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Abstract

LiDAR technology is necessary for applications such as autonomous driving. However, adverse
weather conditions like rain, snow, and fog significantly impact the quality and reliability of
state-of-the-art LiDAR 3D detectors. This thesis investigates the enhancement of LiDAR-based
3D object detection under such conditions by employing data augmentation and point cloud
concatenation techniques to improve the performance of the baseline PointPillars model used in
the AUTOtech.agil project [Kra22]. Realistic rain and snow effects are introduced into the point
clouds using the LISA library [Kil+21], enhancing the model’s resilience to weather-induced
data distortions. Combined point cloud concatenation and point cloud filtering techniques are
further used to improve LiDAR performance by increasing the density of data points. These
methods fill gaps in the data, ensuring detailed environmental models even in adverse weather
conditions. The experimental results demonstrate significant improvements in the PointPillars
model’s accuracy and robustness. While the point cloud concatenation method only increased
the mean AP of the model by ≈ 1%, data augmentation resulted in an average precision (AP)
increase from 63.01% to 66.49%. We also show that the augmentation improves the model’s
resilience to unseen adverse weather, such as fog. By enhancing LiDAR’s resilience to envi-
ronmental factors, this research contributes to safer and more reliable autonomous systems
capable of operating in various conditions. The code for our implementation can be found
under https://gitlab.lrz.de/providentiaplusplus/toolchain.

Zusammenfassung

Die LiDAR-Technologie ist für Anwendungen wie das autonome Fahren sehr erforderlich. Allerd-
ings beeinträchtigen ungünstige Wetterbedingungen wie Regen, Schnee und Nebel die Qualität
und Zuverlässigkeit von modernen LiDAR-3D-Detektoren erheblich. Diese Arbeit untersucht die
Verbesserung der LiDAR-basierten 3D-Objekterkennung unter solchen Bedingungen durch den
Einsatz von Datenerweiterungs- und Punktwolkenverkettungstechniken, um die Leistung des
PointPillars-Basismodells zu verbessern, das im AUTOtech.agil Projekt [Kra22] verwendet wird.
Mit Hilfe der LISA-Bibliothek [Kil+21] werden realistische Regen- und Schneeeffekte in die
Punktwolken eingefügt, um die Widerstandsfähigkeit des Modells gegenüber wetterbedingten
Datenverzerrungen zu erhöhen. Eine kombinierte Punktwolken-Verkettung und Punktwolken-
Filterungstechniken werden weiter eingesetzt, um die LiDAR-Leistung durch Erhöhung der
Dichte der Datenpunkte zu verbessern. Mit diesen Methoden werden Datenlücken geschlossen,
so dass auch bei ungünstigen Wetterbedingungen detaillierte Umweltmodelle erstellt werden
können. Die experimentellen Ergebnisse zeigen signifikante Verbesserungen in der Genauigkeit
und Robustheit des PointPillars-Modells. Während die Methode der Punktwolkenverkettung
den mittleren AP des Modells nur um etwa 1% erhöhte, führte die Datenerweiterung zu einer
Steigerung der durchschnittlichen Genauigkeit (AP) von 63,01% auf 66,49%. Wir zeigen auch,
dass die Datenerweiterung die Widerstandsfähigkeit des Modells gegenüber ungünstigen Wet-

https://innovation-mobility.com/en/
https://gitlab.lrz.de/providentiaplusplus/toolchain/-/tree/chaima_update_documentation/
https://innovation-mobility.com/en/


terbedingungen wie Nebel verbessert. Durch die Verbesserung der Widerstandsfähigkeit von
LiDAR gegenüber Umweltfaktoren trägt diese Forschung zu sichereren und zuverlässigeren
autonomen Systemen bei, die unter verschiedenen Bedingungen arbeiten können. Der Code
für unsere Implementierung ist unter https://gitlab.lrz.de/providentiaplusplus/toolchain/ zu
finden.

vi
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Chapter 1

Introduction

1.1 Motivation

LiDAR (Light Detection and Ranging) technology provides high-resolution, three-dimensional
environmental information about the object where a LiDAR sensor is mounted, which makes
it essential in applications such as autonomous driving, where accurate perception of the sur-
roundings is necessary for safe navigation. The AUTOtech.agil project [Kem+23b], the succes-
sor of the Providentia++ project [Bli+22], uses such technologies to improve roadside infras-
tructure for traffic monitoring and autonomous vehicle support.

Despite the advances in LiDAR technology, studies [JKP19; Mon+21; Zha+23] have proven
a decrease in its performance in adverse weather conditions. Weather conditions like rain, snow,
and fog introduce noise and distortions in the LiDAR-captured point clouds [Kut+20], reducing
the accuracy and reliability of 3D object detection models. While rain can cause power loss and
signal attenuation due to water droplets interacting with the laser beam, snow can obstruct the
visibility range of LiDAR sensors, creating false detections and reducing detection distance.

These scattering and absorption of light caused by adverse weather conditions can signifi-
cantly distort the creation of the point clouds, leading to false and missing detections. These
challenges result in sudden braking and lane changes, potentially increasing traffic accidents,
making it necessary to use advanced algorithms and robust data augmentation techniques to
mitigate these effects. Research has shown that physics-based and empirical models can help
simulate adverse weather conditions in LiDAR datasets, improving the robustness of detection
algorithms in real-world scenarios [Liu+19].

1.2 Research Gap

The PointPillars-based 3D detection pipeline developed in [Zim+23a] demonstrates advance-
ments in multi-modal 3D object detection and highlights limitations under adverse weather
conditions. [Zim+23a] employs an early fusion of two LiDAR sensors and further incorpo-
rates monocular camera detections to improve robustness and detect small objects. Despite the
system’s proven performance in clear weather conditions, the performance in adverse weather
conditions remains challenging, mainly due to the sparse point clouds and increased noise. The
evaluation results of the PointPillars-based model used in [Zim+23a] show a drop in perfor-
mance in mAP by 19.7% when comparing clear weather conditions and rainy night conditions.
Figure 1.1 shows the drop in the number of points and the point cloud density when comparing
the rainy night point cloud to the clear weather point cloud in the TUMTraf-I dataset [Zim+23c]
from the A9 intersection dataset [Zim+23b] used in [Zim+23a].



(a) Point cloud during clear weather conditions. (b) Point cloud during rainy night conditions.

Figure 1.1: Point cloud comparison for a day, clear weather vs. night, rainy weather.

Besides, Figure 1.2 shows the drop in 3D detection performance of the PointPillars-based
model used in [Zim+23a] in daylight (left) compared to rainy night conditions (right).

(a) Model’s 3D detection during clear daylight weather. (b) Model’s 3D detection during rainy weather conditions.

Figure 1.2: Model’s 3D detection comparison for a day, clear weather vs. night, rainy weather. The blue boxes

represent the ground truth, and the pink boxes represent the detections.

Hence, the primary challenge addressed in this thesis is the degradation of LiDAR data qual-
ity and subsequent reduction in the performance of 3D object detection models under adverse
weather conditions. While solutions such as real data collection, manual labeling, and the use
of simulation have a positive effect on the simulation of adverse weather conditions [Hei+19],
they are often limited in their effectiveness due to instrument-related added errors [Mäy+17]
or are computationally expensive. In this thesis, we intend to implement and test innovative ap-
proaches to enhance the robustness of LiDAR-based object detection models while maintaining
a reasonable computational complexity.

1.3 Contributions

To improve the performance of existing models for LiDAR 3D perception within the AUTOtech.agil
project [Kem+23b], this thesis introduces a data augmentation pipeline that serves as a prepro-
cessing step to enhance the dataset’s coverage for adverse weather conditions. Data augmen-
tation has been used in several studies [Hah+21; Kil+21; Hah+22] to mitigate the challenges
resulting from adverse weather conditions. We also extend the inference pipeline with a point
cloud densification step using a point concatenation approach. Furthermore, we extend the
evaluation pipeline with task-specific metrics that measure the impact of the adverse weather’s

2



corruption of the point cloud and the model’s resilience to these corruptions. The key contribu-
tions of this thesis can be summarized as follows:

• The integration of a robust data augmentation framework for simulating adverse weather
conditions to the AUTOtech.agil project.

• The implementation of a point cloud concatenation algorithm to enhance the quality and
density of LiDAR point clouds.

• A comprehensive experimental validation of the proposed methods.

• Contribution to developing a safer and more reliable autonomous driving system using
infrastructure LiDAR data from the Providentia++ Testbed [Bli+22].

1.4 Thesis Structure

The thesis is structured as follows:

• Chapter 2: In this chapter, we provide the background information and theoretical foun-
dations necessary to understand the research topic and the approaches implemented to
mitigate the adverse weather conditions’ impact on the 3D detection task.

• Chapter 3: We provide a literature review of existing research on the thesis topic. In this
chapter, we explain, analyze, and present the limitations of state-of-the-art approaches to
solve the thesis’s challenge.

• Chapter 4: This chapter explains the approaches and methods used in this thesis, provid-
ing the algorithms and frameworks we used.

• Chapter 5: This chapter presents the experiments we conducted in the scope of this thesis,
the results we obtained, and an analysis of the performance improvements.

• Chapter 6: We finally summarize the key findings and contributions in this chapter and
suggest directions for future research.
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Chapter 2

Background

This chapter provides the background knowledge needed to understand the important topics
discussed in this thesis. As the thesis aims to optimize LiDAR 3D sensing, it is essential to
understand how LiDAR sensors work and how the 3D detection pipeline is built as a baseline
for the optimization approaches.

2.1 LiDAR-Based Object Detection

2.1.1 LiDAR Sensors

A LiDAR sensor is an electronic device that emits many laser pulses per second to measure
distances and ranges. The distance from the LiDAR sensor to the objects surrounding it is
calculated using the time it takes for the pulses to return to the sensor. According to a review
from [Li+22] on solid-state LiDAR and nanophotonics-based LiDAR sensors, modern LiDAR
systems can operate at different pulse rates where advanced systems can generate hundreds of
thousands of pulses each second, facilitating high-resolution data collection and environmental
design. For instance, studies have shown that LiDAR can detect small objects on the road from
distances of up to 100 meters with an accuracy deviation as low as 2 centimeters, which is vital
for early obstacle detection and collision avoidance [Li+22].

The technology behind LiDAR sensors has evolved with modifications such as solid-state
LiDAR that offer cost, size, mechanical robustness, and energy consumption advantages. Solid-
state LiDAR systems have no continuous parts and consist of optical phased array (OPA) or
Micro-Electro-Based technologies such as mechanical systems (MEMS), which contribute to ro-
bustness and compactness [Li+22]. Such sensors include the Velodyne HDL-64E, the Velodyne
VLP-16, and the Ouster OS1, all known for their high fluidity, stability, and reliability in 3D
mapping.

Datasets Using Velodyne and Ouster LiDAR Sensors

Mechanical LiDAR sensors, especially Velodyne, are widely used in many datasets that have be-
come benchmarks in autonomous driving and robotics. These datasets provide rich and diverse
data needed to develop and test algorithms for 3D sensing, object recognition, and autonomous
navigation.

KITTI Vision Analysis Suite The KITTI dataset is one of the most used datasets for au-
tonomous driving scenarios. It provides comprehensive statistics on real-world driving situa-
tions, including stereo imaging, optical flow, optical odometry, 3D object recognition, and 3D



analysis [GLU12]. The Point cloud frames of the KITTI dataset were recorded with the Velodyne
HDL-64E LiDAR sensor shown in Figure 2.1a.

nuScenes dataset The nuScenes dataset generated by nuTonomy provides a rich dataset from
urban driving scenarios. It includes camera, radar, and LiDAR sensor data captured under
different conditions and labeled with 3D bounding boxes for objects [Cae+20]. These LiDAR
point clouds of the nuScenes dataset were captured using the Velodyne HDL-32E LiDAR model
shown in Fig. 2.1b. The advantage of the nuScenes dataset is that it contains labeled radar
data, which is less affected by adverse weather [Zim+22].

A9 assembly dataset A9 Intersection dataset provides labeled LiDAR point clouds and syn-
chronized camera images from roadside sensors installed on a gantry located at the intersec-
tion of Schleißheimer Straße (B471) and Zeppelinstraße in Garching near Munich, Germany
[Zim+23b]. This dataset aims to improve the 3D perception of urban areas with its point cloud
dataset captured with an Ouster OS1-64 (gen. 2) LiDAR, shown in Fig 2.1c.

(a) Velodyne HDL-64E me-

chanical LiDAR sensor, used

in the KITTI dataset 1.

(b) Velodyne HDL-32E me-

chanical LiDAR sensor, used

in the nuScenes dataset 2.

(c) Ouster OS1-64 (gen. 2),

used in the A9 Intersection

dataset 3.

Figure 2.1: Examples of mechanical LiDAR sensors.

2.1.2 LiDAR Point Cloud Creation

LiDAR point cloud formation involves the emission of laser pulses from the LiDAR sensor to-
wards the surrounding objects. Upon contact with an object in the LiDAR’s environment, a pulse
is returned back towards the LiDAR sensor. Each pulse to be returned is measured and used to
calculate the distance to the object, resulting in a collection of 3D coordinates known as a point
cloud. This point cloud represents the spatial structure of the sensor’s environment, capturing
detailed geometric information about objects and surfaces, such as vehicles, pedestrians, and
infrastructure in the context of autonomous driving. Preprocessing steps such as noise filtering
and ground segmentation are applied to the raw point cloud to enhance quality and focus on
relevant features for further analysis.

In most scenarios, the LiDAR sensors are mounted on autonomous vehicles or the traffic
infrastructure. LiDAR sensors in autonomous vehicles are typically mounted on the roof or
sides to provide a 360-degree view of the surrounding environment, which helps the car to
detect and respond to surrounding objects in real time. In contrast, infrastructure-mounted
LiDAR systems are installed on fixed structures such as traffic lights, bridges, or buildings, as
visualized in Figure 2.2.

1Source of Subfigure 2.1a: https://www.aeroexpo.online/de/prod/velodyne/product-176220-32081.html
2Source of Subfigure 2.1b: https://www.aeroexpo.online/de/prod/velodyne/product-176220-32080.html
3Source of Subfigure 2.1c: https://general-laser.at/en/shop-en/ouster-os1-64-lidar-sensor-en
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(a) LiDAR mounted on an autonomous vehicle (b) LiDAR mounted on infrastructure

Figure 2.2: Visualization of LiDAR point cloud generation in different scenarios.

2.1.3 LiDAR-based 3D object detection

LiDAR-based 3D object detection is essential in autonomous driving and other applications
where understanding the environment in three dimensions is a fundamental concept [AB22].
This technology uses complex algorithms to process the point clouds generated by LiDAR sen-
sors, identifying and classifying objects within a scene. For example, segmentation algorithms
may classify data points corresponding to a single object, effectively isolating cars, pedestrians,
and other relevant objects from the surrounding environment. LiDAR 3D perception involves
several technical steps, as shown in Figure 2.3.

Point Cloud Preprocessing

The raw data LiDAR sensors collect is a dense cloud of points representing the 3D space. Pre-
processing involves filtering noise, down-sampling to reduce data size, and segmenting ground
points to focus on objects of interest. Techniques like voxel grid filtering and statistical outlier
removal are commonly used to clean the point cloud.

Feature Extraction

Feature extraction transforms the raw point cloud into a set of descriptive features. These fea-
tures serve at a later point as the input to the 3D detection pipeline. While traditional methods
involve features such as geometric shapes and statistical properties, recent advancements use
deep learning models to learn features from the point cloud data automatically. Models like
PointNet and PointNet++ [Qi+17] directly operate on raw point clouds and capture spatial
relationships among points.

Object Detection and Classification

The task of 3D object detection comprises identifying and classifying objects within the pro-
cessed point cloud. This involves:

• Region Proposal: Consists of generating candidate regions in the point cloud where
objects might be located. Methods like 3D sliding windows, voxel-based proposals, and
point-based proposals are used.

• Classification: Consists of assigning a label to each proposed region resulting from the
previous step. Deep learning models, like convolutional neural networks (CNNs), play a
significant role here. PointNet [Qi+17], PointPillars [Lan+19], and VoxNet [MS15] are
examples of architectures used for this task.
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Figure 2.3: Overview of the technical steps in LiDAR-based 3D object detection: (1) Point Cloud Preprocessing, (2)

Feature Extraction, (3) Object Detection and Classification, and (4) Post-Processing.
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Post-Processing

Post-processing refines the detection results by eliminating redundant proposals and smoothing
object boundaries. Non-maximum suppression (NMS), used in [Lan+19], is commonly used to
combine overlapping detections into a single coherent detection.

A benchmark study by [ZT17] on various deep learning models, including PointNet [Qi+17]
and VoxelNet [MS15], demonstrated a substantial improvement in object recognition rates.
These models were trained on extensive labeled datasets, such as the KITTI dataset, and achieved
classification accuracies up to 80% for vehicular objects and 60% for pedestrian detection
[ZT17].

2.2 Baseline Model - PointPillars

The AUTOtech.agil project uses a PointPillars-based model to achieve efficient and accurate
LiDAR-based 3D object detection on the point clouds of the TUMTraf-I dataset [Zim+23c].
First introduced in [Lan+19] in 2019, PointPillars enables end-to-end learning using only 2D
convolutional layers, avoiding the complexity and computational burden of 3D convolutions.
The architecture of the baseline model that we will use as a basis in our experiments was
described in [Lan+19] and consists of three main modules: a feature encoder network, a 2D
convolutional backbone, and a detection head, as shown in Figure 2.4. Figure 2.4 illustrates
the model’s architecture and the training configuration used to obtain the baseline results, to
which we will compare our results.

2.2.1 Data Preprocessing Pipeline

The data preprocessing pipeline ensures that the raw point cloud data is effectively transformed
and prepared for the neural network. The pipeline includes several steps:

• Masking Points and Boxes Outside the Defined Range: To ensure that the data fed
into the model is within the spatial boundaries relevant for the detection task, this step
involves removing any points and bounding boxes outside the specified point cloud range,
which improves the efficiency and focus of the detection process [Lan+19].

• Shuffling Points for the Training Set: The points in the training set are shuffled to
prevent the model from learning any ordering or patterns in the point cloud data that
could lead to overfitting. This sort of randomization helps generalize the model better to
unseen data [Lan+19].

• Voxelization: The core innovation of PointPillars lies in its ability to convert 3D point
clouds into a pseudo-image format through voxelization. Each voxel represents a small
partition of the 3D space, with a voxel size of [0.16,0.16, 8] and contains a maximum of
32 points to maintain computational efficiency [Zim+23a].
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Figure 2.4: Overview of the baseline PointPillars model architecture [Lan+19; Zim+23a; Ngu23]

1
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2.2.2 Data augmentation

Data augmentation plays an important role in enhancing the robustness and generalization
capability of the PointPillars model. The baseline pipeline contains an initial augmentation
process that includes:

• Ground Truth Sampling: This technique involves augmenting the training data with
sampled ground truth data, ensuring the model is exposed to various object instances and
configurations [Lan+19].

• Random Flipping: To simulate different viewing perspectives and improve the model’s
ability to recognize objects from various angles, the point clouds are randomly flipped
along the x-axis. This augmentation helps make the model invariant to left-right orienta-
tions [Lan+19].

• Random Rotation: The point clouds are randomly rotated within a specified range. This
rotation augmentation helps the model to be robust against rotational variations and im-
proves its performance in detecting objects with different orientations [Lan+19].

• Random Scaling: The point clouds are randomly scaled to account for variations in object
sizes and distances. This scaling augmentation ensures that the model can accurately
detect objects of varying sizes and distances [Lan+19].

2.2.3 Voxel Feature Encoding Network (VFE)

The VFE layer, PillarVFE, converts the point cloud into a pseudo-image by encoding points
into pillars. This layer utilizes absolute coordinates for the points and applies normalization.
The VFE layer is designed to handle a filter size of 64, which helps in capturing the spatial
distribution of the points within each voxel effectively. By transforming the sparse 3D point
cloud into a dense 2D pseudo-image, the VFE layer allows subsequent neural network layers
to process the data using standard 2D convolution operations [Lan+19]. This layer has the
following components:

Point Cloud to Pseudo-Image Conversion

• The input to the model is a point cloud, where each point is represented by its coordinates
(x , y, z) and intensity i.

• The point cloud is discretized into an evenly spaced grid in the x-y plane, creating a set
of vertical columns or "pillars". Each pillar contains points within its grid cell [Lan+19].

• Points in each pillar are augmented with additional features: the offset from the arithmetic
mean of the pillar points (xc , yc , zc), and the offset from the pillar center (xp, yp). This
results in a 9-dimensional vector for each point [Lan+19].

Pillar Tensor Creation

Due to the sparsity of the point cloud, most pillars will be empty or contain very few points. The
PointPillars model [Lan+19] limits the number of non-empty pillars per sample and the number
of points per pillar, creating a dense tensor of size (D, P, N), where D is the feature dimension,
P is the number of pillars, and N is the number of points per pillar. Zero padding is used for
pillars with fewer points than N [Lan+19].
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PointNet Encoding

• A simplified PointNet architecture processes each point within a pillar. A linear layer
followed by BatchNorm and ReLU generates a tensor of size (C , P, N), where C is the
number of output channels. A max operation over the channels creates an output tensor
of size (C , P) [Lan+19].

• The encoded features are scattered back to their original pillar locations to form a pseudo-
image of size (C , H, W ), H being the height and W the width of the grid [Lan+19].

2.2.4 2D Convolutional Backbone

The backbone network, BaseBEVBackbone, has three convolutional layers with specific strides
and filter sizes that progressively reduce the spatial dimensions of the pseudo-image while
increasing the depth of the feature maps [Lan+19]. This network structure allows the model
to capture high-level features from the input data. Following the convolutional layers, the
feature maps are upsampled and concatenated to form a comprehensive feature representation.
This upsampling step ensures the spatial resolution is sufficiently restored for accurate object
localization [Lan+19; Zim+23a].

Top-Down Network

This network produces features at increasingly smaller spatial resolutions through a series of
convolutional blocks, each characterized by a stride S, number of layers L, and number of
output channels F [Lan+19].

Upsampling and Concatenation

Features from the top-down network are upsampled and concatenated. Transposed 2D con-
volutions are used for upsampling the features to a consistent stride relative to the original
input pseudo-image. The upsampled features are concatenated to form the final feature map
[Lan+19].

2.2.5 Detection Head

The dense head is responsible for the final detection of objects. This component generates an-
chor boxes and classifies them into predefined object categories. The detection head uses the
Single Shot Detector (SSD) framework to predict 3D bounding boxes for objects using bound-
ing box height and elevation as additional regression targets [Lan+19]. This component also
includes direction classification to predict the orientation of objects and an anchor generation
configuration for each object class to ensure that the anchors match the expected sizes and
shapes of the target objects. Finally, ground truth objects are mapped to the generated anchors,
facilitating the learning process [Lan+19; Ngu23].

2.2.6 Loss Configuration

The loss function used in training the PointPillars model used in [Lan+19; Zim+23a; Ngu23]
combines several components to ensure balanced training. [Lan+19] describes three losses:
a classification loss to measure object classification accuracy, a localization loss to evaluate
the precision of bounding box predictions, and a direction loss to ensure that the predicted
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orientations of objects are accurate. The loss function assigns weights to these components,
typically giving more importance to localization to improve the model’s detection performance.
This multi-component loss function is essential for training a robust and accurate 3D object
detection model [Lan+19]. To refine the 3D detections, the PointPillars model employs non-
maximum suppression (NMS) and thresholds for score and recall values to eliminate redundant
detections, ensuring that only the most confident predictions are retained [Lan+19; Ngu23].
The baseline model developed in [Ngu23; Zim+23a] was trained and evaluated with a 0.3
score.

2.2.7 Optimization

The optimization strategy for the PointPillars model employs an Adam optimizer with a one-
cycle learning rate policy, allowing for dynamic adjustment of the learning rate throughout
the training process, starting with a lower learning rate of 0.003. The training schedule in
[Zim+23a] includes a specific weight decay of 0.01 and a momentum of 0.9 to ensure stable
and practical training.

2.2.8 Performance and Efficiency

• Speed: PointPillars performs well on the KITTI dataset for detecting cars, pedestrians,
and cyclists. It runs at 62 Hz, significantly faster than previous methods like VoxelNet,
which operates at 4.4 Hz. The model balances speed and accuracy, with a faster version
achieving up to 105 Hz with minimal loss in performance [Lan+19].

• Accuracy: In the BEV detection benchmark, PointPillars achieves a mean average pre-
cision (mAP) of 66.19%, with solid performance across all classes and severity levels.
The authors of [Zim+23a] also report an mAP score of 62.11% on the full A9-I dataset
[Zim+23b] (TUMTraf-I [Zim+23c]).

• In the 3D detection benchmark, PointPillars attains a mAP of 59.20%, consistently outper-
forming other methods in the moderate severity category. PointPillars excels in average
orientation similarity (AOS), with a score of 68.86%, outperforming methods such as SEC-
OND and AVOD-FPN. This indicates a high level of precision in predicting the orientation
of detected objects.

2.3 Dataset and Infrastructure

This thesis builds up on the recent study in [Zim+23a; Ngu23] that uses the TUMTraf-I dataset
[Zim+23c], a subset of the A9 dataset [Zim+23b] initially captured in the Providentia++
testbed. The Providentia++ testbed is extended over 35km, according to [CBK23]. However,
to build a valid measurement of the baseline model’s improvement, we will focus on the inter-
section dataset also used in [Zim+23a; Ngu23]. This section provides more insights into the
dataset and the infrastructure where the LiDAR capturing the point clouds was mounted.

2.3.1 Infrastructure

The infrastructure supporting data collection and processing operations of the TUM Traffic In-
tersection dataset (TUMTraf-I) [Zim+23c] is built on advanced sensor technologies and robust
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Figure 2.5: Setup of the TUMTraf Intersection Dataset infrastructure with two cameras and two LiDAR sensors

mounted on a gantry at the intersection of Schleißheimer Straße (B471) and Zeppelinstraße in Garching, near Munich,

Germany [Zim+23c].

data management systems. The setup contains two high-resolution cameras and two LiDAR
sensors mounted on gantry bridges to provide comprehensive intersection coverage from el-
evated vantage points, as shown in Figure 2.5. This strategic placement ensures the capture
of detailed, high-quality data necessary for precise 3D perception. The cameras deployed are
Basler ace acA1920-50gc models, offering a resolution of 1920×1200 pixels with global shutter
and color capabilities. These cameras are equipped with 8 mm lenses and connected via GigE
interfaces, ensuring efficient image capture and real-time data transmission [Zim+23c]. The
LiDAR sensors used are Ouster OS1-64 (generation 2), featuring 64 vertical layers and a 360-
degree field of view. Configured to focus below the horizon, these sensors provide a maximum
range of 120 meters with an accuracy of 1.5-10 cm, enabling detailed and accurate 3D mapping
of the intersection [Zim+23c].

Data collected from these sensors is processed through a Data Fusion Unit (DFU), which
integrates the various data streams into a cohesive digital twin of the traffic environment
[Zim+23c]. The DFU also manages the coordinate systems of the individual sensors, aligning
them with the road coordinate system for consistent data representation [Zim+23c]. Accord-
ing to the authors of [Zim+23c], temporal synchronization is achieved via a Network Time
Protocol (NTP) server, resulting in an average synchronization error of 18.54 ms. At the same
time, Spatial calibration between cameras and LiDARs is performed using a targetless automatic
calibration method inspired by state-of-the-art research [Zim+23c].

2.3.2 TUMTraf-I Intersection Dataset

The TUMTraf Intersection Dataset is a comprehensive collection of synchronized camera im-
ages and LiDAR point clouds curated explicitly for roadside perception tasks. According to
[Zim+23c], this dataset was recorded at the intersection of Schleißheimer Straße (B471)
and Zeppelinstraße in Garching, near Munich, Germany, as part of the AUTOtech.agil project
[Kra22]. It captures many traffic scenarios and conditions, making it an invaluable resource for
developing and testing 3D perception algorithms.
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Table 2.1: Summary of the TUMTraf Intersection Dataset

Attribute Value Description

Number of frames 9,600 Total number of frames
Number of images 4,800 Total number of camera images
Number of LiDAR point clouds 4,800 Total number of LiDAR point clouds
Number of 3D bounding boxes 57,400 Total number of 3D labeled boxes
Number of classes 10 Total number of object classes
Nighttime data 25% Proportion of data recorded at night
Daytime data 75% Proportion of data recorded during the day
Maximum range of LiDAR 120 meters Maximum distance measured by LiDAR
Accuracy of LiDAR 1.5-10 cm Measurement accuracy of LiDAR
Frame rate (Camera) 25 Hz Frame rate of camera data collection
Frame rate (LiDAR) 10 Hz Frame rate of LiDAR data collection

The dataset includes 4.8k frames of camera images and 4.8k LiDAR point clouds labeled
by experienced annotators with the 3D bounding box annotation tool [ZRT19], resulting in
57.4k manually labeled 3D bounding boxes representing ten classes of road users: cars, trucks,
trailers, vans, motorcycles, buses, pedestrians, bicycles, emergency vehicles, and other objects.
These labels are essential for training and evaluating perception algorithms, providing detailed
information about each detected object’s size, position, and attributes.

The TUMTraf Intersection Dataset is organized into four sequences, each capturing different
traffic scenarios and conditions:

• S1 and S2: Each sequence is 30 seconds long and contains daytime scenarios of the traffic
at the intersection point mentioned above at dusk time.

• S3: A 120-second sequence recorded during daytime with sunny conditions.

• S4: A 30-second sequence recorded at night with heavy rain.

To facilitate the use and integration of this data, the TUMTraf-I Intersection Dataset provides
extrinsic calibration data, allowing a precise mapping between the cameras and LiDARs and ac-
curately projecting 3D labels into camera images. The dataset is structured based on the Open-
LABEL standard, where labels and calibration data are stored in . json format. Furthermore,
a comprehensive TUMTraf-Devkit [Dat24] is available, offering data loading, transformation,
splitting, evaluation, and visualization tools.

Key Features and Benefits

The TUMTraf Intersection Dataset offers several key features and benefits that make it an es-
sential resource for research in the field of autonomous driving and a basis for the evaluation
and visualization pipeline we will use in this thesis:

• High-Quality 3D Labels: The dataset includes 57.4k high-quality manually labeled 3D
bounding boxes, ensuring precise and reliable data for training perception algorithms
[Zim+23c].

• Diverse Traffic Scenarios: The dataset captures many traffic scenarios, including com-
plex maneuvers such as left and right turns, overtaking, and U-turns [Zim+23c], provid-
ing a robust foundation for developing robust perception systems.
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• Comprehensive Environmental Coverage: With 25% of the data recorded at night and
in heavy rain, the dataset ensures that algorithms can be trained and tested under various
lighting and weather conditions, enhancing their robustness.

• Synchronized Multi-Sensor Data: The dataset provides synchronized camera images,
LiDAR point clouds, and extrinsic calibration data, enabling accurate data fusion and
comprehensive 3D perception.

• OpenLABEL Standard: Adhering to the OpenLABEL standard, the dataset ensures com-
patibility with various data processing and analysis tools, facilitating ease of use and inte-
gration into existing workflows.

• Extensive Devkit: The TUMTraf-Devkit offers a wide range of tools for data loading,
transformation, evaluation, and visualization, streamlining the process of working with
the dataset.

2.4 Physical Effect of Adverse Weather Conditions on Point Cloud Data

Adverse weather conditions, such as rain, snow, and fog, significantly impact the quality and
reliability of point cloud data collected by LiDAR sensors [Kil+21]. These effects can be at-
tributed to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR) and in-
creased backscattered power from particles in the atmosphere [Kil+21]. This section explores
the specific physical effects of each adverse weather condition and explains the underlying
light-scattering mechanisms.

2.4.1 Rain

Rain adversely affects LiDAR point clouds through several mechanisms:

1. Attenuation and Scattering: As the laser pulse travels through rain, its intensity is ex-
ponentially attenuated due to scattering by raindrops. This reduces the returned signal
strength, increasing range uncertainty and causing potential mis-detections if the signal
falls below the noise floor [Kil+21].

2. Backscattered Power: Raindrops, especially those close to the sensor, can scatter signif-
icant amounts of laser power back to the sensor, leading to an increase in background
noise. This can confuse the detector, resulting in randomly scattered points near the sen-
sor and missing points within the real target [Kil+21].

3. Loss of Data Points: Rain can cause the loss of entire data points, particularly those
far from the sensor. This phenomenon occurs because the backscattered power from
raindrops can overshadow the target’s signal, leading to deletions of distant objects in the
point cloud data [Kil+21].

2.4.2 Snow

Snow impacts LiDAR data similarly to rain but with some distinct differences:

1. Increased Scattering: Snowflakes, being larger and more irregular in shape compared to
raindrops, scatter light more effectively, which results in higher attenuation of the laser
pulse. This leads to a significant reduction in visibility and increased range uncertainty
[Kil+21].
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2. Scattered Points: Snow’s scattering effect is more pronounced, resulting in more scat-
tered points near the sensor. This increased scattering is due to the reflective nature
of snowflakes, which can confuse the detector, similar to rain but to a greater extent
[Kil+21].

2.4.3 Fog

Fog has a distinct effect on LiDAR data, primarily due to its composition of tiny water droplets:

1. Dense Scattering Medium: Fog consists of numerous small droplets that form a dense
scattering medium, significantly reducing the intensity of the laser pulse as it travels
through the fog. This substantially reduces the signal-to-noise ratio(SNR) and signal-
to-background ratio (SBR) [Kil+21], making it difficult for the LiDAR to detect distant
objects.

2. Visibility Reduction: The dense scattering in fog causes a "fuzzy" effect in the point cloud,
degrading the structural fidelity of detected objects. This effect is more pronounced than
in snow or rain because the numerous small droplets cause continuous scattering, leading
to a significant loss of data points beyond a certain range [Kil+21].

3. Increased Range Uncertainty: The presence of fog increases range uncertainty due to
the continuous scattering of the laser pulse, making it challenging to accurately determine
the distance of objects [Kil+21].

Light scattering in these conditions involves the interaction of laser pulses with particles,
causing attenuation and noise in the LiDAR data. In adverse weather conditions, the laser
intensity IT through a scattering medium, for example, a raindrop, can be calculated using the
Beer-Lambert law described by the following equation [Kil+21]:

IT = I0e−
∫ R

0
α(r)dr (2.1)

where I0 is the incident intensity, α is the extinction coefficient, and R is the target range.
The extinction coefficient α can be calculated using the following equation [Kil+21]:

α=

∫ ∞

0

σext(D)N(D)dD (2.2)

where σext is the extinction cross-section, D is the particle diameter, and N(D) is the particle
density function [Kil+21].

Additionally, the range uncertainty σR due to small SNR is given in [Kil+21] by:

σR =
∆R

$
2 · SNR

(2.3)

where ∆R is the range accuracy determined by the finite bandwidth of the LiDAR system
[Kil+21]. The scattering effect on the laser beams is visualized in Figure 2.6.
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Figure 2.6: Visualization of the scattering effect of rain, snow, and fog particles on the laser pulses.

2.5 Evaluation Metrics

2.5.1 Precision

Precision measures the accuracy of the positive predictions made by the model by calculating
the ratio of true positives (TP) to the sum of true positives and false positives (FP):

Precision=
TP

TP+ FP
(2.4)

Precision ranges from 0 to 1, where 1 indicates that every positive prediction the model
makes is a correct detection. High precision is crucial in autonomous driving scenarios since
it indicates the detector’s false positive rate—a high false positive rate results in many ghost
objects that lead to sudden braking and lane changes.

2.5.2 Recall

Recall, also known as sensitivity or true positive rate, is a metric used in 3D detction to measure
the model’s ability to correctly identify all relevant objects in the dataset. It is defined as the
ratio of true positives (TP) to the sum of true positives and false negatives (FN):

Recall=
TP

TP+ FN
(2.5)

Recall ranges from 0 to 1, where 1 indicates that the model correctly identified all relevant
objects.

2.5.3 Average Precision

Average Precision (AP) is a frequently used metric for evaluating the performance of object
detection models. This metric measures the precision-recall trade-off by describing the shape
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of the Precision-Recall (PR) curve. The PR curve plots the precision against the recall. The AP
value represents the area under the curve, capturing the model’s ability to balance precision
and recall across different thresholds.

Mathematically, AP can be defined as:

AP=
∑

n

(Rn − Rn−1) Pn (2.6)

where Pn and Rn are the precision and recall at the n-th threshold. A higher AP value indicates
better performance, with a perfect model achieving an AP of 1.0.

2.5.4 Intersection Over Union: IoU

Intersection Over Union (IoU) is used to evaluate the accuracy of an object detector by compar-
ing the dimensions of a predicted bounding box with its corresponding ground truth bounding
box. It is defined by the following equation where Bp is the predicted bounding box and Bgt is
the ground truth bounding box:

IoU=
|Bp ∩ Bgt |
|Bp ∪ Bgt |

(2.7)

The IoU ranges from 0 to 1, where 1 indicates perfect alignment between the predicted
and ground truth boxes. A detection is considered a true positive if the IoU exceeds a certain
threshold, commonly set at 0.5 or 0.7. High IoU values indicate precise localization of objects
by the model, making IoU useful when evaluating whether an object has been detected and
how accurately its location has been predicted.

2.5.5 Corruption Error (CE)

Corruption Error (CE), used in [Kon+23], is used to measure the robustness of models against
data corruption. It is defined as the relative error between the performance of corrupted data
and a baseline model. The CE is calculated as follows:

CE=

∑L
l=1(1−Acci,l)
∑L

l=1(1−Accbaseline,i,l)
(2.8)

where Acci,l denotes the accuracy for corruption type i at severity level l.
The mean Corruption Error (mCE) is the average CE over all corruption types:

mCE=
1

N

N
∑

i=1

CEi (2.9)

where N is the total number of corruption types and L is the total number of severity levels.
The values for CE and mCE depend on the range of values for the accuracy metric defined

by Acci,l and Accbaseline,i,l . Since we will be using precision, recall, AP, and IoU as evaluation
metrics, the values for Acci,l and Accbaseline,i,l will be in the range [0,1].

• Best-case scenario: If the model’s performance is perfect on corrupted data (Acci,l = 1

for all l), then 1−Acci,l = 1− 1= 0, which results in the lowest mCE value of 0.

• Worst-case scenario: If the model’s performance is extremely poor on corrupted data
compared to the baseline model, then (Acci,l = 0 for all l), and 1 − Acci,l = 1. Since
the baseline model has a better score, then Accbaseline,i,l ∈ (0, 1] , which results in 1 −
Accbaseline,i,l < 1 and mC E > 1
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• Equal performance to baseline: If the model’s performance on corrupted data matches
the baseline (Acci,l = Accbaseline,i,l for all l), then CE would be 1.

Given these considerations, the range of the Corruption Error (CE) is:

CE ∈ (0,∞)

For the mean Corruption Error (mCE), being an average of the CE values across different
corruption types, its range is also:

mCE ∈ (0,∞)

2.5.6 Resilience Rate (RR)

Resilience Rate (RR), also used in [Kon+23], measures the model’s robustness by comparing
its accuracy on corrupted data to its accuracy on clean data. The RR is calculated as follows:

RR=

∑L
l=1 Acci,l

L ×Accclean
(2.10)

where Acci,l denotes the accuracy for corruption type i at severity level l and Accclean denotes
the accuracy on clean data [Kon+23].

The mean Resilience Rate (mRR) is the average RR over all corruption types:

mRR=
1

N

N
∑

i=1

RRi (2.11)

where N is the total number of corruption types and L is the total number of severity levels.
High RR values indicate better robustness, showing the model maintains high performance

even under corrupted conditions.
The values for RR and mRR depend on the accuracies Acci,l and Accclean, which range from

0 to 1, as mentioned above.

• Best-case scenario: If the model’s performance is perfect on both corrupted and clean
data (Acci,l = 1 for all l and Accclean = 1), then RR would be:

RR=

∑L
l=1 1

L × 1
=

L

L
= 1

• Worst-case scenario: If the model’s performance is extremely poor on corrupted data
(Acci,l = 0 for all l) and it performs well on clean data (Accclean > 0), then RR would be:

RR=

∑L
l=1 0

L ×Accclean
= 0

• Higher than clean performance: If the model’s performance on corrupted data is higher
than on clean data (which is unusual but possible in certain scenarios), then RR would be
greater than 1.

Given these considerations, the range of the Resilience Rate (RR) is:

RR ∈ [0,∞)

For the mean Resilience Rate (mRR), being an average of the RR values across different
corruption types, its range is also:

mRR ∈ [0,∞)

20



2.6 Similarity Calculation Algorithm: ICP

The Iterative Closest Point (ICP) algorithm is a key method for aligning 3D surfaces, widely used
in tasks like Simultaneous Localization and Mapping (SLAM) [Bai22]. ICP iteratively refines
the transformation needed to minimize the distance between two point clouds as described in
Algorithm 1. In SLAM, ICP aligns point clouds from sensors like LiDAR and RGB-D cameras. It
aids in pose estimation and loop closure by ensuring accurate alignment of frames or revisited
locations [Bai22]. ICP can also compare two point clouds to check their similarity. Applying
the ICP algorithm determines the transformation that best aligns the two point clouds. The
resulting alignment error provides a quantitative measure of their similarity, where a smaller
error indicates a higher degree of similarity between the point clouds.

Algorithm 1 Basic ICP Algorithm [Bai22]

1: Input: Source point cloud S = {s1, s2, . . . , sn}, Destination point cloud D = {d1,d2, . . . ,dm},
Convergence threshold θ .

2: Output: Estimated transformation (rotation R and translation t).
3: Initialize R and t (e.g., identity matrix and zero vector).
4: while not converged do
5: for each si ∈ S do
6: Find the closest point d j ∈ D.
7: end for
8: Compute the optimal transformation (R, t) to minimize the error:

min
R,t

∑

i

∥d j − (Rsi + t)∥2

9: Apply the transformation: S← {Rsi + t | si ∈ S}.
10: Check for convergence: if the change in error is less than θ , break.
11: end while
12: return R and t.
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Chapter 3

Related Work

In this section, we conduct a literature review of the relevant existing work related to the thesis’s
topic. We summarize the results of state-of-the-art approaches and discuss their limitations. We
first review existing papers and journal publications highlighting adverse weather conditions’
effect on lidar 3D perception. Then, we review the most relevant models and approaches de-
signed to mitigate the adverse weather effects.

3.1 Impact of Adverse Weather Conditions on LiDAR Perception

Adverse weather conditions such as rain, snow, fog, and road spray significantly affect the per-
formance of LiDAR sensors used for 3D perception in autonomous driving scenarios. This sec-
tion reviews recent research on the degradation of LiDAR performance under these conditions
and the methods proposed to mitigate these effects.

The authors of [Kil+21] test the impact of adverse weather conditions like rain, snow and
fog on state-of-the-art 3D detection models such as PointPillars [Lan+19], SECOND [YML18],
and PV-RCNN [Shi+19], and compute the BEV mAP and the 3D mAP of these models using the
augmented KITTI [GLU12] dataset. The results of their experiments are highlighted in Table
3.1. The results show a substantial drop in 3D detection performance for all models under
all adverse weather conditions, with strong fog conditions being the most corrupting for these
models. For instance, all models show a drop of approximately 40-45% in 3D mAP when tested
with snow and moderate fog augmented data.

[Kon+23] also introduces Robo3D, a comprehensive benchmark designed to evaluate the
robustness of 3D perception systems under various corruptions encountered in real-world envi-
ronments. Their benchmark includes eight corruption types divided into three categories: se-
vere weather conditions (fog, rain, snow), external disturbances (motion blur, beam missing),
and internal sensor failures (crosstalk, incomplete echo, cross sensor). The Robo3D benchmark
was tested on various state-of-the-art 3D perception models using datasets like KITTI [GLU12],
SemanticKITTI [Beh+19], nuScenes [Cae+20], and Waymo Open Dataset [Sun+20]. The
evaluation metrics included mean Corruption Error (mCE) and Resilience Rate (mRR), both
explained in Chapter 2. Higher values of mCE indicate a higher sensitivity to corruption, while
lower values indicate a higher resilience of the models. The experiments revealed that cur-
rent models are significantly affected by the introduced corruption, as shown in Table 3.2. The
results in Table 3.2 show very high mCE values overall with models like Part-A2 [Shi+21],
and PV-RCNN [Shi+19] more affected by fog conditions, which aligns with the results from
[Kil+21] illustrated in Table 3.1. The Part-A2 [Shi+21] model consistently performs better
than the other model under all adverse conditions.



Table 3.1: Comparison of Mean Average Precision (mAP) Values for "Car" Class on the KITTI Dataset under Simu-

lated Fog and Snow Conditions according to [Kil+21]. The values that show the highest impact are underlined.

Network Simulation BEV mAP 3D mAP

PointPillars Clear 89.98 83.08
Snow 63.05 43.96

Moderate Fog 55.10 43.12
Strong Fog 45.24 33.35

SECOND Clear 90.25 84.12
Snow 64.12 45.28

Moderate Fog 57.68 46.33
Strong Fog 48.54 37.59

PV-RCNN Clear 91.73 85.60
Snow 65.40 47.11

Moderate Fog 59.44 48.56
Strong Fog 49.62 38.29

Table 3.2: The Corruption Error (CE) of 7 detectors on KITTI-C. Bold: Best in column, Red: Worst in row. [Kon+23]

Method mCE ↓ Fog Wet Snow

SECOND 95.9 99.7 100.6 87.6
PointPillars 110.7 115.8 106.4 124.9
PartA2-F 82.2 89.4 75.8 81.3
PV-RCNN 90.0 95.2 86.6 93.1

3.1.1 Rain

Rain is known to degrade LiDAR sensor performance by introducing noise and reducing the
density of the point cloud. According to [Zha+21], rain affects the LiDAR measurements by
causing the laser pulses to scatter, leading to a sparser and noisier point cloud compared to
clear conditions. Their study proposed a novel anomaly detection method to quantify LiDAR
degradation in rainy conditions. Their proposed model learns the distribution of regular LiDAR
scans (collected in clear weather) and calculates a degradation score for new scans by measur-
ing their deviation from this distribution. A higher degradation score indicates more significant
LiDAR performance degradation due to rain. This method effectively captures the impact of
rain on LiDAR by comparing scans from normal and rainy conditions, providing a quantitative
measure of degradation [Zha+21]. While they did not report on the average number of points
per frame in the dataset they used, they found that rain can reduce the number of LiDAR points
per scan by up to 20k points and reduce the detection range by up to 33% (from 60 m to 40 m).
The LiDAR scan in Figure 3.1 from rainy weather (right) was sparser and noisier with a lower
average intensity than scans taken in clear weather conditions (left).

[Teu+22] also investigates the effect of rain on the 3D detection of the PointPillars model
[Lan+19] and reports a decrease of at least 10% in the AP performance of the car, pedestrian,
and cyclist classes from the KITTI dataset as can be seen in Figure 3 from [Teu+22].
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Figure 3.1: Comparison of LiDAR scans in normal weather (left) and rainy weather (right). Brighter color corresponds

to higher intensity values [Zha+21].

3.1.2 Snow

Snow introduces significant challenges for LiDAR perception due to its reflective properties.
The study by [Teu+22] indicates that snowflakes create unwanted noise in LiDAR measure-
ments, similar to rain but often more intense due to snowflakes’ size and reflective nature.
Snow can lead to false positives and missed detections as the LiDAR sensor incorrectly identi-
fies snowflakes as objects. In their experiments, they evaluated the 3D detection results of the
PointPillars model [Lan+19] on the KITTI dataset using augmented point clouds with several
weather condition effects. The results of their experiments show that false positive detections
increased significantly in snowy conditions [Teu+22]. While the pedestrian and cyclist classes
consistently perform steadily in snowy conditions, the car class shows a 42% drop in AP mea-
sures, and the mAP of the model drops from 48% in clear weather to almost 20% in snowy con-
ditions (See Figure 3 in [Teu+22]). The authors of [Lin+22] also conduct a comparative study
of the KITTI [GLU12] dataset, containing mostly clear weather point clouds, and the Cana-
dian Adverse Driving Conditions (CADC) dataset [Pit+20], containing point clouds captured
in snowy weather conditions. They report that the point clouds generated in snowy conditions
are significantly sparser than the ones generated in clear conditions, with an increased noise
resulting from the snowflakes’ occlusion of the sensor’s visibility range [Lin+22].

3.1.3 Fog

[Teu+22] found that fog significantly impacts the detection range and density of LiDAR point
clouds. The number of droplets per unit volume in fog is much higher than in rain, leading
to severe attenuation of the laser pulses. Their experiments showed that the mean average
precision of the most relevant object classes in the KITTI dataset, such as cars, pedestrians, and
cyclists, drops significantly, going down to as low as 0.0% for pedestrians and cyclists in very
dense fog conditions, resulting in visibility ranges as low as 50 m. The car class shows a slightly
better resistance to the fog yet still scores an AP of 20% in dense fog conditions (See Figure 3
in [Teu+22]).

3.2 State-of-the-Art Approaches to Mitigate the Weather’s Impact on LiDAR

Recent advancements in LiDAR technology have focused on enhancing its robustness against
adverse weather conditions by developing sophisticated computational techniques such as en-
hanced machine learning models, sensor fusion strategies, and adaptive system designs.
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3.2.1 Denoising Point Clouds

[SOT22] introduces a novel deep-learning algorithm to address the noise caused by adverse
weather conditions in LiDAR sensor data, significantly degrading the quality of point clouds
used in autonomous driving applications. The approach removes points from LiDAR point
clouds caused by airborne particles such as rain, fog, and snow. This noise leads to displaced and
missing points, hindering tasks like mapping, localization, and object detection. The method
involves using adjacent point clouds captured at different times to combine spatial and tem-
poral data that is later fed into the neural network to predict and remove the noise caused by
airborne particles.

Neural Network Architecture (4DenoiseNet)

The architecture consists of two branches: spatial and temporal. The spatial branch processes
the current point cloud’s spatial features, capturing the scene’s local geometric structure. On
the other hand, the temporal branch processes the temporal features by comparing the current
point cloud with the previous one, helping to differentiate between static objects and moving
airborne particles [SOT22]. Both branches use k-nearest neighbors (kNN) convolution to effec-
tively capture local spatial information and motion-guided attention mechanisms to fuse these
features [SOT22].

Training Methodology

The network is trained using semi-synthetic data, where adverse weather effects are simu-
lated and added to real point clouds captured in clear weather. This approach creates a large
and diverse training set with accurate labels. The training objective includes a combination of
cross-entropy and Lovász-Softmax loss to optimize for the Jaccard index, which measures the
similarity between the predicted and actual data [SOT22].

Performance and Evaluation

The method is tested on the SnowyKITTI and Canadian Adverse Driving Conditions datasets.
The results of the segmentation task show that 4DenoiseNet outperforms previous methods
and generalizes well to various adverse weather conditions, reaching an IoU of 0.977 in heavy
snow conditions, which is 10% higher than the WeatherNet CNN-based denoising model used
in [Hei+20] (0.865 IoU in heavy snow conditions according to [SOT22]). The authors [WL24]
propose integrating the 4DenoiseNet model as a data preprocessing step in the 3D detection
pipeline to reduce the noise in the dataset resulting from adverse weather conditions. This
pipeline extension, however, results in an increased inference time, which faces a challenge
to the real-time prediction constraint in the autonomous driving scenario. The authors of
[Wan+24] propose using simpler denoising techniques like Bayesian estimation, voxel filter-
ing, and neighborhood filtering to clean noisy point cloud data.

3.2.2 Energy-based Detection of Adverse Weather Conditions

The authors of [Pir+23a] and [Liu+20] propose an energy-based approach for detecting and
filtering the point clouds corrupted by adverse weather conditions. Both studies use an energy
score that predicts for each point in the point cloud, whether it is a real point reflected from
a surrounding object or a result of weather corruption. The [Pir+23a] and [Liu+20] add an
outlier removal step to the detection pipeline, such that points with a high energy score are
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considered outliers and removed from the point cloud. [Liu+20] have generated a labeled ver-
sion SemanticSpray [Pir+23b] of the unlabeled RoadSpray dataset [Lin+04] dataset and used
the labeled dataset with the energy-based segmentation approach. The authors of [Liu+20] re-
port an increase of up to 18.89% in the area under receiver operating characteristics (AUROC)
results when using their model (AWNet), compared to previous point classification models like
Particle-UNet [Sta+21], Particle-VoxelNet [Sta+21], and WeatherNet [Hei+20].

3.2.3 Noise Robustness Loss

[Pir+22] addresses the impact of vehicle gas exhaust condensation on LiDAR-based object de-
tectors in cold weather conditions. The authors demonstrate how this corruption compromises
the reliability of object detectors by distorting object size and orientation estimates and intro-
ducing ghost object detections. Besides, they propose a solution involving data augmentation
and a novel training loss term to enhance robustness against such disturbances [Pir+22].

Methodology

Gas Exhaust Data Generation The authors of [Pir+22] developed a method to generate gas
exhaust data using 3D surface reconstruction and sampling. This technique allows the creation
of large datasets of gas exhaust clouds using a small set of labeled data as input [Pir+22]. The
generated gas exhaust data augment point clouds recorded in good weather conditions. This
avoids the need for new data collection under adverse conditions.

Noise Robustness Loss [Pir+22] proposes a novel noise robustness loss term to address the
noise caused by gas exhaust in LiDAR data. The noise robustness loss Lnoise penalizes the
inclusion of noise points within the predicted bounding boxes [Pir+22]. The noise robustness
loss term Lnoise is defined in [Pir+22] as follows:

Lnoise = IoU3D(P, B) (3.1)

Where IoU3D(P, B) represents the 3D IoU loss between the gas exhaust bounding boxes B

and the model’s predictions P as defined in [Pir+22].
The total training loss L is then formulated by combining the baseline training loss Ltrain

with the noise robustness loss, weighted by a parameter β:

L = Ltrain + β Lnoise (3.2)

Where Ltrain is the baseline object detector training loss, and β ∈ ! is a weight parameter
that adjusts the influence of the noise robustness loss [Pir+22]. Adjusting the parameter β can
control the balance between the baseline training loss and the noise robustness loss.

Experiments and Results The method was tested on two popular object detectors, SECOND
[YML18] and PointRCNN [SWL19], using the DENSE’s dataset for fog simulation (SeeingTh-
rough Fog dataset [Bij+20]), which contains diverse weather conditions. The results demon-
strated that the proposed method improves robustness to gas exhaust and noisy data without
negatively impacting the performance in clean conditions. When tested using the Gas exhaust
augmented DENSE test set with easy, moderate, and heavy noise augmentations, both SECOND
and PointRCNN augmented models show an improvement of performance of 2.5% and 1.14%
in 3D AP at 0.7 IoU threshold. These results show that the proposed framework effectively
increases the robustness of 3D object detection against vehicle gas exhaust in cold weather.
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3.2.4 Densification Methods

[Wan+22] presents a novel framework designed to enhance 3D object detection by learning
to densify sparse point clouds in the latent space. The approach involves training two types of
3D detectors: a dense point 3D detector (DDet) with dense point clouds and a sparse point 3D
detector (SDet) with regular sparse point clouds. A lightweight S2D module and a point cloud
reconstruction (PCR) module are introduced to facilitate the densification process, improving
detection performance on sparse data inputs without requiring dense data during inference
[Wan+22].

Methodology

Dense Point 3D Detector (DDet) DDet is trained with dense point clouds obtained by fusing
multi-frame point clouds. It utilizes a region proposal network (RPN) and multiple heads for
object classification and regression [Wan+22].

Sparse Point 3D Detector (SDet) SDet is trained with regular sparse point clouds. It uses
DDet to teach SDet to simulate densified 3D features, enabling SDet to generate high-quality
3D features from sparse inputs. The model uses two modules, S2D and PCR, to enhance feature
learning further. S2D projects sparse 3D features to BEV space uses 2D convolution operations
and employs ConvNeXt blocks for feature aggregation [Wan+22]. Features are then upsampled
and concatenated to obtain the final densified feature. PCR reconstructs voxel-level dense object
point clouds from the densified features. It predicts a soft voxel-occupancy mask and point offset
for each non-empty voxel [Wan+22].

Experiments and Results

The framework is evaluated on the Waymo Open Dataset and Waymo Domain Adaptation
Dataset [Sun+20]. Significant improvements in detection performance are observed across
all categories and evaluation metrics. The approach consistently outperforms state-of-the-art
methods such as baseline SECOND [YML18], PointPillars [Lan+19], and CenterPoint [YZK21]
by respectively 3.01%, 4.93%, 3.15% in mAP results.

3.2.5 Data Augmentation Methods

Fog Simulation

[Hah+21] addresses the challenge of LiDAR-based 3D object detection in foggy weather. Col-
lecting and annotating data in such conditions is labor-intensive and costly. To address this, the
authors propose a physically accurate fog simulation method that can be applied to any LiDAR
dataset, enabling large-scale foggy training data to be created at a minor extra cost. The simu-
lated foggy data improves the robustness of 3D object detection and other perception tasks. The
method significantly enhances performance on real foggy data, as demonstrated through exper-
iments with state-of-the-art detection approaches on the Seeing Through Fog dataset [Bij+20].
The authors of [Zha+24a] report using a similar physics-based approach to simulate fog condi-
tions in marine 3D detection scenarios. The results of the experiments in [Zha+24a] show an
improvement of ≈ 40% compared to the baseline PointPillars model in the detection of Cargo
ships.

Methodology The simulation uses a physically based model to convert clear-weather LiDAR
point clouds into foggy ones. The method models the transmission of LiDAR pulses, considering
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the system’s impulse response in clear weather and fog. By transforming the range and intensity
of each original clear-weather point, the new values correspond to measurements in a foggy
scenario [Hah+21].

The received signal power PR in clear weather is given in [Hah+21] by:

PR(R) = CA

∫ 2R/c

0

PT (t)H
%

R−
c t

2

&

d t

where R is the emitted signal, CA is a system constant, PT (t) is the transmitted signal power, and
H is the impulse response of the environment.

In fog, the total one-way transmission loss T (R) is given by:

T (R) = exp(−αR)

where α is the attenuation coefficient.
The simulation is applied to the clear-weather training set of the Seeing Through Fog (STF)

dataset [Bij+20], which was captured using the Velodyne HDL-64E LiDAR sensor. The fog
simulation involves parameters like the attenuation and backscattering coefficients, which are
empirically set to match real foggy point clouds.

Experiments The fog simulation method is evaluated using state-of-the-art 3D object detec-
tion methods (PV-RCNN [Shi+19], PointRCNN [SWL19], SECOND [YML18], Part-A2 [Shi+21],
and PointPillars [Lan+19]) trained on the STF dataset. The results in [Hah+21] show that
training with simulated foggy data significantly improves detection performance in real foggy
conditions compared to clear weather models and previous fog simulation methods.

Results Quantitative results show that models trained with the proposed fog simulation out-
perform those trained with clear weather data and previous simulation methods across various
evaluation metrics. The results are illustrated in Table 3.3, which shows an improvement of the
3D detection of the car class by at least 1.2% for all models under easy fog conditions and by
0.5% under hard fog conditions.

Table 3.3: Car 3D AP@.5IoU results on all relevant test splits of the Seeing Through Fog dataset [Bij+20] with easy,

moderate, and hard fog conditions [Hah+21].

Method easy moderate hard

PV-RCNN (Clear) 64.73 64.41 61.52
PV-RCNN (w/ Fog Simulation) 65.79 65.03 65.03

PointRCNN (Clear) 65.12 64.34 60.95
PointRCNN (w/ Fog Simulation) 66.32 65.14 61.34

SECOND (Clear) 63.85 62.75 60.42
SECOND (w/ Fog Simulation) 64.15 63.20 61.21

Part-A² (Clear) 59.76 59.27 56.88
Part-A² (w/ Fog Simulation) 62.31 61.46 58.32

PointPillars (Clear) 59.81 59.45 57.12
PointPillars (w/ Fog Simulation) 61.34 60.88 58.55
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Rain and Snow simulation

[Kil+21] presents a novel approach called LiDAR Light Scattering Augmentation (LISA) to sim-
ulate the impact of adverse weather conditions such as rain and snow on LiDAR data for im-
proving 3D object detection in autonomous navigation systems. By leveraging physical light
scattering models, the authors propose LISA to simulate these conditions accurately, providing
a diverse dataset for training and testing 3D object detectors.

Methodology LISA uses physical light scattering models to simulate adverse weather effects
on LiDAR data. The framework includes models for rain and snow as follows:

Rain Simulation The described approach for rain simulation uses a noise filter of spherical
raindrops, with sizes determined by a raindrop size distribution. Beam divergence is obtained
by generating multiple rays per point in the point cloud at a specified angle, where points are
modified if enough rays intersect with the original point. The point cloud is modified by setting
scan points closer to the sensor or deleting them based on intersection ratios [Teu+22; Kil+21]:

Rmost =
Nmost

Nintersects
(3.3)

where Nmost is the number of rays intersecting the raindrop with the most intersections, and
Nintersects is the total number of intersections [Kil+21].

Snow Simulation Based on ray tracing, using the size distribution for snowflakes from the
Gunn and Marshall distribution:

N(D) = N0e−ΛD (3.4)

where N0 and Λ are parameters dependent on the precipitation rate R. The intensity of false
points due to snowflakes is modeled with a lognormal distribution.

Experiments and Results The models are parameterized using the DENSE [Bij+20] dataset
and evaluated on the KITTI [GLU12] and Waymo [Sun+20] Open datasets. To compare the
performance of state-of-the-art models like SECOND [YML18], PART-A2 [Shi+21], and PV-
RCNN [Shi+19], the authors of [Kil+21] compute the mAP of the class "Vehicle" from the
Waymo dataset [Sun+20]. As can be seen in Table 3.4, the use of an augmented dataset using
the LISA method resulted in an improvement in the performance of the SECOND [YML18],
PART-A2 [Shi+21], and PV-RCNN [Shi+19] models by respectively 5.78%, 2.29%, and 2.77%

3.2.6 Sequence Concatenation in Time

[Kem+23a] introduces another way to enhance the robustness of LiDAR-based object detection
under adverse weather conditions by using time-series data.

Methodology [Kem+23a] presents an architecture based on Pillar-based Object Detection,
allowing the use of temporal information from sequence data. The authors of [Kem+23a]
conduct a comprehensive study of different approaches for using data sequences in the model
architecture and provide a quantitative evaluation and comparison of the trained models on
three real-world adverse weather datasets. The use of temporal information within a sequence
of LiDAR point clouds consists of concatenating n point clouds and using it as input to the
detection model [Kem+23a]. The authors refer to the point cloud concatenation approach as
IC.
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Table 3.4: A comparison of mAP values of networks retrained on simulated rainy LiDAR poitn clouds using LISA and

evaluated on real rainy scenes from the Waymo dataset [Sun+20] for the class “Vehicle”, based on the results from

[Kil+21].

Network Training Dataset mAP

SECOND Clear 39.69
LISA 45.47

+5.78

Part A2 Clear 48.29
LISA 50.58

+2.29

PV-RCNN Clear 41.98
LISA 44.74

+2.77

Point Concatenation:
PIC = {p1, . . . , pm, pm+1, . . . , pn} (3.5)

where p = (x , y, z, intensity).

Results and Discussion As shown in Table 3.5, the evaluation results of the PointPillars-based
model with and without IC on the NuScenes dataset [Cae+20] show a decrease of performance
by 24% in mAP at the IoU threshold of 0.5 with a 10 ms increase in inference time, result-
ing in a 0.109s/iteration. The study found that while early-stage input concatenation without
coordinate transformation between point clouds was less effective, feature concatenation with
temporal offset yielded the best results.

Table 3.5: Evaluation results for IC with and without Temporal Offset, according to [Kem+23a]. Inference time in

seconds per input sequence. (*) indicates use of temporal offset.

Method mAP@IoU=0.5 mAP@IoU=0.75 Inference Time (s) Dataset

PointPillars 0.510 0.246 0.099 NuScenes
PointPillars + IC 0.387 0.144 0.109 NuScenes
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3.2.7 Summary

Table 3.6 summarizes the results obtained in all the solutions explained above. It shows the ad-
verse weather’s impact on the performance of the state-of-the-art models and the performance
improvement using the several techniques used in these solutions. From the results stated
above, we can see that the approach in [Kil+21] has a high coverage of adverse weather con-
ditions and the highest number of tested models with reported improvement of results. While
the Sparse2Dense model used in [Wan+22] shows promising progress in the AP value of the
PointPillars model and the SECOND [YML18] model, its effectiveness has not been proven for
adverse weather conditions specifically.

Table 3.6: Summary of methods and key results. mAP Drop: Drop in performance when tested under adverse

weather conditions. mCE: mean Corruption Error. AP Improvement: Improved average precision when trained

with augmented data compared to the baseline model. Red: Densification. Blue: Augmentation. Green: Noise

Robustness Loss.

Model mAP Drop mCE AP Improvement

PointPillars 40% in moderate fog and snow [Kil+21] 110.7 [Kon+23] 4.93% [Wan+22]
42% in snow [Teu+22]

SECOND 40% in moderate fog and snow [Kil+21] 95.9 [Kon+23] 2.50% [Pir+22]
3.01% [Wan+22]
5.78% [Kil+21]

PV-RCNN 40% in moderate fog and snow [Kil+21] 90.0 [Kon+23] 2.76% [Kil+21]

Part-A2 - 82.2 [Kon+23] 2.29% [Kil+21]

PointRCNN - 91.9 [Kon+23] 1.14% [Pir+22]
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Chapter 4

Methodology

This thesis is part of the AUTOtech.agil project. Thus, we re-use the baseline PointPillars model
used for 3D detection in [Zim+23a; Ngu23]. Based on the literature review conducted in Chap-
ter 3 and the observed increase of performance for the SECOND [YML18], PV-RCNN [Shi+19],
and Part-A2 [Shi+21] models when using data augmentation, we have decided to use a similar
approach on the implemented baseline PointPillars model. This technique has been shown by
studies like [Kil+21], [Teu+22], and [Hah+21] to enhance the model’s ability to generalize
across different conditions and improve its robustness in real-world applications. In another
experiment, we test the approach of backward concatenation with offset used in [Kem+23a]
and report our results on the TUMTraffic Intersection (TUMTraf-I) dataset [Zim+23c]. The ex-
periments and results based on these approaches are further presented in Chapter 5, where we
demonstrate the improvements in the model’s performance and robustness achieved through
these techniques.

4.1 Data Augmentation

The original TUMTraf-I [Zim+23c] dataset used for training initially contains only one type of
adverse weather condition, rain, comprising only 25% of the dataset. We use data augmenta-
tion techniques to address this limitation and simulate additional adverse weather conditions,
including rain, snow, and fog. The approach in [Kil+21] is designed to work for Velodyne
HDL-64E LiDAR and to be used on the KITTI dataset [GLU12]. We extend the LISA library
in https://github.com/MartinHahner/LISA/ to support the LiDAR sensor used to capture the
point clouds in the TUMTraf-I dataset, i.e. the Ouster OS1-64 (generation 2) LiDAR. We then
perform augmentation on the training, validation, and test sets and run a series of experiments
to track the effect of data augmentation on the performance of the PointPillars model. Figure
4.1 represents the augmentation pipeline and the experiments we run to determine the most
optimal augmentation level.

4.1.1 Algorithm Description

Algorithm 2 outlined below describes the steps used for dataset augmentation. It begins by
generating rain rates and processing each point cloud in the dataset. For each point cloud,
the algorithm checks whether it contains sufficient data points (set to 70000 after running a
few trials with several thresholds). The algorithm simulates fog, rain, and snow conditions if
these conditions are met. In order to simulate rain and snow similar to realistic conditions, we
draw rain rates from the Marshall-Palmer model as described in [Kil+21] and a snow rate of
71 mm/h, representing a realistic snow intensity. We only save the augmented point cloud if a

https://github.com/MartinHahner/LISA/tree/76cdb86823ee096263e8474ba614f38147e25180


certain similarity and ratio of the original-to-augmented number of points is reached. We use
the ICP similarity method explained in Chapter 2 to calculate the similarity between the original
and the augmented point clouds. Based on a trial and error approach, we set the threshold
values for similarity and original-to-augmented number of points to (0.75, 0.8), (0.75, 0.6),
and (0.7, 0.6), respectively, for fog, rain, and snow. We added the similarity check between the
original and the augmented point clouds to avoid injecting random noise into the dataset and
to keep the results of our experiments comparable to the baseline results from [Zim+23a].

Weather-Specific Simulation Methods

Rain Rain is simulated by mimicking light scattering of the points in the point clouds when
facing rain droplets. We draw three samples of rain rates from an exponential distribution at
rain rate λ = 0.05 mm/h (as set by [Kil+21]), and we perform augmentation on each day scene
with a total number of points exceeding 70000 using each sampled rain rate. To align the
implementation with the configuration of the Ouster LiDAR used in the TUMTraf-I dataset, we
initialize the LISA class with different minimum and maximum range, beam divergence, and
range accuracy as in [Kil+21]. We set the range to [0.5, 200], the beam divergence to 0.002269,
and the range accuracy to 0.09. We use the mode rain for the rain simulation and keep the
same rain droplet diameter of 50µm with signal set to strongest to return the particles (real
point or scattering point) with the strongest power.

Listing 4.1: Rain simulation using LISA library

def add_light_scatter(self , pc, Rr):
self.lisa = LISA(wavelength =850, mode="rain", r_min =0.5, r_max =200,

beam_divergence =0.002269 , min_diameter =50e-6,
range_accuracy =0.09, signal="strongest",

show_progressbar=True)
return self.lisa.augment(pc=pc , Rr=Rr , fixed_seed=True)

This choice of sampling is based on the nature of rain rate distributions in real-world sce-
narios, as described in the LISA library paper [Kil+21]. The exponential distribution effec-
tively models the variability and intensity of rain, ensuring the augmented data reflects realistic
weather conditions [Kil+21]. The rain model described by the number of particles and their
size distribution as functions of rain rate (Rr) is set following the Marshall Palmer model as
explained in [Kil+21], and the refractive index of rain droplets is set to 1.328.

Snow Snow simulation is very similar to the rain simulation as snowflakes can be regarded as
rain droplets with much higher density. Therefore, we use the gunn mode from the LISA class to
simulate ice and snow effects. The gunn mode sets the refractive index of the scattering points
to 1.3031 and uses the Marshall-Gunn snow model to determine the number of snowflakes and
their size distribution. We use the same configuration for minimum and maximum range values,
beam divergence, and range accuracy as for rain simulation.

Listing 4.2: Snow simulation using LISA library

def add_snow(self , pc , Rr):
self.lisa = LISA(wavelength =850, mode="gunn", r_min =0.5, r_max =200,

beam_divergence =0.002269 , min_diameter =50e-6,
range_accuracy =0.09, signal="strongest",

show_progressbar=True)
return self.lisa.augment(pc=pc , Rr=Rr , fixed_seed=True)
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Algorithm 2 Point Cloud Augmentation

Require: Dataset of point clouds D, maximum point clouds M , processed point clouds count P,
adverse weather conditions W

Ensure: Processed point clouds with augmented data
1: function PROCESS_POINT_CLOUDS(D, M, P, W)
2: for each pc, input_ f ile_path_point_cloud in D do
3: if M ̸= None and P ≥ M then
4: break
5: end if
6: labels← load_labels(path_label)

7: original_pc← prepare_original_pc(pc)

8: if not check_night() and len(original_pc)> 70000 then
9: for each weather in W do

10: if not is_al read y_processed(weather, f ile_name_point_cloud) then
11: augmented_pcs, augmented_labels← process_augmentation(weather, original_pc, f ile_
12: else
13: P+ = 1

14: end if
15: end for
16: end if
17: end for
18: update_similarity_metrics()
19: end function
20: function PROCESS_AUGMENTATION(adverse_weather, original_pc, file_name_point_cloud,

path_label)
21: if adverse_weather == fog then
22: augmented_pc_arra y ← add_fog_effect(original_pc)

23: similari t y ← calculate_similari t y(augmented_pc_arra y, original_pc, method =

icp)

24: if len(augmented_pc_arra y)≥ 0.8 ∗ len(original_pc) and similari t y ≥ 0.75 then
25: write_point_cloud_with_intensities(output_path, augmented_pc_array)
26: end if
27: else if adverse_weather == rain then
28: for each rain_rate in rain_rates do
29: augmented_pc_arra y ← add_light_scatter(original_pc, rain_rate)

30: similari t y ← calculate_similari t y(augmented_pc_arra y, original_pc, method =

icp)

31: if similari t y ≥ 0.75 and len(augmented_pc_arra y)/len(original_pc) > 0.6

then
32: write_point_cloud_with_intensities(output_path, augmented_pc_array)
33: end if
34: end for
35: else if adverse_weather == snow then
36: augmented_pc_arra y ← add_snow(original_pc, rate = 71)

37: similari t y ← calculate_similari t y(augmented_pc_arra y, original_pc, method =

icp)

38: if similari t y ≥ 0.7 and len(augmented_pc_arra y)≥ 0.6 ∗ len(original_pc) then
39: write_point_cloud_with_intensities(output_path, augmented_pc_array)
40: end if
41: end if
42: return augmented_pc_arrays, weather_label
43: end function
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Figure 4.1: Pipeline of the Augmentation Process. Note that X in [20, 40, 60, 80, 100]% and similarity threshold varies from one adverse weather to another.
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Fog To simulate the fog effect, we use the fog simulation method used in LiDAR_fog_sim
library [Hah+21]. The library provides two types of fog simulation: soft and hard.

• The P_R_ f og_hard function calculates the Euclidean distance (r_0) of each point from
the origin, then modifies the intensity of each point by applying an exponential decay
based on the fog attenuation coefficient (alpha) and the distance (r_0). The modified
intensities are rounded, and the function returns the updated point cloud. We keep the
same fog attenuation coefficient α used in [Hah+21] to 0.06.

• The P_R_ f og_so f t function used in [Hah+21] simulates a soft fog effect on a point
cloud. It calculates fog responses for each point based on distance and original intensity
using a backscattering coefficient β , adjusts the point’s coordinates and intensity if the fog
response exceeds the original intensity, and optionally adds noise using different variants.
We set the backscattering effect to ≈ 0.000921 sr−1 following the calculation in [Hah+21]
and using α= 0.06.

Given α= 0.06, we can calculate the values for mor and β .

The equation for the meteorological optical range (mor) is:

mor=
log(20)

α

Substituting α= 0.06:

mor=
log(20)

0.06
≈ 49.93

The equation for the backscattering coefficient (β) is:

β =
0.046α

log(20)

Substituting α= 0.06:

β =
0.046× 0.06

log(20)
≈ 0.000921 sr−1

4.1.2 Augmentation Results

The results of the data augmentation process demonstrate the impact of different rain rates on
the point cloud data. The following images show the original point cloud and the augmented
point clouds for various rain rates, illustrating how the density and visibility of points are af-
fected by simulated rain conditions.

(a) Original Point Cloud (b) Original RGB Image

Figure 4.2: Original Point Cloud and RGB Image
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(a) Augmented Point Cloud with Rain Rate of 2.5 mm/hr (b) RGB Image with Rain Rate of 2.5 mm/hr

Figure 4.3: Point Cloud and RGB Image with Rain Rate of 2.5 mm/hr

(a) Augmented Point Cloud with Rain Rate of 5.6 mm/hr (b) RGB Image with Rain Rate of 5.6 mm/hr

Figure 4.4: Point Cloud and RGB Image with Rain Rate of 5.6 mm/hr

(a) Augmented Point Cloud with Rain Rate of 18.8 mm/hr (b) RGB Image with Rain Rate of 18.8 mm/hr

Figure 4.5: Point Cloud and RGB Image with Rain Rate of 18.8 mm/hr

38



(a) Augmented Point Cloud with Snow (b) RGB Image with Snow

Figure 4.6: Point Cloud and RGB Image with Snow

(a) Augmented Point Cloud with Fog (b) RGB Image with Fog

Figure 4.7: Point Cloud and RGB Image with Fog

Figure 4.2: Original Point Cloud and RGB Image. This image shows the original point cloud
without any augmented adverse weather conditions. The points are of high clarity and dense,
providing a clear view of the environment.

Figure 4.3: Point Cloud and RGB Image with Rain Rate of 2.5 mm/hr. This image demon-
strates the point cloud augmented with a 2.5 mm/hr light rain rate. The point density starts to
reduce slightly, with some scattering visible due to the light rain simulation.

Figure 4.4: Point Cloud and RGB Image with Rain Rate of 5.6 mm/hr. Here, the point cloud
is augmented with a moderate rain rate of 5.6 mm/hr. The scattering effect is more pronounced,
and the visibility of the points decreases compared to the light rain condition.

Figure 4.5: Point Cloud and RGB Image with Rain Rate of 18.8 mm/hr. This image shows
the point cloud augmented with a heavy rain rate of 18.8 mm/hr. The intense rain simulation
significantly reduces the point density and affects visibility.

Figure 4.6: Point Cloud and RGB Image with Snow. This image shows the point cloud aug-
mented with simulated snow conditions. As seen on the back of the image, the snow simulation
adds some noise resulting from the snowflake points reflected to the LiDAR sensor and some
scattered points at the front of the point cloud.

Figure 4.7: Point Cloud and RGB Image with Fog augmentation. This image shows the
point cloud augmented with a fog effect. We used both hard and soft fog augmentations, which
resulted in the scattering of the points at further range and the formation of heavy noise around
the sensor.
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4.2 Backwards Point Concatenation

In this section, we present an approach for enhancing the density of point clouds by con-
catenating points from previous frames; we will refer to it as Backwards Point Concatenation.
[Kem+23a] have experimented with this approach yet did not report any significant improve-
ment in results. We suspect that the reason behind that is that the concatenation of consecutive
point clouds results in the cumulative addition of the same point clouds with a slight posi-
tion offset. This overlap can lead to redundancy and noise in the data, which diminishes the
potential benefits of increased point cloud density.

We introduce a filtering step within the concatenation process to mitigate this issue. This
filtering step ensures that unique and meaningful points from previous and subsequent frames
are added to the current point cloud. By applying minimum and maximum distance-based
thresholds, we can effectively exclude points too close or too far from existing points in the
current cloud, thereby maintaining the integrity and quality of the resulting dataset. In Chapter
5, we set the optimal distance threshold between points in a point cloud based on a grid search
approach. The whole concatenation pipeline is illustrated in Figure 4.8.

4.2.1 Algorithm Description

Algorithm 3 explains the pipeline we use for the backward concatenation of the point clouds
with a given offset. The algorithm iterates on the point clouds in the dataset in a backward
direction, concatenating all o (described by offset) point clouds preceding the current point
cloud. The algorithm accepts the concatenation if the concatenated point cloud is at least X%

similar to the current point cloud. Let’s consider the current point cloud:

pt = {xt , yt , zt , it} (4.1)

where xt , yt , zt are the coordinates and it is the intensity at time t.
A concatenated point cloud with offset t − i can be described as follows:

pct−i
=

i
⋃

k=0

pt−k (4.2)

The final concatenated point cloud, given the condition that the original point cloud pt is at
least X% similar to the concatenated point cloud up to t − i, is represented with the following
equation:

pc =
o
⋃

i=0
SIC P (pct−i ,pt

)≥X%

pt−i (4.3)

where o is the offset representing the maximum number of point clouds to be concatenated, and
SIC P(pct−i

, pt) denotes the ICP similarity between the current point cloud pt and the resulting
concatenation up to i preceding point clouds. By incorporating the ICP similarity measurement
step, we further enhance the robustness of our concatenation method. This step ensures that
only point clouds that maintain a structural similarity of over 90% with the original point cloud
are included, thereby preserving the overall data integrity and reducing potential noise and
ghost objects. The similarity threshold X and the offset o are hyperparameters that we will
fine-tune in Chapter 5.
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Algorithm 3 Concatenate Point Clouds

1: Input: Index id x , Distance Threshold Min distance_threshold_min, Distance Threshold
Max distance_threshold_max , Offset o f f set, Current Point Cloud cur rent_pc

2: Output: Concatenated Point Cloud concat_pc, Original Point Cloud cur rent_pc

3: procedure CONCATENATE_POINT_CLOUDS(id x , cur rent_pc)
4: concat_pc← cur rentpc

5: if o f f set > 0 and id x − o f f set ≥ 0 then
6: for i← 0 to o f f set − 1 do
7: prev_pc← dataset[id x − o f f set]

8: f il tered_points← f il ter_points(cur rent_pc, prev_pc)

9: concat_pc← concat_pc + f il tered_points

10: similari t y ← calculate_similari t y(concat_pc, cur rent_pc, method = icp)

11: if similari t y <= 0.9 then
12: concat_pc← save_cur rent_pc

13: end if
14: end for
15: end if
16: return np.unique(cur rent_pc, return_index = True, axis = 0)[0], save_cur rent_pc

17: end procedure

4.2.2 Point Filtering Algorithm

Algorithm 3 shows a further step, filter_points, that adds a sanity check on top of the
similarity measure. Before concatenating the point cloud at time t − i, we filter the points
in the point cloud pt−i based on their distances from a set of base points. This filtering is
achieved using specified distance thresholds. A point pt−i, j from pt−i is included in the filtered
output if the measured distance to its closest base point, denoted by ptC

is within the minimum
and maximum thresholds. Suppose we define a point cloud at instance t as pt , the offset for
concatenation as o, and the distance thresholds as Dmin and Dmax . In that case, the following
rule should apply for a point cloud pt−o to be concatenated to the point cloud pt : A point
p ∈ pt−o will be concatenated to pt if Dmin < d(p, q) < Dmax for all q ∈ pt , where d(p, q) is the
Euclidean distance between the point p and its closest neighbor in pt . This guarantees that most
ghost objects from previous point clouds that are not part of the point cloud pt are eliminated.
The addition of the filtering step transforms equations 4.2 and 4.3 to the following:

pct−i
=

i
⋃

k=0

(

pt−k, j | Dmin < min
pt,l∈pt

d(pt−k, j , pt,l)< Dmax

)

(4.4)

where l ∈ [0, Nt], Nt being the number of points in pt , and j ∈ [O, Nt−k], Nt−k being the number
of points in pt−k.

pc =
o
⋃

i=0
SIC P (pct−i

,pt )≥X%

(

pt−i, j | Dmin < min
pt,k∈pt

d(pt−i, j , pt,k)< Dmax

)

(4.5)

where k ∈ [0, Nt], Nt being the number of points in pt , and j ∈ [O, Nt−i], Nt−k being the number
of points in pt−k.

The filtering process is also described by Algorithm 4. To improve the runtime performance
at inference time, we use the KD-tree structure to determine the distances between the points
in the original point cloud and those in the precedent point cloud to be calculated. KD-tree
efficiently organizes the points to minimize these distance calculations during the query process
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[Skr19] and uses the Euclidean distance metric. For large datasets, the KD tree significantly
speeds up finding the nearest base point to each new point compared to a brute-force search,
which would involve calculating the distance from each new point to every base point.

Algorithm 4 Filter Points

1: Input: Base Points base_points, New Points new_points, Distance Threshold Min
threshold_min, Distance Threshold Max threshold_max

2: Output: Filtered Points f il tered_points

3: procedure FILTER_POINTS(base_points, new_points, threshold_min, threshold_max)
4: if len(base_points) = 0 then
5: return new_points

6: end if
7: t ree← KDTree(base_points)

8: distances,_← t ree.quer y(new_points, 1)

9: mask← (distances > threshold_min) and (distances < threshold_max)

10: f il tered_points← new_points[mask]

11: return f il tered_points

12: end procedure

In Chapter 5, we describe the experiments we run to define the optimal values for the offset,
minimum distance, and maximum distance thresholds, and we evaluate the baseline PointPillars
model by applying concatenation on the TUMTraf-I test dataset.
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Figure 4.8: Concatenation Pipeline using point filtering based on minimum and maximum distance threshold to

original point cloud
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Chapter 5

Experiments and Evaluation

In this chapter, we start by describing the experiment setup, then present the experiments we
conducted within the scope of the thesis, the results we obtained, and a conclusion on the most
optimal approach based on the evaluation results.

5.1 Experimental Setup

5.1.1 Sensors

LiDAR Sensors

The LiDAR sensors used in the experiment are Ouster OS1-64 (generation 2). These sensors
have 64 vertical layers and provide a 360-degree field of view (FOV). They are configured
in a below-horizon setting, offering a range of up to 120 meters with an accuracy between
1.5 and 10 centimeters. The LiDAR sensors are mounted on a gantry bridge at an intersection,
positioned to capture a comprehensive view of the traffic environment from a height of 7 meters.
This setup ensures a wide coverage area, allowing detailed 3D point cloud generation essential
for robust object detection and tracking in urban scenarios, see Figure 5.1.

Camera Sensors

The camera sensors used in the experiment are Basler ace acA1920-50gc cameras. These cam-
eras have a resolution of 1920x1200 pixels and are equipped with Sony IMX174 global shutter
sensors, essential for capturing high-quality images without motion blur. The cameras oper-
ate in color mode and are connected via a GigE interface with 8 mm lenses, as described in
[Zim+23c]. Like the LiDAR sensors, the cameras are mounted on the gantry bridge, ensuring
synchronized and overlapping fields of view with the LiDAR sensors. This configuration allows
for the fusion of image and point cloud data, enhancing the overall detection performance by
leveraging the strengths of both sensor modalities. The TUMTraf-I dataset used in this series
of experiments comes with a set of extrinsic calibration parameters that allow for a precise
mapping of the point clouds to the camera-captured pictures (see Figures 5.2 and 5.3).

5.1.2 Dataset Statistics

The TUM Traffic Intersection dataset used in this thesis provides a comprehensive and diverse
collection of urban traffic scenarios designed to support the development and validation of
autonomous vehicle technologies. This second dataset release contains 2,400 frames, divided



Figure 5.1: 3D point cloud generated by the Ouster OS1-64 LiDAR sensor.

(a) First position (b) Second position

Figure 5.2: Images captured by the Basler ace camera facing south.

(a) First position with projected point clouds (b) Second position with projected point clouds

Figure 5.3: Images captured by the Basler ace camera with projected point clouds using calibration data.
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Figure 5.4: Object class count for train, validation, and test datasets.

into 1,920 for training, 240 for validation, and 240 for testing. The dataset includes both point
clouds and RGB images, though this thesis focuses specifically on the point cloud data.

The dataset encompasses ten object classes: CAR, TRUCK, TRAILER, VAN, MOTORCYCLE,
BUS, PEDESTRIAN, BICYCLE, EMERGENCY VEHICLE, and OTHER. These classes reflect a wide
range of road users and vehicles, ensuring the robustness and versatility of detection algorithms
trained on this data.

Object Class Counts

CARs are the most common class across all datasets for the object class counts, constituting
60.3% of the training set, 59.9% of the validation set, and 56.2% of the test set. VANs, TRAIL-
ERs, and TRUCKs follow, with consistent distributions across the datasets, ensuring a balanced
evaluation, as seen in Figure 5.4.

Environmental Conditions

As reported in [Zim+23c], the dataset statistics show that environmental variations are cap-
tured through rainy scenes that account for 25% of the dataset. The rainy scenes are also
scenes that were captured at night time with lower visibility and a lower number of objects in
the sensor’s surroundings.

Point Cloud Characteristics

Further analysis of the point cloud data reveals essential characteristics such as the number of
points, average density, and average intensity. The number of points in each point cloud varies
significantly across all datasets, with most clouds containing between 40,000 and 100,000
points. The average density of the point clouds, defined as the number of points per unit
volume, falls between 0.02 and 0.16 across all datasets, ensuring a detailed representation of
the scanned environment essential for accurate object detection and scene interpretation. The
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Figure 5.5: Average number of points in the point clouds for sunny and rainy weather conditions in the train, validation,

and test datasets.

average intensity values of the points, which indicate the reflectivity of surfaces, generally range
from 0.0075 to 0.025 in the training set, 0.008 to 0.022 in the validation set, and 0.008 to 0.020
in the test set, with higher intensity values indicating strong reflections helpful in identifying
certain materials and surface types such as wet ground and raindrops. Figure 5.5 illustrates the
distribution of points for the two different weather conditions in the dataset, which shows an ≈
20% drop in the average number of points in rainy weather conditions.

Impact of Environmental Conditions

The average intensity and number of points against weather conditions show that point clouds
captured in sunny conditions tend to have slightly higher intensity values and more points
than those captured in rainy conditions. These observations show the influence of lighting and
weather conditions on the quality and characteristics of point cloud data. Figure 5.6 high-
lights the impact of different weather conditions on LiDAR point clouds using images from the
TUMTraf-I dataset. Subfigure 5.6a shows a point cloud captured during the daytime with clear
weather, while subfigure 5.6b shows a point cloud captured at night during rainy conditions.
These images highlight how environmental factors such as lighting and precipitation can affect
the quality and density of LiDAR data.

5.1.3 Evaluation of the Baseline Model

The baseline model for this thesis, PointPillars, encodes 3D point clouds into a pseudo-image for-
mat, facilitating efficient 2D convolutional neural networks. Initially introduced by [Lan+19],
PointPillars achieves impressive processing speeds by streamlining the input data structure, thus
enabling rapid computation without considerable accuracy loss [Lan+19].

The model is configured to detect ten classes of objects: CAR, TRUCK, TRAILER, VAN, MO-
TORCYCLE, BUS, PEDESTRIAN, BICYCLE, EMERGENCY VEHICLE, and OTHER. Further details
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(a) Daytime with Sun (b) Nighttime with Rain

Figure 5.6: Examples from the TUMTraf dataset showing LiDAR point clouds under different weather conditions.

on the baseline model’s configuration are given in Chapter 2. We will adapt the same setup for
training in our experiments.

The PointPillars model in [Zim+23a] was evaluated on the TUM Traffic Intersection (TUMTraf-
I) dataset and achieved significant performance across various metrics. The authors have mea-
sured the model’s accuracy, precision, recall, and average precision (AP) across different object
classes. They have also evaluated its detection capabilities on an NVIDIA RTX 4090 GPU system
and reported the results we summarized in Table 5.1. The PointPillars implementation was
adapted from OpenPCDet and trained on the TUMTraf-I dataset with specific configurations:
point cloud range limited to -64 to 64 meters in x-y direction and -8 to 0 meters in the z direc-
tion, voxel size set to [0.16, 0.16, 8], and trained for 160 epochs using Adam optimizer with
a learning rate of 0.003 and weight decay of 0.01 [Zim+23a]. The authors of [CKY24] and
[Wan+24] report an improved performance of the 3D detectors when using LiDAR and Radar
fusion on frames recorded under adverse weather conditions. Therefore, we will reuse the fu-
sion inference pipeline used for the baseline PointPillars model in [Zim+23a] in our study as
well. The series of experiments run in this thesis are done using a system equipped with an
NVIDIA GeForce RTX 3090 GPU. Therefore, we have obtained slightly different results for the
baseline model from the ones obtained in [Zim+23a]. We reevaluated the baseline model with
the same configuration and test data to draw valid conclusions from the results we received in
our experiments. The Pointpillars-based model trained with early fusion (EF) and full dataset
(Point Cloud S+N) will be the baseline model for our experiments in this thesis. Reevaluating
the model using the 240 registered point clouds from the test set from the TUMTraf dataset
returned the results highlighted in Tables 5.1 and 5.2.

Table 5.1: Performance Metrics of Baseline PointPillars Model

RTX 4090 RTX 3090
Class Precision (%) Recall (%) AP (%) Precision (%) Recall (%) AP (%) IoU
Car 71.75 87.33 71.64 70.46 52.09 69.86 0.72

Truck 91.20 85.03 91.03 64.46 41.47 63.75 0.71
Motorcycle 82.72 70.71 82.37 23.53 4.87 22.00 0.42

Bus 99.93 100.00 99.93 87.27 81.17 87.02 0.58
Pedestrian 31.37 25.49 30.00 25.31 14.56 23.82 0.35

Bicycle 36.02 80.77 35.93 57.54 48.95 56.69 0.33
Trailer - - - 75.75 56.86 75.26 0.70

Van - - - 52.62 27.15 51.67 0.74
Emergency Vehicle - - - 100.00 100.00 100.0 0.39

Other - - - 80.39 64.31 80.00 0.33
Mean 62.85 51.22 62.11 81.5 53.29 63.01 0.53
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Table 5.2: Runtime Performance of PointPillars Model with registered North and South LiDAR sensors

GPU Runtime (ms) FPS

RTX 4090 26.11 38
RTX 3090 24.21 41

Since we are focusing on improving the model’s performance under adverse weather condi-
tions, we also evaluated the baseline model under night rainy scenes using the 37 night frames
in the dataset. The results are reported in Table 5.3.

Table 5.3: Performance Metrics and IoU of Baseline PointPillars Model under Night Rainy Scenes

Class Precision (%) Recall (%) AP (%) IoU

Car 70.59 48.79 70.00 0.82
Truck 100.00 100.00 100.00 0.71

Motorcycle 0.00 0.00 0.00 0.00
Bus 100.00 100.00 100.00 0.84

Pedestrian 0.00 0.00 0.00 0.00
Bicycle 0.00 0.00 0.00 0.00
Trailer 88.24 77.21 88.00 0.65

Van 66.67 44.44 66.00 0.42
Emergency Vehicle 0.00 0.00 0.00 0.00

Other 0.00 0.00 0.00 0.00
Mean 42.50 37.11 42.40 0.34

In addition, we visualized the model’s performance in rainy night scenes using the Devkit
[Dat24] provided in [Zim+23c]. Figure 5.7 illustrates the false negatives detected in night
rainy scenes after running the detection using the baseline model. The qualitative results show
that false negatives are registered in close and distant ranges, indicating the model’s decreased
performance in adverse weather.

5.2 Data Augmentation

We used the augmentation techniques detailed in 4 to enhance the original 1920 training point
clouds and the 240 validation points with artificial rain and snow effects. Specifically, rain
effects were applied at rates of 2, 5.6, and 18.8 mm/h, corresponding to light and moderate
rain conditions, while snow effects were simulated at a rate of 71 mm/h. These point clouds,
captured during daylight, comprised over 70,000 points each. Consequently, we generated
1772 augmented training point clouds and 200 validation point clouds. To construct the five
augmented models utilized in our experiments, we randomly selected subsets comprising 20%,
40%, 60%, 80%, and 100% of the generated point clouds and integrated them with the original
datasets. We retrained the baseline PointPillars model using each of the obtained datasets and
obtained five augmented models that we will use in the following series of experiments. To
have more insights into the effect on performance resulting from the augmentation approach,
we test the models on the subsequent test datasets:

• The original dataset contains 240 frames, with 37 captured at night and in rainy condi-
tions (Experiment 1).

• An augmented version of the test dataset with an unseen adverse weather condition, fog.
We added 144 fog scenes to the test dataset to obtain a total of 384 frames (Experiment
2).
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(a) False negatives in night rainy scenes (image 1).

(b) False negatives in night rainy scenes (image 2).

Figure 5.7: False negatives detected in night rainy scenes using the baseline model. Blue boxes represent ground

truth, and pink boxes represent the model’s detections.

51



Table 5.4: Number of Point Clouds After Augmentation

Augmentation Level Training Point Clouds Validation Point Clouds

Baseline 1920 240
+20% 2278 282
+40% 2609 320
+60% 2882 336
+80% 3163 350

+100% 3148 378

• An augmented version of the test dataset with scenes simulating rainy conditions with the
same rain rates used for the training process. We added 210 fog scenes to the test dataset
to obtain a total of 450 frames (Experiment 3.1).

• An augmented version of the test dataset with scenes simulating rainy conditions with
different rain rates from the ones used for the training process (25, 35, and 45 mm/h).
We added 210 fog scenes to the test dataset to obtain 450 frames (Experiment 3.2).

Table 5.4 summarizes the datasets used to train the five models we will use in the following
series of experiments.

5.2.1 Experiment 1: Original Test Dataset

In this experiment, we evaluated the models using the original test dataset, which contains
240 frames, 37 of which are night scenes in rainy conditions. We used evaluation metrics,
including accuracy, precision, Intersection over Union (IoU), and average precision at 0.5 IoU.
These metrics were analyzed across different augmentation levels to assess the effectiveness of
the data augmentation strategies. The results are summarized in Tables 5.6 and 5.5. We can
observe the following trends in the performance results:

Average Precision (AP) Improvements According to the results, data augmentation at dif-
ferent augmentation levels enhanced the Average Precision (AP) metrics across all scenes and
object classes. For instance, the CAR class AP increased from 69.86% at baseline to 75.24% at
100% augmentation (≈ 5.38% improvement), while the TRUCK class AP improved from 63.75%
at baseline to 71.40% at 60% augmentation (≈ 7.65% improvement).

Intersection over Union (IoU) Metrics IoU values also demonstrate improvement with data
augmentation. While the CAR class exhibited the highest IoU at baseline (0.7245) and main-
tained strong performance across all augmentation levels, the TRUCK class achieved the highest
IoU at 60% augmentation (0.7173).

Precision and Recall Augmentation improves both precision and recall metrics. For the CAR
class, precision increased from 70.456% at baseline to 75.722% at 100% augmentation, while
recall improved from 52.091% to 60.077%. Similar trends were observed for other classes,
indicating enhanced detection accuracy and object identification.

Day and Night Scene Performance Data augmentation consistently improved AP and IoU
metrics during the day. For example, the CAR class AP increased from 69.70% at baseline
to 75.08% at 100% augmentation. For the night scenes, we can observe at least a 0.69%
improvement of the mean AP value and an improvement in the detection of the CAR class by
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Table 5.5: Summarized Mean IoU, Precision, and Recall metrics for overall, day, and night scenes across various

augmentation levels.

Metric Scene Baseline +20% +40% +60% +80% +100%

IoU
Overall 0.5257 0.5188 0.5294 0.5075 0.5134 0.5173

Day 0.5124 0.5019 0.5179 0.4937 0.4999 0.5026
Night 0.3445 0.3439 0.3457 0.3494 0.3377 0.3310

Precision
Overall 81.500 83.54 83.54 82.917 82.549 83.370

Day 79.326 81.476 64.109 80.937 80.549 81.370
Night 42.500 42.500 42.500 42.500 42.500 42.500

Recall
Overall 53.292 56.718 56.299 57.720 54.810 55.661

Day 50.733 54.617 54.067 55.740 52.767 53.434
Night 37.107 37.094 38.057 37.067 36.409 37.761

12.84% (at 80% augmentation). Figure 5.8a shows the detection results of the baseline model
and all five augmentation levels. While the baseline model missed the car at the back of the
visibility range of the LiDAR, all five augmented models could detect the car, with the 60%
model having the highest score.

Class-Specific Performance Data augmentation generally enhances model robustness and
performance, as seen in the mean IoU for overall scenes, which peak at 40% augmentation
(0.5294). However, different classes benefit differently. For example, the CAR class shows the
highest AP at 100% augmentation (75.24%). In contrast, the TRUCK class shows substantial
improvements, particularly at 60% augmentation (AP: 71.40%, IoU: 0.7173), and classes like
VAN and TRAILER peak at lower augmentation levels (e.g., 40%). Despite improvements, sen-
sitive classes like MOTORCYCLE and PEDESTRIAN are absent from the night scenes, suggesting
a need for more targeted strategies.

Distance-Based Trends Performance improvements vary by distance, with certain augmen-
tation levels optimizing detection at specific ranges. For instance, the CAR class sees notable
improvements in the 40-50 m range with a peak AP at 60% augmentation (79.11%), while the
TRUCK class performs best at closer ranges (0-40 m) with a peak AP at 20% augmentation
(75.52%). Figure 5.8b shows the augmented models’ ability to detect objects farther away from
the LiDAR sensor, especially sensitive small object classes like pedestrians.

Optimal Augmentation Level

The 60% augmentation level generally provides the best overall performance (highest mean AP
for both day scenes (65.51%) and full dataset (66.49%) as well as for frequent object classes
such as TRUCK, TRAILER, and VAN.
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(a) Detection results of the baseline model (top left) and the five augmentation results at a night rainy

scene.

(b) Detection results of the baseline model (top left) and the five augmentation results at a clear day

scene.

Figure 5.8: Detection results of the baseline model (top left) and the five augmentation results at a day vs. night rainy scene. The boxes in blue represent the ground truth, and the

ones in pink represent the detections.
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Table 5.6: Summarized Average Precision (AP) metrics across all scenes, day scenes, and night scenes for various

augmentation levels.

Class Condition Baseline +20% +40% +60% +80% +100%

CAR Full 69.86 73.30 74.99 74.98 74.97 75.24
Day 69.70 73.16 74.82 74.83 74.80 75.08

Night 70.00 82.64 82.52 80.90 82.84 82.77
TRUCK Full 63.75 69.50 65.71 71.40 67.67 69.79

Day 59.61 65.36 61.59 67.21 63.50 65.69
Night 100.00 100.00 100.00 98.00 100.00 100.00

TRAILER Full 75.26 75.64 77.21 73.39 75.21 73.59
Day 71.34 73.57 75.03 71.17 73.03 71.50

Night 88.00 88.00 88.00 90.00 86.00 86.00
VAN Full 51.67 53.49 53.68 57.63 51.79 53.63

Day 51.64 51.64 53.66 55.76 51.79 53.54
Night 66.00 66.00 66.00 66.00 66.00 66.00

MOTORCYCLE Full 22.00 30.91 29.35 31.42 31.52 26.98
Day 22.00 30.91 29.35 31.42 31.52 26.98

Night 0.00 0.00 0.00 0.00 0.00 0.00
BUS Full 87.02 86.57 88.30 85.19 81.38 89.55

Day 86.20 83.95 86.25 83.80 77.67 87.03
Night 100.00 100.00 100.00 96.00 96.00 100.00

PEDESTRIAN Full 23.82 24.45 25.38 28.58 27.86 30.18
Day 23.82 24.45 25.38 28.58 27.86 30.18

Night 0.00 0.00 0.00 0.00 0.00 0.00
BICYCLE Full 56.69 62.58 52.94 62.33 29.54 30.40

Day 56.69 62.58 52.94 62.33 29.54 30.40
Night 0.00 0.00 0.00 0.00 0.00 0.00

EMERGENCY Full 100.00 100.00 100.00 100.00 100.00 100.00
Day 100.00 100.00 100.00 100.00 100.00 100.00

Night 0.00 0.00 0.00 0.00 0.00 0.00
OTHER Full 80.00 80.00 80.00 80.00 80.00 80.00

Day 80.00 80.00 80.00 80.00 80.00 80.00
Night 0.00 0.00 0.00 0.00 0.00 0.00

Mean AP Full 63.01 65.64 64.76 66.49 61.99 62.94
Day 62.10 64.56 63.90 65.51 60.97 62.04

Night 42.40 43.66 43.65 43.09 43.08 43.48

5.2.2 Experiment 2: Augmented Test Dataset with Unseen Conditions (Fog)

Experiment Setup

In this experiment, we also aim to evaluate the performance of the supervised 3D perception
model using an augmented test set. Unlike the first experiment, where the model was tested on
the original test set, this experiment introduces an unseen adverse weather condition, specifi-
cally fog, forming 30% of the frames in the test dataset. The objective is to assess the model’s
robustness and generalizability to unseen, challenging conditions. For this experiment, we run
the evaluation pipeline for three datasets: only fog simulations, clear scenes, and mixed datasets
with clear and foggy scenes. The results for all three sub-experiments are summarized in Tables
5.7 and 5.8.
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Table 5.7: Summarized Average Precision (AP) metrics for clear, foggy, and full data (clear + foggy) across various

augmentation levels.

Class Condition Baseline +20% +40% +60% +80% +100%

CAR
Clear 72.06 75.54 75.41 75.55 75.45 75.72
Foggy 41.62 46.42 47.06 48.49 48.25 49.20
Full 63.73 67.05 68.86 68.80 68.71 69.06

TRUCK
Clear 65.70 69.31 65.66 69.37 69.68 69.71
Foggy 45.87 52.56 55.60 54.92 53.80 49.73
Full 59.76 65.37 67.33 63.61 65.59 65.79

TRAILER
Clear 75.44 77.51 77.10 77.37 77.02 75.51
Foggy 53.87 49.81 53.43 49.84 51.80 51.87
Full 69.31 69.52 67.38 71.31 69.23 69.52

VAN
Clear 53.44 53.60 55.66 57.69 53.75 55.45
Foggy 36.26 30.25 30.77 40.04 39.02 40.84
Full 47.43 47.40 53.49 47.51 49.21 51.24

MOTORCYCLE
Clear 24.00 33.17 32.94 33.46 33.38 31.04
Foggy 4.00 12.00 12.00 14.00 14.00 11.27
Full 18.00 25.13 25.48 23.43 25.53 22.83

BUS
Clear 86.91 84.72 87.02 84.25 77.60 88.24
Foggy 68.03 58.84 61.83 61.59 45.29 62.09
Full 84.69 80.78 81.82 85.75 73.79 84.65

PEDESTRIAN
Clear 29.11 28.01 30.67 35.43 35.81 35.81
Foggy 3.90 6.24 5.73 8.62 7.78 8.49
Full 18.33 20.52 23.25 21.27 23.43 25.18

BICYCLE
Clear 53.17 55.47 46.03 56.20 34.90 27.67
Foggy 0.00 16.00 0.67 7.00 6.17 4.00
Full 45.28 52.96 50.66 44.19 23.94 24.36

EMERGENCY
Clear 0.00 0.00 0.00 0.00 0.00 0.00
Foggy 0.00 0.00 0.00 0.00 0.00 0.00
Full 100.00 100.00 100.00 100.00 100.00 100.00

OTHER
Clear 74.00 74.00 74.00 74.00 74.00 74.00
Foggy 50.00 50.00 50.00 50.00 74.00 50.00
Full 70.00 70.00 70.00 70.00 70.00 70.00

Mean AP
Clear 53.38 55.13 54.45 56.33 53.16 53.31
Foggy 30.35 32.21 31.71 33.45 33.21 32.75
Full 57.65 59.87 59.59 60.83 56.94 58.26

Average Precision (AP) Improvements The results in Table 5.7 show that the average preci-
sion improves using the augmented models for most classes. For instance, the AP score of the
CAR class improves by 7.58% compared to the baseline model when using the 100% augmented
model and evaluated on the fog-augmented scenes. Besides, while smaller object classes like
pedestrians, bicycles, and motorcycles are barely or not at all detectable by the baseline model
in foggy scenes (AP is 0% for the bicycle class using the baseline model), the augmented models
score 4,7% (PEDESTRIAN with 60% augmentation) to 16% (BICYCLE with 20% augmentation)
better. These results are visualized in Figure 5.9.

Precision, Recall, and (IoU) Table 5.8 shows that the IoU values improve with augmentation
models. The 80% augmentation model improves the IoU by 3.33% compared to the baseline
fog simulation model. The same observation can be made for the precision and recall metrics.
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Table 5.8: Summarized Mean IoU, Precision, and Recall metrics for clear, foggy, and overall scenes across various

augmentation levels.

Metric Scene Baseline +20% +40% +60% +80% +100%

IoU
Clear 0.4999 0.4951 0.5137 0.4982 0.4948 0.5029
Foggy 0.4147 0.4389 0.4272 0.4462 0.4480 0.4420

Overall 0.5196 0.5141 0.5036 0.5278 0.5101 0.5149

Precision
Clear 76.25 78.50 78.33 77.71 77.76 78.17
Foggy 66.82 73.42 68.33 72.50 72.22 72.50

Overall 81.500 83.452 82.917 70.0 82.668 83.370

Recall
Clear 49.11 51.79 51.37 53.49 51.09 51.13
Foggy 26.92 31.28 30.20 31.65 31.60 31.53

Overall 48.543 51.895 51.783 52.872 50.540 51.206

The 20% augmentation model scores the highest values for the three test datasets and shows
an improvement of 6.6% for foggy scenes and of ≈ 2% overall, which means that the model
has the lowest false positive detections. The 60% model, on the other hand, scores best in the
recall values, showing an improvement of ≈ 5% in foggy scenes, which means that the model
is best at detecting the existing objects.

Class-Specific Performance Like in the first experiment, different classes benefit differently
from augmentation. For example, the CAR class shows the highest AP at 100% augmentation
in clear and foggy conditions. However, the TRUCK class had a higher AP at 40% augmenta-
tion, while other object classes, such as VAN and TRAILER, showed varying results at different
augmentation levels.

Foggy Scenes Evaluation According to the results in Table 5.7, the model with 60% aug-
mentation shows the most improvement in the mean AP scores as well as in sensitive, yet less
frequent object classes (in the TUMTraf dataset), like motorcycles and pedestrians. The results
show an improvement of 3.1% in the mean AP value under foggy conditions.

Distance-Based Trends We have studied the effect of fog on objects at different distances
from the LiDAR sensor (the detailed results can be seen in the annex in Table A.5). We can
observe that the performance improvements vary by distance, with certain augmentation levels
optimizing detection at specific ranges. Since fog scatters points mostly in wide ranges, we are
interested in the performance results in ranges further away from the sensor (40-50 m and 50-
64 m). The results show that the 60% augmentation model performs best at 50-60 m, scoring a
57.48% AP for the VAN class (+26,26% improvement) and 16.17% for the PEDESTRIAN class
(the baseline model was not able to detect any pedestrians). The mean AP values for 40-50 m
and 50-60 m ranges also show that the 60% model is the most resilient to unseen fog conditions.

Optimal Augmentation Level

According to the results highlighted in Tables 5.7 and 5.8, the 60% augmentation model scores
best in the mean AP, mean IoU, and mean recall values as well as at further visibility ranges,
which makes it more resilient to unseen adverse weather and more reliable to apply in real life
scenarios.
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(a) Detection results of the baseline model (top left) and the five augmentation results at foggy scene.

The results highlight the 100% augmentation model’s performance at detecting cars compared to the

other models.

(b) Detection results of the baseline model (top left) and the five augmentation results at a day foggy

scene where the baseline model detected none of the objects while the augmentation models could

detect the pedestrian in the scene.

Figure 5.9: Detection results of the baseline model and the five augmentation results at a day foggy scene highlighting the improvement of detection results using adverse weather

augmentation for training. Blue boxes represent ground truth, and pink boxes represent the model’s detections. A video showing the fog-augmented test scenes with detections by

the baseline model and the 60% augmented model can be found under the link:https://rb.gy/55ka8j
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Table 5.9: Summarized Mean IoU, Precision, and Recall metrics for overall scenes in Experiments 3.1 and 3.2 across

various augmentation levels.

Metric Experiment Baseline +20% +40% +60% +80% +100%

IoU
3.1 0.5177 0.5113 0.5176 0.4989 0.5094 0.5141
3.2 0.5252 0.5152 0.5243 0.5012 0.5205 0.5207

Precision
3.1 81.500 83.333 81.5 82.852 82.563 83.421
3.2 81.500 83.542 81.6 82.893 81.765 84.375

Recall
3.1 52.713 56.135 54.622 57.167 54.232 55.469
3.2 52.713 55.698 54.447 56.265 53.359 54.729

5.2.3 Experiment 3: Augmented Test Dataset with Seen Conditions (Rain)

The following experiment aims to observe the models’ performance when evaluated with a seen
condition (rain) using rain rates from the training dataset (Experiment 3.1) vs. new unseen rain
rates (Experiment 3.2). We summarize the results of Experiments 3.1 and 3.2 in Tables 5.10
and 5.9.

Average Precision (AP) Metrics The evaluation results for the mean average precision show
that the 60% augmentation model scores best for both simulated scenarios. The model improves
performance by 3.05% for seen rain rates and by 3.39% for unseen rain rates. The qualitative
results shown in Figure 5.10 further highlight the positive effect of the augmentation approach
on the model’s performance.

Mean IoU, Precision, and Recall According to Table 5.9, the mean IoU was highest for both
conditions at the baseline model, which means that the augmentation did not improve the
spatial accuracy of the model. On the other hand, relevant metrics for the 3D detection task,
such as precision and recall, were highest at respectively 100% and 60% augmentation models
with improvements of 2.875% and 3.552% for unseen rain rates.

Class-Specific Performance

• CAR: The AP improved significantly from the baseline in both experiments. The highest AP
was observed in Experiment 3.2 at 80% augmentation (75.10%), suggesting that different
rain rates can enhance car detection more effectively.

• TRUCK and TRAILER: The 20% augmentation model shows the best performance for
larger vehicles like TRUCK and TRAILER while improving the performance of the baseline
model for the unseen rain rates simulation by 2.17% for the TRAILER class and 5.88% for
the TRUCK class.

• VAN and BUS: Both experiments showed the highest AP at 100% augmentation for
medium-sized vehicles like buses and vans.

• PEDESTRIAN: Both experiments showed steady improvement, with the highest AP at
100% augmentation, Experiment 3.2 (31.71%) outperforming Experiment 3.1 (29.31%),
which marks an ≈ 10% improvement compared to the baseline model.

• BICYCLE: The highest AP was seen at 60% in both experiments, with Experiment 3.2
(59.53%) outperforming Experiment 3.1 (60.18%).
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Table 5.10: Summarized Average Precision (AP) metrics for Experiments 3.1 and 3.2.

Class Experiment Baseline +20% +40% +60% +80% +100%

CAR
3.1 69.78 74.90 74.89 74.94 74.90 73.46
3.2 68.19 73.37 73.38 73.43 75.10 73.56

TRUCK
3.1 65.81 71.61 65.83 69.68 69.71 69.88
3.2 63.72 69.60 65.76 69.46 67.66 67.89

TRAILER
3.1 75.26 75.49 77.28 73.42 75.27 73.35
3.2 73.33 75.50 75.32 75.30 75.19 71.55

VAN
3.1 51.69 53.72 51.80 55.81 53.77 57.67
3.2 53.53 55.64 51.78 55.78 51.86 57.72

MOTORCYCLE
3.1 16.00 21.26 22.99 23.38 23.34 21.35
3.2 18.00 25.14 25.25 25.16 25.31 23.18

BUS
3.1 86.28 85.31 87.97 84.26 81.83 88.94
3.2 89.40 88.63 90.72 88.69 83.64 91.68

PEDESTRIAN
3.1 19.25 21.95 22.84 26.17 25.07 29.31
3.2 22.62 27.59 26.92 29.90 27.84 31.71

BICYCLE
3.1 53.08 58.67 48.02 60.18 25.65 24.24
3.2 54.55 59.00 48.18 59.53 27.35 33.57

EMERGENCY
3.1 100.00 100.00 100.00 100.00 100.00 100.00
3.2 100.00 100.00 100.00 100.00 100.00 100.00

OTHER
3.1 86.00 86.00 86.00 86.00 86.00 86.00
3.2 62.00 62.00 62.00 62.00 62.00 62.00

Mean AP
3.1 62.31 64.89 63.76 65.38 61.55 62.42
3.2 60.53 63.65 61.93 63.92 59.59 61.29

Table 5.11: Runtime performance of the baseline PointPillars model and the five augmented models evaluated on

the original test dataset using RTX 3090.

Model Runtime (ms) FPS

Baseline 23.57 42.42
+20% augmentation 24.48 40.85
+40% augmentation 24.57 40.70
+60% augmentation 24.39 41.00
+80% augmentation 24.46 40.89

+100% augmentation 24.95 40.08

Optimal Augmentation Model While the rain augmentation did not improve the IoU of the
3D detection model, the mAP results show that the 60% augmentation model performs best on
average. Nevertheless, it is worth mentioning that the higher augmentation level (100%) per-
formed consistently best in both experiments for the classes VAN, BUS, and PEDESTRIAN, which
makes combining different augmentation models based on the class a promising approach.

5.2.4 Runtime Performance

To evaluate the run time performance of the models, we calculated the Frame per Second (FPS)
value for each model when evaluated using the base test set of the TUMTraf-I dataset. The
results are noted in Table 5.11 and show that all augmented models have a lower runtime per-
formance than the baseline model. We can observe that the 60% augmentation model reaches
24.39ms/it, which is 0.82ms longer than the baseline model.
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(a) Detection results of the baseline model (top left) and the five augmentation results at

the rain-simulated scene with rain rates 5.6mm/h (left): same rain rate as in the training

dataset. A video showing the rain-augmented (rain rate: 19mm/h) test scenes with detections

by the baseline model and the 60% augmented model can be found under the following link:

https://drive.google.com/file/d/1L7qKZBjvpmM_myuzJNygVGZuA9K8-38C/view?usp=drive_link

(b) Detection results of the baseline model (top left) and the five augmentation results

at the rain-simulated scene with rain rates 25mm/h (left): new unseen rain rate. A

video showing the rain-augmented (rain rate: 35mm/h) test scenes with detections by the

baseline model and the 60% augmented model can be found under the following link:

https://drive.google.com/file/d/1LQJj4e9NNFiauoSwJxQ2jBnUcezQampo/view?usp=drive_link

Figure 5.10: Detection results of the baseline model (top left) and the five augmentation results at the rain-simulated scene with rain rates 5.6mm/h (left) and 25mm/h (right), which

is the same rain rate used for training. (The rain effect is only visible on the scattered point cloud). The results highlight the augmentation model’s ability to detect objects at further

ranges and objects with scattered points that the baseline model could not detect. Blue boxes represent ground truth, and pink boxes represent the model’s detections.
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5.2.5 mCE and mRR Analysis

Based on the evaluation of the three experiments, we can conclude that the 60% augmentation
model performs most consistently well when compared to the baseline model and the other
augmentation models. However, to have a more solid comparison, we decided to use the mCE
and mRR metrics explained in 2 and introduced in [Kon+23] that are designed to calculate the
resilience of the models when faced with different corruptions and corruption levels.
To interpret the Mean Corruption Error (mCE) and Mean Resilience Rate (mRR) values, it is
important to understand what each metric signifies:

• Mean Corruption Error (mCE): This metric quantifies the degradation in model perfor-
mance under various corruptions. Higher mCE values indicate more significant perfor-
mance degradation, while lower mCE values indicate better robustness to corruption.

• Mean Resilience Rate (mRR): This metric measures the model’s resilience or ability to
maintain performance across different evaluation scenarios. Higher mRR values indicate
better resilience, showing the model performs well under challenging conditions.

As shown in Figure 5.11, the model with 60% augmentation scores the lowest mCE (0.92)
and the highest mRR (1.055), indicating its strong robustness when compared with the other
models, which is in total alignment with our conclusion. The model also has consistently low
mCE values and high mRR values across all scenarios, highlighting its stability and suitability
for deployment in adverse weather conditions in real scenarios.

5.2.6 Conclusions

Based on the results of the 3D detection metrics and the mRR and mCE results shown in Figure
5.11, we can conclude that the 60% augmentation model is the most robust and resilient when
evaluated with different adverse weather conditions. However, if we further observe Figure
5.12, we can see that the model performs exceptionally well for the most frequent object class
of our dataset (CAR), while its performance for other sensitive classes like BUS, PEDESTRIAN,
and BICYCLE leaves room for improvement.
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(a) AP - Mean Corruption Error (mCE) Comparison

(b) AP - Mean Resilience Rate (mRR) Comparison

Figure 5.11: Comparison of AP - Mean Corruption Error (mCE) and Mean Resilience Rate (mRR).

63



(a) AP Heatmap for CAR (b) AP Heatmap for PEDESTRIAN

(c) AP Heatmap for BICYCLE (d) AP Heatmap for BUS

Figure 5.12: Heatmaps representing the average precisions of the different augmentation models and the baseline model for the CAR, PEDESTRIAN, BICYCLE, and BUS classes
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5.3 Backwards Point Concatenation

As mentioned in Chapter 4, we follow up on the attempts of [Kem+23a] to improve the 3D
detection by using point concatenation, where we test the offset point concatenation approach
on our TUMTraf-I dataset. The test dataset we have is composed of frames from four different
sequences. Three sequences were captured during the day and dusk, and the rest were captured
at night in rainy conditions. Using the test dataset, we will evaluate the concatenation approach
with different setups and report the results of both the baseline PointPillars model and the 60%
augmented model. We test the approach with and without the filtering method.

In Chapter 4, we have provided the algorithm for this approach that has two hyperparame-
ters as input: the offset, which indicates how many frames will be concatenated to the current
frame at time t, and the distance threshold that will define whether a point from a point cloud
X − 1 will be taken into consideration in the concatenation. The algorithm takes two hyperpa-
rameters, offset and distance threshold, as input, which we start by finetuning.

5.3.1 Backwards Concatenation without Filtering

The baseline model initially scored an AP value of 42.4% at 0.5 IoU threshold when evaluated on
the rainy night scenes from the TUMTraf-I dataset. We will consider this our baseline scenario.
We have varied the offset for concatenation from 1 to 10 without using any filtering techniques
on the point clouds and re-evaluated the model. The results of the evaluation are shown in
Figure 5.13. As seen on the line chart, the performance of the baseline model drops by at least
8.1% in the AP score and 4% in the IoU score when applying concatenation with offset 1. The
chart shows that the performance indicators tend to drop more for higher concatenation offset
values.

Figure 5.14 shows the concatenation results using offsets 1 and 2 on a point cloud at time t

and t − 2. Both concatenated point clouds show a restored shape of the infrastructure, mainly
the bridge and the car underneath the bridge, which is the primary goal of the concatenation
approach. However, we can observe the side effects of the concatenation of point clouds without
applying any filtering of points on the last image in Figure 5.14a. The point cloud shows an
added noise with the shape of a bus that does not appear on the RGB image but appears on
the pictures in Figure 5.14b at t − 2. The last image results from concatenating the point cloud
at time t with the two-point clouds at times t − 1 and t − 2. This added noise resulting from
the raw concatenation of consecutive point clouds explains the significant drop in performance
shown in Figure 5.13.

5.3.2 Hyperparameter Tuning

The first iterations of the hyperparameter tuning process we conducted showed that the 3D
detection model performs best when setting o f f set = 1. While setting the offset to a value
higher than 1 does not result in a drop in the 3D detection model’s performance, we did not
record any improvement in the evaluation metrics. Therefore, we will set the offset parameter
to 1 and tune the distance threshold limits. We evaluate the baseline PointPillars model on the
37 rainy night scenes from the TUMTraf-I dataset using distance minimum threshold values in
the range of [0.1, 1] and distance maximum threshold values in the range of [0.5, 1]. The
results are visualized in Figure 5.16. Figure 5.16 shows an improved performance in the AP
value that goes up to 43.36% (+1% compared to the baseline model). The results show that
concatenation with offset equals 1, minimum distance threshold 0.6, and maximum distance
threshold 0.8 scores the best improvement in AP compared to the baseline model.
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Figure 5.13: Evaluation Results of the baseline PointPillars model using 1 to 10 concatenation offset values. The

performance of the baseline model with 0 frame concatenation is represented by the dashed horizontal line.
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(a) The observed image at time t .

(b) The observed image at t − 2

Figure 5.14: Qualitative Results of the baseline PointPillars model using 1 to 10 concatenation offset values. The

first image is the original RGB image.

Figure 5.15: The results of the evaluation of the baseline PointPillars once without point cloud concatenation (left)

and once with a 1-Frame concatenation (right). Blue boxes represent ground truth, and pink boxes represent the

model’s detections.

5.3.3 Performance Evaluation

We use the hyperparameter values obtained from the abovementioned finetuning to initialize
our algorithm and get the qualitative results visualized in Figure 5.15. The results show the
model’s ability to recover the points of the trailer positioned far from the LiDAR sensor when
using the 1-frame-backward concatenation, and thus its ability to detect the trailer as opposed to
the baseline model. Figure 5.15 represents only an example of multiple improvement instances
we could track. We further tested the impact of the concatenation on the run-time performance.
The inference statistics show that while the baseline model without concatenation reached an
FPS of 7.38, the concatenation step reduced the model’s runtime performance to 3.96 FPS
(almost double). While an increase in the model’s FPS is expected, this result encourages
further investigation of the approach to find a way to compensate for the latency.
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Figure 5.16: Evaluation results of the baseline PointPillars model using minimum and maximum point distance

ranging from 0.5 to 1.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We conducted a total of 48 experiments using five different augmentation levels of the TUMTraf-
I [Zim+23c] dataset where we simulated adverse weather conditions such as fog, moderate rain
with rain rates varying from [2,19] mm/h, heavier rain with rain rates varying from [25,45]
mm/h, and snow (71 mm/h). The results of the experiments show that augmenting 60% of the
original dataset was able to improve the baseline model’s performance by ≈ 3.5% (mAP) on
average when testing on the full original dataset and was able to improve the detection of small
and sensitive objects like pedestrians and bicycles by more than 10%, especially under unseen
weather conditions like fog. These results validate the augmentation approach’s capability to
improve the model’s resilience to corruption by adverse weather conditions. We validated the
approach using more task-related metrics like mCE and mRR, which were designed to compare
the model’s performance when faced with corruption to its performance on normal weather
data. The results showed that the 60% augmentation model scored best on average and con-
sistently through all types of adverse weather conditions we used in our experiments. While
we created a more robust and resilient model against adverse weather conditions, the obtained
60% augmented model is still prone to false positives. Both the quantitative (see Table 5.8) and
the qualitative results (See Figure 6.1a) show a lower precision for the 60% augmentation level
when compared to the other models when evaluated on unseen conditions, like fog. The high
rate of false positives results in the prediction of ghost objects. This can cause sudden braking
and traffic incidents for autonomous driving.

Since data augmentation is an approach that requires the retraining of the model on a much
larger dataset, it is not only time-consuming but also resource-bound. Therefore, we tried
another approach: point cloud concatenation at inference time. We added a filtering step and a
similarity verification step to the point cloud concatenation approach mentioned in [Kem+23a],
and we obtained a slight improvement of ≈ 1% compared with the baseline inference results.
While this improvement is a testimony of the approach’s ability to mitigate detection problems
resulting from scattered and sparse point clouds from various corruption types, the approach
leaves room for improvement. Due to the considerably small test dataset in the TUMTraf-I
dataset, we could only fine-tune the hyper-parameters of the algorithm using 240 instances.



(a) Fog-augmented point cloud showing a false positive detection of traffic shield, classified as a car.

(b) Rain-augmented point cloud showing a misclassification of a motorcycle as a car by all augmented models

while remaining undetected by the baseline model.

Figure 6.1: Open issues of augmented models: Misdetections and Misclassifications. Blue boxes represent ground

truth, and pink boxes represent the model’s detections.
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6.2 Future Work

6.2.1 Increasing Dataset Size

In the future, we plan to use a more extensive test dataset with varied conditions. Since our
dataset only shows one type of adverse weather conditions, rain, expanding the dataset will
allow a more comprehensive evaluation of the model’s performance across a broader range of
scenarios, enhancing the robustness and generalisability of our results. Besides, the dataset
statistics show a significantly lower number of labels in some object classes, such as MOTORCY-
CLE, EMERGENCY, and BICYCLE. While the 60% augmentation model performed better than
the baseline model, the reduced number of detected objects in these classes can lead to faulty
classifications despite correct detections. Figure 6.1b shows such a scenario, where a motorcycle
was detected by the augmented models, as opposed to the baseline model. However, the mod-
els mistakenly classified the motorcycle as a car. We believe such a problem can be mitigated by
enlarging the dataset with more instances of the less frequent object classes.

6.2.2 Improving the Spacial Accuracy

While the 60% augmentation model performs best on the 3D prediction task, the lower IoU val-
ues recorded across the experiments we conducted show that the model’s spatial accuracy still
needs improvement. The model has a higher capability of detecting existing objects; however,
the qualitative results show that the detected bounding boxes are misaligned with the ground
truth bounding boxes. The authors of [ZGK22] propose the DASE-ProPillars Model that intro-
duces a Multi-task Detection Head to the PointPillars model to improve the IoU detection and
the classification score of the PointPillars model, which is a promising approach that we would
like to try in the future in combination with our augmentation approach.

6.2.3 Improving the Data Augmentation Pipeline

We aim to extend our data augmentation approach to cover more adverse weather conditions.
This includes simulating hail and extreme gas exhaust from cold weather, studied in [Has+17]
and [Pir+22], and mixed weather scenarios to push the limits of the model’s robustness. We
plan to experiment with different severity levels for rain, fog, and snow to understand how
varying intensities affect model performance and to fine-tune the model accordingly. Another
promising direction is to implement a weather classification approach. In this approach, we
would first detect the weather conditions in a point cloud and then use the best-performing
model for those adverse weather conditions. This method involves training separate models for
each weather condition and developing a classifier to identify the current weather accurately
from the point cloud data. Based on the detected weather, the dynamic model selection would
ensure optimal performance across diverse scenarios. This could help reduce false positives
and improve detection reliability in real-world applications. The authors of [Ket+24] propose
a method for classifying weather conditions, precisely precipitation rates, that we would like to
investigate further in combination with our approaches.

6.2.4 Improving the Point Concatenation Approach

To improve the point cloud concatenation at inference time, we propose investigating the fea-
ture concatenation approach, as described by [Kem+23a]. Additionally, [Xie+23] presents a
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feature fusion technique using a multi-frame detection head for the PointPillars model, report-
ing an mAP improvement of 8.5%. Therefore, we would like to explore encoding temporal
information from multiple frames as features and test its impact on the model’s robustness. A
further challenge introduced by the concatenation approach is the potential concatenation of
adverse weather points. To avoid the augmentation of noise in the dataset, we would like to
enhance the filtering layer of the concatenation approach with a filter of point clouds resulting
from adverse weather, such as gas exhaust and snowflakes. Previous work such as [Pir+24]
and [Qi+24] propose promising approaches for such a filter based on semantic segmentation,
which we would like to test and evaluate with our concatenation approach.

6.2.5 Improving Runtime Performance

Evaluating the inference time of the concatenation-improved inference pipeline and the data
augmentation approach shows a decrease in the model’s runtime performance. We would like
to explore methods to improve efficiency and keep the approach applicable in real-life scenar-
ios. We suggest integrating the CUDA-PointPillars [Blo21] approach introduced by NVIDIA to
mitigate the latency introduced by point cloud concatenation. CUDA-PointPillars significantly
speeds up point cloud processing using GPU acceleration, helping maintain high detection ac-
curacy without compromising speed. The authors of [Zim+22] report an increase of ≈ 20Hz in
inference time when using TesorRT, the engine used in CUDA-PointPillars [Blo21].

6.2.6 Use of Generative Models

In an attempt to use the high performance of generative AI models in the data augmentation
approach, we have tested the results of data augmentation using commonly used generative
models. Yet, we did not come to promising results. In contrast, [Zha+24b] reached an increase
of 2.46% in 3D average precision by introducing a fusion technique of segmentation maps and
raw point cloud data that serves as a preprocessing step to the data fed to the image-to-image
translation model CycleGAN [Zhu+17]. We would like to investigate this approach further
using the TUMTraf-I point cloud dataset.
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Appendix A

Appendix 1

A.1 Experiments and Results

This section presents the extended results from our experiments in Chapter 5. The experiments
are as follows:

• Experiment 1: We run the evaluation pipeline on the baseline model and the five aug-
mented models using the original test dataset from TUMTraf-I [Zim+23c]. We separated
the test dataset into clear weather scenes and rainy night scenes. The results of the exper-
iments are reported in Tables A.1, A.2, A.3, and A.4.

• Experiment 2: We run the evaluation pipeline on the baseline model and the five aug-
mented models using the original test dataset from TUMTraf-I [Zim+23c] with addition-
ally 30% of the point clouds augmented with fog effects. We separated the test dataset
into clear weather scenes and foggy scenes. The results of the experiments are reported
in Table A.5.

• Experiment 3: We run the evaluation pipeline on the baseline model and the five aug-
mented models using the original test dataset from TUMTraf-I [Zim+23c] with addition-
ally 80% of the point clouds augmented with rainy effects. We created two test datasets
using rain rates from the same rain samples as the training dataset and with different ones
and reported the results of the experiments in Table A.7, A.6, A.8, and A.9.



A.1.1 Experiment 1: Data augmentation - Full original Test Dataset

Table A.1: The Average Precision (AP) metrics for various augmentation levels across all scenes. It includes AP for

each object class (CAR, TRUCK, TRAILER, VAN, MOTORCYCLE, BUS, PEDESTRIAN, BICYCLE, EMERGENCY,

OTHER) at different distances (0-40m, 40-50m, 50-64m).

Class Distance Baseline +20% +40% +60% +80% +100%

CAR

Overall 69.86 73.30 74.99 74.98 74.97 75.24
0-40m 68.97 72.50 74.22 74.22 73.90 74.28
40-50m 77.45 77.03 77.13 79.11 77.28 77.42
50-64m 68.62 72.18 69.87 66.30 72.14 68.53

TRUCK

Overall 63.75 69.50 65.71 71.40 67.67 69.79
0-40m 67.81 75.52 69.68 77.31 75.63 75.75
40-50m 68.00 72.00 68.00 66.00 68.00 68.00
50-64m 46.97 49.57 49.85 49.79 47.41 49.89

TRAILER

Overall 75.26 75.64 77.21 73.39 75.21 73.59
0-40m 89.40 89.74 91.74 87.21 91.27 89.67
40-50m 39.51 31.45 32.85 35.60 29.04 35.37
50-64m 59.83 63.92 63.55 61.87 61.84 59.86

VAN

Overall 51.67 53.49 53.68 57.63 51.79 53.63
0-40m 51.66 51.85 51.92 53.85 51.65 53.55
40-50m 55.88 57.88 55.98 55.90 56.00 55.89
50-64m 27.88 30.11 45.30 63.34 30.67 45.57

MOTORCYCLE

Overall 22.00 30.91 29.35 31.42 31.52 26.98
0-40m 74.00 88.00 87.72 92.00 88.00 87.49
40-50m 4.00 8.79 11.83 12.30 12.20 7.25
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

BUS

Overall 87.02 86.57 88.30 85.19 81.38 89.55
0-40m 95.97 99.47 99.88 93.28 98.47 99.10
40-50m 39.83 43.66 47.67 41.39 38.08 46.94
50-64m 91.32 84.81 87.07 87.88 84.80 89.55

PEDESTRIAN

Overall 23.82 24.45 25.38 28.58 27.86 30.18
0-40m 75.33 75.73 72.76 72.13 83.86 79.94
40-50m 14.81 15.62 14.15 19.69 15.85 18.37
50-64m 0.00 15.50 11.95 20.00 13.78 13.78

BICYCLE

Overall 56.69 62.58 52.94 62.33 29.54 30.40
0-40m 60.85 65.07 62.01 70.31 29.54 31.90
40-50m 22.39 30.39 18.47 17.33 17.79 18.09
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

EMERGENCY

Overall 100.00 100.00 100.00 100.00 100.00 100.00
0-40m 0.00 0.00 0.00 0.00 0.00 0.00
40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 100.00 100.00 100.00 100.00 100.00 100.00

OTHER

Overall 80.00 80.00 80.00 80.00 80.00 80.00
0-40m 80.00 80.00 80.00 80.00 80.00 80.00
40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

Mean AP

Overall 63.01 65.64 64.76 66.49 61.99 62.94
0-40m 66.40 69.79 68.99 69.62 67.23 67.17
40-50m 32.19 33.68 32.61 32.73 31.42 32.73
50-64m 39.46 41.61 42.76 44.92 41.06 42.72
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Table A.2: Performance (AP) metrics for night scenes, detailing performance for each class at different distances

under night conditions.

Class Metric Baseline +20% +40% +60% +80% +100%

CAR

Overall 70.00 82.64 82.52 80.90 82.84 82.77
0-40m 56.00 89.97 88.38 87.90 87.85 86.72

40-50m 86.00 80.00 80.00 80.00 80.00 84.00
50-64m 60.00 62.00 65.90 56.00 62.00 62.00

TRUCK

Overall 100.00 100.00 100.00 98.00 100.00 100.00
0-40m 100.00 100.00 100.00 100.00 100.00 100.00

40-50m 100.00 100.00 100.00 96.00 100.00 100.00
50-64m 100.00 100.00 100.00 100.00 100.00 100.00

TRAILER

Overall 88.00 88.00 88.00 90.00 86.00 86.00
0-40m 0.00 0.00 0.00 0.00 0.00 0.00

40-50m 72.00 26.00 44.00 44.00 18.00 44.00
50-64m 90.00 90.00 88.00 90.00 90.00 90.00

VAN

Overall 66.00 66.00 66.00 66.00 66.00 66.00
0-40m 84.00 84.00 84.00 84.00 84.00 84.00

40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

MOTORCYCLE

Overall 0.00 0.00 0.00 0.00 0.00 0.00
0-40m 0.00 0.00 0.00 0.00 0.00 0.00

40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

BUS

Overall 100.00 100.00 100.00 96.00 96.00 100.00
0-40m 100.00 100.00 100.00 100.00 100.00 100.00

40-50m 100.00 100.00 100.00 82.00 82.00 100.00
50-64m 100.00 100.00 100.00 100.00 100.00 100.00

PEDESTRIAN

Overall 0.00 0.00 0.00 0.00 0.00 0.00
0-40m 0.00 0.00 0.00 0.00 0.00 0.00

40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

BICYCLE

Overall 0.00 0.00 0.00 0.00 0.00 0.00
0-40m 0.00 0.00 0.00 0.00 0.00 0.00

40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

EMERGENCY

Overall 0.00 0.00 0.00 0.00 0.00 0.00
0-40m 0.00 0.00 0.00 0.00 0.00 0.00

40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

OTHER

Overall 0.00 0.00 0.00 0.00 0.00 0.00
0-40m 0.00 0.00 0.00 0.00 0.00 0.00

40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

Mean AP

Overall 42.40 43.66 43.65 43.09 43.08 43.48
0-40m 34.00 37.40 37.24 37.19 37.18 37.07

40-50m 35.80 30.60 32.40 30.20 28.00 32.80
50-64m 35.00 35.20 35.39 34.60 35.20 35.20
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Table A.3: IoU, Precision, and Recall metrics for overall scenes, comparing spatial accuracy across augmentation

levels for each class at various distances

Class Metric Baseline +20% +40% +60% +80% +100%
CAR IoU 0.7245 0.7076 0.7084 0.7158 0.7068 0.7115

Precision 70.456 73.821 75.482 75.472 75.457 75.722
Recall 52.091 58.105 60.152 60.077 60.329 60.077

TRUCK IoU 0.7056 0.7018 0.7173 0.7008 0.7023 0.7002
Precision 64.458 70.103 66.386 71.958 68.302 70.385

Recall 41.474 48.999 43.617 51.075 46.725 48.623
TRAILER IoU 0.6975 0.6939 0.6820 0.6880 0.6884 0.7044

Precision 75.748 76.119 77.658 73.915 75.701 74.106
Recall 56.858 57.106 59.786 54.679 57.501 55.207

VAN IoU 0.7374 0.6818 0.6923 0.6999 0.6953 0.6800
Precision 52.622 54.403 54.589 58.457 52.733 54.538

Recall 27.152 28.701 28.810 33.081 27.257 29.245
MOTORCYCLE IoU 0.4211 0.3559 0.3725 0.3657 0.3365 0.3920

Precision 23.529 32.266 30.739 32.760 32.867 28.416
Recall 4.874 10.238 9.412 10.476 10.476 7.983

BUS IoU 0.579 0.5446 0.5513 0.5056 0.5073 0.5042
Precision 87.272 86.829 88.530 85.481 81.746 89.752

Recall 81.176 79.752 80.702 81.176 76.625 83.911
PEDESTRIAN IoU 0.3491 0.4348 0.4664 0.4632 0.4784 0.4854

Precision 25.314 25.930 26.843 29.981 29.274 31.551
Recall 14.557 17.762 17.762 19.393 17.850 17.937

BICYCLE IoU 0.3307 0.3787 0.3425 0.3353 0.3746 0.3321
Precision 57.536 63.311 53.862 63.069 30.919 31.769

Recall 48.956 57.970 52.657 60.721 29.222 32.100
EMERGENCY IoU 0.3856 0.3124 0.3476 0.2445 0.3133 0.2848

Precision 100.000 100.000 100.000 100.000 100.000 100.000
Recall 100.000 100.000 100.000 100.000 100.000 100.000

OTHER IoU 0.3268 0.3765 0.4136 0.3563 0.3312 0.3786
Precision 80.392 80.392 80.392 80.392 80.392 80.392

Recall 64.314 64.314 64.314 64.314 64.314 64.314
Mean IoU IoU 0.5257 0.5188 0.5294 0.5075 0.5134 0.5173

Precision 81.500 83.542 82.917 82.549 83.370 82.550
Recall 53.292 56.718 56.299 57.720 54.810 55.661
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Table A.4: IoU, Precision, and Recall metrics for night scenes, comparing spatial accuracy across augmentation

levels for each class at various distances

Class Metric Baseline +20% +40% +60% +80% +100%
CAR IoU 0.8194 0.7387 0.7544 0.7709 0.7362 0.7467

Precision 70.588 82.976 82.858 81.270 83.181 83.111
Recall 48.789 70.055 70.675 66.609 70.055 70.675

TRUCK IoU 0.7149 0.7748 0.7756 0.7695 0.7189 0.6643
Precision 100.000 100.000 100.000 98.039 100.000 100.000

Recall 100.000 100.000 100.000 96.000 100.000 100.000
TRAILER IoU 0.6501 0.6779 0.6600 0.6628 0.6601 0.6602

Precision 88.235 88.235 88.235 90.196 86.275 86.275
Recall 77.206 77.206 77.206 80.532 73.950 73.950

VAN IoU 0.4167 0.4202 0.4414 0.4396 0.4236 0.4153
Precision 66.667 66.667 66.667 66.667 66.667 66.667

Recall 44.444 44.444 44.444 44.444 44.444 44.444
MOTORCYCLE IoU 0.00 0.00 0.00 0.00 0.00 0.00

Precision 0.00 0.00 0.00 0.00 0.00 0.00
Recall 0.00 0.00 0.00 0.00 0.00 0.00

BUS IoU 0.8436 0.8270 0.8252 0.8507 0.8383 0.8230
Precision 100.000 100.000 100.000 96.078 96.078 100.000

Recall 100.000 100.000 100.000 92.383 92.383 100.000
PEDESTRIAN IoU 0.00 0.00 0.00 0.00 0.00 0.00

Precision 0.00 0.00 0.00 0.00 0.00 0.00
Recall 0.00 0.00 0.00 0.00 0.00 0.00

BICYCLE IoU 0.00 0.00 0.00 0.00 0.00 0.00
Precision 0.00 0.00 0.00 0.00 0.00 0.00

Recall 0.00 0.00 0.00 0.00 0.00 0.00
EMERGENCY IoU 0.00 0.00 0.00 0.00 0.00 0.00

Precision 0.00 0.00 0.00 0.00 0.00 0.00
Recall 0.00 0.00 0.00 0.00 0.00 0.00

OTHER IoU 0.00 0.00 0.00 0.00 0.00 0.00
Precision 0.00 0.00 0.00 0.00 0.00 0.00

Recall 0.00 0.00 0.00 0.00 0.00 0.00
Mean IoU IoU 0.3445 0.3439 0.3457 0.3494 0.3377 0.3310

Precision 42.500 42.500 42.500 42.500 42.500 42.500
Recall 37.107 37.094 38.057 37.067 36.409 37.761
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A.1.2 Experiment 2: Data augmentation - Full original Test Dataset with Fog augmentation

Table A.5: Performance (AP) metrics for fog-augmented scenes, detailing performance for each class at different

distances under foggy conditions.

Class Metric Baseline +20% +40% +60% +80% +100%

CAR

Overall 63.73 67.05 68.80 68.86 68.71 69.06
0-40m 63.12 68.20 70.09 70.01 69.59 70.07
40-50m 71.25 70.90 70.98 72.98 71.14 71.28
50-64m 54.52 57.80 55.80 54.10 57.94 56.33

TRUCK

Overall 59.76 65.37 63.61 67.33 65.59 65.79
0-40m 63.81 69.39 67.55 73.20 71.63 71.78
40-50m 58.00 65.59 63.95 59.94 62.00 62.00
50-64m 40.98 47.32 47.48 47.32 48.72 47.61

TRAILER

Overall 69.31 69.52 71.31 67.38 69.23 69.52
0-40m 87.03 83.61 89.72 81.26 87.08 85.56
40-50m 33.55 25.58 27.10 29.23 25.30 29.60
50-64m 51.75 55.93 55.45 53.78 53.72 53.75

VAN

Overall 47.43 47.40 47.51 53.49 49.21 51.24
0-40m 49.29 49.46 47.69 51.46 47.40 49.41
40-50m 49.63 47.80 47.80 53.77 51.70 51.77
50-64m 31.22 33.33 44.19 57.48 34.21 46.02

MOTORCYCLE

Overall 18.00 25.13 23.43 25.48 25.53 22.83
0-40m 64.00 76.00 75.68 75.88 76.00 77.17
40-50m 4.00 7.13 9.83 10.42 10.15 5.50
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

BUS

Overall 84.69 80.78 85.75 81.82 73.79 84.65
0-40m 90.57 93.84 98.75 88.11 93.67 94.48
40-50m 39.00 40.33 48.21 43.58 37.81 45.86
50-64m 88.67 82.45 84.05 85.18 76.87 84.43

PEDESTRIAN

Overall 18.33 20.52 21.27 23.25 23.43 25.18
0-40m 59.90 68.40 63.88 63.56 74.77 69.10
40-50m 11.94 12.52 11.40 16.17 13.14 14.94
50-64m 0.00 12.83 10.33 16.67 11.56 11.69

BICYCLE

Overall 45.28 52.96 44.19 50.66 23.94 24.36
0-40m 48.61 54.73 49.22 55.67 25.20 24.41
40-50m 19.66 26.86 16.19 15.33 15.78 16.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

EMERGENCY

Overall 100.00 100.00 100.00 100.00 100.00 100.00
0-40m 0.00 0.00 0.00 0.00 0.00 0.00
40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 100.00 100.00 100.00 100.00 100.00 100.00

OTHER

Overall 70.00 70.00 70.00 70.00 70.00 70.00
0-40m 70.00 70.00 70.00 70.00 70.00 70.00
40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

Mean AP

Overall 57.65 59.87 59.59 60.83 56.94 58.26
0-40m 59.63 63.36 63.26 62.91 61.53 61.20
40-50m 28.70 29.67 29.55 30.14 28.70 29.70
50-64m 36.71 38.97 39.73 41.45 38.30 39.98
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A.1.3 Experiment 3: Data augmentation - Full original Test Dataset with Seen Conditions
(Rain)

Experiment 3.1: Augmented Test Dataset with Seen Conditions (Rain)

Table A.6: IoU, Precision, and Recall metrics for Experiment 3.1, comparing spatial accuracy across augmentation

levels for each class at various distances.

Class Metric Baseline +20% +40% +60% +80% +100%

CAR
IoU 0.718 0.703 0.709 0.712 0.710 0.708
Precision 70.371 75.397 75.382 75.430 75.393 73.978
Recall 51.706 59.843 60.039 60.335 60.291 58.116

TRUCK
IoU 0.699 0.692 0.707 0.698 0.698 0.705
Precision 66.483 72.168 66.501 70.272 70.308 70.476
Recall 42.797 51.545 43.543 49.333 48.276 48.375

TRAILER
IoU 0.695 0.675 0.677 0.683 0.688 0.696
Precision 75.748 75.973 77.729 73.936 75.755 73.876
Recall 57.092 56.679 60.152 55.125 57.198 54.207

VAN
IoU 0.723 0.672 0.677 0.690 0.677 0.674
Precision 52.643 54.632 52.748 56.679 54.680 58.502
Recall 27.255 28.937 27.309 31.306 28.601 33.107

MOTORCYCLE
IoU 0.422 0.379 0.367 0.362 0.342 0.391
Precision 17.647 22.808 24.505 24.883 24.848 22.893
Recall 2.783 4.977 5.686 6.078 6.078 4.977

BUS
IoU 0.550 0.509 0.549 0.491 0.476 0.468
Precision 86.549 85.596 88.206 84.565 82.182 89.166
Recall 80.201 79.714 80.201 80.689 76.312 83.439

PEDESTRIAN
IoU 0.356 0.432 0.462 0.466 0.479 0.484
Precision 20.833 23.483 24.358 27.622 26.544 30.704
Recall 11.827 14.555 14.680 17.474 15.807 17.566

BICYCLE
IoU 0.308 0.372 0.314 0.300 0.331 0.297
Precision 53.998 59.486 49.036 60.964 27.117 25.730
Recall 44.258 54.474 43.697 57.192 25.276 25.704

EMERGENCY
IoU 0.386 0.312 0.332 0.238 0.339 0.380
Precision 100.000 100.000 100.000 100.000 100.000 100.000
Recall 100.000 100.000 100.000 100.000 100.000 100.000

OTHER
IoU 0.319 0.368 0.383 0.350 0.355 0.356
Precision 86.275 86.275 86.275 86.275 86.275 86.275
Recall 75.490 75.490 75.490 75.490 75.490 75.490

Mean IoU
IoU 0.518 0.511 0.518 0.499 0.509 0.514
Precision 81.500 83.333 0.000 82.852 82.562 83.421
Recall 52.713 56.135 54.622 57.167 54.232 55.469
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Table A.7: the Average Precision (AP) metrics for various augmentation levels across all scenes in Experiment 3.1.

It includes AP for each object class (CAR, TRUCK, TRAILER, VAN, MOTORCYCLE, BUS, PEDESTRIAN, BICYCLE,

EMERGENCY, OTHER) at different distances (0-40 m, 40-50 m, 50-64 m).

Class Distance Baseline +20% +40% +60% +80% +100%

CAR

Overall 69.78 74.90 74.89 74.94 74.90 73.46
0-40m 67.05 72.37 74.04 74.14 73.83 72.52

40-50m 75.32 76.88 76.89 77.15 76.97 78.93
50-64m 70.67 72.21 71.99 68.68 74.09 72.27

TRUCK

Overall 65.81 71.61 65.83 69.68 69.71 69.88
0-40m 69.87 77.62 69.81 79.43 75.68 75.87

40-50m 68.00 72.00 68.00 64.00 68.00 68.00
50-64m 45.01 47.46 47.90 47.74 45.46 47.94

TRAILER

Overall 75.26 75.49 77.28 73.41 75.27 73.35
0-40m 89.24 87.65 91.79 87.23 91.38 85.52

40-50m 37.76 35.47 35.27 37.56 29.61 39.48
50-64m 59.80 59.95 63.56 59.73 61.80 59.63

VAN

Overall 51.69 53.72 51.80 55.81 53.77 57.67
0-40m 51.69 53.89 51.93 53.90 53.80 57.82

40-50m 57.76 55.89 55.99 55.97 55.99 55.91
50-64m 23.90 33.30 34.97 56.77 30.72 51.77

MOTORCYCLE

Overall 16.00 21.26 22.99 23.38 23.34 21.35
0-40m 68.00 76.00 83.02 87.72 88.00 85.58

40-50m 2.00 4.98 5.02 6.12 5.20 3.50
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

BUS

Overall 86.27 85.31 87.97 84.26 81.82 88.94
0-40m 92.99 98.65 99.82 92.25 97.80 98.09

40-50m 31.16 39.67 36.29 37.73 36.74 42.15
50-64m 87.31 83.42 86.50 85.67 82.42 87.23

PEDESTRIAN

Overall 19.25 21.95 22.85 26.17 25.08 29.31
0-40m 69.85 72.86 69.72 74.75 79.10 83.99

40-50m 12.51 14.06 12.91 18.11 14.71 18.10
50-64m 0.00 7.29 5.26 9.43 6.56 6.48

BICYCLE

Overall 53.08 58.68 48.02 60.18 25.66 24.25
0-40m 56.04 60.82 57.05 68.35 27.11 26.69

40-50m 26.35 37.16 14.59 18.41 19.51 19.15
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

EMERGENCY

Overall 100.00 100.00 100.00 100.00 100.00 100.00
0-40m 0.00 0.00 0.00 0.00 0.00 0.00

40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 100.00 100.00 100.00 100.00 100.00 100.00

OTHER

Overall 86.00 86.00 86.00 86.00 86.00 86.00
0-40m 86.00 86.00 86.00 86.00 86.00 86.00

40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

Mean AP

Overall 62.32 64.89 63.76 65.38 61.56 62.42
0-40m 65.07 68.59 68.32 70.38 67.27 67.21

40-50m 31.09 33.61 30.50 31.51 30.68 32.52
50-64m 38.67 40.37 41.02 42.80 40.11 42.53
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Experiment 3.2: Test

Table A.8: Average Precision (AP) metrics for various augmentation levels across all scenes in Experiment 3.2. It

includes AP for each object class (CAR, TRUCK, TRAILER, VAN, MOTORCYCLE, BUS, PEDESTRIAN, BICYCLE,

EMERGENCY, OTHER) at different distances (0-40 m, 40-50 m, 50-64 m).

Class Distance Baseline +20% +40% +60% +80% +100%

CAR

Overall 68.19 73.37 73.38 73.43 75.10 73.56
0-40m 67.50 72.52 72.67 74.41 74.13 72.75

40-50m 77.46 77.29 77.30 81.16 79.25 79.23
50-64m 64.87 68.47 68.07 64.39 70.25 66.40

TRUCK

Overall 63.72 69.60 65.76 69.46 67.66 67.89
0-40m 67.78 73.54 69.78 77.27 73.59 73.87

40-50m 70.00 74.00 70.00 64.00 68.00 68.00
50-64m 42.63 47.46 45.73 43.55 43.31 45.94

TRAILER

Overall 73.33 75.50 75.32 75.30 75.19 71.55
0-40m 89.08 87.46 89.39 87.15 91.09 83.39

40-50m 29.73 33.49 29.56 37.59 25.37 37.54
50-64m 59.87 63.91 67.66 63.84 61.81 59.90

VAN

Overall 53.53 55.64 51.78 55.78 51.86 57.72
0-40m 51.45 53.80 49.90 53.83 49.81 57.78

40-50m 57.79 57.89 55.92 57.86 58.00 55.91
50-64m 35.94 48.80 41.14 65.05 36.79 56.20

MOTORCYCLE

Overall 18.00 25.14 25.25 25.16 25.31 23.18
0-40m 66.00 78.00 83.44 83.53 84.00 83.42

40-50m 2.00 6.64 7.13 7.82 6.99 5.33
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

BUS

Overall 89.40 88.63 90.72 88.69 83.64 91.68
0-40m 95.94 99.20 99.82 95.12 98.54 99.17

40-50m 46.85 46.10 46.53 45.98 48.35 56.47
50-64m 91.60 88.69 91.29 90.83 86.99 91.62

PEDESTRIAN

Overall 22.62 27.59 26.92 29.90 27.84 31.71
0-40m 75.84 77.69 74.46 75.19 81.46 82.39

40-50m 13.73 17.04 15.58 20.32 15.24 19.68
50-64m 0.00 11.74 12.00 20.70 10.33 7.67

BICYCLE

Overall 54.55 59.00 48.18 59.53 27.35 33.57
0-40m 61.30 63.90 59.38 69.07 29.28 38.18

40-50m 13.81 21.86 12.53 10.15 13.16 15.87
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

EMERGENCY

Overall 100.00 100.00 100.00 100.00 100.00 100.00
0-40m 0.00 0.00 0.00 0.00 0.00 0.00

40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 100.00 100.00 100.00 100.00 100.00 100.00

OTHER

Overall 62.00 62.00 62.00 62.00 62.00 62.00
0-40m 62.00 62.00 62.00 62.00 62.00 62.00

40-50m 0.00 0.00 0.00 0.00 0.00 0.00
50-64m 0.00 0.00 0.00 0.00 0.00 0.00

Mean AP

Overall 60.53 63.65 61.93 63.92 59.59 61.29
0-40m 63.69 66.81 66.08 67.76 64.39 65.30

40-50m 31.14 33.43 31.45 32.49 31.44 33.80
50-64m 39.49 42.91 42.59 44.83 40.95 42.77
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Table A.9: Precision, Recall, and Intersection over Union (IoU) metrics for various augmentation levels across all

scenes in Experiment 3.2. It includes precision, recall, and IoU for each object class (CAR, TRUCK, TRAILER, VAN,

MOTORCYCLE, BUS, PEDESTRIAN, BICYCLE, EMERGENCY, OTHER) for the overall scene.

Class Metric Baseline 20% 40% 60% 80% 100%

CAR
Precision 68.81 73.89 73.90 73.95 75.59 74.08
Recall 49.35 57.81 57.79 58.06 59.98 57.75
IoU 0.72 0.70 0.70 0.71 0.70 0.71

TRUCK
Precision 64.43 70.19 66.43 70.06 68.29 68.52
Recall 40.95 48.73 43.01 48.29 45.97 46.41
IoU 0.70 0.70 0.71 0.70 0.70 0.70

TRAILER
Precision 73.86 75.98 75.80 75.78 75.68 72.11
Recall 54.47 57.17 58.01 57.17 57.17 51.63
IoU 0.71 0.70 0.70 0.70 0.71 0.71

VAN
Precision 54.44 56.51 52.72 56.65 52.80 58.55
Recall 28.64 30.92 27.50 31.76 27.45 33.41
IoU 0.73 0.68 0.70 0.70 0.70 0.67

MOTORCYCLE
Precision 19.61 26.60 26.71 26.62 26.78 24.68
Recall 3.32 6.65 6.97 7.18 7.18 5.88
IoU 0.42 0.36 0.37 0.35 0.33 0.38

BUS
Precision 89.61 88.85 90.90 88.91 83.96 91.84
Recall 83.44 83.69 84.44 84.44 80.45 87.50
IoU 0.57 0.52 0.54 0.50 0.53 0.50

PEDESTRIAN
Precision 24.14 29.01 28.36 31.28 29.25 33.05
Recall 13.16 18.98 17.83 19.12 17.32 19.07
IoU 0.37 0.42 0.48 0.46 0.49 0.49

BICYCLE
Precision 55.44 59.80 49.19 60.32 28.78 34.87
Recall 46.17 54.87 46.79 57.01 29.45 34.22
IoU 0.33 0.39 0.34 0.31 0.35 0.31

EMERGENCY
Precision 100.00 100.00 100.00 100.00 100.00 100.00
Recall 100.00 100.00 100.00 100.00 100.00 100.00
IoU 0.39 0.31 0.33 0.24 0.34 0.38

OTHER
Precision 62.75 62.75 62.75 62.75 62.75 62.75
Recall 39.93 39.93 39.93 39.93 39.93 39.93
IoU 0.31 0.37 0.38 0.35 0.35 0.36

Mean
Precision 81.50 83.54 80.89 82.89 81.76 84.38
Recall 51.48 55.70 54.45 56.27 53.36 54.73
IoU 0.53 0.52 0.52 0.50 0.52 0.52
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