videos 2020 153 SE accident A
CADP [23] videos 2018 1,416 mixed street none

Table 3.1: Overview of some publicly available accident datasets. The datasets are compared regarding the type
of data, the year of publication, the number of accidents, and the content of the image or frame. Furthermore, they
have different view perspectives, namely roadside view (R), steep elevated view (SE), and vehicle view (V). Apart
from that their images and videos differ in the labeled information. While most datasets only have labels whether
there is an accident in an image or video (A), some of them have labels also providing information about a bounding
box (BB) or external factors (E) like the time or the weather conditions during the recording. The accident datasets
considered in this comparison are the Accident-Images-Analysis-Dataset (AIAD), the yoloaccident dataset (YA),
the Accident Detection From CCTV Footage dataset (CCTVF), the Accident detection model dataset (ADM), the
accidents dataset (AC), the Deep Accident dataset (DA), the Car Crash Dataset (CCD), the Argus dataset and
the Car Accident Detection and Prediction dataset (CADP).

only have a resolution of 28x28 pixels which is too small for most use cases. Furthermore,
only an accident label is given and no bounding box for the exact location of the accident in
the images [8].

A pretty similar but much smaller dataset is the already mentioned yoloaccident dataset.
Its images are also taken by roadside cameras on the ground and also only contain the acci-
dent itself. Unlike the Accident-Images-Analysis-Dataset the labels of the yoloaccident dataset
do not only provide information on whether there is an accident in the input data but also
the bounding box for the position of the accident. However, the yoloaccident dataset is with
its 50 images a fairly small dataset [9].

The Accident Detection From CCTV Footage dataset is a much bigger dataset that is also
much more similar to the use case of the A9 test stretch. It consists of 462 accident images
which were taken by roadside cameras from a steep elevated view. In addition to that, the
images contain the whole street and not just the accident itself. However, no labels with
bounding boxes for the accidents are provided [3].

As already mentioned, not every accident dataset only contains images from one perspec-
tive or with one type of image content. Sometimes the different types are mixed, usually to
have a bigger dataset in the end. If that is the case it varies from accident to accident whether
the image of an accident is taken by a roadside camera on the ground, an elevated roadside
camera, or a dashcam. Furthermore, they then also differ in whether only the accident or
the whole street is visible in the image. A dataset that belongs to this category is the Accident
detection model dataset. With 3,250 accidents it is relatively large for an accident dataset.
The labeled information includes whether there is an accident in the image as well as the
bounding box of an accident [20].

Another image dataset that contains mixed perspectives and mixed image content is the
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accidents dataset. It is much bigger than all the other datasets as it contains 13,338 accidents.
However, the images in the dataset differ in their resolution and aspect ratio. 9,303 of the
images for example only have a resolution of 28x28 pixels and are therefore, as already men-
tioned, too small for most use cases. Furthermore, the dataset also includes some images of
planes. There are no labels provided by this dataset. However, this is not a problem as the
dataset only contains videos with accidents [14].

To get a bigger and more diverse dataset synthetic images can be used. One dataset fol-
lowing this approach is the Deep Accident dataset. To achieve a diverse set of accidents, 691
accident scenarios were generated based on crash reports published by the National Highway
Traffic Safety Administration (NHTSA). For each of these accidents, the dataset does not only
contain images taken by a single camera but by multiple ones. Specifically, there is data from
four vehicles and one infrastructure component available for each generated accident. This
means that the dataset contains images taken by dashcams as well as images taken by an
elevated roadside camera for each of the accidents. However, the domain gap problem could
arise when synthetic accident images are used for training [23].

Video Datasets

Apart from image datasets, there are also video datasets covering accidents. A rather big
one is the Car Crash Dataset (CCD) which contains 1,500 videos of an accident. All the
videos are taken by the dashcam of a vehicle and always contain the whole street and not
just the accident itself. It also provides quite a lot of labeled information like whether there
is an accident present in a frame of a video, whether a video was taken during the day or the
night, and the weather conditions. However, no bounding box of the accident is provided [1].

The Argus dataset is another video dataset. However, it is much smaller than the CCD
dataset. It contains videos of 153 accidents, taken by elevated roadside cameras. The video
frames only contain the accident itself and not much of the surroundings of the accident. The
only labeled information provided is if there is an accident in a video or not. So, there is no
information on which frames of the videos contain an accident [17].

This problem also applies to the Car Accident Detection and Prediction dataset (CADP). In
fact, it does not even have any labels. However, this is, as already mentioned, not a problem
as the CADP dataset only contains videos of accidents. The recording location of the videos
in this dataset is mixed. Consequently, it depends on the accident whether the video was
recorded by a dashcam, by a roadside camera on the ground, or by an elevated roadside
camera. All the 1,416 accident videos show the whole street on which an accident happened
and not just the accident itself [19].
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Methodology

As mentioned in Chapter 2.3, accident detection methods can in general follow a rule-based
approach or a learning-based approach. To answer the research question of this thesis, both
of these approaches have been realized. This means that rule-based accident detection and
learning-based accident detection have been implemented for the A9 test stretch.

4.1 Event Log

For developing the rule-based and the learning-based accident detection method it is impor-
tant to have some rosbags covering different kinds of special events like accidents, standing
shoulder events, or traffic jams. On the one hand, this is necessary to get some insights into
how different metrics differentiate between the different events. This information is needed
for the development of the rule-based accident detection. On the other hand, it is necessary
to manually classify some rosbags whether there is an accident in them or not for the de-
velopment of learning-based accident detection. For example, a custom dataset for model
training can be created based on the results of the event log. Finally, the information of an
event log can be used as test data for comparing the rule-based and the learning-based acci-
dent detections.

The event log was created for a bunch of recorded rosbags from the A9 test stretch and
can be seen in Table 4.1. For creating this event log the images from all the respective rosbags
were extracted. In total, they cover almost four hours. The images were then manually in-
spected to classify the rosbags regarding interesting events like accidents, standing shoulder
events, or traffic jams. It should be noted that for the most part rosbags were used for which
it was already known that some kind of interesting event could have happened.

Particularly important for the development of accident detection are the already-known
accidents in the recorded data. In total, four accidents have been known before the devel-
opment of accident detection. The first one happened on the 8th of April 2021 at 12:11:53.
This accident happened as a yellow car lost control, drove into the crash barrier, and then
into the back of a white van. Figure 4.1 shows two images from this accident. In the first
one, the moment can be seen in which the car crashes into the crash barrier. The second one
shows the collision of the car with the white van.
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Date Start Time End Time Events

10/13/2020 18:52:23.25 18:53:23.02 Traffic jam
02/11/2021 11:32:00.93 11:33:00.93 Emergency vehicle, vehicle transporter
03/26/2021 13:41:41.00 13:42:13.20 Emergency vehicle, vehicle transporter
04/08/2021 11:30:00.93 11:33:00.93 Accident
05/15/2021 15:40:01.73 15:41:01.73 No events
05/15/2021 15:52:01.74 15:53:01:73 Standing shoulder
05/15/2021 16:44:01.74 16:45:01.73 Standing shoulder
05/15/2021 16:54:01.73 16:55:01.73 Vehicle transporter, standing shoulder
05/15/2021 16:55:01.74 16:56:01.73 Emergency vehicle, standing shoulder
05/15/2021 17:04:01.74 17:05:01.73 Standing shoulder
07/29/2021 19:44:24.15 19:45:24.07 Standing shoulder
07/30/2021 09:25:24.07 09:26:24.07 Standing shoulder
10/21/2021 10:21:44.36 10:22:44.35 Accident
03/07/2022 12:25:08.80 12:55:08.72 No events
03/07/2022 12:55:08.72 13:10:08.68 Tow truck
03/28/2022 17:19:15.35 17:34:15.34 Accident
03/28/2022 17:49:15.34 18:04:15.34 Emergency vehicle
05/11/2022 16:14:43.38 16:29:43.37 Emergency vehicle, vehicle transporter,

tow truck
05/11/2022 16:29:43.37 16:44:43.38 Vehicle transporter
05/11/2022 16:44:43.38 16:59:43.38 Emergency vehicle, vehicle transporter
05/11/2022 16:59:43.38 17:14:43.37 Vehicle transporter
05/11/2022 17:29:43.38 17:44:43.37 Emergency vehicle, vehicle transporter
05/22/2022 17:14:43.38 17:29:43.37 Accident, standing shoulder
05/22/2022 17:44:43.38 17:59:43.37 Emergency vehicle, standing shoulder

Table 4.1: Event log of selected recorded rosbags from the A9 test stretch.

Figure 4.1: Accident on the A9 test stretch from the 8th of April 2021 (front left in the image).

The second known accident happened on the 21st of October 2021 at 07:28:53. The rea-
son for this accident is that it was quite windy. As a result, the trailer of a blue car tipped
over. This made the car lose control and crash into a delineator next to the hard shoulder of
the A9 freeway. Figure 4.2 shows this whole scene in four images.

On the 28th of March 2022 at 17:19:18 another accident happened on the freeway sec-
tion of the A9 test stretch. It was caused by a vehicle running into the end of a traffic jam. As
a result, it collided with two other vehicles and made a 360-degree spin. The process of this
accident is illustrated in Figure 4.3 using four images.
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Figure 4.2: Accident on the A9 test stretch from the 21st of October 2022 (back left in the image).

Figure 4.3: Accident on the A9 test stretch from the 28th of March 2022 (front right in the image).

The last accident known before the development of accident detection occurred on the
22nd of May 2022 at 17:19:30. This time a vehicle burnt down on the hard shoulder. Figure
4.4 shows how the vehicle first started to smoke and later started burning.

Figure 4.4: Accident on the A9 test stretch from the 22nd of May 2022 (back right in the image).
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An overview of all the mentioned accidents is given in Table 4.2.

Date Time Description

04/08/2021 11:31:52.54 Car crashes into crash barrier and standing van
10/21/2021 10:22:13.17 Car tips over as its trailer was blown over
03/28/2022 17:19:17.54 Car collides with 2 vehicles and makes 360-degree spin
05/22/2022 17:19:29.97 Car burns on hard shoulder

Table 4.2: Overview of accidents on freeway section of A9 test stretch that were known before the development
of accident detection.

4.2 Rule-Based Accident Detection

4.2.1 Concept

The rule-based accident detection is performed on rosbags as this is the format in which the
recorded data from the A9 test stretch is stored. These rosbags provide, among other things,
the position of each vehicle for each timestamp. The vehicles recorded in a rosbag have a
unique ID that stays the same while driving through a section of the test stretch. The position
data of the vehicles is used to calculate some basic information about each vehicle like its
velocity, in which line it drives or its distance to the vehicle in front and behind it. This infor-
mation is then used by the already existing scenario detection of the A9 test stretch to detect
traffic scenarios like a vehicle standing on the hard shoulder. Afterward, some of the calcu-
lated vehicle information and detected scenarios are used by rule-based accident detection to
decide whether or not there is an accident in the data for a particular timestamp. This deci-
sion is made based on some hand-crafted, predefined rules that try to describe the scenarios
in which accidents happen. For example, if the distance between two vehicles falls below
a certain threshold that depends on the vehicle’s velocity the rule-based accident detection
detects an accident. A detailed explanation of how the rules of the rule-based accident de-
tection work and how they are implemented can be found in Marc Pavel’s documentation.

4.2.2 Improvement of Scenario Detection

As explained in Chapter 4.2.1 rule-based accident detection uses information like the dis-
tance between two vehicles or their velocity for detecting accidents. This kind of information
is provided by the scenario detection or can be calculated using the information available in
the scenario detection.

The scenario detection iterates through the data stored in a rosbag and tries to identify
multiple kinds of scenarios like traffic jams, whether a vehicle drives faster than allowed, or
whether a vehicle is standing on the hard shoulder. As an accident is also just a special kind
of traffic scenario accident detection was integrated into the scenario detection.

Because scenario detection serves as a baseline for accident detection, the values provided
by it must be accurate. Otherwise, the rule-based accident detection will not work reliably.
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However, this was not the case. Therefore, many aspects have been improved in the scenario
detection.

Apart from the data calculation of the scenario detection, its general functionality has
been improved as well. A big improvement that makes it possible to apply scenario detec-
tion to huge amounts of rosbags is that it now works in a generic way regarding the ROS
topic name. Consequently, it is no longer necessary to specify the ROS topic name when the
scenario detection is performed. Instead, it now automatically checks for each rosbag what
the name of the needed ROS topic is. If none of the required ROS topics is available in the
respective rosbag, it will be skipped so that the execution of the scenario detection on an
entire directory of rosbags is not interrupted.

When applying scenario detection to large amounts of recorded rosbags, it is important
for later analysis that the results are stored in a useful way. For this reason, scenario detection
has been extended to generate a useful directory structure for input data stored in a directory
structure corresponding to the hierarchy year/month/day/hour/. This directory structure
has been chosen as it is used by the recorded data from the A9 test stretch. For each rosbag,
in which an accident is detected, a directory is created in which the scenario detection results
for the current rosbag are stored. The scenario detection considers all cameras available in
a rosbag and extracts and stores three images for each of them. More information about the
extracted images is given in Chapter 4.2.3. Furthermore, a JSON file containing the statis-
tics of the detected scenarios is created regardless of whether an accident has been detected.
However, no images are extracted and no directory for a rosbag is created if no accident is
detected.

To ensure that the results of the accident detection can be easily analyzed and used for
further tasks, the most important information about each detected accident is stored in a CSV
file. Apart from the year, month, day, and hour of the respective rosbag, also its name and
the exact timestamp are saved. Like the extracted images and generated statistics, also the
CSV file is saved in the specified output directory.

Apart from the scenario detection improvements mentioned above, many other changes
have been made. For example the standing_shoulder values, the velocity values, and
the cut in and cut out values work now. Moreover, multiple calculations like the distance
calculation have been made much faster. More information about these and other additional
improvements can be found in Marc Pavel’s documentation.

4.2.3 Implementation of Image Extraction

To obtain the images of detected accidents an image extraction feature was implemented.
This feature can not only be used to extract images of detected accidents but also to extract
images of detected breakdowns or detected vehicles standing on the hard shoulder. It can
be activated using the -img argument, followed by the kind of event, for which the images
should be extracted. The possible options are accident, breakdown, accident_breakdown
and standing_shoulder. Here, accident_breakdown means that the images of all acci-
dents and all breakdowns are extracted. When activated, the image extraction feature auto-
matically extracts three images for each detected event. This is done for every camera that is
available in the current rosbag. For extracting the images the rule-based accident detection
provides the timestamp of the input rosbag for which an event has been detected. This times-
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tamp is then used by the image extraction node that extracts the three images by decoding the
image information stored in the ROS messages of the rosbag. Figure 4.5 illustrates the image
extraction process.

Rule-based 

accident detection

Image extraction 

node

Rosbag Timestamp of 

detected accident

Image 1

Image 3

Image 2

Figure 4.5: Image extraction process of the rule-based accident detection.

The image extraction extracts the image, that is the closest after the timestamp in which
an event has been detected and that can be extracted separately. In general, it is not possible
to only extract the image of a timestamp, in which an event has been detected, as the image
encoding works in a way that makes it only possible to extract every tenth frame separately.
Therefore, the next individually extractable frame is always used for image extraction. It
always used the next individually extractable frame and not the closest one, as an image of
a few milliseconds after an event happened is more useful than an image from a few mil-
liseconds before an event happened. For example, a few milliseconds before an accident is
detected, it probably has not even happened yet. But a few milliseconds after an accident
is detected it should still be visible in the image. In addition, two additional images are
extracted for each detected event. One from 4.8 seconds before the timestamp that is used
to extract the already mentioned image and one from the timestamp 4.8 seconds after it.
4.8 seconds have been chosen for the interval because, with the given 25 frames per second
(FPS), this corresponds to a frame number that can be divided by ten. This ensures that the
frame can individually be extracted. As the image extraction iterates over the ROS messages
in the correct chronological order, it first extracts the image 4.8 seconds before the detected
event, then the one from the event itself, and finally the one 4.8 seconds after the detected
event. Figure 4.6 illustrates how the correct timestamps for extracting individual images are
found. All three extracted images are stored in the directory for the camera by which the
images have been taken. This directory is, as mentioned in Chapter 4.2.2, created as a sub-
directory for each input rosbag for which an event has been detected.

The reason why only three images are extracted for each detected event is the need for a
low runtime. When a whole sequence of 9.6 seconds, which spans from 4.8 seconds before
an event to 4.8 seconds after an event, is extracted this takes much longer than just extract-
ing three frames. This computational overhead is not worth the additional extracted images
as the three extracted images should be sufficient to have an image of the detected event.
Additionally, also the iteration over the ROS messages in the image_extractor_node has
been changed in a way that improves the computational speed. Instead of iterating over all
ROS messages of a rosbag, the iteration is now stopped after the third image is extracted.

To ensure that the image extraction works automatically for every rosbag, regardless of
the cameras and rosbag topics available in a rosbag, it was implemented in a generic way.
Similar to scenario detection, image extraction automatically figures out which of the re-
quired ROS topics are available in a rosbag. Furthermore, also the ID of the available cameras
is derived automatically. This way the image extraction works in a generic way and can be
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Figure 4.6: Process of finding the correct timestamp to extract individual images.

applied to a huge amount of recorded rosbags.

4.3 Learning-based Based Accident Detection

In addition to the rule-based accident detection also a learning-based accident detection was
implemented.

4.3.1 Concept

The core of the learning-based accident detection is the pre-trained accident detection model
from Shubhankar Shandilya [21]. This model was created by using transfer learning. For
this, the YOLOv8s Detect model pre-trained on the COCO dataset was fine-tuned on an acci-
dent dataset created by Shandilya.

This dataset consists of 947 training images, 154 validation images, and 157 test images
which makes 1258 images in total. On each of them, a preprocessing has been applied which
resizes the images to 640x640 pixels. The images in the data set differ considerably in terms
of the type of recording and the content of the image. While many of the images were taken
from a slightly elevated view, there are also some images taken by vehicle dashcams or by
roadside cameras on the ground. Furthermore, some of the images contain the accident with
its surroundings and some just the accident vehicles without the surroundings. Figure 4.7
shows four example images from this dataset.

Many of the images contain an accident, whose label always also contains the respective
bounding box. However, the bounding boxes are quite imprecise for many images. They
often do not include the whole accident vehicle, too much of the background, or even parts
of vehicles that are not involved in the accident at all. A few example images with imprecise
bounding boxes are given in Figure 4.8. However, the final version of the learning-based ac-
cident detection does not use this pre-trained model anymore as it was replaced by a custom-
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Figure 4.7: Example images from the dataset used to fine-tune the pretrained YOLOv8s Detect model .

trained model. More information about that can be found in Chapter 4.3.4.

Figure 4.8: Example images from the dataset used to fine-tune the pre-trained YOLOv8s Detect model with
imprecise bounding boxes.

On a high level, the learning-based accident detection model works as follows: First, an
image, for which the accident detection should be applied, is fed into the accident detection
model. Then the forward pass of the model is performed which applies the accident detec-
tion to the input image. Afterwards, the detection result is returned. It contains a range
of information, including the label, the confidence for this label, and the coordinates of the
bounding box. The whole process is illustrated in Figure 4.9.



4.3 Learning-based Based Accident Detection 19

Accident detection 

model

Input image

Detection

Bounding box

Confidence value

Figure 4.9: Accident detection process using an accident detection model.

4.3.2 Integration

To be able to use the pre-trained accident detection model on the sensor data of the A9 test
stretch, it was integrated into the scenario detection. The reason for this, as already men-
tioned, is that accidents are one of the many scenarios that should be detected by scenario
detection. By setting the -acc argument of the scenario detection to ml the learning-based
accident detection is used for the scenario detection instead of the rule-based one.

As the core of the learning-based accident detection is a pre-trained YOLOv8 model, im-
ages are required as input. However, the recordings from the A9 test stretch are, as already
mentioned, stored as rosbags. Therefore, the images stored in the rosbags must be extracted
to feed them into the accident detection model. This is realized by using the image extractor
node that is also used by the image extraction feature of the rule-based accident detection.
The image extraction step is initiated by scenario detection. For a given set of rosbags, the
images from all cameras available in the respective rosbags are extracted. Extracting and
saving all the images at once is done because it is the computationally least expensive way to
obtain all the images from a recording. The reason for this is that single images can not ef-
ficiently be extracted on their own as explained in chapter 4.2.3. After the image extraction,
the learning-based accident detection iterates over all extracted images and feeds every single
one of them into the accident detection model. This model then performs the actual accident
detection. Afterward, its output is processed by the accident detection handling module. This
module has several purposes. On the one hand, it performs several checks to increase the
probability of making correct detections. How this works is described in detail in Chapter
4.3.3. On the other hand, it handles the output of the accident detection model. Three differ-
ent types of output are created when the learning-based accident detection is applied. First,
the amount of accidents in the input data is counted and saved in a JSON file that stores
statistics of detected scenarios. Secondly, images of the detected accidents are created that
include bounding boxes, score values for detections, and the respective labels. Finally, a CSV
file is created that stores information about each detected accident, including its timestamp.
As a final step all extracted images of a rosbag are removed again after they were fed into
the accident detection model. The whole process of the learning-based accident detection
process is illustrated in Figure 4.10.

As the accident detection model is applied to every single input image it provides an out-
put whether there is an accident or not for each of the images. This means that if an accident
happens, the accident detection will detect an accident in a whole sequence of consecutive
frames. Nevertheless, this is only treated as one accident and therefore only increases the
accident counter by one. Moreover, it also only creates one new entry in the CSV file.
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Figure 4.10: Learning-based accident detection process.

4.3.3 Improvement

To improve the performance of learning-based accident detection, several measures were
taken. First of all, the pre-trained accident detection model was replaced by a self-trained
model. To obtain this model a custom dataset was created with images that are closer to the
use case of the A9 test stretch. Furthermore, this dataset is almost three times larger than the
one used to train the pre-trained model. This custom dataset is described in detail in Chapter
4.4. Using this dataset, the YOLOv8x model, which was pre-trained on the COCO dataset,
was fine-tuned. More information about the newly trained model can be found in Chapter
5.3.

Additionally, the confidence value of a detection result, which must be achieved as a min-
imum to be detected as an accident, has been adjusted. It was increased from 0.25 to 0.8 as
the experiments described in Chapter 5.2 suggested this to be the most promising value for
the A9 test stretch.

To further reduce the number of incorrectly detected accidents, an additional check has
been added. The accident detection model now has to detect an accident in at least three
consecutive timestamps to treat it as an actual accident. This can be done as the input data
corresponds to the frames of a video in chronological order. So if an accident occurs, it can
be seen in a whole sequence of images and not only in a single image. Furthermore, many
of the images used for training the accident detection model were taken after the accident
happened and not in the exact moment in which the accident happened. Consequently, the
accident detection model can not distinguish between the moment an accident happened and
the time after the accident in which the accident vehicles are still close together. Therefore,
an accident should always be detected in more than just three images if it is an actual acci-
dent. If the condition with three consecutive frames is not met, the detected accident will be
ignored. This idea is illustrated in Table 4.3 for a sample scenario. A zero value in one of the
result rows in the table means that the respective component thinks there is no accident at
this timestamp. Accordingly, a value of one means that the respective component thinks that
there is an accident at this timestamp. For the sample values in the table, the accident detec-
tion model detects an accident for timestamp two. However, no accident is detected for the
timestamps one and three. Therefore, the detection result for timestamp two was probably
wrong and should consequently not be considered as an accident. The described check for
three consecutive timestamps with a detected accident ensures exactly that. Therefore, the
accident detection handling module result for timestamp two is zero and not one.

As already mentioned, accidents are detected for a whole sequence of timestamps. How-
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Timestamp 1 2 3 4 5 6 7

Model result 0 1 0 0 1 1 1

Handling module result 0 0 0 0 1 1 1

Table 4.3: Conversion of model results to handling module results for a sample scenario. It can be seen that the
model result for timestamp two is one, whereas the handling module result for this timestamp is zero. The reason
for this is that the detection for timestamp two is not part of a sequence of three consecutive timestamps with a
detected accident and is therefore filtered out.

ever, the actual moment at which an accident occurs corresponds to just a single timestamp.
Therefore, the relevant timestamp for the accident detection is the one in which the accident
has been detected for the first time. In the example given in Table 4.3 this is timestamp five.
This timestamp is referred to as accident timestamp from now on. For all detected accidents,
the accident timestamp is written to a CSV file, together with the name of the file in which
the accident was detected and the ID of the camera that took the respective image.

As there are usually several cameras providing images at the same time, the information
of all the available cameras is fused. However, if an accident is detected in the images of more
than one camera, it should be treated as a single accident and not as multiple ones. This idea
is realized by the accident detection handling module. It fuses the detected accidents of all
cameras for each timestamp, also taking into account that not every camera records at the
same frequency. For figuring out the accident timestamp, the fused results are used by tak-
ing the accident timestamp for which the accident has been detected first. This procedure is
illustrated in Table 4.4, again using a sample scenario.

Timestamp 1 2 3 4 5 6 7

Result camera 1 0 0 0 0 1 1 1
Result camera 2 0 0 1 1 1 1 1
Result camera 3 0 0 0 0 0 0 0
Result camera 4 0 0 0 0 0 0 0

Combined detection result 0 0 1 1 2 2 2

Table 4.4: Fusion of accident detection results of multiple cameras for a sample scenario. It can be seen that the
accident timestamp for this scenario is three, as this is the first timestamp at which the accident is detected in the
images of any of the four cameras.

For the sample scenario used in Table 4.4, the accident timestamp is three as this is the
first timestamp at which the accident is detected in the images of any of the four cameras.
Although the accident is detected in the images of two of the cameras, the total number of
detected accidents is only increased by one as camera one and camera two detected the same
accident.

4.3.4 Model Training

To find the best-performing learning-based accident detection model for the A9 test stretch,
five different models were trained. Furthermore, also the pre-trained accident detection
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model, mentioned in Chapter 4.3.1 was considered. With that, six learning-based accident
detection models exist, which differ in the used dataset, the resolution of the input images,
the batch size used for training, and the number of epochs for which they were trained. Table
4.5 gives an overview of these six models.

Name Description Image size Batch size #Epochs

m1 Pre-trained model 640 16 22
m2 Fine-tuned model 1920 6 63
m3 Fine-tuned model 1600 8 80
m4 Fine-tuned model 1280 16 120
m5 Fine-tuned model 960 8 106
m6 Fine-tuned model 640 32 67

Table 4.5: Overview of the six learning-based accident detection models.

The pre-trained accident detection model was created by Shubhankar Shandilya and was
published in his accident detection model GitHub repository [20]. This model was created,
as already mentioned in Chapter 4.3.1, by fine-tuning the YOLOv8s detection model using an
image size of 640 pixels and a batch size of 16. It is called m1 from now on.

Models m2 to m6 were all created by fine-tuning the YOLOv8x detection model, pre-
trained on the COCO dataset, with a custom self-labeled dataset. This dataset is introduced
in Chapter 4.4. Each model was trained on one or multiple NVIDIA GeForce RTX 3090 GPUs
with 24 GB of VRAM. How many GPUs have been used for training varies from model to
model depending on the availability of the GPUs during the training process. The image size
used for the different models is 1920 pixels (m2), 1600 pixels (m3), 1280 pixels (m4), 960
pixels (m5) and 640 pixels (m6). The training process of each of the models was started for
300 epochs. However, none of them trained for the full 300 epochs as early stopping was used
which always made the training process terminate beforehand. The exact number of epochs,
for which each of the six models was trained, can be found in Table 4.5. For each training
process, the largest possible batch size for the number of available GPUs and the resolution
of the training images have been used. The exact batch size for each of the models is shown
in Table 4.4.

4.4 Custom Dataset

To improve the performance of the learning-based accident detection, a custom dataset was
created. As a baseline, it uses version two of the dataset, published by the author of the pre-
trained accident detection model mentioned in Chapter 4.3.1. This dataset consists of 2,517
training images, 371 validation images, and 262 test images which makes 3,250 images in
total. These images all have a resolution of 640x640 pixels. However, not all of the images
in this dataset contain accidents. There are accidents present in 1,321 of the training images,
244 of the validation images, and 176 of the test images. Figure 4.11 shows some exam-
ple accident images from this dataset. As can be seen, the dataset consists of images taken
from different perspectives. Many of the images are taken by elevated roadside cameras and
therefore show the accidents from a steep elevated view. Additionally, there are also images
taken by roadside cameras on the ground or by dashcams which results in images showing
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the accidents from a roadside view or a vehicle view. While many of the images show the
whole street, including the accident, this is not the case for all images. Some of them only
show the accident itself without providing any further context. So, not all the images of
this dataset match the type of images taken by the A9 test stretch. However, most of them
do. Furthermore, no larger accident dataset has been found that is so similar to the A9 test
stretch and also provides labeled bounding boxes for the accidents.

Figure 4.11: Example images from version two of the dataset, published by the author of the pre-trained accident
detection model mentioned in Chapter 4.3.1.

To further increase the size of the dataset and to make it more similar to the images taken
on the A9 test stretch, for which the accident detection is developed, accident images from
the A9 test stretch have been added. They all have a resolution of 1920x1200 pixels. Unlike
the downloaded dataset, all the self-labeled images contain an accident. In total, 475 acci-
dent images were extracted from the four accidents in the event log presented in Chapter
4.1. Table 4.6 shows how many images have been used from each of the accidents.

Accident date Train Validation Test Total

04/08/2021 53 7 7 67
10/21/2021 125 16 16 157
03/28/2022 121 15 15 151
05/22/2022 80 10 10 100

Table 4.6: Number of self-labeled images from the four known accidents.

After extracting these images, they have been labeled with a bounding box for the acci-
dent. Some examples from these self-labeled images can be seen in Figure 4.12.

The self-labeled accident images were manually split using an 80-10-10 split which re-
sulted in 379 training images, 48 validation images, and 48 test images. The split in training,
validation, and test set has for all four accidents been made in a way that the images of each
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Figure 4.12: Example images from the self-labeled accident images.

of the splits are consecutive frames of one or two short sequences of the respective accident.
As the custom dataset combines the images from the mentioned published accident dataset
and the self-labeled images, it contains 3725 images in total. 2896 of them are part of the
training set, 419 of the validation set, and 410 of the test set. Table 4.7 gives an overview of
the described composition of the custom dataset.

Dataset Train Validation Test Total

Downloaded 2,517 (1,321) 362 (176) 371 (244) 3,250 (1,741)
Self-labeled 379 (379) 48 (48) 48 (48) 475 (475)

Total 2,896 (1,799) 410 (224) 419 (292) 3,725 (2,216)

Table 4.7: Number of images of the custom dataset. The number in brackets is the number of accident images.



Chapter 5

Experiments and Results

Extensive experiments were carried out on various datasets to do an empirical analysis of
the learning-based accident detection and to evaluate the performance and the runtime of
the rule-based and the learning-based accident detection. Based on the results of these ex-
periments, the two accident detections are compared and the two research questions are
answered.

5.1 Evaluation Metrics

For evaluating and comparing the rule-based and the learning-based accident detection sev-
eral metrics have been used. The basic components used by the metrics measuring the accu-
racy of the accident detection are:

• the number of True Positives (TP) which describes the number of correctly classified
accidents [7, page 91].

• the number of False Positives (FP) which describes the number of wrongly classified
accidents [7, page 91].

• the number of False Negatives (FN) which describes the number of accidents wrongly
classified not to be an accident [7, page 91]. FN therefore corresponds to the number
of accidents that have not been detected.

To answer the research question, of whether it is possible to reliably detect accidents on
the A9 test stretch using roadside sensors, it is necessary to measure the accuracy of the ac-
cident detection. This can be done by using the metrics precision and recall. The precision
measures how many of the accidents detected actually are accidents [7, page 91].

precision=
T P

T P + F P
(5.1)

It is often used in combination with recall, which is also called sensitivity or true positive
rate. It describes the ratio of accidents that are correctly detected by accident detection [7,
page 91]. Consequently, it measures how many of the actual accidents have been detected
by the accident detection.

recal l =
T P

T P + FN
(5.2)
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An even more accurate way to measure the accuracy of accident detection is by compar-
ing the detected accidents and their bounding boxes with the labels of the corresponding
images. The metric used for this is the mean Average Precision (mAP). It is calculated by
using the Average Precision (AP) of the accident class. For figuring out the AP, the maximum
precisions with at least 0% recall, 10% recall, 20% recall, and so on until 100% recall are
calculated. The AP is then the mean of all the calculated maximum precisions. To ensure
that the size and location of the bounding boxes are predicted correctly, the Intersection over
Union (IoU) is considered for the computation of the mAP. As Figure 5.1 shows, the IoU is
the intersection of the predicted and real bounding boxes divided by their union. The mAP
is noted as mAP@0.5 if a predicted accident should be considered as correct as soon as the
IoU is greater than 0.5. If different IoU thresholds should be taken into account, the mean
achieved with all the considered IoU values is computed. For example, for the IoU values 0.5,
0.55, 0.60, ..., 0.95, the mean of the mAP for each mentioned IoU value is taken. This is then
noted as mAP@[.50:.95] [7].

Figure 5.1: Visualization of the formula for the IoU (BOX 1 represents the ground truth bounding box and BOX 2
the predicted one).

5.2 Empirical Analysis of Learning-Based Accident Detection

To obtain the best-performing learning-based accident detection model for the A9 test stretch,
an empirical analysis was carried out.

Model Selection

First of all, the six different models presented in Chapter 4.3.4 have been compared regarding
the accident detection accuracy they achieve. Figure 5.2 and 5.3 provide a visual comparison
of the accident detection results for two example images obtained by the six accident detec-
tion models. For both of these images, a confidence threshold of 0.25 has been used as this
is the default value of yolov8.

For Figure 5.2 it can be seen that m2, m4, and m5 correctly detect the accident. Model
m3 also detects the accident but as two accidents instead of just one. The models m1 and m6
do not detect the accident. Consequently, m2, m4, and m5 are the best-performing models
on the given accident image. It is noticeable that the predicted bounding boxes are pretty
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accident

accident 0.79 accident 0.88accident 0.44

accident 0.86 accident 0.75

m1 (640 pixels) m2 (1920 pixels) m3 (1600 pixels)

m4 (1280 pixels) m5 (960 pixels) m6 (640 pixels)

Figure 5.2: Visual comparison of the accident detection results (purple) for a test image with a labeled accident
(turquoise) obtained by the six accident detection models. It can be seen that m2, m4, and m5 correctly detect the
accident. Model m3 also detects the accident but as two accidents instead of just one. The models m1 and m6 do
not detect the accident.

similar to the ground truth bounding boxes. This is probably because the images in the train-
ing data and the test data do not deviate much as they are frames from the same accidents.

Figure 5.3 shows the results of the six accident detection models on an example image
that does not contain an accident. It is noticeable that most of the models correctly do not
detect an accident in it. However, m1 and m3 detect one and therefore have a false positive
detection for the example image. Consequently, the best-performing models for this image
are m2, m4, m5 and m6.

accident

accident

accid

m1 (640 pixels) m2 (1920 pixels) m3 (1600 pixels)

m4 (1280 pixels) m5 (960 pixels) m6 (640 pixels)

accident 0.48

Figure 5.3: Visual comparison of the accident detection results (purple) for a test image without an accident
obtained by the six accident detection models. It can be seen that most of the models correctly do not detect an
accident in it. However, m1 and m3 detect one and therefore have a false positive detection for the example image.
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Based on the two example images, it seems like m2, m4, and m5 are the accident detec-
tion models that enable the highest accident detection accuracy. To be able to draw a general
conclusion, the accident detection accuracy achieved by the six accident detection models
was measured. This was done by applying all the models to the test set of the custom dataset
and measuring what mAP they achieved on it. By doing this experiment it is evaluated how
well the accident detection models work, especially in comparison to the pre-trained model
m1. Table 5.1 presents the computed mAP@0.5 and mAP@[.50:.95] for the 419 test images
from the custom dataset. The results are visualized in Figure 5.4. For measuring the mAP
the image size used for training a model has also been used for the inference step of the
corresponding model.

Model mAP@0.5 mAP@[.50:.95]

m1 0.385 0.173
m2 0.699 0.410
m3 0.818 0.479
m4 0.906 0.548
m5 0.917 0.537
m6 0.875 0.532

Table 5.1: Comparison of the mAP@0.5 and the mAP@[.50:.95] achieved by applying the six learning-based
accident detection models to the custom test set mentioned in Chapter 4.4. For each of the models, the input
images have been rescaled to the image size the model has been trained with. The experiment shows that m5
achieves the highest mAP@0.5 and the second highest mAP@[.50:.95]. As the exact location of the bounding
box is not as important as whether the accident is detected at all, the mAP@0.5 value is more important in the
use case of accident detection. Therefore, m5 is the model with the highest accident detection accuracy.
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Figure 5.4: Visualization of the mAP@0.5 and the mAP@[.50:.95] achieved by applying the six learning-based
accident detection models to the custom test set. It is noticeable that m5 achieves the highest mAP@0.5 and the
second highest mAP@[.50:.95]. As the mAP@0.5 is more important for the use case of an accident detection
than the mAP@[.50:.95], m5 is the model with the highest accident detection accuracy.

As it can be seen in Figure 5.4, m5 achieves the highest mAP@0.5 and the second
highest mAP@[.50:.95]. Because the exact location of the bounding box is not as impor-
tant as whether the accident is detected at all, the mAP@0.5 is more important than the
mAP@[.50:.95] for the use case of accident detection. Therefore, m5 is the best-performing
model for the custom test set regarding accident detection accuracy. Model m4 is the second
best model as it achieves the second highest mAP@0.5 and the highest mAP@[.50:.95]. A
slightly worse accident detection accuracy is achieved by m6. Model m2 already performs
significantly worse than the other models. The worst-performing model is the pre-trained
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model m1. The mAP@0.5 achieved by it corresponds to just 42% of the mAP@0.5 achieved
by m5, and the mAP@[.50:.95] achieved by it corresponds to just 32% of the mAP@0.5
achieved by m5. This means that creating the custom dataset and fine-tuning a pre-trained
model with it was beneficial in terms of accident detection accuracy.

In summary, the qualitative results, as well as the quantitative results achieved on the
custom test set, suggest model m5 to be the best-performing accident detection model for
the A9 test stretch as it achieves the highest accident detection accuracy on the test set. By
looking at the results presented in Table 5.1 it could be assumed that m5 is just the best-
performing model because it was trained using an image size of 960 pixels. As a result, the
image size used to train m5 is closer to 640 pixels, which the majority of the training images
have as width and height, than the image size used to train the models m2 to m4. However,
an additional experiment has shown that this assumption is not true. For this experiment,
the accident detection accuracy of m2 and m5 was compared only on the A9 images from
the custom test set which all have a resolution of 1920x1200 pixels. As m2 was trained using
an image size of 1920 pixels, it was chosen for this comparison. For comparing the accident
detection accuracy, the mAP@0.5 and the mAP@[.50:.95] have again been used. The results
of this experiment show that m5 performs better than m2 even on images with a high resolu-
tion. Both models achieve a mAP@50 of 0.995. However, m5 achieves a mAP@[.50:.95] of
0.881 whereas m2 only achieves a mAP@[.50:.95] of 0.863. This shows that training with
a smaller image size and using a smaller image size for the inference step does not decrease
the accident detection performance on the A9 test stretch but actually even improves it a bit.
Therefore, the smaller image size should not lead to m5 performing worse on images from
the A9 test stretch.

As m5 was identified as the best-performing accident detection model for the A9 test
stretch, it was chosen to be used for learning-based accident detection. Therefore, it is also
the only model used for further experiments. Using m5 with an image size of 960 pixels also
has the advantage that the inference time is lower than if m2 to m4 were used with the image
size the respective model was trained on.

Confidence Threshold

As mentioned in Chapter 4.3.3, the accident detection accuracy can further be improved by
adjusting the confidence threshold used for detecting accidents. Therefore, the achieved ac-
cident detection accuracy using different confidence thresholds has been analyzed for the
accident detection model. For this experiment, several rosbags have been selected from the
event log covering normal traffic, a traffic jam, a vehicle transporter, a standing shoulder
event, and four different accidents. The exact rosbags used for this are listed in Table 5.2.
From the accident rosbags, only the time period covered by the custom training and valida-
tion set was used. This is done to avoid already using the remaining parts of the accident
rosbags for adjusting the parameters of the learning-based accident detection. This way the
parts of the accident rosbags are still unknown to the learning-based accident detection and
are therefore suited for comparing the learning-based and the rule-based accident detection.

Table 5.3 presents the results of the described experiment with different confidence thresh-
olds. It can be seen that with a confidence value of 0.8 and 0.9 a precision of 1.0 is achieved.
Therefore, all these models only detected actual accidents as accidents on the described test
data. Furthermore, the model achieves a recall of 1.0 regardless of whether the confidence
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Date Start Time Event

10/13/2020 18:52:23.25 Traffic jam
05/15/2021 16:44:01.74 Standing shoulder
05/15/2021 16:54:01.73 Vehicle transporter, standing shoulder
05/15/2021 16:55:01.74 Vehicle transporter, standing shoulder
05/15/2021 17:04:01.74 Standing shoulder
07/29/2021 19:44:24.15 Standing shoulder
04/08/2021 11:31:00.93 Accident
10/21/2021 10:21:44.36 Accident
03/28/2022 17:19:15.35 Accident
05/22/2022 17:14:43.38 Accident

Table 5.2: Information about test data used for the experiment regarding the best confidence threshold for the
learning-based accident detection. For the accident rosbags only the time periods covered by the custom training
and validation set were used.

value is 0.5, 0.6, 0.7, 0.8, or 0.9. The reason for this is that the model did not miss any
accidents in the test data and therefore has zero false negative detections, independently of
the used confidence threshold. Depending on the confidence value a different number of ac-
cidents is detected. For the tested confidence values the number of detected accidents varies
between five and sixteen, whereas the optimal value would be four, as there are a total of four
accidents in the test data. The reason for the too high number of detected accidents is that
the model sometimes detects an accident, then not detects the accident for a few timestamps,
and then detects it again. Consequently, it counts the accidents as two accidents instead of
one. These are not false positive detections as the detected accident still is a real accident.

Confidence threshold Precision Recall #accidents

0.5 0.19 1.0 5
0.6 0.36 1.0 5
0.7 0.5 1.0 6
0.8 1.0 1.0 8
0.9 1.0 1.0 16

Table 5.3: Comparison of the precision, recall, and number of detected accidents achieved by the learning-based
accident detection on some test data from the A9 test stretch, depending on the used confidence threshold. While
a value of 1.0 is the best achievable value for precision and recall, a value of four would be the best result for the
number of detected accidents. It can be seen that with a confidence value of 0.8, the highest precision and recall
and the third lowest number of detected accidents are achieved. As high precision and recall are more important
than having a low number of detected accidents for the use case of accident detection, a confidence threshold of
0.8 leads to the best-performing learning-based accident detection.

Investigating the experiment results has revealed two reasons why the number of detected
accidents is too high. First of all, the accidents are sometimes obscured in images by another
vehicle, most of the time by trucks. Therefore, it is not visible for a few frames and can
consequently not be detected in them by learning-based accident detection. However, the
respective accidents are detected again when not being obscured anymore. As a result, the
total number of detected accidents is increased again, although it is still the same accident
being detected. The other reason found is that the accident with the burning vehicle is not
detected constantly and therefore leads to multiple detections.
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Overall, using a confidence value of 0.8 seems to be the most promising configuration
as this is the confidence value with which the highest precision and the highest recall are
achieved. That with this configuration only the third lowest number of accidents is achieved
is not so problematic because precision and recall are far more important metrics for the use
case of accident detection than the number of detected accidents. After all, detecting actual
accidents twice and therefore having a too high number of detected accidents is better than
having some false positive detections as it would be the case with a confidence value of 0.7
or lower.

As a confidence value of 0.8 was identified as the confidence threshold that leads to the
best-performing accident detection model for the A9 test stretch, it is chosen to be used for
learning-based accident detection. Therefore, this confidence value is used for all further
experiments.

5.3 Accuracy

To answer the research question of whether it is possible to reliably detect accidents on the
A9 test stretch using roadside sensors, the reliability of the two implemented accident detec-
tions was investigated. This was done by measuring the accuracy of the accident detection
for both implemented accident detection approaches. The metrics used for measuring the
accident detection accuracy are precision and recall. They are used instead of the mAP as the
rule-based accident detection does not provide a bounding box for the location of a detected
accident. Therefore, the mAP achieved by rule-based accident detection can not be calcu-
lated. However, precision and recall are also suited for describing the detection accuracy,
especially in the use case of accident detection where only the timestamp of an accident and
not the exact locating of an accident in the image is relevant. If the implemented accident
detections achieve a precision greater than 0.7 and a recall greater than 0.85, they are con-
sidered reliable. The recall value to be achieved is higher than the precision value as it is
more important to not miss actual accidents than to not detect too many incorrect accidents.

For measuring precision and recall for the two accident detections, several rosbags have
been selected as test data. They were chosen from the event log and cover a wide range of
special events as well as the four known accidents. As all the rosbags in the event log have
been manually inspected and classified regarding special events such as accidents, it is known
for each of them whether there is an accident in it or not. Consequently, they can be used as
test data. The exact rosbags used for this experiment are listed in Table 5.4. For the accident
rosbags only the time period that is not included in the custom training or validation set has
been used.

Measuring the accident detection accuracy was done on the event level. Therefore, the
number of accidents detected by the respective accident detection was measured and not the
number of timestamps for which an accident has been detected. This is done because the
goal of accident detection is to provide all detected accidents, not the number of timestamps
for which an accident was detected.

Table 5.5 presents the results of applying the rule-based accident detection and the learning-
based accident detection to the described test data. It can be seen that rule-based accident
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Date Start time Event

02/11/2021 11:32:00.93 Vehicle transporter
04/08/2021 11:31:00.93 Accident
04/08/2021 11:31:00.93 Accident
05/15/2021 15:40:01.73 No event
05/15/2021 15:52:01.74 Standing shoulder
07/30/2021 09:25:24.07 Traffic jam
10/21/2021 10:21:44.36 Accident
03/28/2022 17:19:15.35 Accident
05/22/2022 17:14:43.38 Accident

Table 5.4: Information about the test data used for measuring the accuracy of the rule-based and the learning-
based accident detection. For the accident rosbags only the time periods not used for the custom training or
validation set have been considered.

detection achieves a higher precision whereas learning-based accident detection achieves a
higher recall. The precision achieved by the rule-based accident detection is so high because
not a single false positive detection is made on the test set. However, rule-based accident
detection has the major disadvantage that it only detects two of the four accidents. The
learning-based accident detection, on the other hand, detects every single accident in the
test data. As a result, it achieves a recall of 1.0. The reason for the lower precision is that
the learning-based accident detection also makes some false positive detections. Overall, the
learning-based accident detection achieves better results regarding precision and recall and
therefore achieves a higher accident detection accuracy on the A9 test data. Consequently,
learning-based accident detection is more suited for detecting accidents on the A9 test stretch.

Accident detection approach Precision Recall

Rule-based 1.0 0.5
Learning-based 0.8 1.0

Table 5.5: Comparison of precision and recall achieved by rule-based and learning-based accident detection on
some test data from the A9 test stretch. It can be seen that rule-based accident detection achieves a higher pre-
cision whereas learning-based accident detection achieves a higher recall. However, the learning-based accident
detection overall achieves better results regarding precision and recall and therefore achieves a higher accident
detection accuracy on the A9 test data.

All in all, it can be seen that rule-based accident detection does not fulfill the mentioned
criteria for reliability, whereas learning-based accident detection fulfills them. Consequently,
it can be concluded that the accident detection reliable detects accidents in the test data
recorded by the roadside sensors of the A9 test stretch. Therefore, the research question of
whether it is possible to reliably detect accidents on the A9 test stretch using roadside sensors
can be answered with ’yes’. In fact, 100% of the accidents in the test data have been detected
by the implemented accident detection. Furthermore, there were almost no false positive
detections made in the experiment.

However, it is not possible to say with certainty whether the implemented accident de-
tection also works so well on new accidents. The reason for this is that the test set contains
only four accidents, which means that a general statement can only be made to a limited
extent. However, there are no other daytime accidents known in the data of the A9 test
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stretch. Therefore, it was not possible to carry out a more comprehensive test regarding the
accident detection accuracy on the A9 test stretch. Consequently, it is just not possible with
the existing data to verify the generalization capability of the accident detection model for
the A9 test stretch. Nevertheless, the overall generalization capability of the learning-based
accident detection has been shown by the experiment described in Chapter 5.2. In this ex-
periment, the final accident detection model achieved a very high mAP@0.5 on the custom
test set which not only includes a few accident images from the A9 test stretch but also many
additional accident images from the downloaded dataset. The latter also includes many indi-
vidual images that are not part of a sequence which is also partially included in the training
data. As the high mAP@0.5 indicates that the learning-based accident detection also works
well for the latter part of the test set, it is shown that the model can generalize to new, un-
seen data. An additional experiment on a crash compilation on YouTube confirmed that new,
unseen accidents can be detected if the accident images at least partially match the setting of
the training data.

Concerning the different cameras on the freeway section of the A9 test stretch, no trend
can be seen in the test data as to whether one of the cameras detects accidents better. Each
of the four accidents is detected by only one of the cameras, namely by the camera that takes
the images in which the accident can best be seen. Therefore, it seems like the camera does
not influence the accident detection accuracy.

When investigating the false positive detections of the learning-based accident detection
with a lower confidence threshold than now used, it is noticeable that all of them correspond
to the same situation, namely a vehicle that is not fully visible and drives on the right side
of the freeway in the northern direction. Furthermore, the respective vehicle is always pretty
much at the same location. The reason for this could be that some accident images in the
custom training and validation set only contain parts of a vehicle as the remaining part of
the vehicle is either hidden by another vehicle or not visible in the image. Figure 5.5 shows
an example image for such a case. However, there are not many images that correspond to
this situation in the custom dataset and not a single one where there is an accident vehicle
at the respective location that is not fully visible in the image. In the end, this problem is
not relevant because almost all of these false positive detections only occur with a confidence
threshold lower than 0.8. Consequently, the final learning-based accident detection is barely
affected by it.

Labeled image Detected accident

Figure 5.5: Potentially problematic sample image from the custom training set (left) that could maybe cause the
problem of detecting only partly visible vehicles at a specific location on the freeway section of the A9 test stretch
as an accident (right).

To further investigate the accident detection accuracy of the rule-based accident detec-
tion, it was applied to a bunch of recordings from the A9 test stretch. Therefore, a complete
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pipeline for investigating the recordings from the A9 test stretch was implemented. It auto-
matically downloads the recordings bit by bit, performs a pre-selection of potential accident
rosbags, applies the rule-based accident detection on it, and creates multiple outputs like
extracted accident images and a CSV file that includes information about all detected ac-
cidents. The experiment using this pipeline already found one new accident. This shows
that the implemented pipeline works and can therefore be used for looking for accidents in
the recordings from the freeway section of the A9 test stretch. More information about this
pipeline and the results of the experiment using it can be found in Marc Pavel’s documenta-
tion.

5.4 Runtime Analysis

Apart from the accident detection accuracy also the runtime of the two accident detections
has been analysed. This was done to answer the research question of whether it is possible
to detect accidents on the A9 test stretch in real time using roadside sensors. To achieve
this in real time the runtime of the accident detection needs to be low enough to process the
input data in real time, which has 25 frames per second. This means that the runtime of the
accident detection for one second of a recording must be lower than one second and the one
for processing one minute of a recording must be lower than one minute.

The runtime of the accident detections was investigated by measuring the time taken to
perform the accident detection on some test data. The data used for this are two one-minute
rosbags from the 8th of April 2021 (from 11:30:01 to 11:32:01) and two one-minute rosbags
from the 11th of May 2022 (from 16:14:43 to 16:15:43 and from 16:29:43 to 16:30:43).
The former contains the data from two cameras, the latter the data from four cameras. It was
not necessary to also differentiate between test data with and without an accident, as this
does not have a significant impact on the runtime for either approach. The runtime analysis
was performed on an Intel Core i9-9900KF with 3.60 GHz and an NVIDIA GeForce RTX 2080
SUPER GPUs with 8 GB of VRAM. While the rule-based accident detection uses only the CPU,
the learning-based approach uses the GPU for the inference step and therefore uses both the
CPU and the GPU.

Table 5.6 presents the results of the runtime analysis achieved by the rule-based and
learning-based accident detection on the mentioned test rosbags. The runtime was measured
in seconds and is given for an entire one-minute rosbag and for a single second of a one-
minute rosbag. It can be seen that the rule-based accident detection is much faster than the
learning-based accident detection. If two cameras are available in a rosbag, rule-based ac-
cident detection is 47 times as fast as learning-based accident detection. For four available
cameras, it is even 63 times as fast as the learning-based approach. Furthermore, rule-based
accident detection is independent of the number of cameras that provide images for the in-
vestigated time period. However, its runtime depends on the amount of vehicles present in
the sensor data. In contrast, the runtime of the learning-based accident detection is propor-
tional to the number of cameras provided for the investigated time period and independent
of the number of vehicles visible in the images. The utilization of the NVIDIA GeForce RTX
2080 SUPER GPU in this experiment was almost 50% with a memory usage of 1.9 GB.

As the runtime of the rule-based accident detection depends on the number of vehicles
present in the sensor data, the measured runtime analysis results for the rule-based accident
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Runtime with 2 cameras (s) Runtime with 4 cameras (s)

Accident detection approach Per second Per minute Per second Per minute

Rule-based 0.086 5.173 0.127 7.614
Learning-based 4.072 244.298 7.995 479.689

Table 5.6: Comparison of the runtime achieved by rule-based and learning-based accident detection on accident
rosbags. It can be seen that the rule-based accident detection is much faster than the learning-based accident
detection.

detection are not fully representative. However, they still show the order of magnitude and
that rule-based accident detection is much faster than learning-based accident detection.

Overall, it can be seen that rule-based accident detection fulfills the mentioned criteria
for real-time capability, whereas learning-based accident detection does not fulfill it. Con-
sequently, it can be concluded that accidents can be detected in real-time in the test data
recorded by the roadside sensors of the A9 test stretch. Therefore, the research question of
whether it is possible to reliably detect accidents on the A9 test stretch using roadside sensors
can be answered with ’yes’ as well. In fact, rule-based accident detection is more than seven
times faster than what is required for real-time usage.

A significant part of the runtime of the learning-based accident detection is required for
extracting the images. More specifically, it takes 0.853 seconds for one second from a record-
ing of two cameras and 1.658 seconds for one second from a recording of four cameras. This
means that almost 21% of the runtime of the learning-based accident detection is spent ex-
tracting the images, meaning preparing the input data.

5.5 Comparison

To conclude, the results presented in Chapter 5.3 and 5.4 are summarized in Table 5.7. Based
on that, the rule-based and the learning-based accident detection are compared in a clear and
concise manner.

Accuarcy Runtime per second (s)

Accident detection approach Precision Recall 2 cameras 4 cameras

Rule-based 1.0 0.5 0.086 0.127
Learning-based 0.8 1.0 4.072 7.995

Table 5.7: Comparison of the accuracy and runtime of the rule-based and learning-based accident detection
on some test data from the A9 test stretch. The accident detection accuracy is compared based on the achieved
precision and recall. For the runtime comparison, the runtime for one second of a recording is given, depending on
whether there are images of two cameras or four cameras available in a rosbag. It can be seen that learning-based
accident detection achieves a higher accident detection accuracy while rule-based accident detection achieves a
much lower runtime.

As it can be seen in Table 5.7 the learning-based accident detection achieves a similar pre-
cision and a much higher recall than the rule-based accident detection. Therefore, learning-
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based accident detection achieves a higher accident detection accuracy. In terms of runtime,
the rule-based accident detection performs much better than the learning-based accident de-
tection, as it is many times faster. This means that both implemented accident detections
have their advantages and disadvantages. While the rule-based accident detection will de-
tect fewer actual accidents than the learning-based accident detection, it is much faster which
makes it more suitable for applying it to huge amounts of data like the recordings from the
A9 test stretch. The learning-based accident detection, on the other hand, is more suited if it
is important to detect as many accidents as possible. However, none of the approaches makes
it possible to achieve both, reliable and real-time detection at the same time. Therefore, there
is a trade-off between accident detection accuracy and runtime of an accident detection. As
a result, it has to be decided on a case-by-case basis which of the two approaches is better
suited for a given use case.

Again, the presented accuracy results used for the comparison are only generally valid to
a limited extent as there were only four accident recordings from the A9 test stretch available
for computing these metrics. However, the general trend likely is the same as the results of
the two approaches differ drastically and the setup for new data from the A9 test stretch does
not change compared to the setup used for recording the custom test set.
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Future Work

There are several tasks that can be worked on to further improve the performance of the
accident detection implemented for the freeway section of the A9 test stretch.

First, the learning-based accident detection could be extended by also detecting pedestri-
ans. As the accident detection was developed for the freeway section of the A9 test stretch
where usually no pedestrians should be, a detected pedestrian would be a strong indication
of a potential accident. This information could then be fused with the result of the accident
detection model and also be considered for the final decision of whether an accident is de-
tected for a certain timestamp or not.

Furthermore, fusing the results of multiple accident detection methods would also in-
crease the accuracy of the accident detection. One promising approach would be to fuse
the results of the presented learning-based accident detection with the results of a vision-
language model. As Zhou et al. showed in the paper "Vision Language Models in Autonomous
Driving and Intelligent Transportation Systems" [24], vision-language models such as GPT-
4V can detect accidents in an input image. Therefore, doing such a high-level fusion should
further improve the accident detection accuracy.

Moreover, the problem described in Chapter 5.3 that only partly visible vehicles are some-
times detected as an accident could be investigated in more detail. Solving this problem
would probably further reduce the number of false positive detections and therefore increase
the accident detection accuracy.

Another way to improve the accident detection for the A9 test stretch is to improve the
dataset used for fine-tuning. First of all, it would be beneficial to replace the downloaded
dataset, which is part of the custom dataset, with another accident dataset with images with
a higher resolution. Then, it would not be necessary to upscale and downscale all the training
data. Furthermore, the input images during inference would then not have to be scaled down
which would mean that the objects to be detected are larger and can therefore most likely
be detected better. Secondly, re-labeling the recorded accidents from the A9 test stretch, this
time with more context around the vehicles could also help to improve the detection accuracy.

By improving the generalization capability of accident detection, it can be made more
reliable for new, unseen data. This can be achieved by using stronger regularization, data
augmentation, and a bigger dataset. The latter can be realized by using rule-based accident
detection to find new accidents in the recordings of the A9 test stretch. It is estimated that
at least five to ten more accidents, each with at least 100 labeled frames, should be added
to the training set to have a certain diversity in the accident frames from the A9 test stretch.
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Furthermore, it would be good if a few accidents on the A9 test stretch were not included in
the training set. They could then be used for making a more general valid test of the reliabil-
ity of the accident detection on the A9 test stretch.

Finally, the number of detected accidents, used for the generated scenario statistic, could
be improved by only increasing the total accident counter if a certain amount of time has
passed between two detected accidents. When the time period between two detected acci-
dents is smaller than the specified threshold, it is very likely that an accident was just not
detected for a few milliseconds and that the new detection still belongs to the same accident.
Another way to improve the total number of detected accidents as well as the accident detec-
tion itself, would be to track the frames, for example with the Poly-MOT tracker.

Regardless of whether the accident detection is further improved or not, there are several
options on how to make use of the implemented accident detection for the A9 test stretch.

First of all, the provided pipeline for investigating the recordings from the A9 test stretch
can be applied to the remaining recordings that have not been covered yet by the experiment
described in Chapter 5.3. Furthermore, it can also be tested on the intersection of the A9 test
stretch. As the complete pipeline for investigating the recordings already exists and has been
shown to work, it would just be necessary to manually inspect the extracted images of the
detected accidents. This could lead to the discovery of further accidents that happened on the
freeway section of the A9 test stretch. These detected accidents could then be used to create
and publish an accident dataset from the A9 test stretch. As there is still a lack of high-quality
accident datasets, this would be a valuable contribution to the scientific community and the
development of accident detection methods. After all, not having enough high-quality and
publicly available accident data remains a significant obstacle to the development of a re-
liable accident detection system and is therefore an important topic to be addressed. The
created accident dataset could then, as already mentioned, also be used for fine-tuning the
classification layer of the fine-tuned accident detection model. This should further improve
the accuracy of the accident detection and increase the generalization capability of the model.

One way to further automate the investigation of the recordings from the A9 test stretch
would be to combine rule-based accident detection and learning-based accident detection.
Instead of manually inspecting the extracted images from the potential accidents detected by
the rule-based approach, they could be fed into the learning-based accident detection model.
The learning-based approach would then take over the task of classifying the accidents de-
tected by the rule-based accident detection, into true positive and false positive detections.
However, this could lead to not detecting some accidents that have initially been detected
by rule-based accident detection, for example, if the extracted images do not show the acci-
dent clearly. This problem could be reduced by applying the whole learning-based accident
detection to the accident rosbag instead of just applying the accident detection model to the
extracted images. Because then all images from an accident are used for learning-based ac-
cident detection instead of just a handful of images. This increases the probability that an
accident is clearly shown in the images and therefore detected by learning-based accident de-
tection. Furthermore, the check whether an accident has been detected in three consecutive
timestamps would then be used which would reduce the number of false positive detections
and therefore lead to better accident detection results.

Another way to make use of the implemented accident detections is to add one of them
to the live system. As the learning-based accident detection achieves a much higher accident
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detection accuracy on the A9 test data it is more suited for this task. However, due to its
high runtime, it would be necessary to filter out potential accident data before being applied.
This could for example be done by using scenario detection to detect standing events, traffic
jams, and breakdowns beforehand. Then, the learning-based accident detection could just be
applied to these potential accident rosbags. If an accident is detected on the live system, an
accident warning could be added to the website of the A9 test stretch and a potential future
app. Furthermore, if it works reliably enough, it could even be added feature to automatically
report a detected accident to the local fire department and police station, including further
information such as images of the accident.

Finally, the implemented accident detections could also be used to get further insights
into how and why accidents happen. This can be achieved by taking a closer look at the acci-
dent recordings found by the accident detection. By investigating which scenarios happened
right before the accident or which other aspects such as time and weather conditions have in
common, it can be tried to find some general patterns that make the accuracy of an accident
more likely. The insights of this analysis could then be used to calculate the live probability of
an accident on the freeway section of the A9 test stretch. This information could be displayed
on the website of the A9 test stretch as well as in a potential future app.

In the future, technology advancements can be expected to significantly enhance acci-
dent detection systems. In particular, it is anticipated that they can reliably detect accidents
in real-time, using data from roadside sensors as well as vehicle sensors. In addition, ac-
cident detection systems will most likely automatically and immediately notify emergency
services and send additional information such as the location of the accidents and images of
it. Furthermore, accident reports could be automatically distributed to the closest available
emergency vehicles without the need for a human to coordinate this process. This would
further reduce the time for post-crash care. It can also be assumed that the focus will shift
from accident detection to accident prediction in the next few years, as preventing accidents
is even better than automatically detecting them and will therefore be the ultimate goal.
However, there are still many steps to be taken and a lot of work and research to be done to
get there, particularly in terms of reliably detecting and predicting accidents in poor visibility
conditions such as fog or complex traffic situations such as in India.





Chapter 7

Conclusion

The time between the occurrence of an accident and the arrival of medical assistance signif-
icantly impacts whether the passengers of a vehicle survive an accident. This time could be
reduced by having reliable, automatic accident detection. Consequently, automatic accident
detection has the potential to help save lives. However, most of the existing accident detec-
tion methods have never been tested on real traffic data of a test stretch. Therefore, this thesis
has investigated whether it is possible to reliably detect accidents on the A9 test stretch using
roadside sensors. To achieve this, two accident detections have been developed: a rule-based
accident detection and a learning-based accident detection. Both have been integrated into
the scenario detection of the A9 test stretch and have been optimized. For the rule-based ac-
cident detection, the scenario detection has been improved and an image extraction feature
has been added. For learning-based accident detection, several measures have been taken
to improve its accident detection accuracy. A big part of this optimization was achieved by
training multiple models with a self-created custom accident dataset, also including labeled
accident images from the A9 test stretch. By doing an extensive empirical analysis the best
performing configuration for the learning-based accident detection has been identified.

The conducted experiments have shown that it is possible to reliably detect accidents in
test data from the A9 test stretch. In fact, the learning-based accident detection even achieves
a precision of 0.8 and recall of 1.0 on the test data. This means that the learning-based ac-
cident detection not only detects each accident in the test data but also does not have many
incorrect detections. However, this value can only be considered generally valid to a limited
extent as the test data only contains four accidents. The rule-based accident detection in
principle also works but does not achieve such good accuracy values. Apart from the acci-
dent detection accuracy also the runtime of the two implemented accident detections has
been investigated. While rule-based accident detection is fast enough for real-time usage,
learning-based accident detection is too slow. Consequently, it is also possible to detect ac-
cidents on the A9 test stretch in real time using roadside sensors. However, none of the
implemented approaches makes it possible to achieve both, reliable and real-time detection
at the same time.

By developing an accident detection for the A9 test stretch, the foundation was laid to cre-
ate an accident dataset. The accident images for such a dataset could be obtained by using
a combination of the two implemented accident detections. First, the implemented pipeline
for finding accidents in the recordings of the A9 test stretch can be used to find potential ac-
cident rosbags. Secondly, learning-based accident detection can be applied to these potential
accident recordings to find the actual accidents in them.
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