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Abstract

As part of the AUTOtech.agil project, this thesis aims to enhance the 2D detector node within
the Providentia Mono3D system by leveraging instance segmentation models, thereby im-
proving the system’s capacity to predict real-world 3D object locations and shapes. Address-
ing the absence of segmentation labels in the TUM Traffic Dataset, we extend a subset with
both modal and amodal segmentation annotations. To achieve this, we propose a 2D annota-
tion interpolation pipeline capable of interpolating annotations between consecutive frames.
We employ the YOLOv8x segmentation model and extensively investigate the effectiveness of
pre-training on various datasets including COCO, KINS, and nuImages, along with training
on the annotated frames. The best-performing model achieves a 2D mAP@[.5:.95] of 75.90
and a 3D mAP@[.10] of 18.51, which is an 18.30% and 7.53% improvement over the cur-
rent implementation utilizing YOLOv7. Additionally, we employ the amodal segmentation
model C2F to extend to amodal detections and evaluate its impact on final 3D perception
performance, which, contrary to expectations, exhibits a decline. Further experiments are
conducted across nighttime and highway scenarios, accompanied by suggestions for future
improvements such as extending the training dataset on different scenarios for better model
generalization.

Zusammenfassung

Im Rahmen des AUTOtech.agil-Projekts zielt diese Arbeit darauf ab, den 2D Detektor des
Providentia Mono3D-Systems durch die Verwendung von Instanzsegmentierungsmodellen
zu verbessern, um die 3D-Wahrnehmungsfähigkeit des realen Systems zu verbessern. Um
dem Fehlen an Segmentierungsannotationen im TUM Traffic Intersection Datensatz entge-
genzuwirken, erweitern wir eine Teilsatz um modale und amodale Segmentierungsmasken.
Hierfür schlagen wir eine 2D-Annotationsinterpolationspipeline vor, die in der Lage ist, An-
notationen zwischen aufeinanderfolgenden Frames zu interpolieren. Wir verwenden das
YOLOv8x Instanzsegmentierungsmodell und untersuchen die Wirksamkeit von Vortrainings
auf verschiedenen Datensätzen, darunter COCO, KINS und nuImages, sowie das Training auf
annotierten Frames. Das beste Modell erreicht eine 2D mAP@[.5:.95] von 75.90 und eine
3D mAP@[.10] von 18.51, eine Verbesserung von 18,30% und 7,53% gegenüber der ak-
tuellen Implementierung mit YOLOv7. Darüber hinaus verwenden wir das amodale Segmen-
tierungsmodell C2F, um die sichtbaren Detektionen auf amodale Detektionen auszudehnen,
und evaluieren dessen Auswirkungen auf die endgültige 3D- Wahrnehmungsleistung, die ent-
gegen den Erwartungen einen Rückgang zeigt. Weitere Experimente werden in Nacht- und
Autobahnszenarien durchgeführt, begleitet von Vorschlägen für zukünftige Verbesserungen,
wie die Erweiterung des Trainingsdatensatzes auf verschiedene Szenarien für eine bessere
Modellverallgemeinerung.
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Chapter 1

Introduction

1.1 AUTOtech.agil

Autonomous driving has become a crucial topic of research and application in modern trans-
portation. With the development of Artificial Intelligence (AI) and Machine Learning (ML),
the integration of automated driving technologies has become vital, bringing in numerous
benefits such as effectively reducing accident rates, minimizing labor costs, and promoting
more efficient driving behaviors, serving as a significant tool in combating greenhouse gas
emissions. While onboard Advanced Driver Assistance Systems (ADAS) have proven invalu-
able, these systems can only perceive the immediate environment around the vehicle, leading
to blind spots and areas with limited coverage. As a result, they may fail to provide a holistic
overview of the entire traffic scene, hindering their effectiveness in certain scenarios. Off-
board solutions, from a road-side perspective, present a promising avenue to overcome the
limitations of onboard sensors. These solutions provide real-time data beyond the field of
view of onboard sensors, offering a more comprehensive and global perspective. Simulated
in real-time, these solutions enable road users to make farsighted decisions, such as lane
recommendations, accident warnings, and collision avoidance, utilizing both real-time infor-
mation and historical data.

The Providentia project focused its research precisely on this point. Launched in 2017,
the project achieved the development of an intelligent infrastructure system on the A9 high-
way and created a complete digital twin to enhance traffic safety and efficiency by the end of
2019. Two measurement stations (S40 and S50 in Figure 1.1), equipped with high-resolution
cameras and radar systems, were mounted on overhead gantry bridges along the A9 highway
near Garching. The sensor data is transmitted wirelessly via 5G, radio techniques that enable
a reliable and fast connection between vehicles and intelligent infrastructure. Artificial intel-
ligence is used to identify vehicle types and classes, and finally, the information from all the
different sensors is fused. Moreover, an autonomous vehicle was also developed that can use
information from the digital twin to change lanes on the highway independently and slow
down to avoid traffic jams or accidents.

While highways provide more stable driving conditions for autonomous vehicles, residen-
tial areas pose a greater challenge due to their complexity. The transition from highway-
centric solutions to residential areas requires innovative approaches and technologies to ad-
dress the complex and dynamic nature of urban environments. Since 2020, the Providentia
project has evolved into Providentia++, led by the Chair of Robotics, Artificial Intelligence,
and Real-time Systems at the Technical University of Munich’s Department of Informatics.
The goal is to extend the deployment beyond highways into encompass residential areas.
The addition of Light Detection and Ranging (LiDAR) sensors, along with the existing per-
ception methods, provides redundant road coverage with overlapping fields of view, accurate
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Figure 1.1: Overview of the test bed Providentia++ taken from [Cre+22]. This test bed spans the autobahn A9
and the highway B471 near Munich, covering a total length of 3.5 km

calibration, and robust detection and data fusion algorithms. The test stretch was expanded
into the residential area, enabling the survey of intersections, traffic circles, bus stations, and
other urban situations. The complete overview of the Providentia++ test bed is shown in
Figure 1.1

This work is carried out in the scope of the AUTOTech.agil project funded by the Federal
Ministry of Education and Research of Germany, which is a continuation of the Prodentia++
project.

1.2 Motivation

The creation of a digital twin that accurately reflects reality requires precise 3D detection.
This crucial task involves building a reliable virtual representation capable of mapping the
position, orientation, and dimensions of traffic participants from the real world to the simu-
lator. Previous works in the Providentia project have proposed a Monocular 3D Object De-
tection (Mono3D) system to generate a three-dimensional digital twin of visible road users
from the two-dimensional RGB camera input frames.

The current system uses YOLOv7 for object detection and has several limitations, such as
the inability to classify some classes in the dataset like TRAILER, VAN, EMERGENCY _VEHI-
CLE, and OTHER. Additionally, it struggles with detecting large or heavily occluded objects,
which could impact the final 3D perception and automated driving safety. This thesis aims
to enhance the Providentia Mono3D object perception pipeline by predicting real-world 3D
object locations and 3D shapes from segmentation masks.

To achieve this goal, we aim to improve the system’s instance segmentation detector. A
comprehensive literature review is conducted to identify promising instance segmentation
(IS) and amodal instance segmentation (AIS) methods. On the one hand, our approach in-
volves exploring state-of-the-art (SOTA) basic instance segmentation models, outperforming
YOLOv7 on the same task. On the other hand, we explore SOTA amodal instance segmenta-
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tion models that can segment the invisible parts of an object in addition to the visible. We
want to investigate whether leveraging amodal segmentation can enhance the system’s object
detection capabilities, particularly in complex traffic scenarios with significant occlusion.

Moreover, we also explore common datasets with IS and AIS annotations in the domain
of autonomous driving for pre-training purposes. Different models are then pre-trained on
public autonomous driving datasets and fine-tuned on our TUM Traffic Intersection Extended
dataset. Since there are no labeled instance masks in the TUM Traffic Intersection dataset,
a subset of frames is annotated for fine-tuning. This enables the models to classify all our
categories and learn to predict from our camera settings for improved performance.

Subsequently, a 2D detector node exploiting these newly trained models is integrated into
the existing toolchain. The models are optimized for inference speed using TensorRT. Per-
formance evaluations are conducted, comparing the models against each other and against
YOLOv7 in terms of 2D instance segmentation and 3D object detection, utilizing metrics such
as Average Precision (AP) and mean Intersection over Union (mIoU).

In essence, this work represents a valuable contribution to the AUTOtech.agil project,
effectively addressing the shortcomings of the existing system and potentially advancing the
safety and efficacy of autonomous driving technologies.

1.3 Contributions

This thesis presents the following contributions:

1. We explore various state-of-the-art instance and amodal instance segmentation models
for inference on the TUM Traffic Intersection dataset. Among these models, we choose
the instance segmentation YOLOv8x and the amodal instance segmentation C2F model
for further analysis.

2. We propose an instance segmentation labeling pipeline with a method for 2D annota-
tion interpolation across consecutive frames of an image sequence (video). We use this
pipeline to extend the TUM Traffic Intersection dataset with visible and full instance
segmentation annotations.

3. We define an extended OpenLABEL annotation structure tailored for our TUM Traffic
dataset to include additional modal and amodal segmentation labels. We also extend
the TUM Traffic development kit (TUMTraf dev-kit) with label converters facilitating
conversion between YOLO, COCO, and our TUM Traffic Dataset OpenLABEL annotation
formats.

4. We leverage YOLOv8x and C2F models pre-trained on COCO and KINS datasets and
fine-tuned them on the instance segmentation masks extended frames of the TUM Traf-
fic Intersection dataset. Additionally, we train YOLOv8x from scratch on the extended
TUM Traffic Intersection dataset as well as nuImages.

5. A total of around seven experiments are conducted on the trained models, utilizing
different data sequences under various settings to thoroughly evaluate their 2D and 3D
perception performance. Notably, the best-performing model for the TUM Traffic In-
tersection test sequence, across all settings, demonstrates a remarkable 3D mAP@[.10]
improvement of 17.79% compared to YOLOv7, the model currently employed in the
Providentia Mono3D system.
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6. We export trained YOLOv8x PyTorch models to TensorRT, resulting in a significant
acceleration of inference speed by approximately 2.8 times, surpassing the YOLOv7
TensorRT model’s speed by around 2.3 times. Furthermore, we integrate a 2D object
detector node, exploiting YOLOv8, into the existing toolchain.

1.4 Structure of the Thesis

The thesis is structured as follows: in Chapter 1, a comprehensive introduction to the AU-
TOtech.agil project and its related predecessors is presented, along with the motivation and
main contribution of this thesis. Chapter 2 provides an extensive background introduction.
This chapter covers the Robot Operating System 1 (ROS1), well-known autonomous driving
datasets with instance and amodal instance segmentation annotations, common label for-
mats for object detection tasks, and the labeling tool CVAT. Chapter 3 offers an overview
of related works, including the Providentia Mono3D System, followed by an introduction to
the state-of-the-art instance segmentation models. Chapter 4 describes in detail the solution
approach, including inferencing using different pre-trained models, extending segmentation
annotations for the TUM Traffic dataset, training and fine-tuning models, exporting to Ten-
sorRT, and integrating into the existing toolchain. Chapter 5 provides an extensive evalua-
tion, including 2D and 3D quantitative analysis, qualitative analysis, as well as an analysis on
inference speed, comparing the trained models against the baseline YOLOv7 currently used in
the Providentia Mono3D system. Chapter 6 documents five additional experiments on differ-
ent scenes, including intersection, nighttime, and highway scenarios, with different settings,
such as time-shifted ground truth and 3D tracking, to further analyze the generalizability and
additional improvements of the proposed models. Finally, Chapter 6 and Chapter 7 conclude
the thesis and suggest avenues for future work.



Chapter 2

Background

This chapter provides essential background information. Firstly, Section 2.1 introduces the
Robot Operating System 1 (ROS1), a middlewares utilized in the Providentia Mono3D sys-
tem. Following this, Section 2.2 offers a comprehensive overview of common instance seg-
mentation datasets for autonomous driving, including a detailed description of our TUM
Traffic Intersection Dataset (Section 2.2.4). Additionally, Section 2.3 introduces some popu-
lar annotation formats in the field of object detection, describing their labeling structures and
conventions. This section is followed by an exploration of the Computer Vision Annotation
Tool (CVAT) in Section 2.4, which plays an important role in annotation during our research.

2.1 Robot Operating System 1 (ROS1)

The Robot Operating System, abbreviated as ROS, is not an actual operating system but a
collection of software libraries and tools that support the development and reuse of code
across different robotic applications. Moreover, ROS’s usefulness extends beyond robots, as
most of the provided tools focus on working with peripheral hardware. ROS is open-source
and maintained by many people. There are two versions, ROS1 and ROS2. Since our system
exploits ROS1, in this section, we introduce the concept of ROS1.

The way ROS1 operates is relatively straightforward. A ROS system consists of several
independent processes called ROS nodes. ROS nodes can be located on different systems and
can even have different architectures, making ROS genuinely flexible and adaptable to user
needs. Communication is established between nodes by ROS Master. The ROS Master pro-
vides naming and registration services to the nodes, allowing them to find and communicate
with each other.

There are two main ways of communication in ROS. The first way is communication
through topic. Nodes can publish or subscribe to a topic, then send or receive ROS messages
of the topic type. This is called a publisher and subscriber relationship. The second way is
communication through Service. Nodes provides requestable services, other nodes can then
send a request to the service to receive a response. The structure and type of messages between
nodes are defined individually for each topic and service.

2.2 Autonomous Driving Segmentation Datasets

Autonomous driving segmentation datasets play a crucial role in advancing computer vision
algorithms in this domain. Segmentation datasets can be exploited for various tasks, in-
cluding object detection, instance segmentation, and semantic segmentation. This section
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provides an extensive description of the commonly used instance segmentation datasets in
the autonomous driving domain, as illustrated in Table 2.1. Specifically, the three datasets
COCO, KINS, and nuImages utilized in this thesis are examined in more detail. Afterward,
the TUM Traffic Intersection Dataset, which is utilized to fine-tune the models, is described.

Name Classes Annotations Data Split
COCO 91 object classes with 80 used for in-

stance segmentation
2d bounding box, instance- and
panoptic- segmentation, captioning,
keypoint, dense pose

Train: 118k, Val: 5k,
Test: 41k

COCOA same as COCO COCO annotations plus semantic
amodal segmentation

Train: 2476, Test:
1223

KINS 8 classes: pedestrian, cyclist, person-
siting, car, tram, truck, van, misc

amodal instance mask, semantic la-
bel, and relative occlusion order

Train: 7474, Test:
7517

nuImages 23 classes. The supercategory Vehicle
contains: Bus, Car, Construction, Emer-
gency, Motorcycle, Trailer, Truck

2d bounding box, instance mask Train: 67k, Val: 16k,
Test: 10k

Cityscapes
[Cor+16]

30 classes grouped into eight categories
(flat surfaces, humans, vehicles, con-
structions, objects, nature, sky, and void)

semantic, instance-wise, and dense
pixel annotation

Train: 2975, Val:
500, Test: 1525

Waymo
Open
Perception
[Sun+20]

4 object classes: Vehicles, Pedestrians,
Cyclists, Signs

2D and 3D bounding boxes, key
point, 3D semantic segmentation, 2D
video panoptic segmentation

390k frames, Train
and Val: 1000
scenes, Test: 150
scenes

Table 2.1: This table provides an overview of common autonomous driving segmentation datasets including the
dataset name, the object categories defined, the annotation types, and the number of samples contained in each
data split.

2.2.1 COCO

Microsoft Common Objects in Context (COCO) [Lin+14] is a large-scale dataset for im-
age classification, object detection, semantic segmentation, and instance segmentation. The
dataset comprises images taken from daily life scenes with varying resolutions. It contains 2.5
million labeled instances in 328k images, covering 91 object classes, of which 80 are used for
instance segmentation. Based on the 2017 COCO split, the data split is 118k training images,
5k validation images, and 41k testing images. Along with bounding boxes and per-instance
segmentation masks, this dataset also provides natural language descriptions (captioning),
key points, stuff image segmentation, panoptic segmentation, and dense pose annotation.

This dataset is extended to an amodal dataset in 2017 in [Zhu+17]. The extended dataset
is named COCOA and includes 2476 images in the training set and 1223 images in the testing
set, with additional semantic amodal segmentation annotations.

2.2.2 KINS

KITTI INStance segmentation dataset (KINS) [Qi+19] is a large-scale street scene amodal
instance dataset, which is built upon Karlsruhe Institute of Technology and Toyota Techno-
logical Institute (KITTI) [GLU12]. The dataset consists of 7474 training images and 7517
testing images with eight categories: pedestrian, cyclist, person-siting, car, tram, truck, van,
and misc (ambiguous vehicles). The annotations include amodal instance masks, semantic
labels, and relative occlusion orders, from which initial instance masks can be easily inferred.
On average, each image has 12.53 labeled instances, and each object polygon consists of
33.70 points. 53.6% are partially occluded, and the average occlusion ratio is 31.7%. The
annotation format follows the COCO style, which will be described in Section 2.3.3
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2.2.3 nuImages

Following the success of the nuScenes [Cae+20] dataset, in August 2020, Motional released
nuImages [Cae+] with additional 2D annotations from a much larger pool of data. From
a total of 1.2 million autonomous driving camera images, active learning techniques were
employed to select approximately 75% challenging images according to the uncertainty of
an image-based object detector. Rare classes, like bicycles, were given special focus. The
remaining 25% of the images were uniformly sampled to ensure a representative dataset
and avoid strong bias. After careful review, some images were discarded due to camera
artifacts, because they were too dark, or because they showed pedestrians’ faces. This careful
curation of a dataset resulted in a diverse dataset regarding class distribution, spatiotemporal
distribution, and weather and lighting conditions. The annotated images encompass rain,
snow, and nighttime, which are crucial for autonomous driving applications.

The final dataset contains 93k labeled images with instance masks and 2D boxes, which
results in around 800k foreground objects and 100k semantic segmentation masks. Addi-
tionally, each annotated image is accompanied by six past and six future unlabeled camera
images at 2 Hz, leading to 93k video clips with 13 frames spaced out at 2 Hz.

2.2.4 TUMTraf Intersection Dataset

The TUM Traffic Intersection Dataset, previously known as the "A9 Intersection Dataset"
[Zim+23], was first published in June 2023. This dataset is the second release (R2) of
the A9 dataset [Cre+22], and it comprises 4.8k synchronized images and LiDAR point clouds
with over 57.4k manually labeled 3D bounding boxes. The dataset was captured using two
roadside cameras and two LiDAR mounted on intersecting gantry bridges. The data labels
follow the OpenLABEL format [Hag20], which is discussed in detail in Section 2.3.1.

This dataset consists of four continuous camera and labeled LiDAR scenes captured at a
frame rate of 10 Hz. Each scene is recorded from two camera perspectives, denoted as south1
and south2, yielding a total of eight frame sequences. Scenes S1 and S2 each consist of 600
frames, depicting a daytime scenario at dusk. Scene S3 consists of 2400 frames captured
during daytime with sunshine. Scene S4 contains an additional 1200 frames recorded at
night and during heavy rain [Cre+22].

It differentiates ten categories: CAR, BUS, TRUCK, TRAILER, VAN, MOTORCYCLE, BI-
CYCLE, PEDESTRIAN, EMERGENCY_VEHICLE, and OTHER. The dominant category is CAR,
followed by TRUCKS, TRAILER, VAN, and PEDESTRIAN by approximately the same order
of magnitude. The remaining five classes are present in slightly smaller numbers. Of all
the objects in the dataset, 78.2% were classified as NOT OCCLUDED, 16.1% as PARTIALLY
OCCLUDED, 0.8% as MOSTLY OCCLUDED, and 4.9% UNKNOWN.

2.3 Label Format

Each model and each dataset has its own specific requirements regarding data structure and
label format. Understanding these aspects is critical for training deep learning models and
managing datasets. This section introduces three well-known annotation formats used in this
work, including OpenLABEL, YOLO, and COCO Format.
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2.3.1 OpenLABEL Format

The Association for Standardization of Automation and Measuring Systems (ASAM) with
Deepen AI released the OpenLABEL [Hag20], a standard designed to specify an annotation
format that is flexible enough to support the development of automated driving features while
ensuring interoperability among different systems and providers. The annotation structure
of OpenLABEL is defined using JSON schema, and annotation files are stored in .json format.

The TUMTraf dataset has fully adopted this annotation format, with each frame having
one .json label file. The general structure of one point cloud 3D label file is shown in Listing
2.1. Each object has one unique object identifier. The object data is a collection of "name,"
"type," which defines the category of the object, and "cuboid," which describes the 3D bound-
ing box.

Listing 2.1: Illutration of OpenLABEL Annotation JSON Structure

1 {"openlabel:" {
2 "metadata": {...},
3 "coordinate_system": [...],
4 "frames": {
5 "frame_id" :{
6 "frame_properties" :{...},
7 "objects" :{
8 "object1_id" :{
9 "object_data": {

10 "name" :str,
11 "type" :str,
12 "cuboid" :{
13 "name": "shape3D",
14 "val": [...],
15 "attributes": {...}
16 }
17 }
18 },
19 "object2_id" :{...}
20 "object3_id" :{...}
21 ...
22 }
23 }
24 }
25 }
26 }

2.3.2 YOLO Format

The YOLO label format is tailored for YOLO (You Only Look Once) models. For each frame,
there is one annotation text file (.txt). Each row in the text file corresponds to one object
instance in the image. The format for one object bounding box is

<class-index> <x_center> <y_center> <width> <height>

whereas for the bounding coordinates of the object’s segmentation mask is

<class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>
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The bounding box coordinates and segmentation mask points are normalized to the range
[0, 1]. While YOLO’s compact label format simplifies annotation storage, users must ensure
consistency and distinguish between bounding box and mask annotations.

2.3.3 COCO Format

Common Objects in Context (COCO) is a well-known dataset format used by Microsoft,
Google, and Facebook [Hag14]. This format also exploits the JSON structure. In this for-
mat, the labels of all objects from all frames will all be included in one .json file, a collection
of “info,” “licenses,” “images,” “annotations,” and “categories”.

1 {
2 "info" : info,
3 "images" : [image],
4 "annotations" : [annotation],
5 "licenses" : [license],
6 }

The “annotations” section contains a list of every individual object annotation. The struc-
ture of one object detection annotation is shown in Listing 2.2. Each annotation includes
information such as the category label, bounding box coordinates, segmentation mask, and
additional metadata. The segmentation mask can be represented either as a run-length-
encoded bit mask or as a list of polygon contour points, providing flexibility in representing
object boundaries. The ’iscrowd’ field specifies whether the segmentation is for a single ob-
ject or for a cluster of objects, while the ’area’ field indicates the area of the object mask,
measured in pixels.

Listing 2.2: Illutration of COCO Annotation JSON Structure

1 annotation {
2 "id" : int,
3 "image_id" : int,
4 "category_id" : int,
5 "segmentation": RLE or [polygon],
6 "area" : float,
7 "bbox" : [x_top_left,y_top_left,width,height],
8 "iscrowd" : int
9 }

2.4 Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool [SMZ19] is a web-based, open-source annotation tool ini-
tially developed by Intel and now maintained by OpenCV. CVAT allows users to annotate
images with various types of shapes, including boxes, polygons, polylines, and points. It sup-
ports importing and exporting annotations in multiple formats, such as YOLO, MS COCO, and
KITTI. One of its standout features is its ability to perform automatic labeling using serverless
deep learning models like YOLO, RCNN, Face Detection, and Segment Anything. This feature
can significantly speed up the labeling process for large datasets.





Chapter 3

Related Work

This chapter provides an overview of the related literature. Firstly, Section 3.1 provides a con-
cise summary of prior works on the Providentia Mono3D System. Following this, Section 3.2
delves into the task of instance segmentation, introducing state-of-the-art deep learning mod-
els utilized for this task. These models are presented within a hierarchical taxonomy, offering
insight into their categorization and methodologies. In particular, two state-of-the-art (SOTA)
instance and amodal instance segmentation models, YOLOv8 and Coarse-to-Fine Segmenta-
tion (C2F-Seg), which are exploited in this work, are introduced in deeper detail in this
section.

3.1 Providentia Mono3D System

The Providentia Monocular 3D Perception task (Mono3D) describes the process of detecting
three-dimensional objects from a single two-dimensional RGB camera output frame. This
Mono3D toolchain is described in the works “Real-Time Monocular 3D Object Detection to
Support Autonomous Driving” by Leon Blumenthal [Blu22] and “Monocular 3D Object De-
tection Using HD Maps” by Joseph Birkner [Bir23]. In [Blu22], the Providentia Mono3D
detecter splits the detection task into two separate steps: a 2D instance segmentation step
and a 3D lifting step. This so-called two-stage detection model is adapted and refined in
the thesis of Joseph [Bir23]. The first work focused on highway scenarios, where the yaw
value (the direction of travel) is fixed. The second work addressed and generalized to the
more urban scenarios where the yaw value is variable. The proposed approach was then
evaluated on the TUM Traffic Intersection Dataset. This dataset has been covered in detail in
Section 2.2.4.

For each object, Mono3D estimates the basic 3D perception values, including birds-eye-
view (BEV) positions X/Y , BEV size L/W , object height H, and headling angle (yaw) θ .
The elevation of the object over the road surface Z , pitch φ, and roll γ values are set to
0 always. Along with these basic values, Mono3D also provides an identifier for the object
across multiple frames I , the planar speed δX/δY /δZ , and category C . These make up a
total of fourteen dimensions in the output, as shown in Table 3.1.

The Mono3D detection flow consists of three process nodes as shown in Figure 3.1: a
camera driver node, a 2D instance segmentation node, and a 3D detection node. The 2D
instance segmentation node continuously receives full-resolution 1920x1200 RGB frames
from the camera driver node. This communication exploits the Enhanced Communication
Abstraction Layer (eCAL) [23] shared memory as middleware for throughput and high per-
formance. The second node exploits the YOLOv7 [WBL23] instance segmentation model for
detection and publishes an array of detections containing a confidence score, a category, a 2D



12 3 Related Work

Variable Description

X/Y Position along the longitudinal/lateral axes
Z The elevation of the object over the road surface (= 0)
L/W/H Length/Width/Height of the object
γ/φ/θ Roll/Pitch/Yaw angles, yaw determines travel direction (γ= 0,φ = 0)
C category
I Object Identifier across multiple frames
δX/δY /δZ Derivatives of the position variables := speed

Table 3.1: The fourteen-dimensional output of Mono3D per object

bounding box, and a per-pixel instance mask to downstream processes via Robot Operating
System (ROS) [Qui+09]. The 3D detection node subscribes to the instance segmentation
node, receives the 2D instance detections, and starts with the so-called 3D lifting stage. This
stage adapts and develops the L-Shape Fitting Method for Vehicle Pose Detection from LiDAR
[Zha+17] using HD map and tracking algorithm to stabilize the 3D detections and speed es-
timations. The currently chosen tracking algorithm is Simple Online and Realtime Tracking
(SORT) [Bew+16], a lightweight tracking algorithm specifically designed for real-time appli-
cations. Finally, the final fourteen-dimensional output of the entire flow is published via ROS
to downstream applications, such as sensor fusion, visualization, or autonomous vehicles.

Figure 3.1: Providentia Mono3D system architecture from [Bir23]. The camera driver publishes frames to Shared
Memory, which are picked up from the instance segmentation node. The 2D detections from each frame are
published to the Monocular Detection Node through ROS. The final 3D perception outputs are then published via
ROS to downstream applications.

This separation of the detection pipeline into multiple concurrent processing nodes pro-
vides the flexibility to evaluate and optimize each stage independently. Our work focuses on
enhancing the initial stage of the 2D detector.
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3.2 Instance Segmentation models

Instance segmentation (IS) is a fundamental computer vision task that strives to detect, clas-
sify, and predict per-pixel segmentation masks of every individual object within an image.
Fully-supervised instance segmentation models fall into three primary categories: single-
stage, two-stage, and multi-stage object detection models as illustrated in Figure 3.2 [GBK22].

General Instance Segmentation

Semi-Supervised
Instance Segmentation

Fully-Supervised
Instance Segmentation

One-stage
Methods

Anchor-based Anchor-free

Two-stage
Methods

Top-down Bottom-up

Multi-stage
Methods

RNN Cascade Attention

Weakly-Supervised
Instance Segmentation

YOLOv3 [RF18],
YOLOv7 [WBL23],

TensorMask [Che+19b]

YOLOv8 [Hag23],
CenterMask [LP20],
PolarMask [Xie+20]

SDS [Har+14],
Mask R-CNN
[He+17a],

HCFS3D[Tan+21]

CRF [AT16],
[NHD17]

ETE [RZ17],
RSIS [Sal+17],

RIS [RT16]

Cascade R-CNN
[CV19],

HTC [Che+19a]

ISTR [Hu+21],
QueryInst [Fan+21],

SOLG [Don+21]

Figure 3.2: Taxonomy of Instance Segmentation Methods taken from [GBK22]

3.2.1 Two-stage object detection models

Two-stage object detection models, leveraging region-based convolutional neural networks
(R-CNNs), employ two rounds of the input image. The first round generates a series of
proposals or potential object locations. In the second round, these proposals are refined to
make conclusive predictions, including mask estimation and classification.

The two-stage detection framework has become a classical model in both 2D and 3D
object detection. Two-stage instance segmentation methods can be further divided into top-
down and bottom-up methods. Top-down methods, such as SDS [Har+14], Mask R-CNN
[He+17a], and HCFS3D [Tan+21], first predict regions of interest and then perform seg-
mentation within each bounding box. In contrast, bottom-up methods such as CRF [AT16]
and [NHD17] first map each pixel as a vector embedding and then group them into dif-
ferent instances through clustering methods. Compared to one-stage object detection, this
class of models provides more precise detections. However, they are more memory and com-
putationally expensive, which makes them unsuitable for real-time applications [Wan+22].
Moreover, the sequential execution of detection and segmentation does not comprehensively
consider their correlation. [GBK22].

3.2.2 Multi-stage object detection models

To fully exploit useful reciprocal information about the relationship between detection and
segmentation, many researchers are turning to multi-stage models. These models typically
have either a multi-stage cascade structure or are based on recurrent neural networks (RNNs)
or self-attention mechanisms.
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• The multi-stage cascade structure (Cascade R-CNN [CV19], HTC [Che+19a]) performs
instance segmentation stage by stage.

• The RNN-based methods (ETE [RZ17], RSIS [Sal+17], RIS [RT16]) segment instances
one by one.

• The self-attention-based instance segmentation methods (ISTR [Hu+21], QueryInst
[Fan+21], SOLG [Don+21]) refine query boxes and mask predictions with the recur-
rent refinement strategy [GBK22].

Compared with two-stage methods, the multi-stage instance segmentation methods can
achieve better performances. However, these methods are even more computationally ex-
pensive. [GBK22].

3.2.3 Single-stage object detection models

Considering the limitations of the two classes of models mentioned above, it is reasonable
to perform both detection and segmentation in a single architecture to comprehensively con-
sider the relationship between them and speed up inference time. One-stage instance seg-
mentation methods swiftly analyze the entire image and make predictions in just one go.
Although these models may not be as accurate as the two-stage models and might struggle
with detecting smaller objects, they are computationally efficient and have better general-
ization capabilities [Wan+22]. They are ideal for real-time detection in resource-limited
settings.

Single-stage object detection models can further be categorized into anchor-based meth-
ods and anchor-free methods. Single-stage anchor-based instance segmentation methods
such as YOLOv3 [RF18], YOLOv7 [WBL23] and TensorMask [Che+19b], are similar to the
two-stage top-down methods, they first generate a set of candidate regions then segment each
instance in their corresponding positive bounding box. Single-stage anchor-free instance seg-
mentation methods such as YOLOv8 [Hag23], CenterMask [LP20], and PolarMask [Xie+20]
locate instances directly in the pixel-level without anchors.

Since the Providentia Mono3D System currently utilizes YOLOv7 [WBL23] for instance
segmentation and this work exploits YOLOv8, in the following, we will look deeper into the
state-of-the-art You Only Look Once (YOLO) [Red+16] family. YOLO is an object detection
and image segmentation system that has revolutionized the field of computer vision. YOLO
is known for its small and simple architecture and fast inference speed and is thus suited for
real-time object detection tasks. YOLO was first introduced in 2015, and since then, several
new versions of the same model have been proposed. The general YOLO framework consists
of three main components:

• Backbone: A convolutional neural network that mainly extracts essential image fea-
tures.

• Neck: A collection of neural network layers that combine and mix features before
passing them to the next stage for prediction.

• Head: Output layers that consume features from the neck and generate predictions. At
the end of the process, non-maximum suppression (NMS) is used to filter out overlap-
ping detections.

The YOLOv8 exploited in this work is the latest version of YOLO, featuring five variants
based on the number of parameters, namely nano(n), small(s), medium(m), large(l), and
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extra large(x) fig. 3.3. All variants can be used for object detection, segmentation, and
classification. YOLOv8 incorporates several new features and improvements for enhanced
performance, flexibility, and efficiency. The updates in YOLOv8 include the following:

Figure 3.3: YOLO parameters and latency comparison from [Hag23]. Several other performance tests have shown
that YOLOv8 outperforms YOLOv7 in terms of speed and accuracy.

1. The switch to anchor-free detection head: The head module switched from anchor-
based to anchor-free and adapted the current mainstream decoupled structure, sep-
arating the classification and detection heads. Anchor-free models directly predict an
object’s center instead of the offset from a known anchor box. Anchor-free detection re-
duces the number of box predictions, which speeds up the Non-Maximum Suppression
(NMS) post-processing. Experimental results in [Lv+23] show that with equivalent ac-
curacy, YOLOv7 produces around three times more predicted boxes in comparison to
YOLOv8.

2. The convolutional blocks undergo modifications to expedite the training process and
improve gradient flow.

3. Exploitation of Mosaic augmentation: Mosaic augmentation is the process of combin-
ing four images into a single mosaic image. This is done by resizing the four images,
stitching them together, and then taking a random cutout. This technique enhances
the model’s ability to learn objects in new locations, partial occlusion, and with greater
variation in surrounding pixels. However, it has been shown that using Mosaic augmen-
tation throughout the entire training regime may have an adverse effect on prediction
accuracy. Thus, YOLOv8 applies Mosaic augmentation only during training and turns it
off before the last ten epochs.

4. YOLOv8 offers several developer-convenience features, from an easy-to-use CLI to a
well-structured Python package.

3.2.4 Amodal Instance Segmentation

Instance segmentation methods are restricted to detecting and segmenting the visible part of
the objects, which can lead to poor performance in situations where objects are heavily oc-
cluded. Under such conditions, instances may be wholly missing, or the 2D bounding boxes
and segments may be truncated, causing errors in downstream processes. In our case, these
errors can affect the accuracy of 3D perception. To address the limitations of IS, amodal
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instance segmentation (AIS) techniques aim to predict the complete shapes of objects, in-
cluding both visible and invisible parts. The full mask of an object is referred to as an amodal
mask, while the visible mask is known as a modal or inmodal mask.

In this related work study, several survey AIS papers were consulted. Some of these papers
are worth highlighting for reference. The Bilayer Convolutional Network (BCNet) [KTT23]
exploits a bilayer structure for occluding objects (occluders) and partially occluded instances
(occludees). This approach naturally decouples the boundaries of both instances and con-
siders the interaction between them during mask regression. AISFormer [Tra+22] enhances
the extraction of the long-range dependency via transformer and explicitly models the com-
plex coherence between occluder, visible, amodal, and invisible masks within an object’s
regions of interest by treating them as learnable queries. The self-supervised Amodal Video
Object Segmentation (SaVos) [Yao+22] offers a solution for video amodal segmentation.
SaVos leverages spatiotemporal consistency and dense object motion to explain away occlu-
sion. Coarse-to-Fine Segmentation (C2F-Seg) [Gao+23] model consists of two modules: a
transformer-based module for predicting coarse amodal masks and a CNN-based refinement
module for obtaining fine amodal masks. The paper of this model is published in ICCV
2023. The authors of C2F-seg conducted a comparison with several state-of-the-art models,
including PCNet [Zha+20], Mask R-CNN [He+17b], ORCNN [Fol+19], VRSP [Xia+21] and
AISformer on the KINS and COCOA datasets and report the results in Table 3.2. This indicates
that the C2F-Seg outperforms other state-of-the-art models on both datasets across average
precision (AP) and mean intersection over union (mIoU) metrics.

Methods KINS COCOA

AP AP@.5 AP@.75 mIoUfull mIoUocc AP AP@.5 AP@.75 mIoUfull mIoUocc

PCNet 29.1 51.8 29.6 78.02 38.14 – – – 76.91 20.34
Mask R-CNN 30.0 54.5 30.1 – – 28.0 53.7 25.4 – –
ORCNN 30.6 54.2 31.3 – – 28.0 53.7 25.4 – –
VRSP 32.1 55.4 33.3 80.70 47.33 35.4 56.0 38.7 78.98 22.92
AISformer 33.8 57.8 35.3 81.53 48.54 29.0 45.7 31.8 72.69 13.75
C2F-Seg 36.5 58.2 37.0 82.22 53.60 36.6 57.0 38.5 80.28 27.71

Table 3.2: C2F-Se performance comparison on the KINS and COCOA reported by [Gao+23]. The AP columns
show AP@[.5:.95]

Figure 3.4: The architecture of C2F-Seg taken from [Gao+23]. The transformer module predicts coarse amodal
masks from visual features and visible segments, while a convolutional refinement module refines the coarse
predictions using visual features to generate final amodal segmentation mask predictions. Inference provides an
estimate of the amodal mask based on input visible masks.
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The following shows the Coarse-to-Fine Amodal Segmentation with Shape Prior (C2F-
seg) model in more detail. C2F-Seg generates amodal segments progressively through two
phases, as shown in Figure 3.4. The first coarse segmentation phase takes as inputs ResNet
visual feature, vector-quantized visible segments, and ground-truth amodal segments masked
in a high ratio. In this phase, a transformer is adopted and trained to reconstruct the masked
tokens of the amodal segments. The reduction of learning space from pixel-level image
space to low-dimension vector-quantized latent space makes the learning process easier and
accelerates the inference process. The second refinement phase takes as inputs the coarse-
predicted amodal segments from the first phase and the visual features. A semantic-inspired
attention module is constructed as an initial stimulus, which gradually injects the visual
features into the segments through convolution layers to finally arrive at a more precise
amodal object segmentation. The learning of visible masks is used as an auxiliary task in
training; inference only provides an estimate of the amodal mask based on the input of
visible masks.

The C2F_seg framework used for experiments in [Gao+23] was implemented on the
PyTorch platform and utilized pre-detected visible detections by AISFormer [Tra+22]. The
model enlarges bounding boxes of visible regions twice and uses them to crop the image and
mask inputs. The inputs are then all resized to 256×256, and various data augmentation
techniques, including morphology dilation, erosion, and Gaussian blur, are applied.





Chapter 4

Solution Approach

The 2D object detector of Providentia Mono3D currently relies on YOLOv7 pre-trained on
COCO dataset. It downscales the incoming frames from 1920x1200 to 1280x1280 or even
640x640 (with padding) to speed up the process to meet the system’s real-time require-
ment. However, this downscaling sacrifices detection accuracy, particularly for small objects
farther away from the camera. Moreover, the COCO dataset annotates eighty classes, but
only six classes overlap with our TUM Traffic dataset. The Providentia 2D detector filters
six COCO sub-classes: CAR, BUS, TRUCK, MOTORCYCLE, BICYCLE, and PEDESTRIAN. The
VAN, TRAILER, EMERGENCY_VEHICLE, and OTHER classes from the A9 Dataset cannot yet
be recognized. This poses some limitations. Firstly, occlusion with classes that are not consid-
ered in our dataset will cause big blobs in the detected mask. Secondly, the classes TRAILER,
VAN, EMERGENCY_VEHICLE, and OTHER are not included in COCO and will either not be
detected or detected with another class label.

To address these limitations, in this work, we fine-tune the models on our TUM Traffic
Intersection dataset. This approach not only addresses class mismatches but also improves
detection by training models to understand our camera’s perspective, considering factors
such as view angle and distance. However, since the TUM Traffic dataset lacks segmentation
labels, additional steps are required to extend the dataset with segmentation annotations.

This chapter elaborates on all the steps taken to achieve the aforementioned goals. Firstly,
different state-of-the-art segmentation models are adapted to perform inference on the TUM
Traffic Intersection dataset using publicly available pre-trained model weights on COCO and
KINS datasets in Section 4.1. This provides insights into the general performance and limita-
tions of the models and pre-trained datasets. Subsequently, Section 4.2 outlines the process
of extending the TUM Traffic dataset labels with 2D visible and amodal instance segmenta-
tion masks and bounding boxes. This section is divided into subsections, beginning with an
introduction to the structure of the newly extended OpenLABEL label format (Section 4.2.1).
Following this, a description of a simple 2D annotation interpolation pipeline is presented in
Section 4.2.3 to speed up the annotation process. The annotation procedure for frames is
then described in detail in Section 4.2.4. Finally, Section 4.3 delves into the training of five
different YOLO and C2F models and discusses their effectiveness.

4.1 Pre-trained Models on TUMTraf Intersection Dataset

After reviewing the literature for state-of-the-art modal and amodal instance segmentation
models, promising and suitable models with publicly available pre-trained weights are cho-
sen and adapted to perform inference on the TUMTraf Intersection Dataset. The models
have been either pre-trained on COCO/COCOA or KITTI/KINS datasets. Figure 4.1 and Ta-
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(a) YOLOv7 (b) YOLOv8

(c) C2F (d) WALT

(e) E2EC (f) AISFormer

Figure 4.1: Illustration of YOLOv7, YOLOv8, C2F_Seg, WALT, E2EC, and AISFormer models on an image in the
TUMTraf Intersection dataset. YOLOv7 and YOLOv8 were trained on the COCO dataset; C2F, WALT, E2EC, and
AISFormer were trained on the KINS dataset.

ble 4.1 demonstrate the results obtained from the instance segmentation models YOLOv7
and YOLOv8, alongside the amodal instance segmentation models C2F_Seg, WALT, E2EC
and AISFormer, on an image taken from TUM Traffic Intersection Dataset. The two YOLOv7
and YOLOv8 shown here were trained on COCO dataset, while the weights of the other four
AIS models were trained on the KINS dataset. For a fair comparison, C2F_Seg receives as
input the visible detections of YOLOv8 and is, therefore, just an amodal detection extension
of the IS model YOLOv8.

Overall, the results on the TUMTraf Intersection Dataset show that IS models pre-trained
on COCO can detect more objects than AIS models pre-trained on KINS. The advantage of
COCO, with its larger dataset containing 2.5 million labeled objects, has likely contributed to
the higher detection rate. Additionally, YOLOv8 outperforms its predecessor, YOLOv7. E2EC
and AISFormer struggle to detect large objects, possibly due to being trained on frames with
smaller resolutions.

Furthermore, the YOLO models are one-stage object detection models and are much faster
in inference, especially after being exported to TensorRT. In contrast, the AIS models require
longer inference times and are thus not suitable for real-time detection. Detailed analysis
results of inference speeds are provided in Section 5.4.
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Model # person # vehicle

Ground Truth 6 19 (16 cars/vans, 1 motorcycle, 2 buses, 1 truck, 1 bicycle)
YOLOv7_coco 4 16 (10 cars, 1 motorcycle, 1 bus, 4 trucks)
YOLOv8x_coco 6 19 (13 cars, 1 motorcycle, 1 bus, 3 trucks, 1 bicycle)
C2F_Seg 6 19
WALT 1 11
E2EC 4 8

Table 4.1: Number of detections generated from the inference of YOLOv7, YOLOv8, C2F_Seg, WALT, E2EC, and
AISFormer models, as shown in Figure 4.1. The ’Ground Truth’ denotes the actual count of persons and vehicles
present. The YOLO models, particularly YOLOv8 trained on COCO, exhibit the highest detection rates. E2EC and
AISFormer encounter challenges in detecting large objects, while WALT faces difficulties in identifying pedestrians.

4.2 Segmentation Annotation for TUMTraf Intersection Dataset

The TUM Traffic dataset provides 3D bounding box labels but lacks segmentation masks.
Therefore, it cannot be directly used to train instance segmentation models. To address this
limitation, this work extends the TUM Traffic Intersection dataset by annotating visible and
full instance masks and bounding boxes. Additionally, we adjust the OpenLABEL annotation
schema of the TUMTraf dataset to accommodate these new annotations.

4.2.1 Extended Annotation Formats

Extended OpenLABEL Format

First of all, we extend the OpenLABEL annotation format, described in Section 2.3.1, of the
TUM Traffic dataset to include additional full instance segmentation annotations. Each "ob-
ject_data" now includes additional "bbox" and "poly2d" attributes containing two bounding
boxes and polygons. The visible and amodal bounding boxes and masks are differentiated by
the "full_..." and "visible_..." name attributes. We describe the instance masks by the bound-
ing coordinates around the mask areas. The structure of one extended annotated object is
shown in Listing 4.1.

Listing 4.1: Illutration of the extended OpenLABEL Annotation JSON Structure

1 "object_id" :{
2 "object_data": {
3 "name" :str,
4 "type" :str,
5 "cuboid" :{...},
6 "bbox" :[
7 {
8 "name": "full_bbox",
9 "val": [x_center, y_center, width, height]

10 },
11 {
12 "name": "visible_bbox",
13 "val": [x_center, y_center, width, height]
14 }
15 ],
16 "poly2d" :[
17 {
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18 "name": "full_mask",
19 "val": [x1, y1, x2, y2, x3, y3, ...]
20 },
21 {
22 "name": "visible_mask",
23 "val": [x1, y1, x2, y2, x3, y3, ...]
24 }
25 ]
26 }
27 }

Extended COCO Format

For compatibility with the CVAT labeling tool, which does not support the OpenLABEL format,
we convert labels to and from COCO format for importation into and exportation out of
CVAT. Inspired by the annotation structure of the KINS dataset, we also extend the COCO
annotation format to store the additional amodal segmentation labels. The structure of one
extended object annotation is shown in Listing 4.2. The modifications involve replacing the
single "segmenation" attribute with two separate "i_segm" and "a_segm" attributes describing
the visible (inmodal) and full (amodal) instance masks. The attributes "area" and "bbox" are
replaced by "a_area", "i_area", "a_bbox" and "i_bbox" accordingly. Here, we also describe the
instance masks by the bounding coordinates around the mask areas to ease the conversion to
and from our OpenLABEL format. Additionally, the "iscrowd" attribute is set to 0, indicating
that the annotation refers to a single object.

Listing 4.2: Illutration of the extended COCO Annotation JSON Structure

1 annotation {
2 "id" : int,
3 "image_id" : int,
4 "category_id": int,
5 "i_segm" : [polygon],
6 "a_segm" : [polygon],
7 "i_area" : float,
8 "a_area" : float,
9 "i_bbox" : [x_min,y_min,width,height],

10 "a_bbox" : [x_min,y_top_min,width,height],
11 "iscrowd" : 0
12 }

4.2.2 Annotation Format Converters

Different stages of the work requires different label formats. In particular, YOLOv8 man-
dates data labels in YOLO format with a specific folder structure. The Providentia Mono3D
Toolchain operates with data in OpenLABEL format. Labels are imported and exported in
COCO format to and from CVAT for labeling purposes. Therefore, we implement different
annotation format converters to facilitate the transformation of labels from the TUM Traffic
Dataset OPENLabel format to YOLO and COCO formats, and vice versa.

Several considerations were taken into account during the implementation of these con-
verters, as well as in the utilization of labels in these formats. Firstly, we address the variance
in bounding box specifications. The "x_center" and "y_center" values of OpenLABEL format
has to be converted to "x_min" and "y_min" values of COCO format. While YOLO also utilizes
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bounding boxes with "x_center" and "y_center" values, however, all coordinates specified in
this annotation format are normalized to the range of [0, 1]. Secondly, as the YOLO format
does not inherently include attribute names to distinguish between bounding box and mask
annotations, additional logic is implemented to check this. An annotation line with only five
values indicates annotation of the class identifier and bounding box, while one with more
than five values indicates annotation of the class identifier and instance mask. A polygon
requires a minimum of three vertices, which is six values, that is why this check is valid.
Furthermore, the converters offer the flexibility to choose whether to convert only visible
annotations, only amodal annotations, or both.

4.2.3 2D Annotation Interpolation Pipeline

Leveraging the structure of the TUMTraf Intersection dataset, which comprises eight se-
quences, we develop a simple 2D annotation interpolation pipeline that can interpolate 2D
annotations between consecutive frames, thereby speeding up the labeling process. To in-
terpolate between two annotated frames, we formulate the matching of object annotations
as a Linear Assignment Problem (LAP) and exploit the Jonker-Volgenant algorithm to match
objects of the first frame to the objects of the second frame. The Jonker-Volgenant algo-
rithm [JV88] is faster than the famous Hungarian algorithm, with a time complexity of O(n3)
compared to O(n4). The pipeline then interpolates annotations between matched objects,
interpolating each point of the polygon contour individually for precise label interpolation.

In particular, given a sequence with some frames annotated. The 2D annotation interpo-
lation pipeline first sorts the frames in ascending chronological order, then for each pair of
consecutive labeled frames, the object annotations are interpolated from the first frame to
the second frame by following the following steps:

1. A 2D distance matrix D of shape N ×M is created, with N and M as the amount of the
object’s annotation of the first frame and second frame, respectively. Each cell D[i, j]
represents the straight-line distance, also known as Euclidean distance, of the center
of the i-th object from the first frame to the center of the j-th object from the second
frame. In cases where the categories of the two objects are not identical, the distance
is set to infinity. The distance between a visible annotation and an amodal annotation
is also set to infinity.

D(i, j) =

¨q

(xcenteri
− xcenter j

)2 + (ycenteri
− ycenter j

)2 if categoryi = category j

∞ otherwise

2. This matrix is then given to the scipy.optimize.linear_sum_assignment() func-
tion, exploting the Jonker-Volgenant function, to match each object annotation of the
first frame to one object annotation of the second frame with minimal distance.

3. For each pair of matched object annotations, the visible and full masks are inter-
polated. As already mentioned, the masks are stored in forms of the bounding co-
ordinates around the mask areas. We again match each polygon coordinate of the
first object mask with one polygon coordinate of the second object mask. However,
here, only a simple search for nearest neighbor is done. Let M0 = {(x0i , y0i)}

(n−1)
i=0 and

M1 = {(x1i , y1i)}
(m−1)
i=0 be the set of n and m bounding coordinates of the two matched

object masks. Then the nearest neighbor of one coordinate {(x0i , y0i)} of the first mask
if calculated as:
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Nearest Neighbor((x0i , y0i), M1) = argmin
j

d((x0i , y0i), (x1 j , y1 j))

with
d((x1, y1), (x2, y2)) =

Æ

(x1 − x2)2 + (y1 − y2)2

4. Then linear interpolation is used to interpolate each single polygon point.

xk = x0 +
xn+1 − x0

n+ 1
· k

yk = y0 +
yn+1 − y0

n+ 1
· k

With n being the number of unannotated frames in the middle, k ∈ [1, n], and (x0, y0)
and (xn+1, yn+1) being the matched polygon point from the first frame and the second
frame, respectively.

5. Finally, bounding boxes are calculated from the masks, object category, and other at-
tributes are copied over.

This 2D detection interpolation pipeline goes beyond simple copying and pasting of bound-
ing boxes and masks. Each point of the polygon contour of the mask is interpolated individ-
ually. Therefore, not only the position but also the shape and rotation of the object are
interpolated, providing much more accurate labels.

However, this pipeline is not flawless and still requires manual refinement afterward. One
limitation is that a single false matching can trigger a cascade of erroneous matches, given
that each object from the second frame can only be matched with one object from the first
frame. To mitigate this challenge, future research could explore more sophisticated solutions
for data association, facilitating more precise matching between objects for interpolation.
Another limitation lies in the current use of linear interpolation, which assumes a constant
velocity of road users between frames, which may not always hold true. To address this
limitation, future work could leverage tracking algorithms to monitor the moving velocities
of road users and interpolate the 2D masks to more precise locations.

4.2.4 Annotating Instance Masks

To begin, we annotate approximately every tenth frame of the dataset, excluding the test set,
with both modal and amodal instance masks, covering nearly 10% of the dataset. However,
instead of entirely manual labeling, we leverage the YOLOv8x segmentation model pretrained
on COCO to automatically detect the visible masks of objects. Subsequently, we import these
detections into the Computer Vision Annotation Tool (CVAT), where the visible masks are
manually refined and extended to amodal masks. The object categories are also adjusted
to align with the TUMTraf Dataset specifications. We have taken great care to ensure the
accurate annotation of the full mask by searching for the object’s occluded parts in another
frame where they are visible. A sequence with around 10% annotated frame is then given
to the 2D detection interpolation pipeline so that the remaining frames in the middle can
be automatically annotated. Afterward, we double-check the annotations and correct the
erroneous ones.

Within the limited timeframe of this bachelor thesis, we have only interpolated and re-
fined the visible and full segment annotations for three sequences, including R02_S01 from
both south1 and south2 cameras and R02_S02 from south1 camera with the addition of
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around 10% of frames from the remaining sequences excluded test frames. In total, 1238
frames from the TUMTraff Intersection Dataset are annotated. Some examples are shown
in fig. 4.2. These annotated frames are then partitioned into training, validation, and test-
ing sets comprising 1022, 125, and 91 frames, respectively, adhering to the original split
of the TUMTraff Intersection Dataset. In the future, this annotation pipeline can be further
improved and utilized to extend the remaining TUMTraf Intersection Dataset and even the
entire TUMTraf Dataset with segmentation annotations.

R02 S01 south1

R02 S01 south2

Figure 4.2: Four frames from release 02 sequence 01 of TUMTraf Dataset with the south1 and south2 camera,
respectively. The frames are visualized with the object’s full instance masks, full bounding boxes, and categories.
The missing classes from COCO, like TRAILER and VAN, are also annotated.

4.3 Instance Segmentation Node

Similar to the Instance Segmentation Node of the Providentia Mono3D system, we imple-
ment a 2D detector node utilizing the YOLOv8 instance segmentation model. The interaction
between the camera driver node and the 3D detection node remains unchanged. This 2D
detector node receives full-resolution 1920x1200 RGB frames from shared memory and pub-
lishes the 2D detection results to the 3D detector through ROS. The input frames, however,
are not downscaled before inference. Research has demonstrated that maintaining full res-
olution during inference yields significantly better performance compared to downsampling
(as discussed in section 5.3).

The new library style of YOLOv8 has significantly simplified interaction with the model.
Models in various formats, such as Pytorch (.pt) or TensorRT (.engine/.trt), can be loaded
in the same way. After inference, we apply non-maximum suppression (NMS) with a thresh-
old of 0.65 to filter out heavily overlapped detections. Subsequently, detections with lower
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confidence are filtered based on class-wise confidence thresholds. To differentiate between
detection results of model weights trained on different datasets, including COCO, TUMTraf,
and NuImages, the 2D detector node implements additional logic to correctly interpret cate-
gory indices, utilizing different index-to-category mappings for each dataset.

For each input frame, the detector node publishes an output array of detected instances
containing 2D bounding boxes, 2D segmentation masks, and confidence scores to down-
stream processes. The detected 2D segmentation instance masks can currently be transmit-
ted in two formats: bit-packed masks or polygon contours. The former utilizes bit-packing to
serialize pixel mask arrays for each instance. This results in 1920*1200 pixels per frame for
full resolution, with each pixel being one bit, resulting in a total of 285000 bytes per frame.
Alternatively, the latter approach transmits only the image coordinates (x,y) of the polygon
points of the detected mask’s contour, with each x or y coordinate being an unsigned-8-bit
integer, requiring only 2 bytes per point. Hence, up to 142500 polygon points can be sent
before reaching the level of bit-packed masks. Considering that each frame typically contains
20 to 30 objects, allowing each object to use 4750 points to describe the polygon contour
seems excessive. Therefore, we advocate for the second option as a better choice. How-
ever, since the current 3D detector expects bit-packed masks as input, a complete transition
to polygon contours is not feasible yet. A future work would be to adjust the 3D detector’s
message reception to eliminate the need for sending bit-packed masks entirely.

Additionally, 2D visualizations and OpenLABEL detection files can be generated for fur-
ther analysis and debugging.

4.3.1 Training YOLOv8 Models

Training different YOLOv8 models is a crucial aspect of this work. We choose the YOLOv8x,
the largest model that promises the best accuracy, and train different model weights and
evaluate their performance on the TUMTraf Intersection Dataset as well as their general
generalization capabilities. The above-mentioned annotated split of the TUMTraf Intersection
Dataset is converted to YOLO’s required data structure as preparation for training.

We focus on training two main models. The first YOLOv8x model is trained from the
annotated TUMTraf Intersection Dataset from scratch for a total of 300 epochs on a full
image resolution of 1920. The second utilizes the pre-trained YOLOv8x model published by
Ultralytics, which was initially trained on COCO with an image size of 640 for 500 epochs,
and fine-tunes it on the TUMTraf Intersection Dataset with an image size of 1920. Both
models demonstrate improved performance in both 2D and the subsequent 3D detections.
Particularly noteworthy is the first model trained on TUMTraf from scratch, which not only
outperforms the existing 2D detector based on YOLOv7 on the TUMTraf Intersection Dataset
but also exhibits superior generalization to other scenarios, such as nighttime and highway
scenes. Compared to YOLOv7, it achieves a 2D mAP@[.5:.95] difference of over 18% and a
3D mAP@[.10] difference of almost 8%. Further details of the evaluations are elaborated in
chapter 5.

Additionally, we fine-tune a model on the TUMTraf Intersection Dataset at a resolution
of 640 to validate that training and detecting from higher image resolutions yield higher de-
tection accuracy. In particular, the model weight with the highest accuracy at resolution 640
still performs approximately 16.5% worse than the model weight with the highest accuracy
at resolution 1920.

To further enhance performance, we want to explore nuImages for pre-training. As de-
scribed in Section 2.2, nuImages is a significantly larger dataset compared to COCO, making
it a potentially better candidate for pre-training. However, due to its immense size, training
on nuImages requires more time per epoch and may require many epochs to converge. Fol-
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lowing the training of the YOLOv8x model from scratch on nuImages with a resolution of
1280 for 50 epochs, we assess its performance. It is evident that pre-training on nuImages
for 50 epochs is not enough to yield any improvement compared to the published model
pre-trained on COCO. We are currently continuing the training of this model in pursuit of
improved results.

4.3.2 TensorRT Optimization

To preserve the real-time performance of the Providentia system, we export the models to
TensorRT for accelerating inference. NVIDIA’s TensorRT [Van16] is a high-performance deep-
learning inference library designed to optimize and accelerate the inference of deep neural
networks on NVIDIA GPUs. It employs various techniques, such as weight and activation
precision calibration, to achieve FP32, FP16, or INT8 quantization with a significantly lower
model footprint. Layer and tensor fusion, combined with kernel auto-tuning, further maxi-
mizes the GPU utilization. We exported the model using FP16 quantization and optimized it
for inference on TUMTraf full-resolution frames of size 1920.

The exportation of the YOLOv8x model from Pytorch to TensorRT format significantly
boosts the inference speed, nearly tripling it from 10 frames-per-second (FPS) to 28 FPS for
inference at an image resolution of 1920x1920, and from 66 FPS to 200 FPS for an image
resolution of 640x640.

4.3.3 Training C2F Model

Since the YOLOv8x model trained on the TUM Traffic Intersection dataset from scratch has
achieved the best performance improvement in visible 2D segmentation, we leverage its de-
tections to extend them to amodal masks using the C2F-seg model. First, we adapt and
fine-tune the C2F-seg amodal segmentation model on the TUMTraf Intersection Dataset. Sub-
sequently, we give it the visible detections as inputs and generate amodal detections, which
are then passed to the subsequent 3D detector to produce the final 3D bounding boxes.

It is intriguing to explore whether the additional information provided by amodal masks
can enhance the final 3D perception results. However, the results are somewhat surprising;
despite receiving visible detections from the YOLO model as input, the C2F model achieves a
lower improvement in 3D performance (only 1.90% compared to the 7.53% improvement of
YOLOv8x trained on TUMTraf Intersection). This suggests that extending to amodal masks
using C2F has even worsened the final 3D perception performance. Further in-depth analysis
of this phenomenon would be valuable to uncover the underlying reasons.

Additionally, regarding inference time, C2F requires, on average, around 22 milliseconds
to extend one visible mask to an amodal mask. For a frame containing 20 objects, this would
add an additional 440 milliseconds on top of the visible segmentation time. There may be
potential for improvement when C2F can be exported to TensorRT in future work.





Chapter 5

Evaluation

This chapter conducts a comprehensive evaluation of different instance segmentation YOLO
models and amodal instance segmentation C2F models trained on different datasets, in-
cluding COCO, KINS, nuImages and TUMTraf Intersection Dataset. Section 5.1 provides an
overview of all models to be evaluated. Section 5.2 introduces the evaluation metrics chosen
for both the 2D and 3D detection stage. Mean Average Precision (mAP) and mean Inter-
section over Union (mIoU) are utilized for 2D detection evaluation, while 3D mAP is used
for assessing the final 3D perception results. Next, the 2D quantitative results of the trained
models are discussed in Section 5.3 and compared against the baseline model YOLOv7. Sub-
sequently, the inference speed is compared in Section 5.4. Section 5.5 demonstrates the
effectiveness of different trained segmentation models on the final 3D perception results,
with some qualitative results shown in Section 5.6.

All experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU card. In the
tables, small green and red numbers indicate improvement and reduction compared to the
YOLOv7 baseline model, respectively. Bold and underlined values denote the highest value,
while bold values represent the second-highest value in each column.

5.1 Comparison Objectives

Table 5.1 provides an overview of all models compared in this work. In this chapter, we define
the model symbol as follows: If the model symbol contains only one dataset name, it means
that the model is trained only on that particular dataset. On the other hand, if the model sym-
bol contains two dataset names, it indicates that the model is pre-trained on the first dataset
and fine-tuned on the second dataset.The YOLOv7_coco and the YOLOv8x_coco models are
publicly available pre-trained models on COCO with an image size of 640, they are trained for
30 epochs and 500 epochs, respectively. YOLOv7_coco is utilized in the Providentia Mono3D
system and is referred to as a baseline model in this chapter. C2Fseg_coco and C2Fseg_kins
are published weights of the C2F segmentation model trained on KINS and COCOA datasets
using a batch size of 16 with a total of 45k and 10k iterations, respectively. The remaining
four models are trained within the scope of this thesis. The YOLOv8x_coco_tumtraf_640 is
pre-trained on COCO and then fine-tuned on TUMTraf Intersection dataset with image res-
olution of 640 for 150 epochs. The YOLOv8x_coco_tumtraf_1920 is pre-trained on COCO
and then fine-tuned on TUMTraf Intersection dataset with image resolution of 1920 for 250
epochs. The YOLOv8x_tumtraf is trained from scratch on the TUMTraf Intersection dataset
with image resolution of 1920 for 250 epochs. Lastly, YOLOv8x_nuImg is trained on nuIm-
ages with a resolution of 1280 for 50 epochs. Continuous training of this model is necessary
because nuImages is a vast dataset, and therefore, 50 epochs are not sufficient for significant
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improvement over COCO.

Model Symbol Trained on image size

Y OLOv7_coco COCO 6402

Y OLOv8x_coco COCO 6402

Y OLOv8x_tumtra f TUMTraf 19202

Y OLOv8x_coco_tumtra f _640 COCO, finetuned on TUMTraf 6402

Y OLOv8x_coco_tumtra f _1920 COCO, finetuned on TUMTraf 6402, 19202

Y OLOv8x_nuImg nuImages 12802

C2Fseg_coco COCO dataset (∗)
C2Fseg_kins KINS (∗)
C2Fseg_kins_tumtra f KINS, finetuned on TUMTraf (∗)

Table 5.1: An overview of instance segmentation models compared in this work. (∗) : as described in Section 3.2,
C2Fseg models crop input images based on visible regions and resize each region of interest (ROI) to 2562 px.

5.2 Evaluation Metrics

In order to assess the effectiveness of the 2D and 3D object detectors, we utilize widely
recognized metrics commonly employed in the literature on object detection and instance
segmentation. Specifically, we employ mean average precision (mAP) and mean Intersection
over Union (mIoU) for evaluating our 2D object detector. For our 3D object detector, we
utilize 3D mAP as the primary metric.

5.2.1 Intersection over Union

Intersection Over Union (IoU) is a metric used to determine the degree of geometric overlap.
This metric is calculated by dividing the overlap area by the union area between the ground
truth and prediction. A perfect overlap yields a maximum IoU value of 1, whereas no overlap
results in 0. Mean IoU is obtained by taking the average of the IoUs of each class.

IoU=
GT ∩ Pred
GT ∪ Pred

In basic 2D or 3D object detection tasks, IoU is calculated as the overlap area divided
by the union area between the ground truth 2D or 3D bounding box and the predicted 2D
or 3D bounding box. In most cases, this IoU is used as an intermediate step in determining
the True Positive (TP), False Positive (FP), or False Negative (FN) detections. To make this
determination, IoU is first calculated between the prediction and the ground truth. If the IoU
value is greater than a predetermined threshold (such as 0.5), the prediction is classified as
TP; otherwise, it is classified as FP.

In instance segmentation task, where predictions are segmentation masks, IoU analysis
occurs at the pixel level. The definition of TP, FP, and FN is slightly altered as it is not based
on a predefined threshold. A True Positive, in this case, is the number of pixels of intersection
between the ground truth and the predicted mask. This is mathematically equivalent to the
logical AND operation of both masks. A False Positive is the predicted area outside the ground



5.3 2D Quantitative Analysis 31

truth, which is the logical OR of the ground truth and prediction, minus the ground truth. A
False Negative is the number of pixels within the ground truth area that the model failed to
predict, computed as the logical OR of the ground truth and prediction, minus the prediction
masks. These definitions yield the following expressions:

TPmask = GTmask ∩ Predmask,

FPmask = (GTmask ∪ Predmask) \ GTmask,

FNmask = (GTmask ∪ Predmask) \ Predmask

5.2.2 Average Precision

Average precision (AP) utilizes the concept of Precision and Recall. Precision represents the
ratio of true positives and the total number of predicted positives, while Recall denotes the
ratio of true positives and the total number of actual positive samples. Precision reflects the
degree of confidence that a model has in classifying a sample as Positive, while Recall indi-
cates the number of positive samples correctly identified by the model. In essence, precision
measures the quality, while recall measures the quantity.

Precision=
TP

TP+ FP
, Recall=

TP
TP+ FN

The Precision-Recall (PR) curve presents the tradeoff between precision and recall values
for different thresholds. The average precision (AP) of a category is obtained by calculating
the area under the PR curve of that category. The mean average precision (mAP) is simply
the average of all AP values across different categories. To differentiate between different
IoU thresholds, it’s common to specify the IoU threshold after mAP. For example, mAP@[.5]
denotes mAP at an IoU threshold of 0.5, whereas mAP@[.5 : .95] represents the average mAP
across different IoU thresholds ranging from 0.5 to 0.95, with a step of 0.05, i.e., 0.5, 0.55,
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. mAP@[.5 : .95] offers a more comprehensive
evaluation by considering a broader range of IoU thresholds, capturing both high and low
overlap between predicted and ground truth bounding boxes.

5.3 2D Quantitative Analysis

5.3.1 YOLO Models Quantitative Analysis

Table 5.2 examines the 2D visible instance segmentation mean average precision (mAP) and
mean intersection over union (mIoU) of several YOLO models on the segmentation mask
annotated TUMTraf Intersection test set. A confidence threshold of 0.25 and image sizes of
1920, 1280, and 640 are used. The results reveal some noteworthy observations.

• Firstly, comparing the two pre-trained model weights on COCO, the YOLOv8x_coco
outperforms YOLOv7_coco across all image resolutions. This reaffirms the statements
made when YOLOv8 was published.

• Secondly, the detection accuracy is proportional to image resolution. All accuracies
drop as image resolution decreases from 1920 to 640. The only exception is the model
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Image resolution of 19202 px

Model mAP@[.5] mAP@[.5:.95] mIoU

Y OLOv7_coco (Baseline) 82.70 00.00 57.60 00.00 85.36 00.00

Y OLOv8x_coco 77.20 -5.50 61.20 +3.60 89.51 +4.15

Y OLOv8x_tumtra f 94.50 +11.80 75.90 +18.30 91.51 +6.15

Y OLOv8x_coco_tumtra f _640 44.40 -38.30 27.50 -30.10 80.80 - 4.56

Y OLOv8x_coco_tumtra f _1920 89.80 +2.60 68.10 +10.50 90.58 +5.22

Image resolution of 12802 px

Model mAP@[.5] mAP@[.5:.95] mIoU

Y OLOv7_coco (Baseline) 78.50 53.40 85.72
Y OLOv8x_coco 80.10 +1.60 58.50 +5.10 88.50 +2.78

Y OLOv8x_tumtra f 93.80 +15.30 71.70 +18.30 90.00 +4.28

Y OLOv8x_coco_tumtra f _640 92.00 +13.50 63.50 +10.10 85.30 -0.42

Y OLOv8x_coco_tumtra f _1920 95.90 +17.40 74.30 +20.90 88.60 +2.88

Image resolution of 6402 px

Model mAP@[.5] mAP@[.5:.95] mIoU

Y OLOv7_coco (Baseline) 67.00 42.80 85.36
Y OLOv8x_coco 70.50 +3.50 46.00 +3.20 82.12 -3.24

Y OLOv8x_tumtra f 66.40 -0.60 42.90 +0.10 80.67 -4.69

Y OLOv8x_coco_tumtra f _640 86.10 +19.10 59.40 +16.60 85.97 +0.61

Y OLOv8x_coco_tumtra f _1920 34.00 -33.00 18.80 -24.00 67.97 -17.39

Table 5.2: A comparative quantitive results of the YOLO instance segmentation models on the segmentation
annotation extended test set. The models are evaluated on image sizes of 1920, 1280, and 640 with a confidence
threshold of 0.25.

weight YOLOv8x_coco_tumtraf_640, which is pretrained on COCO and fine-tuned on
TUMTraf Intersection Dataset with an image size of 640 and hence performs better
for smaller image sizes. However, overall, the model weight with the highest accuracy
at resolution 640 still performs approximately 16.5% worse than the weight with the
highest accuracy at a resolution of 1920.

• Overall, YOLOv8x_tumtraf at an image resolution of 1920 achieves the highest accu-
racy, showing a significant improvement of 18.30% mAP@[.5:.95] compared to the
baseline model YOLOv7. YOLOv8x_coco_tumtraf_1920 achieves the second highest of
+10.50% against the baseline. These results demonstrate the effectiveness of training
on the TUMTraf Intersection Dataset.

Training from scratch achieves better performance on the test set than fine-tuning from
pre-trained weight on COCO. This is likely due to the limited number of frames annotated
with segmentation masks in the TUMTraf Intersection Dataset, allowing models trained from
scratch to better adapt and overfit to this specific dataset. Further investigation in the ablation
study section will explore performance across the entire dataset, as well as on other datasets
with varying scenes and camera settings, revealing the generalizability of the models.
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5.3.2 C2F Models Quantitative Analysis

Model invisible mIoU full mIoU

C2Fseg_cocoa 31.49 78.71
C2Fseg_kins 33.73 82.44
C2Fseg_kins_tumtra f 77.29 91.99

Table 5.3: A quantitative comparison of different C2F amodal instance segmentation models on the segmentation
annotation extended test set. Full mIoU represents the mIoU of the complete object mask, incorporating both
visible and occluded parts. All models utilize ground truth instance segmentation masks as visible detection
inputs.

Table 5.3 compares the performance of different C2F amodal instance segmentation mod-
els on the segmentation annotation extended test set. Full mIoU represents the mIoU of the
entire object mask, including both visible and occluded parts, while invisible mIoU specifi-
cally represents the mIoU for the occluded part of the objects. To ensure a fair comparison,
all three models receive the ground truth instance segmentation masks as visible detection
inputs.

The results demonstrate that the C2F model weight pre-trained on the KINS dataset out-
performs the pre-trained on the COCOA dataset. Additionally, fine-tuning on the TUMTraf
Dataset has significantly improved the performance. The subsequent analysis in Section 5.5
will provide insights into whether amodal masks have a significant impact on the final 3D
perception results.

5.4 Inference Speed

Real-time is a critical aspect of autonomous driving, where the goal is to achieve higher
accuracy while maintaining real-time inference speed. The Frames Per Second (FPS) mea-
surement is commonly used to evaluate the efficiency of the methods. A higher FPS indicates
faster inference. The baseline YOLOv7 model, as stated in [Bir23], achieves frame rates be-
tween 55 and 60 FPS at a resolution of 6402 px, 22 FPS at 12802 px, and only 12 FPS at
19202 px on the TUMTraf Intersection Dataset. The YOLOv8 model not only achieves better
performance but also accelerates in speed. In our study, we measure the inference speed of
these models on the TUMTraf Intersection Dataset, and the results are presented in Table 5.4.

Notably, the largest YOLOv8x TensorRT models achieve FPS rates of 26 to 28 at the full
19202 px resolution, marking a 233% improvement over the YOLOv7 TensorRT. Furthermore,
the FPS increases to 62 and 200 as the resolution decreases to 12802 px and 6402 px, respec-
tively. Additionally, we document the inference speed of PyTorch models, observing around
threefold acceleration in inference speed through exporting to TensorRT.

The C2F model extends visible masks to amodal masks, and hence, the inference speed
per frame is contingent upon the number of object masks to be extended within each frame.
C2F models require approximately 22 milliseconds to extend a visible mask to an amodal
mask for one instance. With an average of 15 to 20 objects per frame in the TUMTraf In-
tersection Dataset, this translates to 330 to 440 milliseconds per frame, which is 2.3 to 3
FPS. However, as C2F relies on visible masks as input, which must be predicted beforehand,
the computational cost of visible mask estimation must also be factored in. For example,
utilizing predicted visible masks from YOLOv8x as input into C2F would result in a total in-
ference time of 365 to 475 milliseconds per frame, equivalent to 2.1 to 2.7 FPS. Consequently,
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Model Model Format
Image Resolution

6402px 12802px 19202px
YOLOv7 TensorRT 52 22 12
YOLOv8x PyTorch 66 22 10
YOLOv8x TensorRT 200 62 28

Table 5.4: A Comparison of model inference speed (FPS) across various image resolutions. The results highlight
significant acceleration in inference speed with the YOLOv8 model, especially after exporting to TensorRT.

the C2F amodal instance segmentation model appears unsuitable for real-time applications.
Nevertheless, there is potential for improved speed by exporting the C2F PyTorch model to
TensorRT.

5.5 3D Perception Performance Analysis

Table 5.5 presents quantitative comparisons of 3D perception on the test sequence of TUM-
Traf Intersection Dataset from both camera south1 and camera south2. The 2D detections
from the existing baseline 2D detector based on YOLOv7 and from the proposed 2D detector
based on YOLOv8 models are sent to the toolchain 3D detector as ROS messages. The final
3D output detections are then evaluated with Precision, Recall, and Average Precision met-
rics. The experimental setup aligns with the parameters defined in [Bir23], utilizing original
LiDAR labels L0 and non-tracking T0, with an image resolution of 1920 and a confidence
threshold set to 0.25. The results reveal some noteworthy observations.

• The integration of the YOLOv8 2D detector has yielded notable improvements over
the baseline YOLOv7 detector, with the most significant improvement observed when
utilizing the YOLOv8 model trained from scratch on the TUMTraf dataset (+7.53%
3D mAP@[.10] improvement against the baseline YOLOv7). The model pre-trained
on COCO and subsequently fine-tuned on TUMTraf also showcases performance gains,
although slightly less significant (+5.58% 3D mAP@[.10] improvement against the
baseline). A closer look at the YOLOv8x_coco_tumtraf_1920 reveals a decline in both
Precision and Recall, which is causing a significant drop in the AP of the BUS category.
Further investigation shows that this model often detects two large adjacent objects as
a single object mask, as shown in Figure 5.1.

Figure 5.1: An illustration of YOLOv8x_coco_tumtraf_1920 model detecting two adjacent large objects as
a single object mask.

• The TRUCK and VAN categories show remarkable performance enhancements across
all trained models, while it’s noteworthy that the VAN class is not included in the
COCO dataset. However, the PEDESTRIAN category experiences diminished perfor-
mance, characterized by a significant decrease in precision despite a relatively stable
recall rate. This anomaly likely arises from a substantial increase in false positive (FP)
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Classes Precision Recall AP@[.10]

CAR 30.54 17.27 25.45
TRUCK 1.63 1.52 1.20
VAN 2.28 0.02 0.00
BUS 48.52 30.88 43.37
PEDESTRIAN 7.06 7.79 6.21
BICYCLE 12.62 30.62 11.61

mAP@[.10] 10.98

(a) YOLOv7_coco (Baseline): trained on COCO for 30
epochs at resolution 640 x 640

Classes Precision Recall AP@[.10] △Baseline

CAR 32.81 17.31 28.52 +3.08
TRUCK 10.74 5.32 8.63 +7.43
VAN 2.28 0.02 0.00 0.00
BUS 50.80 31.87 45.87 +2.50
PEDESTRIAN 6.53 11.04 5.98 -0.23
BICYCLE 11.80 30.18 11.54 -0.07

mAP@[.10] 12.60 + 1.62

(b) YOLOv8x_coco: trained on COCO for 500 epochs
at resolution 640 x 640

Classes Precision Recall AP@[.10] △Baseline

CAR 29.51 17.11 29.51 +4.06
TRUCK 24.27 13.99 24.27 +23.07
VAN 28.43 12.33 28.43 +28.43
BUS 43.51 30.54 43.51 +0.14
PEDESTRIAN 4.03 7.70 4.03 -2.18
BICYCLE 18.37 30.26 18.37 +6.76

mAP@[.10] 18.51 + 7.53

(c) YOLOv8x_tumtraf: trained on TUMTraf Intersection
dataset for 250 epochs at resolution 1920 x 1920

Classes Precision Recall AP@[.10] △Baseline

CAR 34.51 16.88 29.14 +3.69
TRUCK 16.08 9.57 12.33 +11.13
VAN 33.58 12.16 26.94 +26.94
BUS 40.47 19.52 34.52 -8.85
PEDESTRIAN 5.17 7.47 4.55 -1.76
BICYCLE 29.09 16.69 27.43 +15.82

mAP@[.10] 16.86 + 5.88

(d) YOLOv8x_coco_tumtraf_1920: YOLOv8x_coco
fine-tuned on TUMTraf Intersection dataset for 250
epochs at resolution 1920 x 1920

Classes Precision Recall AP@[.10] △Baseline

CAR 30.70 16.55 23.77 -1.68
TRUCK 0.00 0.00 0.00 -1.20
TRAILER 6.41 0.62 2.06 +2.06
BUS 5.77 1.15 3.18 -40.19
PEDESTRIAN 5.64 7.14 5.64 -0.57
BICYCLE 13.64 30.62 12.62 +1.01

mAP@[.10] 5.91 - 5.07

(e) YOLOv8x_nuImg: trained on nuImages dataset for
50 epochs at resolution 1280 x 1280

Classes Precision Recall AP@[.10] △Baseline

CAR 16.43 16.83 14.42 -11.03
TRUCK 16.48 10.44 13.39 + 12.19
VAN 30.97 12.11 24.26 + 24.26
BUS 33.59 19.05 28.90 -14.48
PEDESTRIAN 3.06 4.85 2.52 -3.71
BICYCLE 20.01 30.26 19.57 + 7.96

mAP@[.10] 12.88 + 1.90

(f) C2Fseg_kins_tumtraf: pre-trained on KINS then
fine-tuned on TUMTraf Intersection dataset for 30
epochs

Table 5.5: This table presents the 3D detection quantitative results on the test sequence of TUMTraf Intersection
Dataset from both camera south1 and camera south2. To make the table more readable, classes with Precision,
Recall and AP of 0 are not shown here. Classes with labels in ground truth but no detections have an AP value
of 0 and are still included in the mAP calculation. However, classes without labels in ground truth and with no
detections are excluded and do not contribute to the mAP.
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predictions. Upon visualizing the ground truth 3D labels against the model predictions,
as shown in the first image of Figure 5.2, it becomes apparent that the 3D bounding box
labels of the TUMTraf Intersection Dataset do not cover all the pedestrian instances. The
model can correctly identify the presence of three pedestrians at the top left (depicted
in red), which are not annotated in the ground truth (depicted in green), consequently
contributing to a considerable rise in false positives. This issue appears not only in the
PEDESTRIAN category but also in other classes, as is evident in the remaining images.

Figure 5.2: An Illustration comparing ground truth (green) with YOLOv8x_tumtraf predictions (red). These
frames are from the TUMTraf Intersection Dataset test sequence. The frames reveal that the labels of the
TUMTraf Intersection Dataset are incomplete, failing to label all objects in the image. Consequently, the
models produce false positives when identifying unlabeled objects.

• YOLOv8 model trained on nuImages for 50 epochs still is not powerful enough to sur-
pass the performance achieved by the model trained on COCO for 30 epochs. Given the
extensive scale of the nuImages dataset, further training is deemed necessary to realize
its full potential.

• The C2F model trained on KINS and fine-tuned on TUMTraf also demonstrates mod-
erate performance gains in the TRUCK and VAN categories. However, there is also a
notable decline in performance for the BUS and PEDESTRIAN categories. Overall, the
trained C2F has a smaller improvement (+1.90% 3D mAP@[.10] against the baseline
YOLOv7) compared to the improvement of trained YOLOv8x models even though it
receives the visible detections from YOLOv8x as input. This indicates that extending to
amodal has even worsened the final 3D perception performance.

5.6 Qualitative Analysis

Figure 5.3 presents the qualitative comparison of the models on the TUMTraf Intersection
Dataset. The first row (a) showcases the results obtained from the existing 2D detector based
on YOLOv7, utilized in the Providentia Mono3D system. Subsequent rows (b,c,d) present the
outcomes of the newly implemented 2D detector leveraging different YOLOv8 model weights.
The final row (e) displays the results of the amodal mask extended 2D detection obtained
from the trained C2F model. Several notable observations emerge:

• The existing YOLOv7 model, pre-trained on COCO, exhibits limitations in detecting
large objects, as evidenced by its inability to detect the truck and bus in the first image.
Although YOLOv8 models pre-trained on COCO demonstrate improved performance in
this regard, they still face challenges in detecting extremely large objects, often detect-
ing only a portion of the object, as depicted in the first frame of the second row. This
limitation can be attributed to their training on COCO with an image size of 640, which
constrains their ability to detect objects larger than 6402 pixels. In contrast, models
fine-tuned on the TUMTraf Dataset with full image resolution showcase enhanced ca-
pability in detecting large objects, although sometimes requiring multiple overlapping
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Figure 5.3: Qualitative comparison results of different models on TUMTraf Intersection Dataset. From top to bot-
tom: a) Y OLOv7_coco, b) Y OLOv8x_coco, c) Y OLOv8x_tumtra f , d) Y OLOv8x_coco_tumtra f _1920,
e) C2F_kins_tumtra f _1920. The visualizations include 2D bounding boxes, 2D masks, 3D bounding boxes,
and category labels.

masks to detect the entire object. Nevertheless, detecting with multiple overlapping
masks is still superior to the inability to detect the object at all.

• Models fine-tuned on the TUMTraf Dataset with full resolution (b, c, d) demonstrate
superior performance in detecting pedestrians, as evidenced by the accurate detection
of three small pedestrians at the top left corner of the second image in each row. While
these pedestrians are scarcely detectable by the first two models, they are accurately
identified by the latter.

• Models fine-tuned on the TUMTraf Dataset exhibit the capability to distinguish between
ten classes, surpassing the six classes recognized by models trained solely on COCO.
This expanded class recognition facilitates the differentiation of vans, depicted in yel-
low, from trucks in green and cars in blue. Furthermore, it enables the detection of
trailers in green in the fourth image and OTHER objects in gray in the third image.

• To ensure a fair comparison, visible detections from YOLOv8x fine-tuned on the TUM-
Traf Dataset are utilized as inputs for C2F. The resulting full masks provided by C2F
facilitate the detection of both visible and invisible objects, as demonstrated in the
fourth image, where overlapping full masks of cars on the left side are observed. The
resulting full masks provided by C2F allowed for the detection of both visible and invis-
ible objects. This can be seen in the fourth and the fifth images, where the full masks
of cars on the left side overlap each other.

The bottom contours of occluded objects are accurately detected using amodal masks,
as demonstrated in Figure 5.4. However, given that the 3D bounding boxes can already
be inferred accurately with visible masks alone, these additional amodal masks do not



38 5 Evaluation

significantly impact the final 3D perception performance. Additionally, the TUMTraf In-
tersection Dataset does not exhibit heavy occlusions. As outlined in Section 2.2.4, only
16.1% of instances are PARTIALLY OCCLUDED, and 0.8% are MOSTLY OCCLUDED.
Therefore, in the overall context, amodal segmentation is unlikely to yield substantial
benefits.

Figure 5.4: Illustrations comparing bottom contour extraction from amodal masks generated by C2F (first
row) and from visible masks only by YOLO models (second row). Bottom contours of occluded objects can
be detected accurately from amodal masks.
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Experiments

6.1 Performance on Night sequence

Figure 6.1: Night sequence: Qualitative comparisons of night sequence prediction of baseline detector
Y OLOv7_coco (first row) and the proposed detector with model weight Y OLOv8x_tumtra f (second row) and
with model weight Y OLOv8x_coco_tumtra f _1920 (third row).The visualizations include 2D bounding boxes,
2D masks, 3D bounding boxes, and category labels.

Table 6.2 and Figure 6.1 demonstrate the results on the night scenario sequence (S04)
of the TUMTraf Intersection Dataset. The model trained from scratch on the TUMTraf In-
tersection Dataset achieves a notable performance enhancement, surpassing the existing 2D
detector based on YOLOv7 by over 10%. Conversely, the model pre-trained on COCO and
subsequently fine-tuned on the TUMTraf Intersection Dataset exhibits a modest improvement
of 1.83%. Additionally, the performance of the YOLOv8x_coco pre-trained weight from Ultr-
alytics is also assessed, showing an improvement of only 0.57% over the baseline.

The qualitative results demonstrate that the YOLOv8 models provide more stable predic-
tions compared to the baseline YOLOv7. While YOLOv7 can identify vehicles, its predictions
are unstable as objects can sometimes be identified and sometimes not. In contrast, YOLOv8
can predict objects with stability throughout the sequence, as illustrated in the first two
frames.

YOLOv8x_coco_tumtraf_1920 has stable detections but performs notably worse than the
YOLOv8x_tumtraf model. It exhibits buggy predicted object masks (frame 3 of the third row),
with several objects remaining undetected (frames 1 and 2 of the third row).
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YOLOv7_coco (Baseline)

Classes Precision Recall AP@[.10]

CAR 26.85 9.92 20.21
TRUCK 0.46 0.07 0.26
VAN 0.00 0.00 0.00
BUS 22.58 8.85 19.68

mAP@[.10] 8.03

YOLOv8x_t umt r a f

Classes Precision Recall AP@[.10] △Baseline

CAR 34.26 14.13 28.16 + 7.95
TRUCK 4.68 4.56 3.86 + 3.60
VAN 22.33 17.45 20.97 + 20.97
BUS 40.88 29.24 38.30 + 18.62

mAP@[.10] 18.26 + 10.23

YOLOv8x_coco_t umt r a f _1920

Classes Precision Recall AP@[.10] △Baseline

CAR 27.16 12.34 21.05 + 0.84
TRUCK 4.18 3.94 3.45 + 3.19
VAN 10.59 5.475 8.59 + 8.59
BUS 18.23 13.98 16.21 - 3.47

mAP@[.10] 9.86 + 1.83

Table 6.2: Night sequence: 3D detection quantitative comparisons on the night sequence.

Remarkably, YOLOv8x_tumtraf outperforms others in the night sequence of the TUMTraf
Intersection Dataset, offering stable predictions and significantly improved identification of
large vehicles.

6.2 Performance on TUMTraf Intersection Dataset

Model S01 S02 S03 S04 Average △Baseline

Y OLOv7_coco (Baseline) 23.91 15.79 11.87 8.03 12.91
Y OLOv8x_coco 20.60 13.82 12.01 8.60 15.20 + 2.29
Y OLOv8x_tumtra f 41.27 17.48 17.50 18.26 20.66 + 7.75
Y OLOv8x_coco_tumtra f _1920 32.42 17.91 21.03 9.86 19.27 + 6.36

Table 6.3: Entire TUMTraf Intersection Dataset: 3D mAP@[.10] comparisons across all sequences of the TUM-
Traf Intersection Dataset. Sequence 03 constitutes the largest portion of the TUMTraf Intersection Dataset, ac-
counting for 50% of the dataset with 2400 frames, followed by the night sequence 04, analyzed previously, with
1200 frames (25%). Sequences 01 and 02 each contain 600 frames, collectively representing the remaining 25%.
Thus, the average mAP values are weighted based on a ratio of 1:1:4:2 for sequences 01 to 04, respectively. This
weighting ensures a fair representation of each sequence’s contribution to the overall performance evaluation.

Table 6.3 presents the 3D mean Average Precision comparison of the YOLOv8 model
weights with the baseline model YOLOv7 across all sequences of the TUMTraf Intersection
Dataset. Once more, the model weight YOLOv8x_tumtraf showcases the most significant
performance improvement. The improvement percentages are not very different from the 3D
quantitative analysis of the test sequence alone in Section 5.5.

6.3 Performance on Highway

Section 6.3 illustrates the inference results of different YOLO models on one frame sequence
taken from the measurement station S40 on the A9 highway. Comparing the two model
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Figure 6.2: Highway: Qualitative comparisons on one high way sequence. Baseline detector YOLOv7_coco (first
row) and the proposed detector with model weight YOLOv8_coco (second row), YOLOv8x_tumtraf (third row) and
with model weight YOLOv8x_coco_tumtraf_1920 (fourth row).The visualizations include 2D bounding boxes, 2D
masks, 3D bounding boxes, and category labels.

weights trained on COCO, YOLOv8x _coco again outperforms YOLOv7_coco. Interestingly,
YOLOv8x_coco can even identify humans sitting inside the vehicles. Overall, YOLOv8x_coco
also outperforms the other two models, YOLOv8x _coco_tumtraf_1920 and YOLOv8x_tumtraf
on the highway, by detecting the most objects.

In this scenario, the models fine-tuned on TUMTraf Intersection Dataset do not perform
well. Compared to YOLOv8x_coco, the YOLOv8x_tumtraf model weight, trained solely on
TUMTraf Intersection Dataset, can detect slightly less objects, especially the small vehicles
much further away from the camera.

Additionally, sometimes the detected mask is too large, as for the yellow van on the right
of the first frame and the truck on the top left of the third frame. Occasionally, two adjacent
large objects are also identified as a single object mask, such as the detected "TRUCK 103" in
the top left corner of the fourth image. YOLOv8x_coco_tumtraf_1920 performs poorly in this
scenario with too few detections.

This confirms that training and fine-tuning on TUMTraf Intersection Dataset will lead to
performance boost in intersection scenarios but will not generalize well to other scenarios like
highways. Therefore, to achieve the same performance boost as in intersection sequences,
annotations for highway sequences also have to be extended with segmentation mask labels
for training the models.
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6.4 Time-shifted ground truth labels and 3D tracker

Model + Time-shifted mAP@[.10] △ non Time-shifted △ Baseline

Y OLOv7_coco (Baseline) 15.20 + 4.22
Y OLOv8x_coco 17.77 + 5.17 + 2.57
Y OLOv8x_tumtra f 33.31 + 14.80 + 18.11
Y OLOv8x_coco_tumtra f _1920 22.26 + 5.40 + 7.06

Table 6.5: Shifted ground truth: 3D detection quantitative comparisons on the test sequence of TUMTraf In-
tersection Dataset from both camera south1 and camera south2 with time-shifted ground truth labels. △non-
shifted column shows the improvement achieved by using time-shifted ground truth compared to non time-shifted.
△baseline shows the improvement against the baseline model YOLOv7_coco with time-shifted ground truth.

The TUMTraf Dataset provides 3D LiDAR labels. These labels, however, might be slightly
shifted because of sensor delay between the RGB camera and the LiDAR sensor frame. The
LiDAR label shifting technique, described in [Bir23], involves estimating spatial velocity to
correct label positions based on the known synchronization error time delta. Table 6.5 shows
the quantitative evaluation after correcting the 3D LiDAR labels. These time-shifted LiDAR
labels lead to an improvement in the overall performance compared to using original LiDAR
labels. This enhancement demonstrates the importance of addressing sensor delay between
the camera and LiDAR sensor frames, as it helps mitigate inherent inaccuracies in the LiDAR
labels, ultimately enhancing evaluation accuracy.

Model + Time-shifted + polyMOT tracker mAP@[.10] △ no tracker △Baseline

Y OLOv7_coco (Baseline) 16.23 + 1.03
Y OLOv8x_coco 18.24 + 0.47 + 2.01
Y OLOv8x_tumtra f 34.02 + 0.71 + 17.79
Y OLOv8x_coco_tumtra f _1920 30.80 + 8.54 + 14.57

Table 6.6: Shifted ground truth + polymot 3D tracker: 3D detection quantitative comparisons on the test se-
quence of TUMTraf Intersection Dataset from both camera south1 and camera south2 with time-shifted ground
truth labels and 3D polyMOT tracker. △no tracker column shows the improvement achieved by using 3D polyMOT
tracker with time-shifted ground truth compared to only time-shifted ground truth. △baseline shows the improve-
ment against the baseline model YOLOv7_coco with time-shifted ground truth labels and 3D polyMOT tracker.

Table 6.5 shows the additional quantitative improvement achieved when using a 3D
tracker. The tracker employed in this study is Poly-MOT (a Polyhedral Framework for 3D
Multi-Object Tracking) [Li+23], which has been exploited and integrated into the toolchain
as part of a bachelor thesis by Vitus Becker. Poly-MOT tracks detections in 3D space and
enhances the stability of vehicle position estimates by continuously predicting and updating
the status of objects within a video sequence.

By using the Poly-MOT 3D tracker and evaluating against the time-shifted ground truth
labels, the 3D mAP@[.10] can be further improved up to 15.51%.
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Conclusion

In conclusion, our thesis, conducted as part of the AUTOtech.agil project, has been dedicated
to enhancing the 2D detector within the Providentia Mono3D object perception pipeline,
with a focus on leveraging instance segmentation models to improve the system’s final 3D
perception performance, particularly on the TUM Traffic Intersection dataset.

Initially, we extend 1238 frames of the TUMTraf Intersection dataset with both modal and
amodal instance masks to address the challenge of lacking segmentation annotations. Addi-
tionally, we present a simple approach for 2D annotation interpolation, utilizing algorithms
like Jonker-Volgenant and linear interpolation to speed up the annotation process by at least
five times.

Furthermore, our exploration into the state-of-the-art YOLOv8 segmentation model has
yielded promising results. We extensively examine the effectiveness of pre-training on var-
ious datasets including COCO, KINS, and nuImages as well as fine-tuning on the annotated
frames of the TUMTraf Intersection Dataset. Our experiments demonstrate the superiority of
YOLOv8x pre-trained on COCO over the baseline YOLOv7 used in the Providentia live sys-
tem, showing improvements of 3.6% in 2D mAP@[.5:.95] and 1.53% in 3D mAP@10. The
fine-tuning of YOLOv8x on the TUMTraf Intersection dataset further improves performance,
achieving a 10.5% improvement in 2D mAP@[.5:.95] and 5.88% in 3D mAP@10 compared
to the baseline. Notably, this model excels in detecting large objects, addressing a significant
limitation of the baseline YOLOv7 detector. The most significant performance boost, how-
ever, is achieved by the YOLOv8x model trained solely on the TUMTraf Intersection Dataset,
with an 18.30% improvement in 2D mAP@[.5:.95] and 7.53% in 3D mAP@10 compared to
the baseline. Together with the use of time-shifted ground truth labels and Poly-MOT 3D
tracker, the best-trained model achieves a 3D mAP@10 of 34.02% on the test sequence of
the TUMTraf Intersection dataset, which is a 17.79% improvement compared to the baseline
YOLOv7 model trained on COCO.

However, since all annotated frames come from the TUMTraf Intersection Dataset only,
the trained models are overfitting on this intersection setting. This has been proven in our
experiments on a highway sequence.

In terms of speed, YOLOv8x exhibits accelerated inference speed. Once exported to Ten-
sorRT, this model achieves an inference speed of 200 FPS at a 640x640 resolution and 28 FPS
at a 1920x1920 resolution, which is a 2.3 times speedup compared to the YOLOv7 model.
This advancement allows for inference on full-resolution frames of 1920 while maintaining
the system’s real-time characteristics. The inference on full-resolution frames of 1920 has
been shown to have 16.5% higher 2D mAP@[.5:.95] than inference at 640 resolution. This
highlights the significance of resolution in object detection accuracy, especially for small and
far away object detection.

Additionally, we investigate the performance implications of segmenting full object masks
instead of only visible ones using the amodal segmentation model C2F. Surprisingly, our
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experimental results indicate that utilizing amodal masks leads to a lower final 3D perception
performance on the TUMTraf Intersection test set compared to solely relying on visible object
masks detected by YOLOv8x.
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Outlook and Future Work

In this chapter, we outline potential future work to address identified improvements from our
implementation and evaluation process:

• As mentioned in Section 4.2.3, the proposed 2D annotation interpolation pipeline utiliz-
ing the Jonker-Volgenant algorithm still sometimes generates erroneous object match-
ing, requiring manual refinement afterward. Moreover, the currently used linear inter-
polation assumes a constant velocity of road users between frames. Future work could
explore more advanced data association algorithms and leverage the existing Poly-MOT
tracker to interpolate the 2D masks to more precise locations.

• Currently, only a limited number of frames, over one thousand, from the TUM Traf-
fic Intersection dataset are annotated. While effective for training models specific to
this intersection, this limited dataset poses a risk of overfitting. Consequently, models
trained on this data exhibit improved performance at the intersection but suffer de-
creased performance on highway scenes compared to the baseline model YOLOv7. To
address this limitation and train more generalized models, it is essential to annotate
the remaining frames of the TUM Traffic Intersection Dataset and other releases of the
TUM Traffic Dataset, such as the R00 and R01 release containing highway scenes and
extended highway scenes in adverse weather conditions. The proposed 2D annotation
interpolation pipeline can be refined and utilized for this task.

• Another potential approach is to train separate models specifically tailored for intersec-
tion and highway scenes. By doing so, each model can be optimized for its respective
environment, potentially leading to improved performance in both settings. Particular
attention should be paid to overfitting prevention. The model can overfit quickly on
the small amount of annotated frames. To prevent this, closely monitor the validation
performance.

• The YOLOv8 model pre-trained on nuImages for 50 epochs is still not powerful enough
to have any improvement over the model pre-trained on COCO. Given the vastness of
the nuImages dataset and its potential benefits for model performance, our ongoing
efforts involve continuing to pre-train the YOLOv8x segmentation model on nuImages.
We are aiming for 200 epochs, and when the performance improves compared to pre-
train on COCO, we will also fine-tune the model on the TUM Traffic Intersection dataset.

• The trained YOLOv8 segmentation models can be exploited to run 2D multiple-object
tracking. Ultralytics has implemented track algorithms, including BoT-SORT and Byte-
Track, for the YOLOv8 model. The tracker produces the same output as segmentation,
with an additional object ID that remains consistent for each object across consecutive
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frames. Therefore, after training a good and generalized model, future work can ex-
ploit 2D multiple-object tracking and investigate the performance of the two supported
track algorithms. Exploiting a 2D multiple-object tracker with YOLOv8 is expected to
enhance the overall performance by providing more stable predictions.

• As discussed in Section 4.3, transmitting segmentation instance masks in the form of
polygon contours may offer greater efficiency compared to using bit-packed masks.
Therefore, future work could adjust the 3D detector’s message reception to accept poly-
gon contours, eliminating the need to transmit bit-packed masks altogether.

• As revealed in Section 5.5, the 3D bounding box labels of the TUMTraf Intersection
Dataset are incomplete, resulting in false positives during model evaluation. Future
work should involve revising these labels, particularly for categories such as PEDES-
TRIAN, MOTORCYCLE, and BICYCLE, to ensure more accurate model evaluation and
performance assessment.

• A YOLOv8 segmentation model trained on full-resolution frames can detect big objects
successfully, however, with multiple overlapping masks. Future work can implement
post-processing, which does not filter out the overlapping masks but merges them to
receive one final mask with good coverage over the detected object. Objects from the
frames taken at the intersection do not overlap much with each other. Therefore, an
IoU threshold of around 0.6 to 0.7 can be used to decide if two masks are referring to
the same object and should be merged.

• Current evaluations of the C2F amodal segmentation model do not show improvement
over only segmenting the visible part. The current C2F architecture crops frames based
on each object’s region of interest (ROI), resizes them to 256x256, extends them to
amodal masks, and rescales them back to their original size within the original frame.
However, as the system currently operates on the full resolution of 1920, 256x256 is
relatively small, even for an object in the frame. This means that after upscaling a
predicted amodal mask to its original size, the mask contour can be very unsmooth,
which can affect the following bottom contour extraction step of the 2D-to-3D lifting
stage of the system. In future work, the architecture of C2F can be adjusted to scale the
ROIs to a bigger size.
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