‘ Department of Informatics
Technical University of Munich

Master’s Thesis in Robotics, Cognition, Intelligence

Real-Time LiDAR-Based 3D Object Detection
on the Highway

Supervisor Prof. Dr.-Ing. habil. Alois C. Knoll
Advisor Walter Zimmer; M.Sc., Ercelik, Emec; M.Eng.
Author Xingcheng Zhou

Date June 1, 2021 in Garching

Disclaimer

I confirm that this Master’s Thesis is my own work and I have documented all sources and

material used.

Garching, June 1, 2021 (Xingcheng Zhou)

Abstract

As part of the Providentia project, this thesis aims to design a model that can detect the
running vehicles on the highway in real-time. We analyze and split the task into two main
problems. We first design a real-time LiDAR-only 3d object detector Pointpillars+ that could
be applied to the real-world scenario on the highway. We choose Pointpillars as our baseline
and improve its 3D detection performance at the expense of inference time latency. To prove
the effectiveness of our proposed modules in Pointpillars+, we train and evaluate the model
on KITTI, which is one of the most popular datasets in autonomous driving. The second
practical problem is the lack of labeled frames in our customized dataset. We then present
a semi-supervised algorithm, Statistical-Aware Pseudo Labeling (SAPL), to alleviate the label
shortage problem. To implement the SAPL algorithm and prove its efficacy, we manually
label several frames using the 3D bounding box annotation tool ProAnno and form a small
customized Providentia dataset. We train and evaluate the model and show the validity of
our SAPL algorithm based on the customized dataset. We do several sets of experiments for
each module in the Pointpillars+ and SAPL algorithm and give some further suggestions for
improvements in the future.

Contents

Abstract

Abbreviations

1 Introduction
1.1 MOUIVAtiON ot it i e e e e e e e e e e e e e e e e e e e
1.2 Problem Statement and Challenges
1.3 ContribUtion v it e e e e
1.4 ThesisOutline i i e e

2 Theoretical Background
2.1 LiDAR Sensor and PointCloud

2.1.1
2.1.2

Introduction of LIDAR Sensor une.n..
Propertiesof Point CloudData

2.2 ObjectDetectionTask,
2.3 Attention Mechanism in Computer Vision

2.3.1
2.3.2

Self-Attention Mechanism
Squeeze-and-Excitation Network

2.4 Evaluation Metrics of 3D Object Detection

3 Related Work
3.1 3D Object Detection Datasetso uuiu i ennnnnn..
3.2 SOTA Point-Cloud Based 3D Object Detection

3.2.1
3.2.2
3.2.3
3.2.4

Voxel-Based Methods
Point-Based Methods
Projection-Based Methods
Hybrid Methods

3.3 Semi-Supervised Learning for Object Detection

3.3.1
3.3.2

4 Solution

Semi-Supervised 2D Object Detection
Semi-Supervised 3D Object Detection

4.1 Proposed Detection Solution

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

Network Overivew i
Staked Triple Attention Block
Attentive Hierarchical Backbone
Sparsity-Aware Part-Sensitive Warping
Two Extra Proposed Modules.

e
—o
-

<
=

AW N R -

= 0 0 O NN O U1 u1 G

—_

13
15
15
17
19
19
20
20
21

Contents

4.2 Proposed Semi-supervised Solution,
4.2.1 PseudolLabeling
4.2.2 Domain Adaption from KITTI Dataset
4.2.3 Statistical-Aware Pseudo Labeling for 3D Object Detection

5 Experimental Details

5.1 Pointpillars+ Implementation Details

5.1.1 Dataset .

5.1.2 Data Augmentationot v it ittt e

5.1.3 Training .
5.1.4 Network .

5.1.5 LossFunction

5.1.6 Evaluation

5.2 SAPL Implementation Details
5.2.1 Providentia Dataset.o u i i ittt

5.2.2 Network .

5.2.3 Statistical Normalization i

6 Results

6.1 Detector Performance ittt
6.1.1 Effect of Sparsity-Aware Part-Sensitive Warping
6.1.2 Effect of Stacked Triple Attention
6.1.3 Effect of Attentive Hierarchical Backbone
6.1.4 Effect of Double Attentive Dynamic Voxelization
6.1.5 Effect of Multi-View Pointpillars
6.1.6 Qualitative COmpariSion oo vttt ittt

6.2 SAPL Performance on Providentia
6.2.1 Effect of Statistical Normalization
6.2.2 Effect of Pseudo Labeling

6.2.3 Quantitive

7 Discussion
7.1 Detector Analysis

Comparision

7.1.1 Sparsity-Aware Part-Sensitive Warping
7.1.2 Stacked Triple Attention
7.1.3 Attentive Hierarchical Backbone
7.1.4 Double Attentive Dynamic Voxelization
7.1.5 Multi-View Pointpillars
7.1.6 SUmMmary e
7.2 SAPL ANalysis
7.2.1 Statistical Normalization
7.2.2 PseudoLabeling,

7.2.3 Summary
8 Conlusion

9 Future Work

32
32
33
33

36
36
36
37
37
38
40
41
42
42
42
42

46
46
46
47
48
48
49
49
57
57
57
59

60
60
60
61
62
63
63
64
64
64
65
65

66

67

vi Contents

Bibliography 69

Abbreviations

CNN Convolutional Neural Network
LiDAR Light Detection and Ranging
NMS Non-Maximum Suppression

MLP Multiple-Layer Perceptron

TA Triple Attention

FC Fully Connected

FPN Feature Pyramid Network

IOU Intersection Over Union

PR Curve Precision Recall Curve

VFE Voxel Feature Encoding

FPS Farthest Point Sampling

kNN k Nearest Neighbour

GCN Graph Convolution Network

SSL Semi-Supervised Learning

HOG Histogram of Oriented Gradient
SIFT Scale Invariant Feature Transform
SVM Support Vector Machine

DNN Deep Neural Network

GHM Gradient Harmonized Mechanism
OHEM Online Hard Example Mining
LiDAR Light Detection and Ranging
mAP Mean Average Precision

SOTA State of the Arts

SAPL Statistical-Aware Pseudo Labeling

Chapter 1

Introduction

Autonomous driving provides a safer, more efficient, and more comfortable travel
experience. It is a future-oriented technique that brings technology upgrading to the
automotive industry and has become one of the hottest directions nowadays. The
environment perception and positioning system is the foundation and prerequisite
for vehicle path planning in autonomous driving control systems architecture.

In this chapter, the motivation of the Providentia project is introduced in section
1.1. We describe our role in the whole project and formulate the questions that aim
to answer in this thesis in section 1.2. We also introduce the main challenges that
we are met and list our main contributions in section 1.3. Finally, we give a brief
overview of the structure of this thesis in section 1.4.

1.1 Motivation

The highway is a crucial application scenario for autonomous driving. Traveling
on the highway generally takes a long time. People are prone to get distracted or
feel sleepy during the tedious but highly concentrated driving process. Applying au-
tonomous driving, in this case, can effectively reduce the accident rate and lower
labor costs. Compared with the residential area situation, the highway usually has a
better road environment and a more superficial, more stable driving condition, where
fully automated driving is relatively easier to realize.

Current sensors in automated vehicles such as LiDAR, cameras or Radar, have limited
detection perspectives because of their ego-based installation locations. For example,
it is hard for cars to perceive passing vehicles due to the short sensoring range and
shadowing effects. Providentia is a research project focusing on developing an intel-
ligent infrastructure system on the highway, which provides external traffic informa-
tion to automated vehicles. With the development of 5G radio techniques, a reliable
and fast connection between vehicles and intelligent infrastructure becomes possi-
ble. The additional sensor data collected from the Providentia system can provide
real-time and broad traffic information to all the road users, which gives a preview of
the upcoming condition and helps the vehicles make more farsighted decisions such

2 1 Introduction

as lane recommendations and accidental warnings.

Figure 1.1 depicts the workflow of the Providentia intelligent infrastructure system.
The system is installed on the A9 Highway in Munich, and all the sensors are mounted
on a gantry bridge. The whole system comprises eight scan cameras, LiDARs, a data-
fusion unit, and the 5G mobile communication system. Cameras and LiDARs first
provide accurate speed and position data, and the data-fusion unit then combines all
information at the measurement point. Finally, the 5G communication system trans-
mits the fused traffic data to all road users in real-time. It creates a complete digital
twin of the highway, which is essential and widely applicable.

The second phase of the Providentia project expands the application scenario from
the highway to the urban environment. LiDAR sensor will be used to detect all the
objects in motion, such as Cars, Pedestrians, Motorcycles at the intersection. We will
not include this part in the thesis.

Data Fusion
Traffic Objects at Backend Traffic Objects

Data Fusion at Data Fusion at

Measurement Measurement
Point Point
Detection w0 | & w0 | & Detection
— ol S ———
ey A (G (2
£m" ©% ©%

Real-Time Digital Twin

Figure 1.1: Overview of Providentia System

1.2 Problem Statement and Challenges

As a part of the Providentia project, this thesis focuses on solving the first step in the
project, namely developing a real-time LiDAR-only 3D object detector for the moving
vehicles on the highway. Specifically, we need to design a suitable detector that is
fast and accurate and then collect sufficient data on the highway for model training
and evaluation. Considering the high labor cost of manual labeling for 3D bounding
boxes, we also need to solve the problem that only a few labels can be provided for
training.

The whole thesis is then split into the following parts. Firstly, we study current

1.3 Contribution 3

LiDAR-based 3D object detection methods and propose a model that achieves good
3D detection accuracy on KITTI. Since the number of KITTTI’s test dataset is far more
extensive than ours, we assume that KITTI has good generalization ability, and the
tricks which are proven to be helpful in KITTI can also boost the detection perfor-
mance in our Providentia dataset. Then we record raw point cloud data on the high-
way and label a few parts of it manually utilizing 3D Bounding Box Annotation Tool
(3D-BAT) [58]. Next, we apply transfer learning on the model to adapt the detector
from KITTI domain to our Providentia domain and present methods to solve the few
label problem. Finally, we insert the trained model into the toolchain for predicting
vehicles on the spot.

In summary, two main problems are discussed and answered in this thesis:

* How to design a fast and robust LiDAR-only 3D object detector that performs
well on the highway?

* How to solve the few label problem in 3D object detection when we need to
train a model on the customized dataset?

To meet the speed and precision requirements of the Providentia system, we hope the
detectors can achieve robust and precise detection results while keep running speed
as fast as possible during the inference period. The designed model needs to reach
a reasonable trade-off between the inference time and model performance. Besides,
the annotation cost of 3D bounding boxes on the point clouds is quite expensive,
and a few papers about applying semi-supervised learning on 3D object detection are
proposed so far because of the large complexity of this task. Hence, we have to make
full use of all labeled data and find some technical solutions to mitigate the label
shortage problem.

1.3 Contribution

The thesis provides a complete analysis and solution for the single LiDAR detection
part of the Providentia project. The main contributions in the thesis can be summa-
rized as follows:

* We study the literature of SOTA 3D object detection methods and propose a
single-stage LiDAR-only detector based on Pointpillars. We introduce three main
modules to improve Pointpillars and evaluate the performance of the designed
model on KITTI’s validation dataset to check its validity.

* We record rosbag file on the highway with one Ouster LiDAR. We convert the
rosbag file to a point cloud file with pcd format and create a Providentia dataset
containing few manually labeled data and many unlabeled data.

* We propose a semi-supervised learning method Statistical-Aware Pseudo Label-
ing to mitigate the shortage of labels in 3D object detection task with the cus-

4 1 Introduction

tomized dataset. We analyze the domain idiosyncrasy and evaluate the method
on our Providentia dataset to prove its effectiveness and practicality.

1.4 Thesis Outline

The thesis is structured as follows: Chapter 1 includes the background of the Prov-
identia project, the problems that need to be addressed, and the main contribution
of the thesis. Chapter 2 introduces some theoretical concepts involved in the thesis:
the property of point cloud, object detection task, common attentive mechanism in
computer vision, and the evaluation metrics of 3D object detection. Chapter 3 briefly
introduces some well-known existing LiDAR-based 3D object detection methods and
semi-supervised learning methods for 2D and 3D object detection. Chapter 4 intro-
duces Pointpillars+ with all its components and some implemented modules, which
are proven to be helpful in the thesis. It also introduces SAPL algorithms. Chapter
5 analyses the characteristics of our customized dataset and introduces the imple-
mentation details in the experiments. Chapter 6 displays the experimental results
of Pointpillars+ and SAPL algorithm, and chapter 7 discusses and analyses the re-
sults in chapter 6. Chapter 8 and chapter 9 conclude the whole thesis and give some
suggestions for future work.

Chapter 2

Theoretical Background

This chapter presents the relevant theoretical knowledge in the thesis. Section 2.1
introduces some typical LiDAR sensors and the main properties of the point cloud.
Section 2.2 gives a brief introduction of the object detection task and several com-
monly existing problems. Section 2.3 describes some classic attentive mechanisms
in computer vision. Section 2.4 introduces the evaluation metrics used in 3D object
detection.

2.1 LiDAR Sensor and Point Cloud

In autonomous driving, the vehicles should be able to perceive the surrounding en-
vironments. In comparison with camera-based perception methods, LiDAR Sensor
captures more accurate 3D information. It is less susceptible to the influence of light,
which is more suitable to the driving situation at night. Hence, 3D object detection
with point cloud as input usually achieves better 3D performance than camera-based
methods. It is necessary to introduce some basic concepts and properties of the Li-
DAR sensor and the point cloud data to understand LiDAR-based 3D object detection
algorithms more comprehensively.

2.1.1 Introduction of LiDAR Sensor

LiDAR is a space measurement equipment that is mainly composed of a transmit-
ter and receiver system. It determines the distance from LiDAR Sensor to an object
by measuring the time from emitting the light pulse to receiving its reflected light.
Given the speed of light, we can convert the traveling time to the measured distance.
The relative three-dimensional coordinate of a point on the object’s surface can then
be accurately calculated based on the scanning angle of the laser. Assuming multi-
ple light pulses are transmitted simultaneously, the point cloud data containing the
coordinates of many points in a scene can be generated.

6 2 Theoretical Background

Valeo Velodyne Velodyne Luminar

0S1-64 SCALA2 HDL-64E Alpha Hydra
RANGE 120m 150m 120m 150-245m 250m
LASER BEAN 64-beam 16-beam 64-beam 128-beam -
VERTICAL RANGE 45° 10° 26.8° 40° 30°
PRECISION *+0.7-5cm *=10cm +2cm +3cm +1cm
POINTS PER SECOND 1.3million - 1.3million 2.4million -

Table 2.1: Comparision of three common LiDAR Sensors

Table 2.1 specifies some important parameters of the LiDAR sensors. LiDAR can
detect objects ranging from a few meters to over 100m. Its detection range is always
wide, which means the size of the feature map in the LiDAR-based model will be
much larger than camera-based models to cover objects in the whole detection space.
LiDAR sensor can be divided into single-beam LiDAR and multi-beam LiDAR based
on the number of beams. The single-beam LiDAR has only one laser transmitter,
which forms one discrete horizontal scanning line as the LiDAR sensor rotates. It can
only determine whether some obstacles are in front or not. The multi-beam LiDAR
has multiple laser transmitters in the vertical direction. It produces multiple discrete
horizontal scanning lines simultaneously as the LiDAR rotates, during which a whole
plane can be scanned. We usually choose multi-beam LiDARs such as 32-beam or
64-beam LiDAR for 3D object detection. Naturally, more beams also mean higher
prices.

2.1.2 Properties of Point Cloud Data

The point cloud is a set of 3D points in the Euclidean space. Raw point cloud data
which is generated from LiDAR sensor, has some major properties:

* Sparsity. As mentioned in section 2.1.1, LiDAR sensor collects point cloud data
in a wide range. However, based on the working mechanism of LiDAR sensor,
the scanned plane only forms a submanifold in 3D Euclidean space. Most of the
areas in the detection space are empty and contain nothing, which leads to the
sparse property of the point cloud.

* Unordered. Point cloud data is a set of unordered points. It means that the point
cloud always represents the same scene, no matter how we shuffle its sequence.
Assuming a point cloud contains N 3D points, the output of the network should
be invariant to the input of its N! permutations.

* Rotation and translation invariant. For a points-represented object in Euclidean
space, its learned feature representation is invariant to the rigid transformation.
It means that the category of the objects and the segmentation results of each
point will not change when we apply rotation and translation to the point cloud.

» Spatial local relevant. After removing meaningless noisy points in the point
cloud, the remaining points are not isolated. The relative locations of the points

2.2 Object Detection Task 7

in the neighbor contain valuable features of the spatial information of the point.
The relevant relationship between neighboring points needs to be considered to
capture the local spatial features more comprehensively.

2.2 Object Detection Task

Object detection is one of the most basic computer vision tasks. As illustrated in figure
2.1, the classification task aims to identify the given input category. The localization
task requires the position information of the object, which is usually encoded as a
bounding box. Object detection is the mixture of classification and localization tasks
targeting multiple objects on the input.

Classification .
+Localization Detection

Classification

CAT, DOG

Figure 2.1: Comparision between classification, localization, and object detection

Classic object detection methods break down the task into two main steps: window-
based feature extraction and classifier prediction. They employ the sliding window
method and feature extractors such as histogram of oriented gradient (HOG) [9], or
scale-invariant feature transform (SIFT) [23] for candidate box localization. Next,
some commonly used classifiers such as support vector machines (SVM) are trained
for category prediction. The introduction of RCNN [12] brings object detection into
the era of deep neural networks (DNN).

Deep learning-based object detection methods can be divided into two groups based
on the structure of the model: end-to-end single-stage-based methods or region
proposal-based two-stage methods. Two-stage approaches first produce candidate
bounding boxes and then rectify the initial proposals for better detection perfor-
mance. On the contrary, single-stage approaches directly generate predicted results
and provide an end-to-end training framework. Two-stage algorithms are usually
more accurate with an additional proposal refinement module but slower, while
single-stage algorithms are faster but with lower precision.

Object detection task contains 2D object detection and 3D object detection. 2D ob-
ject detection usually takes images as the input and predicts the two-dimensional

8 2 Theoretical Background

positions and two-dimensional locations of 2D bounding boxes together with the
corresponding categories. 3D object detection approaches have various inputs, such
as LiDAR, radars, monocular or stereo cameras. The output bounding boxes of 3D
object detection are usually represented with the oriented rectangular cuboids, which
are encoded of three-dimensional position vectors (x, y,z) , three-dimensional loca-
tion vectors (height,width,length), and one-dimensional orientation vectors (6).

There are some commonly existing problems for object detection algorithms in both
2D and 3D cases. The imbalance problem is one of the major problems which leads
to the degradation of model performance. It comprises three main aspects:

* The imbalance between positive and negative samples
* The imbalance between hard and easy samples

¢ The imbalance between different classes

Specifically, in the object detection task, the positive sample refers to the foreground
area whose overlap with any ground truth bounding box is over the positive thresh-
old. In contrast, the negative sample refers to the background bounding box, whose
IOU with any ground truth is lower than the negative threshold. The number of
negative samples usually exceeds the number of positive samples by a large margin
in object detection. In this way, negative samples will dominate the whole training
and lead to low model utility if no measures are taken to deal with it. Usually, the
ratio between positive and negative samples is empirically kept as 1:3 in the training
procedure to mitigate the imbalance.

During training, hard and easy samples can be further divided into hard positive
samples, hard negative samples, easy positive samples, and easy negative samples.
Easy positive and easy negative samples usually account for a huge part of whole
samples and dominate the loss function. Hard positive and hard negative samples
only make up a small proportion of whole samples. The accumulative loss of hard
samples is quite small despite the large loss per sample. Hence, it is difficult for a
model to detect hard samples after training without additional tricks. Many effective
methods are proposed to address this problem in the past few years, such as online
hard example mining (OHEM) [38], focal loss [22], and gradient harmonized mech-
anism (GHM) [27].

The imbalance between different classes usually comes from the dataset. For exam-
ple, the number of Cars is much larger than the number of Trucks in KITTI dataset.
In this case, the model focuses on detecting Cars and ignore Trucks if we do not do
any processing and use the raw dataset for training. Data argumentation is one of
the most effective approaches to alleviate the imbalance between classes. Some com-
mon data argumentation tricks such as rotation, noise permutation can enrich the
completeness of the dataset and increase the robustness of the model.

2.3 Attention Mechanism in Computer Vision 9

2.3 Attention Mechanism in Computer Vision

The attention mechanism is widely used in various tasks in artificial intelligence.
It is essentially similar to the methods when human beings observe the environ-
ment. People used to pay more attention to some important local information and
then combine all useful information to form an overall impression of the observed
objects. The attention mechanism is the realization of this idea and was firstly im-
plemented in natural language processing [42]. The Attention Mechanism assigns
different weights to each part of the input to extract more critical information and
transfer the focus from global to locally important features.

The attention methods in computer vision can be generally divided into three main
categories based on its focusing domain, i.e., spatial domain-based, channel domain-
based, and mixed domain-based. Suppose the shape of input image is [N,C,W,H],
where N means the batch size, C denotes the dimensionality of channels, [W, H] de-
note the width and height of feature map, the spatial domain-based methods and
channel domain-based methods transform the features along [W, H] and C axis sepa-
rately and produce a corresponding scoring matrix for re-weighting. Mixed domain-
based methods combine the idea of these two approaches to enhance the perfor-
mance of the attention mechanism.

2.3.1 Self-Attention Mechanism

The self-attention mechanism achieves great success in Transformer [28] and is re-
cently widely employed in computer vision tasks. It is a variant of attentive mecha-
nism which is good at capturing the internal correlation and aggregating the global
structure of the input features. One of the most representative blocks is scaled dot-
product attention. It provides an efficient and effective method for extracting context
features by a triple tuple: key, query, and value.

The input is first converted to an embedded vector to produce query, key, and value
by multiplication. The query is then multiplied by key to calculate the scoring ma-
trix used to measure the internal similarity. Next, the scoring matrix is normalized,
masked, and activated by the softmax function. The activated matrix is finally multi-
plied by the value to generate the output.

2.3.2 Squeeze-and-Excitation Network

Squeeze-and-Excitation(SE) Network [29] belongs to channel domain-based meth-
ods. It proposed the SE block, which is easy to be implemented and inserted into
the existing network. SE block explicitly produces the correlation between different
channels and adaptively re-calibrates the feature response. The importance of each
feature channel can be learned during the training process. Based on the impor-

10 2 Theoretical Background

t

MatMul
% Y
SoftMax
4
Mask
)
Scale

4
MatMul

P

Query Key Value

Figure 2.2: Scaled Dot-Product Attention. Source [28]

tance information, the SE block emphasizes the useful channels and suppresses the
contribution of useless channels in the meantime.

F.. W)

H' Ftr H Fscale (s)

—_—

/4

c’ C C

Figure 2.3: Squeeze and Excitation Block. Source [29]

SE block is composed of three steps: Squeeze, Excitation, and Scale. It firstly com-
presses the 2D spatial features of each channel to a single parameter, which theo-
retically contains the information of the global receptive field. The dimension of the
output channel matches the input channel dimension, and it represents the global
distribution of the channel response. It employs global average pooling on the fea-
ture map with the shape of C xH xW, and generates a squeezed feature map with the
shape of 1x1xC.

In the excitation step, two simple FC layers are followed by the squeezed feature
map. It forms a bottleneck by reducing the channel dimensionality in the first FC
layer from C to C/r, and increases the dimensionality of the channel back to C in the
second FC layer, where r denotes the reduction ratio. Compared to a single FC layer,
the bottleneck structure captures more non-linear information, which can better fit
the complex interdependencies between channels, and greatly reduces the number
of parameters and computation cost.

Then, a sigmoid function is employed to output the FC layers as a simple gating

2.4 Evaluation Metrics of 3D Object Detection 11

mechanism to ensure the emphasis of multiple channels simultaneously. The last
scale step in the SE block means the re-weighting process between different channels.
It is a simple channel-wise multiplication operation between the original feature map
and the vector expanded by the broadcasting mechanism from the excitation step.

2.4 Evaluation Metrics of 3D Object Detection

Average precision (AP) is the primary indicator for evaluating a single class’s per-
formance in object detection algorithms. It is the area under Precision-Recall Curve
(PR Curve) and ranges from 0 to 1. PR Curve sets recall as x-axis and precision
as y-axis. It plots a sequence of points by choosing different confidence thresholds
and calculating the area under PR Curve. The definition of precision and recall are:
Precision = TP/(TP + FP), Recall = TP/(TP + FN), where TP, TN, FP, FN denotes
True Positive, True Negative, False Positive and False Negative separately.

KITTI dataset uses 40 interpolated points methods to calculate AP value. It firstly
spaces the recall axis equally into 40 subgrids, and then takes the mean precision
value of these subsampled recall positions. To satisfy the monotonicity of PR Curve,
the precision value at recall position r is replaced with the maximum precision value
for any recall greater than or equal to 7. The precise mathematical definition can be
formulated as:

1
AP = _O Z Pinterp(r)

r€{0.0,....,1.0}

where
pinterp(r) = maX;er(F)

Mean average precision (mAP) is the mean value of multiple single class AP. It also
ranges from O to 1 and is used to measure the algorithm’s overall performance of all
categories. Similar to the 2D object detection task, 3D object detection also use AP
for model evaluation. There are three commonly used AP metrics in 3D object detec-
tion: AP,;, AP5p, and APy, . AP, projects 3D detection results to the 2D image view
and determines TP and FP by calculating 2D IOU with ground truth in the image.
AP, directly calculates 3D IOU with ground truth in the 3D space. APy, projects
predicted bounding boxes to the bird eye view and then calculate the AP value.

Average precision only considers the performance on the location and classification
abilites of the model, but in autonomous driving-relevant 3D object detection tasks,
we still need to measure the direction of the detected vichels. Average Orientation
Similarity (AOS) is usually used to evaluate the similarity of direction between the
ground truth and detection results. The definition of AOS is:

1 -
AOS:ﬁ Z max;s,s(r)

r€{0.0,....,1.0}

12 2 Theoretical Background

where

(==), ———6,

The calculation method of AOS is similar to AP, where s(r) denotes the orientation
similarity when the recall is equal to 1, | D(r) | means the set of all positive samples
at the recall position r, and sA(ei) denotes the difference between the angle of i-th
predicted bounding box and its corresponding ground truth. §; is set as 1 when the
selected ground truth is not matched to any detected boxes and set as O otherwise.
It is designed to make sure that each ground truth only matches the bounding box
once.

Chapter 3

Related Work

This chapter gives an overview of the related work about our thesis. Section 3.1
introduces some well-known datasets in the field of object detection. Section 3.2
describes several state-of-the-art 3D object detectors and summarizes their perfor-
mance in the table 3.2. Section 3.3 introduces some representative semi-supervised
methods for 2D and 3D object detection.

3.1 3D Object Detection Datasets

This section introduces several currently most well-known 3D object detection datasets
in the automated and autonomous driving domain. Object detection datasets cover
various domains in our lives, from agriculture, wildlife to medical imaging and sports.
Most of the datasets only contain RGB camera images and 2D annotations. In the au-
tonomous driving domain, 3D information is strongly required during the perception
process of the vehicles.

Many datasets in autonomous driving contain multiple type of sensors since single
sensor information is commonly insufficient for a robust and comprehensive under-
standing of the whole scene. LiDAR sensors provide 3D location information proven
efficient and accurate in novel LiDAR-based 3D object detection algorithms. It is the
most widely used sensor for 3D object detection. Besides LiDAR information, most
datasets also provide corresponding RGB images, which are dense and contain more
semantic features to compensate for the sparsity in LiDAR point clouds. The cost
of achieving RGB images is also much lower than the point clouds. Some datasets
also provide radar information such as nuScenes. Compared with the LiDAR sensor,
radar has a farther scanning range and is less affected by extreme weather conditions.

The KITTI dataset is one of the earliest 3D object detection datasets, whose data
sources come from two gray-scale cameras, two RGB cameras, one Velodyne 3D laser
sensor, and a GPS/IMU inertial navigation system. The dataset is recorded from a
moving platform by driving around Karlsruhe, Germany, and its annotations for 3D
object detection are comprised of 8 classes, i.e., Car, Van, Trunk, Pedestrian, Person,
Cyclist, Tram, and Misc. KITTI belongs to a relatively small dataset containing around

14 3 Related Work

Name Year | Frames | 3D boxes | Classes Locations
KITTI [11] 2012 15k 200k 8 Karlsruhe
SUN RGB-D [40] | 2015 5k 65k 37 -
ApolloScape [15] | 2018 20k 70k 8 China
EuroCity [4] 2018 47k - 7 European Cities
BDD100OK [51] 2018 100k 0 10 San Francisco, New York
ArgoVerse [6] 2019 44k 993k 15 Miami, Pittsburgh
H3D [32] 2019 27k 1.1M 8 San Francisco
Lyft Level 5 [14] | 2019 46k 1.3M 9 Palp Alto, London, Munich
A*3D [33] 2020 39k 230k 7 Singapore
BIVD [46] 2020 | 120k 249k 3 Changshu
Boxy [2] 2020 | 200k 1.99M 1 -
nuScenes [5] 2020 40k 1.4M 23 Boson, Singapore
Waymo [41] 2020 200k 12M 4 us

Table 3.1: Autonomous Driving datasets that are used for 3D object detection.

15 thousand frames and 80 thousand 3D annotated bounding boxes. It divides the
objects into three difficulty levels based on their size, visibility, occlusion and truca-
tion conditions:

* Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible,
Max. truncation: 15 %

* Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly
occluded, Max. truncation: 30 %

* Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see,
Max. truncation: 50 %

The nuScenes dataset is published in 2019 by Nutonomy:. It is about two times larger
than the KITTI dataset with 40 thousand annotated frames containing 1.4 million
bounding box annotations. The dataset is recorded by six RGB cameras, one spin-
ning LiDAR sensor, five radars, one GPS, and one IMU sensor. In comparison to
KITTI, it captured more scenarios such as different times (day, night) and weather
conditions (sunny, rainy, cloudy). Each scene has a full 360 degree field-of-view.
nuScenes contains 23 annotated classes totally, but only 10 of them are used for the
object detection task, i.e., Barrier, Bicycle, Bus, Car, Construction vehicle, Motorcycle,
Pedestrian, Traffic cone, Trailer, and Trunk.

The Waymo Open dataset is also published in 2019. It is the largest open-source 3D
object detection dataset so far in autonomous driving. The dataset is recorded by five
LiDAR sensors and five pinhole cameras with 12 million 3D LiDAR box annotations
and 12 million camera box annotations. With five LiDAR sensors, Waymo provides a
whole scene surrounding the recording platform and annotates four classes in total,
i.e., Vehicle, Pedestrian, Cyclist, and Sign.

3.2 SOTA Point-Cloud Based 3D Object Detection 15

3.2 SOTA Point-Cloud Based 3D Object Detection

Current industrial solutions for 3D object detection in autonomous driving are mostly
based on multiple sensors. They usually fuse LiDAR, RADAR, HD map, and cam-
era information for more comprehensive, precise, and robust detection performance.
Various 3D object detectors and fusion methods are proposed to fit the specific types
and properties of the input information. Considering the final model in the thesis is
the purely point cloud-based model, we only focus on introducing the SOTA Lidar-
only 3D object detection methods in this section.

Same as 2D cases, 3D object detectors also can be categorized into single-stage and
two-stage methods. The general structure of the single-stage models is composed of
three main modules: Input representing and embedding module, 3D or 2D feature
extraction module, and detection head module. Two-stage methods add an extra
module after detection head for prediction refinement. According to the representa-
tion approaches of the input data, Lidar-based 3D object detection methods can be
divided into four main categories: voxel-based, point-based, projection-based, and
hybrid methods.

Table 3.2 summarizes several most representative LiDAR-only 3D object detection
methods in recent years. It can be observed that dual-stage methods usually outper-
form single-stage methods by a large margin, while single-shot methods can reach a
faster running speed during the inference period.

3.2.1 Voxel-Based Methods

Voxel-based methods partition the point cloud into many equally spaced voxels in the
three-dimensional cartesian space and represent each voxel by grouping and sam-
pling the points inside. Then the grouped points within each voxel are embedded
into high-dimensional vectors for feature representation and dimension reduction.

Paper [57] proposed VoxelNet, which is the first method to unify voxelization, fea-
ture extraction, and proposal prediction together, and builds an end-to-end learn-
ing network in 3D object detection. It introduces the voxel feature encoding (VFE)
layer to transform a group of points to a vector and apply 3D convolution to the
embedded voxels to consolidate the z-axis. The extracted feature map is followed
the region proposal network with 2D convolution for producing predicted bounding
boxes. However, the computation cost of 3D convolution is too high due to the sparse
property of the point cloud, which results in its low inference speed, at only 4 Hz.
SECOND [47] presented an improved 3D sparse convolution method to accelerates
the 3D feature extraction process. Since the predicted box is the same when orien-
tation is equal to 0 and 7, this paper also proposed a new sin-error loss for angle
regression to solve the adversarial problem that the angle loss is different.

16 3 Related Work

PointPillars [17] shows excellent inference time at 62 Hz after the acceleration of Ten-
sorRT on KITTI dataset. As shown in table 3.2, PointPillars is the fastest voxel-based
3D object detectors with only 2D convolution. The main contribution of PointPillars
is the Pillar Feature Net. Pillar is a method of encoding point clouds and could be
viewed as a special case of voxelization. It organizes the point clouds only in vertical
columns. Without split along the z-axis, the number of pillars gets greatly decreased,
and in the meanwhile, computationally expensive 3D convolution layers could be
removed. The input of point could then be transformed to a dense tensor with size
(B,D,P,N), where B denotes batch size, N denotes the number of sampled points per
pillar, P denotes the number of non-empty pillars, D denotes the dimension of input.
The pillars are then sent to a simplified PointNet with linear layer, 1D batch normal-
ization, and ReLU to increase the feature dimension from D to C and embedded by a
max operation. After encoding, the pillars with shape (B, C, P) can be easily scattered
back to their original location in the bird eye view pseudo-image. Once scattered, the
size of pseudo-image becomes (B, C,H, W), where (H, W) are the width and height of
the image. In this way, 2D CNN can be utilized to process the 3D LiDAR feature map.
As shown in the figure 3.1, the encoded pillar features are followed by a simple 2D
CNN backbone with downsampled and upsampled blocks. It takes a modified SSD
detection head from 2D object detection for prediction.

Point cloud Predictions

- Pillar Backbone
NG Feature Net (2D CNN)

Point Stacked Learned Pseudo
! cloud Pillars Features image

Figure 3.1: The Structure of PointPillars. Source [17]

HotspotNet [7] uses same voxelization methods and 3D sparse convolution backbone
as SECOND. It proposed a new object representation method: Hotspot, and the cor-
responding anchor-free target assignment strategy. HotspotNet solves the point distri-
bution imbalance problem inside the object by selectively choosing limited hotspots
and balancing the number of positive hotspots for each object. This strategy also
prevents the model from biasing too much towards large objects that contain more
points. SA-SSD [13] takes advantage of the structural information of the point cloud
to boost the localization precision of the predicted bounding boxes. Specifically, it
employs an attachable auxiliary network with point-wise supervision tasks to help the
3D backbone acquire the object structure information from point clouds. This aux-
iliary network will not be used during the inference period and introduces no extra
time cost. Besides, SA-SSD also introduces a PS-Warp module to mitigate the discor-
dance between the classification scores and the corresponding predicted bounding

3.2 SOTA Point-Cloud Based 3D Object Detection 17

boxes.

CIA-SSD [55] proposed an IoU-aware confidence rectification module to alleviate
the misalignment between the classification and localization in single-shot object de-
tectors. It employs an extra IOU prediction head to rectify the confidence and further
applies distance variant IOU weighted NMS to reduce the false-positive predictions
for distant objects. VoxelRCNN is a voxel-based two-stage object detector. It does not
introduce point-wise features for accurate location information but instead uses the
spatial relationship between voxels to boost detection accuracy. Without considering
point-level features, VoxelRCNN [10] saves large computation and storage cost and
can reach a real-time inference rate at a speed of 25 FPS. Specifically; it first parti-
tions the point cloud into small voxels and extracts the 3D features with a sparse 3D
backbone. Then the 3D features are compressed to the bird eye view and fed into a
2D backbone and region proposal network for generating initial prediction propos-
als. The proposals are subsequently sent to Voxel ROI Pooling for feature refinement,
which uses the spatial context from the last layer of the 3D backbone network. The
features after Pooling are finally exploited to refine predictions.

3.2.2 Point-Based Methods

Point-based methods take raw point cloud data as the input and extract point-wise lo-
cal features by grouping and aggregating the neighboring points. PointNet [34] is the
cornerstone of point-based methods. It makes use of the unordered property of the
point cloud and produces permutation invariant feature representations by applying
a symmetric function on the aggregated features. Specifically, the raw point cloud
with a shape of n x 3 is first fed to several shared MLPs to extract point-level features
and embed the point set to high dimension M. Then, it uses a max-pooling layer as
the symmetric function to extract the global features and transforms the shape of the
feature from n x M to 1 x M. Figure 3.2 depicts the structure of a simplified PointNet.
PointNet also theoretically proves that its output feature is invariant to the order of
the input points.

MLPs max pooling
2
g
5 = =
?_.L 2 shared S B
=
g

Figure 3.2: Structure of simplified PointNet. Source [34]

18 3 Related Work

As mentioned in section 2.1.2, the point cloud is spatially local relevant. However,
the feature of each point in PointNet is independently extracted, and the spatial rela-
tionship between different points is ignored. PointNet++ [19] is proposed to address
this limitation. The core operation in PointNet+ + is Set Abstraction Module, which
is composed of three main steps: sampling, grouping, and PointNet-based feature
extraction. Specifically, it first samples several points within the given space with
Farthest Point Sampling (FPS). Then for each sampled point, a limited number of the
neighboring points are grouped by using ball query or k Nearest Neighbor (kNN).
Finally, PointNet is used to capture the local features of the grouped points. By hierar-
chically stacking several Set Abstraction Modules, PointNet+ + progressively extracts
the local geometric structures of the point cloud and enlarges the receptive field of
point-wise features layer by layer.

STD [50] is a classic point-based two-stage detector. It takes PointNet++ as the
backbone and generates initial proposals based on the manually designed spheri-
cal anchors on the points. The introduction of point-based anchors brings a higher
recall rate and lower computational cost. The point-wise proposals are then sent
to a PointsPool layer to transform the sparse points within the proposals to dense
representation. Finally, STD introduces a 3D IOU branch in parallel with the box pre-
diction branch for proposal refinement, which helps mitigate the misalignment be-
tween the localization results and classification scores. PointRCNN [37] first extracts
the point-wise features using PointNet++ and gets predicted foreground points by
segmentation. For each foreground point, a bin-based 3D bounding box proposal is
generated in the meantime. Then the points within each proposed box are trans-
formed from LiDAR coordinate to their canonical coordinate systems for better local
spatial feature representation. At last, the transformed spatial features and global
semantic features from PointNet++ are fused to generate accurate 3D box predic-
tions. PointRGCN [52] introduces Graph Convolution Network (GCN) to PontRCNN.
It leverages residual GCN to extract features, gather the useful information between
the points within each proposal, and then utilize contextual GCN to aggregate the
contextual features between different proposals.

3DSSD [49] is the pioneering work that brings point-based 3D object detection meth-
ods to real-time stage. It abandons the time-consuming upsampling and refinement
modules in classic point-based methods and introduces a new fusion sampling strat-
egy to preserve more representative points during the downsampling process. The
fusion sampling is a mixture of Distance-FPS and Feature-FPS, where D-FPS tends to
cover the entire point set as wide as possible, and F-FPS tends to preserve the fore-
ground points. The backbone of 3DSSD is composed of several set abstraction layers
from PointNet+ + with D-FPS and fusion sampling strategy. The sampled points are
then fed to the candidate generation layer to exploit point-wise features and pro-
duce the candidate points. Finally, a candidate-based anchor-free detection head is
introduced to predict 3D bounding boxes.

3.2 SOTA Point-Cloud Based 3D Object Detection 19

3.2.3 Projection-Based Methods

Projection-based 3D object detection methods usually project the 3D point cloud to
the bird eye view and use the projected 2D features as input. BirdNet [3] introduces
a cell encoding method for BEV representation. It applies 2D convolutions on the
BEV feature map for feature extraction and takes the region proposal network from
Faster-RCNN [35] to generate 2D proposals. A ground estimation network works
parallel with the 2D proposal generation network, which converts the 2D proposals
to 3D predictions. PIXOR [48] views the height information of the point cloud as one
channel in 2D images from the BEV. It then employs a fully convolutional network
with a top-down branch similar to FPN [21] for feature fusion and 3D box predic-
tion. Profiting from the efficient BEV encoding method and light-weight backbone,
PIXOR runs at a speed of 28 FPS. BirdNet+ [1] is also an end-to-end two-stage de-
tector solely based on the BEV images. It removes the post-processing process and
outperforms the BirdNet by a large margin.

3.2.4 Hybrid Methods

Hybrid 3D object detectors usually leverage both point-based and voxel-based feature
representation methods in the model. Normally, point-wise features contain more
accurate structural and location information but take much computational cost. In
contrast, voxel-based features lose some original point cloud information, but it can
be processed more effectively, and CNN has better perceptive ability than MLP.

Fast PointRCNN [8] leverages voxel representation for 3D feature extraction and ini-
tial proposal generation, and exploits raw point cloud for proposal refinement. The
point-wise information in the RefinerNet brings extra location information. It boosts
the regression performance, while 3D and 2D convolution layers in the voxel region
proposal network quickly produce semantic and spatial features for different layers.
PV-RCNN [36] takes advantage of both point-based and voxel-based methods and
has a strong ability to mine hard samples. It first voxelizes the input point cloud
and takes 3D sparse convolution as the backbone to extract multi-scale 3D features
and propose initial 3D boxes. Then Voxel Set Abstraction module samples key points
in the raw point cloud and concatenates the multi-scale semantic features for each
key point to a vector. The argumented point-wise features are then re-weighted by
segmentation and sent to ROI-grid Pooling module together with the bounding box
proposals to keep rich context information for location refinement and confidence
prediction. SIENet [20] adopts a hybrid-paradigm RPN for feature extraction and
proposal generation, which is composed of voxel-wise sparse convolution branch,
point-wise voxel set abstraction branch, and an auxiliary branch. The proposal is
fed to a spatial shape prediction network for 3D shape completion. The completed
proposal is subsequently extracted and fused with the pooled features from ROI-grid
Pooling. Finally, it produces refined 3D boxes and confidence based on the fused
features. It is hard for hybrid methods to run fast, but they always have more robust

20 3 Related Work

detection performance because of hybrid feature representation in multiple modali-
ties.

3.3 Semi-Supervised Learning for Object Detection

Machine learning methods can be roughly divided into supervised or unsupervised
methods according to whether labels are included in the training data. However,
in many practical cases, labeled samples and unlabeled samples are often avail-
able simultaneously, and unlabeled samples account for the vast majority, while la-
beled samples are relatively fewer. Although labeled data can effectively boost the
model’s performance, obtaining labels is usually quite difficult. It requires much
time, sufficient equipment, and theoretical knowledge as support. The concept of
semi-supervised learning is then introduced to cope with these circumstances.

Consistency regularization and self-training are the two most representative meth-
ods in semi-supervised learning. Self-training-based methods firstly train the model
with available labeled data and make predictions. The predictions with high confi-
dence are then added to the training data for next-round training. Consistency-based
methods enforce the prediction of the model to be consistent, although the input is
slightly permuted. It improves the generalization ability of the model and makes the
model more robust to the noise.

3.3.1 Semi-Supervised 2D Object Detection

Although semi-supervised learning achieves great success in the last few years, most
methods focus merely on image classification tasks. There are a limited number
of works incorporating semi-supervised learning methods into object detection, and
most of them are based on the idea of self-training and consistency regularization.

The consistency-based semi-supervised learning method for object detection (CSD)
[16] is a consistency-based method. The prediction of unlabeled data is enforced to
keep consistent with the prediction of its flipped images. The method employs L2
Loss as consistency loss for localization and Jensen-Shannon Divergence as consis-
tency regularization for classification.

SSL framework for visual object detection along with a data augmentation strategy
(STAC) [39] is a simple yet effective semi-supervised learning framework for visual
object detection along with a data augmentation strategy. The method is based on
pseudo labeling and augmentation-driven regularization. It first trains the model
with labeled images and then generates predicted bounding boxes and categories.
The predictions are post-processed by NMS and also filtered to remove redundant
proposals with low confidence. Next strong data augmentations such as global ge-
ometric rotation, cutout, and boxes-level rotation are applied to unlabeled data and

3.3 Semi-Supervised Learning for Object Detection 21

the generated pseudo labels. The final training loss contains the supervised and un-
supervised parts.

Paper [24] proposes Unbiased Teacher, which introduces the teacher-student mu-
tual learning strategy to semi-supervised learning for object detection. The detector
is firstly trained with labeled data. It applies weak augmentation to unlabeled sam-
ples and feed them to the teacher model for generating pseudo labels. The unlabeled
samples and pseudo labels are next strongly augmented to train the student model.
The teacher model’s weight also gets slowly updated via exponential moving average
(EMA) from the student model. Specifically, the unsupervised loss of the student
model only contains the classification part, and the teacher model usually performs
better than the student model by around 2 mAP after the whole training process.

3.3.2 Semi-Supervised 3D Object Detection

There are only two prior works discussing semi-supervised learning for 3D object de-
tection. Self-Ensembling Semi-Supervised 3D Object Detection (SESS) [53] adopts
a teacher-student mutual training scheme, where the student and teacher model
utilize different data augmentation strategies. The student model learns from su-
pervised loss and three unsupervised consistency losses: center-aware, class-aware,
and size-aware loss. 3DIoUMatch [43] points out that the consistency loss in SESS
is suboptimal because the teacher and student model predictions are only uniformly
regularized. Like SESS, 3DIoUMatch also adopts two-stage training schemes with
teacher-student structure and takes VoteNet as the structure of teacher and student
networks. The input samples of the student model are strongly augmented, and the
teacher model takes weakly augmented data. It applies a confidence-based filtering
method to remove proposals with low qualities and directly trains the student model
with selective pseudo labels after IoU-guided lower-half suppression. Experimental
results show that 3DIoUMatch outperforms SESS in both SUN-RGBD and ScanNet
datasets by a large margin.

22 3 Related Work

Method Year | Paradigm | Hardware S(If);:)d 5 Cl?/f s i

VoxelNet [57] | 2017 S;?agglz TITAN X 4 | 7747 | 65.11 | 57.73
SECOND [47] | 2018 S;?flg GTX1080Ti | 26 | 84.65 | 75.96 | 68.71

Voxel-based s gle
PointPillars [17] | 2019 | agge GTX1080Ti | 62 | 82.58 | 7431 | 68.99

single
HotspotNet [7] | 2019 | Z787 | TITANVIOO | 25 | 87.60 | 78.31 | 73.34

single .

SA-SSD [13] 2020 | CGC | GTX2080Ti | 25 | 88.75 | 79.79 | 74.16

single
CIASSD [55] | 2021 | 0 TITANXP | 32 | 89.59 | 80.28 | 72.87
VoxelRCNN [10] | 2021 _st:;’ge GTX2080Ti | 25 | 90.90 | 81.62 | 77.06
STD [50] 2019 _;;’;’Ze TITAN V 12 | 87.95 | 79.71 | 75.09
Point-based PointRCNN [37] | 2019 _st:;’ge TITAN XP 10 | 86.96 | 75.64 | 70.70
PointRGCN [52] | 2019 _:&’ge TITAN XP 4 | 8597 | 75.73 | 70.60

single
3DSSD [49] 2020 | St TITAN V 25 | 88.36 | 79.57 | 74.55
BirdNet [3] 2018 | O - 9 | 4099 | 27.26 | 25.32

-stage
Projection-based PIXOR [48] 2019 S;?agglz TITANXP | 28 | 8170 | 77.05 | 72.95
BirdNet+ [1] | 2020 _stgge TITAN XP 10 | 70.14 | 51.85 | 50.03

single
BEVDetNet* [30] | 2021 | 780 | GIX2080 | 330 | 8246 | 77.90 | 77.45
Fast PointRCNN [8] | 2019 _St:;’ge Tesla P40 16 | 8428 | 75.73 | 67.39

Hybrid

PV-RCNN [36] | 2020 _;;’;’ge GTX1080Ti | 8 | 90.25 | 81.43 | 76.82
SIENet [20] 2021 _st:;’;e TITAN XP 6 | 8822|8171 | 77.22

single
HVPR [31] 2021 | G TITAN V 36 | 8638 | 77.92 | 73.04

* The result is measured on the KITTI’s validation set with IOU threshold 0.7.

Table 3.2: Comparision of LiDAR-only 3D object detection models speed and 3D AP results on KITTI test bench-
mark. E, M, H means the difficulty level as easy, moderate and hard seperately in car class. The IOU threshold for
carsis 0.7.

Chapter 4

Solution

In this chapter, we propose the solutions for the aforementioned problems. Section
4.1 introduces a LiDAR-only single-stage 3D object detector based on Pointpillars. We
call the solution Pointpillars+. It contains three main improving modules, which are
formulated in section 4.1.2, 4.1.3, and 4.1.4. Section 4.1.5 proposes two modules
proven to be useful but not included in the model at last. Section 4.2 introduces our
solution for few label problems, which is called Statistical-Aware Pseudo Labeling
(SAPL).

4.1 Proposed Detection Solution

In this section, we introduce the structure of our proposed Pointpillars+ network. The
default frequency of the Ouster Sensor is about 10 to 20 FPS. Therefore, we define
the real-time running speed as 20 Hz. However, the inference speed of Pointpillars
is 42Hz without the acceleration of TensorRT, which means there is some redundant
time gap that can be used to improve the accuracy of Pointpillars. Hence, we use
Pointpillars as the baseline and improve its detection performance by introducing
three additional modules, and we follow the rule that the model’s performance can
be boosted without sacrificing its inference speed too much.

4.1.1 Network Overivew

Point Cloud Prediction

regression

- Stacked Pillar . . / Sparsit
Pillarize . Hierarchical " Y
Triple = Feature == Backbone Aware

Attention Net \ PS Warp

classification

Figure 4.1: Overview of the proposed real-time LiDAR-based single-stage 3D object detector

24 4 Solution

The overflow of our Pointpillars+ is depicted in figure 4.1. Firstly, the point cloud is
pillarized and sent to the Stacked Triple Attention module for more robust and dis-
criminative feature representation. Then the pillars are encoded and scattered back
to a 2D feature map through the Pillar Feature Net. Subsequently, we replace the
backbone of Pointpillars with an Attentive Hierarchical Backbone and use a Sparsity-
Aware Part-Sensitive Warping module to alleviate the misalignment problem between
predicted boxes and classification scores from SSD detection head. In comparison to
Pointpillars, we introduce three extra additional modules: Stacked triple attention
module, Hierarchical backbone, and Sparsity-aware part sensitive warping. The fol-
lowing subsections introduce these modules in detail.

4.1.2 Staked Triple Attention Block

The sparsity property of point clouds determines that most of the sampled points are
background points and contribute little to the final detection results. Meanwhile,
the performance of the model gets largely degraded when addtional noisy points are
added to the ground truth bounding box. In order to alleviate the influence of noise
and boost the robustness of the model, an attention mechanism is then introduced.
Triple Attention Module [54] takes a set of voxels with shape of (B,D,P,N) as input
, Where B denotes batch size, N denotes the number of sampled points per pillar,
P denotes the number of non-empty pillars, and D denotes the dimension of input
feature.

E
. W v
Vv Point-wise o
M F F
T 1 2
U
|
Channel-wise 0
Voxel Center Repeat I
L e
Voxel-wise
l Max Pooling Concatenation
Element-wise Multiply
Fully Connected L) Sigmoid Function

Figure 4.2: Triple Attention module. Source [54]

Triple Attention Module refers to the idea of Squeeze and Excitation Net [29] and
performs SE Attention in the level of channels, points and voxels separately. To be
more specific, the Triple Attention module captures discriminative channels, points,
and voxels along (D, N, P) axis, respectively. As shown in the figure 4.2, after re-
allocating the weight for channels and points inside each voxel, TA module concate-

4.1 Proposed Detection Solution 25

nates the center coordinates of each voxel together with the re-weighted feature map.
The concatenated features are further cast to high dimensions and employed to re-
weight the importance of voxels.

To fully exploit the advantage of the Triple Attention Module and boost its ability
to capture important channels, points, and voxels, the author introduces stacked TA
with two TA modules. The output of the first TA Module is concatenated to the raw
input and then followed by an FC layer, which projects the feature to a higher di-
mension. The second TA module adds its output to its input which can be viewed
as a residual structure like ResNet [25]. The output of the second TA module is also
followed by an FC layer.

After imposing max-pooling operation on the feature of points inside voxels, stacked
Triped Attention Bolck can be used to re-weight the features before Pillar Feature Net
in PointPillars.

Figure 4.3: Stacked Triple Attention. Source [54]

4.1.3 Attentive Hierarchical Backbone

As shown in 4.2, the 2D backbone of PointPillars can be separated into two main
parts. The first part extracts features with a top-down structure and produces feature
maps at three different resolutions. The second part applies transposed convolution
on the previous output separately and upsamples them to generate the feature maps
with the same spatial resolution. The output of original backbone is a simple con-
catenation of three output feature maps.

The structure of the 2D backbone in Pointpillars is quite simple, and only a top-
down structure is leveraged for feature extraction. One important reason is that the
detection range of LiDAR-based 3D object detection is much wider than 2D images,
and the size of the feature map is hence much larger. In this case, we can’t introduce
too many extra features at different spatial sizes to enrich the feature information
because of the limit on computation resources and the requirement of real-time in-
ference speed. Based on these considerations, two main modifications are employed.

Firstly, an extra bottom-up pathway in figure 4.4 is introduced to effectively and
completely extract the features. The structure of new backbone is quite similar to

26 4 Solution

l DeCo

y 3

_F-—PECOI’W DeConv Attentive |__,
Addition

1 l DeConv

Conv 1 DeConv
) —C =

Figure 4.4: Attentive Hierarchical Backbone Structure

Q Point-wise Multiplication @ Concatenation
@ Softmax function @ Point-wise Addition

Figure 4.5: Attentive Addition Module Structure

the architecture of Feature Pyramid Network [21], but they are different in the lat-
eral connection block. The lateral connection block is used to merge the feature
maps from two pathways. In FPN, it uses upsampling operation with a stride of 2
in the bottom-up pathway and merges the corresponding feature map from the top-
down pathway, which is followed by a 1 % 1 convolution layer to adapt the channel
dimension by an element-wise addition operation. In our case, we use deconvolu-
tion instead of upsampling operation in the lateral connection of FPN. The previous
corresponding feature maps are resized to the same resolution by convolution and
deconvolution blocks separately and sent to the Attentive Addition Module for fusion.
The structure of Attentive Addition Module is depicted in figure 4.5.

4.1.4 Sparsity-Aware Part-Sensitive Warping

Part-Sensitive Warping (PS-Warp) is proposed in [13] to alleviate the misalignment
between the predicted bounding boxes from the regression head and their corre-
sponding confidence scores from the classification head. To more specific, the classi-

4.1 Proposed Detection Solution 27

fication confidence is derived from the feature map in the position of its perception
field, but the predicted bounding boxes usually have some offset to their default cen-
ters, which results in discordance.

The main idea of PS-Warp is to re-evaluate the confidence score of the predicted
bounding boxes. It introduces a new head before the last convolution layer of the
classification network, which is parallel to the SSD detection head. The PS-Warp
head is composed of a 2D convolution layer with a kernel size of 3, a 2D batch nor-
malization, and a ReLU layer. Then a 1x1 2D convolution layer is added at last to
change the filter space dimensionality to K. The output of the PS-Warp head pre-
serves the complete classification features before the SSD detection head, and its
size is (K,H,W). H and W means the height and width of the output feature map,
which is exactly the same as the feature map output in the SSD head. The dimension
of channels K is the same as the number of parts that will be encoded in different
positions of the bounding boxes.

Regression Grids . .
branch generation

Average
across
channels

Classification

branch
—

Sampler

K

Figure 4.6: Part-Sensitive Warping. Source [13]

PS-Warp performs a spatial transform on the predicted bounding boxes. As shown in
the figure 4.6, each predicted bounding box is partitioned into K parts by discretizing
the whole box along x and y axes. It extracts the value from the center position of
each sub-window on the PS-Warp feature map by bilinear interpolation and gets K
corresponding scores. We use bilinear interpolation to estimate the value on the
center of each subgrid. The re-scored confidence takes the mean value of K sampled
points and can be formulated as follows:

i >, xf x b(i, j,u*, v¥)

k=1 ie{| uk || uk+1],jef| v0) || vk+1]}

G, =

N

where y* is the k" channel of the PSWarp feature map and b(i, j, u*, v¥) is the kernel
of bilinear sampler with the form b(i, j, u*, v*) = max(1—|i—ul,0) x max(1—|j—v|, 0).

The PS-Warp is inspired by PSRoIAlign [26] and has the advantage of speed by com-
parision. It takes much less computation time but achieves competitive performance.
However, there is a premise when we perform spatial transforms on the predicted
bounding boxes and consider all K sampled scores for re-weighting. It supposes the

28 4 Solution

object in the predicted bounding box is dense and most of the sampled points corre-
spond to different positions on the surface of the object.

=
L] IO*

(a) Image Case (b) Point Cloud Case

Figure 4.7: Bounding Box in Image and Point Cloud

As shown in Figure 4.7, almost all the sampled points in a 2D image are the fore-
ground points and lie on the surface of the object. However, due to the sparsity
property of point clouds, most of the sampled points in the bounding boxes are
background points and don’t contain much useful information. These background
points may deteriorate the re-scoring performance of PS-Warp and bring unapparent
improvements in comparison to negative bounding box samples. A simple idea is
introduced to solve this problem. Instead of considering the values of all K sampled
points, I apply Top K’ strategy among K scores and take the average value of K’
points as the final confidence. The new Sparsity-Aware Part-Sensitive Warping can
be formulated as:

K/
1 ; k C .ok k
CP:E _E TopK{. E Xl.ij(l,],u,v)}
k=1 l€{|_ukJI_uk+1J,]€{|_vk)J|_vk+1J}

4.1.5 Two Extra Proposed Modules

Multi-view PointPillars

The Pillar Feature Net in PointPillars discretizes the 3D detection space to several
vertical columns and embeds the sampled points inside each vertical column to a
high-dimensional vector. In this way, the feature of each encoded pillar only contains
the information from bird eye view and loses the horizontal correlations between
different pillars.

3D convolution in SECOND can extract features of the spatial correlations both ver-
tically and horizontally and enlarge the perceptive field in 3D space. However, 3D
convolution consumes more time and takes up larger GPU memory in comparison
to 2D convolution. In order to leverage the spatial information of points sufficiently

4.1 Proposed Detection Solution 29

and effectively, we further introduce pillars from the front view to enrich the feature
representation of Pointpillars.

—>| PointNet —*m—b %

—_— % —><C)—>N|:|:|:| @—b PointNet —»m—» . @—b@—»ﬁ
PointNet .‘ ° ‘—|

[® Point-wise Multiplication @ Concatenation]
n

Sigmoid Function @ Point-wise Additiol

Figure 4.8: Multi-view Feature Encoding Net

Figure 4.8 shows the workflow of Multi-View Feature Encoding Net. It firstly uti-
lizes the pillar encoder from both bird-eye view and the front view, and establishes
4 mapping function between points and voxels, i.e. F2%(p;), F} " (p;), F2*(v;) and

F/ ro"t(v). Then it concatenates the features from two views together with raw points
to generate a point-wise feature map with a shape of (N,C). In order to fully ex-
ploit the spatial information in two views, we further project all the points back to
the front view and the birds-eye view according toF?®(p;), F‘j;m”t(pi) respectively.
These pillars are next followed by a simplified Pointnet block and a single 2D convo-
lution block to extract their spatial correlations and generate two 2D feature maps
separately. Finally, we scatter two feature maps back to point-wise format with bi-
linear interpolation by pillar-to-point mapping function F2®(v,) and F.°"(v;) and
concatenate the point-wise features of bird-eyes view, front view, and raw data. The
multi-view point-wise features could then be mapped to a 2D bird-eye feature map
by exploiting maximum operation to all the points within a pillar.

N\

Y e e |
°
—> PolntNet Convs

o >

7 J__ i TR0 ®_1

. °le ° (C —>~[:|:H— j—»@)—» PointNet ﬂ»
~ e, . S
PointNet —»m—» .
.0
d

Figure 4.9: Attentive Multi-view Feature Encoding Net

As illustrated above, we use point-wise operations when we fuse the features from
two views. It simplifies the process of feature fusion but, in the meanwhile, brings the
extra problem that most of the points are background points and won’t contribute a
lot to final detection results. The attentive mechanism is then introduced to increase

30 4 Solution

the importance of useful points.

Figure 4.9 shows the overflow of attenteive mult-view feature encoding net. Dif-
ferent from figure 4.8, the raw point clouds are directly pillarized in two views and
processed by Pointnet and two CNN backbones. Pillar-wise features are then scatter
back to point-wise feature with bilinear interpolation according to mapping functions
F)*’(v;) and F}f "°"(y,). Then we use a point-wise attentive fusion block to adaptively
allocate weight to different points from two views. The MLP in the block is composed
of a linear layer, a batch normalization layer and a ReLU layer. Suppose two input
point-wise features are F,,, and F;,,,, and output is F,,,, the point-wise attentive
fusion block can be formulated as follows:

out»

F. = Concat([Fy,,Frronc])

Fobev = Fpey ® 0(MLPy,,(F.))

Fofront = Frrone ® O(MLPg,,, (F.))

Fo,. = Concat([Fpey, Frrones Fapey ® Fopey])

where Concat denotes channels concatenation. ® means element-wise multipili-
cation. o means sigmoid activation function.

Double Attentive Dynamic Voxelization

Normal voxelization divides the point clouds into K spatially evenly distributed vox-
els, where T points will be sampled within each voxel. If the number of non-empty
voxels or the number of points inside one voxel exceeds buffer size, only K voxels
and T points will be kept by sampling. On the contrary, if the number of points or
voxels is less than its buffer capacity, the rest volumes will be padded with zero.

The fixed buffer size of the normal voxelization technique and its hard property
brings some unavoidable drawbacks. Firstly, some useful information may get dis-
carded after the sampling process when voxel or points exceed the pre-defined buffer
size. Secondly, the sampling process is non-deterministic, which will result in un-
stable voxel embedding, and consequently affect the final detection performance.
Thirdly, when voxels or points are less than the fixed size, extra zero-padding con-
tains no useful information and not only brings unnecessary computation cost but
also slows down the running speed of the model.

Dynamic voxelization [56] is proposed to replace the traditional hard voxelization.
Instead of setting a fixed buffer capacity for voxels and points, it keeps all the voxels
and points after the grouping process. It formulates the relationship between points
and voxels as a many-to-one mapping, i.e., each voxel corresponds to all the points
inside it.

Figure 4.10 shows the overflow of dynamic voxelization. It takes raw point cloud
with shape (N, C) as the input, where N is the number of points, and C is the di-

4.1 Proposed Detection Solution 31

<

vi
Max/Mean Ops

v2

v3

Figure 4.10: Dynamic Voxelization Overflow

reshape

vi

V2

v3

mension of LiDAR input. Dynamic voxelization firstly establishes a mapping function
Fy(p;) from points to voxels according to their spatial coordinates. After that, the
point-wise input will be sent to a simple shared-weight MLP and embedded into a
higher dimension from C to C’. The shared-weight MLP is composed of a linear layer,
a batch normalization layer, and a ReLU activation layer. The embedded points with
size (N, C') is scattered back to each voxel by referencing mapping F (p;). In practice,
we store the voxel as the shape of (K, T,,,,,C’), where K is the number of non-empty
voxels, T, is the maximum number of points inside the voxels. Finally, we apply
maximum or mean operation along the axis of points T,,,, and get the final encoding
feature map with size (K, C’).

!
F;q Fex
1K
—O—>®—>
ng,,
e
n
Esq
C'x1
® Multiply Operation @ Sigmoid Function

Figure 4.11: Double Attentive Operation

After obtaining the encoded point-wise features, Squeeze-and-Excitation Block [29] is
imposed along both channel and voxel axis. Referring to the idea of Triple Attention
Module [54], we multiply the channel-wise attention by voxel-wise attention. Fs’q and
F;, represents max-pooling operations in N and C’ axis. F, and F, are composed of
two fully connected layers, in which the first one is followed by batch normalization
and ReLU function, while the second one is a single linear layer. Suppose the input
as I, output as O, the whole triple attentive module could be formulate as:

O=0(M®N)Q®IM = W,6(W;MaxPool(I))N = W2’5(W1’MaxPool(IT))

32 4 Solution

4.2 Proposed Semi-supervised Solution

In this section, we introduce the details of our proposed semi-supervised algorithm
SAPL in the thesis.

4.2.1 Pseudo Labeling

Pseudo labeling is a simple and efficient method of semi-supervised learning (SSL).
The main idea of pseudo labeling is to boost the performance of a model that is
already trained with labeled data by means of unlabeled data. As shown in figure
4.12, the process can be divided into three main steps: Firstly, the model is trained
with the labeled data. Then the unlabeled data are sent to the trained model to
generate predictions. Finally, the predicted pseudo labels are combined with the
original labeled data, with which the model is re-trained.

Unlabeled
Subset

Model T Model T"

Pseudo
Labeled Subset

Model T"'

Figure 4.12: The overflow of the pesudo labeling technique

Paper [18] points out that the samples in a high-density region have a greater prob-
ability of being in the same class for the classification task. Similarly, when we apply
pseudo labeling to the object detection task, the key task is to find a suitable thresh-
old for the classification score. If we set the classification threshold too high, many
ground truth will be marked as negative samples, which lead to a low recall rate.
However, many false-positive samples will appear if the threshold is set too low,
which results in low model precision. In addition, the success of the pseudo labeling
trick in object detection tasks extremely relies on the high precision of the trained
model with labeled data. If the basic trained model in the first step is not precious
enough, the predicted pseudo labels could be inaccurate, which may even lead to the
degradation of the model.

Practically, the pseudo labeling trick has been proven to be effective in the 2D ob-
ject detection task. We further introduce it to solve the label shortage problem in our
3D object detection case.

4.2 Proposed Semi-supervised Solution 33

4.2.2 Domain Adaption from KITTI Dataset

The domain of the KITTI and Providentia datasets is not independent and identically
distributed. Hence, we need to employ transfer learning techniques to mitigate the
discordance between source and target domain. Domain Adaption (DA) is one of
the most representative methods in transfer learning, which boosts the model’s per-
formance on the target domain by leveraging rich and similar information from the
source domain.

We adopt two effective domain adaption methods in our Statistical-Aware Pseudo
Labeling algorithm: Few-Shot Fine-Tuning and Statistical Normalization. Few-Shot
Fine-Tuning leverages a few numbers of labeled examples from the target domain to
tune the object detector that is already trained on the source domain. Paper [44]
points out that the detector tends to predict the boxes that have similar size in the
source domain instead of predicting the real physical size in the target domain. Sta-
tistical Normalization (SN) algorithm is then proposed. It assumes that the statistical
distribution of size in the target domain is available. SN resizes all bounding boxes
and the corresponding point cloud to sizes that are similar to the size of objects in
the source domain by adding (Ah, Aw, Al), where Ah, Aw, and Al are the difference
of mean height, width, and length value respectively between the source and target
domain. As shown in figure 4.13, SN enlarges or shrinks the ground truth bounding
box and the associated point clouds. It essentially reduces the distance of distribution
between source and target domain.

Figure 4.13: The example of statistical normalization. Source [44]

4.2.3 Statistical-Aware Pseudo Labeling for 3D Object Detection

In this section, we introduce our proposed semi-supervised method for 3D object de-
tection: Statistical-Aware Pseudo Labeling (SAPL). Our SAPL algorithm is suitable for

34 4 Solution

the practical scenario where the size distribution of target domain, few labeled, and
a large number of unlabeled target samples are available. It combines the Pseudo La-
beling method from semi-supervised learning, Few-Shot Fine-Tuning, and Statistical
Normalization together and formulates an effective algorithm.

Algorithm 1 Statisical-Aware Pseudo Labeling Algorithm

Input: Labeled source data {x!, y!}, labeled target data {x!, y!}, unlabeled target data x,
raw teacher model a,., raw student model f3,

Output: student model ¢

1: Investigaing the statistical distribution of yg and applying statistical normalization to

source data {x!, y'}

Training the teacher model a, on the normalized source data {xfl, yrll}

Employing few-shot fine-tuning on the pre-trained teacher model a, and getting a,

Generating pesudo label y! for unlabeled target data x! using the teacher model a £

Training the raw student model 3, on the normalized source data {xfl, yfl} and obtaining

pre-trained student model f3,

6: Transferring the student model 3, to target domain by fine-tuning on {(xi,x?), (yf, ¥}
and getting student model f3;

7: return f;

Algorithm 1 shows the specific precedures of SAPL. Given labeled source data {x!, y'},
labeled target data {xi, yi}, unlabeled target data x|, raw teacher model a,, raw
student model f,, the mean and variance value of vehicle’s size in target domain
{uy, ai}, k € {l,w,h} where [,w, h denote length, width and height of 3D boxes. SAPL
first apply Statitical Normalization to the labeled source dataset {x!,y!} based on
{uy, 02} to resize the size of objects in source domain. Then we train both teacher
and student model a, on the normalized source dataset {xé, ysl}. Subsegently, we
fine-tune the teacher model with few labeled target data {xi, yf} and generate pesudo
labels of unlabeled target data y? with the teacher model after few-shot fine-tuning
a;. Finally, we re-train the student model on combined dataset {(x!, x"), (y}, y{)}.

Figure 4.14 illustrates the workflow that applies the SAPL algorithm to our thesis,
where KITTI is used as source domain data, and Providentia dataset is utilized as
target domain data.

Labeled
KITTI

4.2 Proposed Semi-supervised Solution

Y
Mee—

Unlabeled
Subset of

Providentia

—
S

Labeled subset of

Providentia

~— N

Statistical
Normalization

Normalized
labeled
KITTI

Y
N’

Pseudo labeled
Subset of
Providentia

Labeled subset of
Providentia

~— NN

Figure 4.14: The workflow of Statisical-Aware Pseudo Labeling on Providentia Dataset

35

~ =3

Chapter 5

Experimental Details

In this chapter, we describe the details of Pointpillars+ in section 5.1 and SAPL algo-
rithm in section 5.2 during our experimental and implementation process.

5.1 Pointpillars+ Implementation Details

5.1.1 Dataset

KITTI dataset contains 7,481 training samples and 7,518 testing samples. Following
the conventional practice, we split the training sets into 3,712 samples for model
training and 3,769 samples for validation. We consider three difficulty levels in KITTI
and calculate the model’s performance under these circumstances separately. We
follow the new evaluation rule in the KITTI benchmark and calculate all the average
precision values with 40 recall positions. KITTI comprises many categories such as
Car, Van, Truck, Pedestrian, Person, and Cyclist, but as illustrated in figure 5.1, the
number of Cars, Vans, and Pedestrians overwhelms the other classes. Considering
pedestrian is a rare category on the highway, we only evaluate the mAP of Car and
Van categories in our following experiments of Pointpillars+ on KITTI.

14000 4

12000 A

10000 4

8000

6000 4

number of labels

4000 1

2000 1

Pedes. Car OCyclist Van Tuck Tam Misc Perscn

Figure 5.1: Number of different labels in KITTI

5.1 Pointpillars+ Implementation Details 37

5.1.2 Data Augmentation

Data augmentation is an important method to solve the label shortage problem. It
not only enriches training sets that improve the model’s generalization ability but
also brings additional noisy samples to boost the model’s robustness. We introduce
the data augmentation tricks that are applied in our Pointpillars+ as follows:

We utilize some classic data augmentation tricks for training our Pointpillars+ such
as cut-and-paste strategy following SECOND. In specific, we first create an object pool
by collecting the ground truth 3D bounding boxes for all classes and the associated
points that fall inside the boxes. Subsequently, we randomly sample some instances
for each category and paste them into the current point cloud data. The maximum
selecting number of cars is 15. The pasting strategy follows the physical rule that
the 3D bounding boxes of two objects have no intersection. Besides, we also apply
local rotation and translation to all the objects, including pasted samples. Local ro-
tation is applied to each object along the vertical y-axis with noise drawn from the
uniform distribution U(—m/4, ©/4), while the noise of local translation for x, y, and
the z-axis is separately drawn from a Gaussian distribution A/(0,0.5). In addition,
we apply global random flip along the x-axis with Bernoulli probability distribution
p = 0.5, and global rotation along yaw axis with same uniform noise distribution
U(—m/4,m/4) as in local rotation. We also scale the whole point cloud scene and the
annotations with the scaling factor uniformly selected from [0.95,1.05].

5.1.3 Training

Following Pointpillars, we set the detection range of Pointpillars+ as (0m,70.4m)
for the x-axis, (-40m,40m) for y-axis and (-3m,1m) for z-axis respectively. Both the
points outside this detection range and the points that are invisible in the correspond-
ing image will get dropped. We also limit the raw orientation range of ground truth
bounding boxes from —m to 7.

The resolution of input pillars along the x and y-axis is set as 0.2m. We randomly
sample 10000 pillars at most with FPS and set the maximum number of points per
pillar to 40. Hence, the size of the input feature map is C * 352 x 400, where C is
the dimension of the augmented input. The raw input point is a four-dimensional
vector with the 3D location information x, y,z and reflectance r. We then calculate
the relative coordinate of each point to the arithmetic mean center of all the points
inside its associating pillar: (x —x¢, y — y¢,2 —2°), and the relative x, y coordinate
of each point to the spatial pillar center of its corresponding pillar: (x —x*,y — y°).
Therefore, all the augmented points are nine-dimensional vectors and C = 9.

We train Pointpillar+ for 80 epochs using the Adam optimizer. The initial learn-
ing rate, decay weight of Adam, and the batch size are set to 31073, 1072 and 2,
respectively. We apply L2 norm clipping to the gradient during the training process

38 5 Experimental Details

with threshold 10 and one cycle cosine annealing strategy to the learning rate.

We set the positive and negative IOU matching threshold for Cars as 0.6 and 0.45,
respectively. When calculating IOU between the ground truth and anchors, we first
convert the rotated boxes to their nearest horizontal bounding boxes and then take
the 2D IOU value in the bird eye view. The anchors whose IOU threshold with any
ground truth bounding box exceed the positive matching threshold are assigned as
positive anchors. The anchors that have the highest IOU with any ground truth are
also set as positive to make sure that no ground truth will be missed during the
training process. We set the anchors as positive samples if their highest IOU with all
ground truth is under the negative matching threshold. The loss of all other anchors
is not considered during the back propagation period.

5.1.4 Network

Attentive Hierarchical Backbone

In the Attentive Hierarchical Backbone, we characterize the structure with a series of
blocks (K, L,S), where K is the size of the kernel, L denotes the output channels, and
S means the up or down stride of the block. We adopt three stacked convolutions
for each feature extraction stage in the top-down network, where the first block
consists (3,64,2), (3,64,1), (3,64,1), the second block consists (3,128,2), (3,128,1),
(3,128,1), and the third block consists (3,256,2), (3, 256,1), (3,256, 1) respectively.
We use a single deconvolution layer (3,128,2) to increase the resolution of the feature
map and keep their output shapes the same for element-wise addition in the bottom-
up pathway. Both three input and the output of attentive fusion block are of the same
shape [B, 128,200, 176], where 128 is the number of channels, and (200, 176) are the
resolution of the feature map. The convolution layer in the attentive fusion module
comprises a sequence of 2D Conv (1,128,1) and 2D batch normalization layer.

Sparsity-Aware Part-Sensitive Warping

The head of PS-Warp has two convolution layers with a number of channels 28, where
the first convolution with 3 x 3 kernel is followed by a batch normalization layer and
ReLU function, and the second layer has 1 x 1 kernel. The shape of the output feature
map is [B,28,200,176], where B denotes the batch size, 28 is the number of 4 x 7
partitioned sub-windows, 200 and 176 are the height and width of the output feature
map.

We set both positive and negative IOU matching threshold for the PS-Warp head
to 0.7 during the training process. The target assignment strategy follows the rule in
the dense head except the similarity metric switching from nearest IOU similarity to
rotated IOU 3D similarity. The positive matching threshold of PS-Warp gets increased
compared to the threshold of SSD head to boost the quality of proposals for confi-
dence re-scoring.

5.1 Pointpillars+ Implementation Details 39

When applying Sparsity-Aware PS-Warping, we train the head following the settings
in the original paper with sampling grid K = 28. We only utilize the Top K’ strat-
egy during the inference period to filter out the most representative positions in the
bounding boxes and further improve the re-scoring performance.

Stacked Triple Attention Module

The input of stacked triple attention module is a set of pillars with a shape of
[BN,C;,], where P is the number of non-empty pillars, N is the maximum num-
ber of points inside each pillar, C is the augmented input. As mentioned above, we
set N = 40, C;,, = 9. The number of P varies for different point cloud input, and its
maximum number is 10000.

We set the boosting channel dimension C,,,,, to 64 and the reduction ratio r to 8. It
means the output’s shape of the first triple attention module is boosted from [P, 40, 9]
to [P,40,64]. The fully connected layer in the TA module is composed of two linear
layers and an activation function, and the size of the bottleneck between two lin-
ear layers is only the dimension of input divided by 8, which efficiently reduces the
number of parameters.

Multi-view Pointpillars

The detection range of Multi-view Pointpillars is (Om, 69.12m), (-39.68m, 39.68m),
(-3m, 1m) for x, y, z axis on the bird eye view, and (Om, 69.12m), (—m,n), (-3m,
1m) for (p, ¢,2) on the cylindrical view respectively. We follow the cylindrical view
settings in paper [45], and encode the coordinate of front view as follows:

p=+/x2+y? ¢p= arctan)—/, Z2=3z
x

We use point-wise feature concatenation to fuse the spatial features from the front
view and bird eye view. The input of the model is a set of points with a shape of
[B,N,C,;,], where B is the batch size, N is the number of sampled points for each
scene, C;, is the dimension of input features. We use N = 20000 and C;, = 4 in our
model. Then we augment the point-wise input features for two views by calculat-
ing the relative coordinate to pillar’s center [B,N, 3], the number of points in each
pillar [B,N, 1], positions after view transformation [B, N, 3], the covariance of points
[B,N, 9], and relative coordinate to pillar’s centroid [B, N, 3].

Multi-view Pointpillars concatenate all the augmented features to a tensor with a
shape of [B,N,45] and apply a Pointnet (45,64) to embed the raw features. We
then scatter the embedded features back to the front view and bird eye view and
apply max operation to the point-wise feature inside each pillar to get the respective
feature map. The shape of the feature map is [432,496,64] on the bird eye view
and [128,120,64] on the front view. During implementation, the gather and scatter

40 5 Experimental Details

operation in Py Torch can not satisfy our requirements. Therefore, we utilize an ef-
fective third-party library PytorchScatter for the scatter-relevant operations such as
scatter-max, scatter-add, scatter-mean.

Anchors

Pointpillars+ is an anchor-based object detector. Both anchors and ground truth 3D
bounding boxes in Pointpillars+ are encoded as 7-dimensional vectors (x, y,z,w, [, h,),
where x,y,z represent the location of the box’s center, w,1,h denote the width, length,
and height of the box respectively, 6 denotes the rotation angle of the box along the
upright axis.

In the regression branch, we train and predict the residuals of each value. The en-
coding of localization parameters are defined as follow:

x& —x? Ay:yg—ya Az:zg—z“

Ax =
T T da da

g g g
AW:logW—, Ahzlogh—, Al =log—
wa ha la

AO =sin(6% —09),

where the uperscript a and g represent anchors and ground truth seperately, and d*
is used for residuals normalization with d® = 4/ (wa)* + (12)*.

We set two anchors for each cell grid in the output feature map of Pointpillars+.
The rotation angles of the two anchors are 0 and 90 degrees. We set the width,
length, height of the Car’s anchor size as 1.6m, 3.9m, and 1.56m, respectively. The
center of the Car’s anchor is located at 2 = —1m.

5.1.5 Loss Function

The loss of Pointpillars+ comprises four main parts: object classification loss £
direction classification loss £;,, box regression loss £
L,qrp- The totoal loss is formulated as follow:

cls» box
and PS-Warp refinement loss

reg»

L= ﬂclsﬁcls + /jdirﬁdir + ﬁregﬁreg + ﬂwarpﬁwarp

As mentioned in section 2.2, the focal loss can effectively mitigate the imbalance
between hard and easy samples during the training process. Therefore, we choose
sigmoid focal loss for both the object classification task and score refinement task:

L.(p)=—a,(1—p)logp,,

Ewarp(pt) = _at(]- _pt)ylogpti

5.1 Pointpillars+ Implementation Details 4

where p, is the predicted class probability for an anchor after the activation of the sig-
moid function, a controls the weight between positive and negative samples, while
y controls the weight between easy and hard samples. Following the setting in the
original paper, we use a =0.25 and y = 2.

We choose smooth L1 loss for regression. It can suppress extremely large gradient
at the beginning of training and guarantees low gradient value during convergence
period.

|x|—0.5,|x| >1

SmoothLl(x)z{ 0.5x2 x| < 1

The loss of our localization regression task is formulated as:

Lioe = Z SmoothL1(b),

be(A,A AL A, A AL A)

where A, A A, A, Ay, A, Ay are the forementioned encoded residual value be-
tween anchors and ground truth.

The direction classification task is introduced to solve the issue that regression loss
of the boxes with opposite directions are the same after adding sinuous function to
residual rotation angle A6. We use softmax with cross-entropy loss for direction clas-
sification L;,.

Following the settings in SA-SSD, we set ., = 1, B4; = 0.2, ., = 2, and f,,,,, = 1
as the coefficients of our training loss.

5.1.6 Evaluation

We evaluate our Pointpillars+ detector on an Nvidia RTX 2080 super GPU. We set the
IOU threshold to 0.3 for non-maximum suppression during the inference process.
When introducing SAPS-Warp, we filter the boxes with low re-score classification
confidence again under thr = 0.1.

We use two different object splitting methods to evaluate the performance of Point-
pillars+ on KITTI’s validation dataset. One method follows the rule of KITTI’s bench-
mark, which divides the objects into easy, moderate, and hard cases based on their
truncated and occluded conditions. Another splitting method follows the settings in
paper [44], which evaluate the model under various distance-based ranges starting
from the object to the ego-car. Objects under distance-based evaluation are filtred
with the same truncation and occlusion thresholds as KITTI hard case. We evalu-
ate the objects at three different ranges of distance: 0-30m, 30-50m, and 50-70m,
respectively.

42 5 Experimental Details

5.2 SAPL Implementation Details

5.2.1 Providentia Dataset

Our customized Providentia dataset is recorded by one Ouster OS1-64, gen 2 sensor.
The specification of the sensor is listed in the table 2.1. We use the annotation tool
3DBAT for ground truth labeling. Figure 5.2 and figure 5.3 shows two frames from
our Providentia dataset on the bird eye view and front view. We record four 1 minute
sequential frames on the highway with 10 Hz and extract each fourth frame from
their rosbag files. In this way, around 600 frames are extracted and manually labeled
with three main categories: Cars, Vans, and Trailers. Considering the precision of
labeling, we only select 300 labeled frames from them and use the selected part for
training and evaluation in the thesis. We split the Providentia dataset into three
parts: 100 labeled frames for training, 200 labeled frames for evaluation, and 300
unlabeled frames for pseudo labeling.

As shown in the figure 5.3, we install the sensor on the gantry bridge that is around
six meters above the ground plane. The installation position of the sensor determines
that most of the foreground points in the Providentia dataset lie on the front top or
back part of the vehicles. Hence, we can not label the 3D bounding boxes of most
of the objects completely preciously based on these gathered points and need to
estimate their length and height during the labeling process. Besides, the orientations
of objects in our Providentia dataset have two options in most cases: 0 or 7, because
the vehicles always go straight along the road on the highway.

5.2.2 Network

We choose Pointpillars+ introduced in section 4.1 as both our student and teacher
network. We set the NMS confidence for testing to 0.2 and the default anchor size to
mean value in table 5.2. We keep most other settings the same as in Pointpillars+.

We train the model on the car and van categories and evaluate their mean average
precision on the bird eye view with IOU threshold 0.25 because the number of trail-
ers in our Providentia dataset is insufficient for producing a convincing evaluation
result. As mentioned in section 5.2.1, we set the IOU threshold lower than KITTI’s
setting due to the perspective particularity of our Providentia dataset. We focus on
the average precision on BEV instead of 3D AP because of the ambiguity of vehicles’
heights and their positions along the z-axis.

5.2.3 Statistical Normalization

Statistical Normalization is an important component in our SAPL algorithm, where
the statistics of vehicle size for both source domain and target domain are required.

5.2 SAPL Implementation Details 43

(a) Raw point cloud data of a frame from Providentia dataset on the bird eye view

(b) Labeled Point cloud data of a frame from Providentia dataset on the bird eye view

Figure 5.2: A frame from Providentia dataset on the bird eye view

44 5 Experimental Details

(a) Raw point cloud data of a frame from Providentia dataset on the front view

(b) Labeled Point cloud data of a frame from Providentia dataset on the front view

Figure 5.3: A frame from Providentia dataset on the front view

Here we choose KITTI as the source data for transfer learning and our customized
Providentia dataset as target data. We use the training dataset from KITTI and all
300 labeled frames of our Providentia dataset for obtaining the statistical distribution
of vehicles’ size.

Figure 5.4 depicts the 3D bounding box size distribution of car and van categories for
both KITTI and our customized Providentia dataset. It is obvious that the distribu-
tions of KITTI and Providentia are quite close, but the size range of the Providentia
dataset is relatively larger than KITTTI’s size range. Table 5.1 and table 5.2 display
the mean and variance of 3D bounding box size in two datasets. The mean and vari-
ance value of the Providentia dataset under almost all sizes are larger than KITTT’s
value. According section 4.2.2, we add (Ah, Aw, Al) = (0.33,0.38,0.47) for car and
(Ah, Aw, Al) =(0.24,0.31,0.22) for van to generate a new rescaled KITTI dataset.

5.2 SAPL Implementation Details

50%

40%

w
&
&

Percentage

=
B

30%

25%

20%

15%

Percentage

10%

5%

Height Distribution
it
providentia
40%

w
=1
&

Percentage
=
&

10%

‘l Il‘llll.
15 20

25

Width Distribution

0% _II Illl_

25

Length Distribution

A40%
5%
30%
25%

20%

Percentage

15%

10%

| ||Fl

0% — -IIII|II|

b

(a) 3D Bounding Box Size Distriburion of Car

Height Distribution

ittt

providentia 5%
20%

O

=2
B8 15%

[=

@

£
10%

=

35

|| ¥ (R
. 15

Width Distribution

o 175 2

a0

2 250

Length Distribution

30% |

Percentage
=
n 5]
ES £

=
o
&

w
B

(b) 3D Bounding Box Size Distriburion of Van

Figure 5.4: Comparision of 3D Bounding Box Size Distriburion between Providentia and KITTI dataset

Mean/Var (m) Height Width Length
Car 1.53/0.14 | 1.62/0.11 | 3.89/0.44
Van 2.19/0.32 | 1.91/0.18 | 5.15/0.85
Table 5.1: Size of 3D Ground Truth in KITTI dataset

Mean/Var (m) Height Width Length
Car 1.86/0.31 | 2.00/0.18 | 4.36/0.56
Van 2.43/0.32 | 2.22/0.20 | 5.37/0.85

Table 5.2: Size of 3D Ground Truth in Providentia dataset

45

Chapter 6

Results

This chapter presents the experimental results of the Pointpillars+ and SAPL algo-
rithms. We show the experimental results of five modules separately in section 6.1:
sparsity-aware part-sensitive warping, stacked triple attention, attentive hierarchical
backbone, double attentive dynamic voxelization, and multi-view Pointpillars. The
experimental results of statistical normalization, few-shot fine-tuning, and pseudo
labeling in SAPL have presented in section 6.2. We also display the result of the
ablation study for both Pointpillars+ and SAPL algorithm as the end of each section.

6.1 Detector Performance

As mentioned in section 5.1.1, we evaluate the performance of Pointpillars+ on
KITTI’s validation dataset. In this section, we show the experimental results of the
five aforementioned modules: sparsity-aware part-sensitive warping, stacked triple
attention module, attentive hierarchical backbone, double attentive dynamic vox-
elization, and multi-view Pointpillars.

6.1.1 Effect of Sparsity-Aware Part-Sensitive Warping

We investigate the effectiveness of the part-sensive warping module and the addi-
tional Top K operation in our sparsity-aware part-sensitive warping module using
Pointpillars as the baseline by selecting different K’. We choose the aforementioned
parameter settings in chapter 5 to train the baseline of Pointpillars. The default
spatial resolution of SAPS-Warp is 4 x 7. Therefore, SAPS-Warp is equivalent to the
original PS warping module when k’ = 28.

We report the performance of PS-Warp from two perspectives. Table 6.1 shows the 3D
and BEV mAP results at different difficulty levels following the definition in KITTT’s
benchmark.

6.1 Detector Performance 47

3D mAP BEV mAP
E M H E M H
Baseline | 89.02 | 76.00 | 72.25 | 93.95 | 88.50 | 86.76
10 89.21 | 76.01 | 71.63 | 92.25 | 87.47 | 84.19
20 89.78 | 78.48 | 73.89 | 93.61 | 88.64 | 85.74
24 89.82 | 79.14 | 74.38 | 94.11 | 89.20 | 86.38
28 89.74 | 78.16 | 74.84 | 94.20 | 89.93 | 85.11

k7

Table 6.1: 3D object detection results of the sparsity-aware part-sensitve warping module. We report the 3D
and BEV mean avearge precision results mAP;,/mAPgg,, of Car and Van category on the KITTI’ validation dataset
using pointpillars as baseline under 0.7 IOU threshold with 40 recall positions. E, M, H denote easy, moderate,
and hard seperately.

6.1.2 Effect of Stacked Triple Attention

Table 6.2 and table 6.3 shows the contribution of stacked triple attention module.
We use the Pointpillars with PS-Warp as our baseline and consider the situation of
Pointpillars with a single TA module and with a stacked TA module. The single TA
module is the front part of the stacked TA module, which is followed by a concatena-
tion operation. The Pointpillars with TA module has an inference time of 34ms, and
the speed of Pointpillars with stacked TA module is 35m:s.

Speed 3D mAP BEV mAP
Method (I;ns) E M H E M H
Baseline* 33 89.74 | 78.16 | 74.84 | 94.20 | 89.93 | 85.11
TA 34 90.81 | 80.32 | 75.33 | 96.77 | 89.97 | 87.22
S-TA 35 90.50 | 80.44 | 75.55 | 96.55 | 89.92 | 87.23

Table 6.2: 3D object detection results of the stacked triple attention module. We report the 3D and BEV mean
average precision results mAP;,/mAPggy, of Car and Van category on the KITTI validation dataset under 0.7 IOU
threshold with 40 recall positions. E, M, H denote easy, moderate, and hard separately.* We use Pointpillars with
PS-Warp as the baseline in this table.

3D mAP BEV mAP
0-30m | 30-50m | 50-70m | 0-30m | 30-50m | 50-70m
Baseline* | 86.77 44,14 5.85 93.65 67.52 15.58
TA 87.27 | 46.88 5.27 93.68 | 67.77 14.94
S-TA 87.35 | 47.56 5.14 93.77 | 67.27 14.19

Method

Table 6.3: 3D object detection results of the stacked triple attention module. We report the 3D and BEV
mean avearge precision results mAP;,/mAPggy, of Car and Van category on the KITTI" validation dataset under
0.7 10U threshold with 40 recall positions. 0-30m, 30-50m, 50-70m denote the distance from objects to ego-cars.*
We use Pointpillars with PS-Warp as baseline in this table.

48 6 Results

6.1.3 Effect of Attentive Hierarchical Backbone

Table 6.4 and table 6.5 shows the performance of different backbones for Pointpillars.
The baseline uses the default backbone in the original paper, as shown in figure
3.1. We demonstrate the effectiveness of our attentive hierarchical backbone and
attentive addition fusion block by replacing the attentive fusion block with two simple
operations: point-wise addition and channel-wise concatenation. We also change the
activation function in the attentive addition block from Softmax to Sigmoid to show
that the Softmax function is more suitable for our model.

Speed 3D mAP BEV mAP

(ms) E M H E M H
Baseline 32 89.02 | 76.00 | 72.25 | 93.95 | 88.50 | 86.76
Addition 32 89.16 | 77.76 | 73.57 | 96.08 | 88.59 | 86.68
Concat 32 89.13 | 77.68 | 72.31 | 93.95 | 88.21 | 86.21

Method

AttFuse | 5 | 9995 | 77.67 | 72.38 | 94.00 | 88.15 | 86.36
(sigmoid)
AtFuse | 5 | 8956 | 78.26 | 74.23 | 96.03 | 88.63 | 86.76
(softmax)

Table 6.4: 3D object detection results of the attentive hierarchical backbone. We report the 3D and BEV
mean avearge precision results mAP;p/mAPggy, of Car and Van category on the KITTI’ validation dataset using
Pointpillars as baseline under 0.7 IOU threshold with 40 recall positions. E, M, H denote easy, moderate, and hard
seperately.

3D mAP BEV mAP
0-30m | 30-50m | 50-70m | 0-30m | 30-50m | 50-70m
Baseline | 84.83 41.27 5.24 94.32 69.23 22.40
Addition | 84.96 | 43.93 6.41 94.25 69.38 22.92
Concat 84.84 | 42.36 5.34 94.07 68.66 22.68

Method

Attfuse | g o0 | 4383 | 4.97 | 94.12 | 68.83 | 21.77
(sigmoid)
Attfuse | oo 25 | 4425 | 546 | 94.46 | 69.44 | 23.78
(softmax)

Table 6.5: 3D object detection results of the attentive hierarchical backbone. We report the 3D and BEV
mean average precision results mAP;,/mAPggy of Car and Van category on the KITTI validation dataset us-
ing Pointpillars as baseline under 0.7 10U threshold with 40 recall positions.0-30m, 30-50m, 50-70m denote the
distance from objects to ego-cars.

6.1.4 Effect of Double Attentive Dynamic Voxelization

We investigate the effect of dynamic voxelization and double attentive voxelization
modules using Pointpillars as the baseline. We simply replace the original hard vox-
elization operation with these two new modules and keep other components and
parameters unchanged. Table 6.6 and table ?? display the detection performance
under different settings.

6.1 Detector Performance 49

Speed 3D mAP BEV mAP
Method (Iins) E M 0 E M H
Baseline | 32 | 89.02 | 76.00 | 72.25 | 93.95 | 88.50 | 86.76
DV 45 | 89.00 | 76.25 | 72.79 | 94.05 | 88.64 | 86.88
DADV | 48 | 89.08 | 76.70 | 72.88 | 94.25 | 89.23 | 86.84

Table 6.6: 3D object detection results of the double attentive dynamic voxelization. We report the 3D and
BEV mean average precision results mAP;,/mAPggy, of Car and Van category on the KITTI validation dataset
using Pointpillars as baseline under 0.7 IOU threshold with 40 recall positions. DV denotes dynamic voxelization,
and DA-DV denotes double attentive dynamic voxelization.

Table 6.6 compares the running speed of three models. As shown in the table, dy-
namic voxelization operation brings 7ms latency in average during inference time
compared to hard voxelization operation, and double attentive operation adds 3ms
latency.

6.1.5 Effect of Multi-View Pointpillars

We implement Multi-view Pointpillars and Attentive Multi-view Pointpillars follow-
ing section 5.1.4 and show the experimental results in table 6.7. Different from the
Pointpillars baseline in section 6.1.1, section 6.1.2, section 6.1.3 and 6.1.4, we choose
the version of Pointpillars from repository OpenPCDet as the baseline, which is eval-
uated only on Car category. This version is more accurate but slower compared to
the previous baseline due to some larger parameter settings. Here we compare our
Multi-view Pointpillars and Attentive Multi-view Pointpillars with this baseline.

Speed 3D AP BEV AP AOS

Method | ‘o B T ™ | ® E | M | H | E | M | H
_gﬁigﬁs 38 | 87.37 | 78.29 | 75.40 | 91.47 | 87.90 | 86.98 | 95.61 | 93.65 | 91.15
Multi

e | 45 [8961|7910 | 77.70 | 93.76 | 88.31 | 87.54 | 97.28 | 9334 | 91.34
AU 46 | 89.74 | 80.17 | 77.30 | 94.10 | 90.16 | 87.53 | 97.19 | 93.56 | 90.93

Table 6.7: 3D object detection results of the multi-view Pointpillars. We report the 3D, BEV avearge precision
results AP;/APggy, speed and avearge orientation similarity AOS of Car category on the KITTI’ validation dataset
using Pointpillars as baseline under 0.7 10U threshold with 40 recall positions. E, M, H denote easy, moderate,
and hard seperately.

6.1.6 Qualitative Comparision

Table 6.8 shows ablation results for the effect of each component in our Pointpillars+.
We summarize the speed and main 3D mAP results on the Car and Van category under
different difficulty levels. After combing three proposed modules, our Pointpillars+

50

6 Results

achieves a 3D mAP of 92.46%, 80.53%, 75.50% for easy, moderate, and hard objects
with the running speed of 36 ms on our 2080 Super GPU.

Method Speed 3D mAP
S-TA -Baé?(Il_)Ione -V\?E;Ariisng (ms) Easy | Moderate | Hard
32 89.02 76.00 72.25
v 34 89.56 78.26 74.23
v 33 89.82 79.14 74.38
v Vv 35 90.50 80.44 75.55
v v 35 90.06 78.28 74.86
v v N 36 92.46 80.53 75.50

Table 6.8: Ablation Study of Pointpillars+. Results are evaluated on KITTI's validation dataset for Car and Van

category at 0.7 10U threshold with 40 recall positions.

To show the detection performance of our Pointpillars+ in a more direct way, we
select three frames in KITTI’s validation dataset and visualize the prediction using
Pointpillars+ and the corresponding ground truth bounding boxes from both bird
eye view and image view. Figure 6.1 and figure 6.2, figure 6.3 and figure 6.4, figure
6.5 and figure 6.6 depict three different scenes from two perspectives respectively.

6.1 Detector Performance 51

o 200 0 - ' 60 B BOO 1000 1200
Figure 6.1: 2D detection result using Pointpillars+ on a scene in the KITTI dataset. The first figure (top) shows the
ground truth bounding boxes that are projected into the image. In the second figure (middle), we projects scanned
LiDAR points into the 2D image. The third figure (down) presents the prediction results using our Pointpillars+,
which are projected from detected 3D bounding boxes to 2D boxes. We keep the detected boxes with confidence
score over 0.3.

52 6 Results

Figure 6.2: BEV detection result using Pointpillars+ on a scene in the KITTI dataset. This scene is the same as
figure 6.1. The first figure (top) depcicts the ground truth bounding boxes that are projected into the BEV. The
second figure (down) shows the prediction results using our Pointpillars+ on the BEV.

6.1 Detector Performance 53

o 200 400 600 800 1000 1200

o 200 400 600 800 1000 1200

o 200 4{50 600 800 1000 1200

Figure 6.3: 2D detection result using Pointpillars+ on a scene in the KITTI dataset. The first figure (top) shows the
ground truth bounding boxes that are projected into the image. In the second figure (middle), we projects scanned
LiDAR points into the 2D image. The third figure (down) presents the prediction results using our Pointpillars+,
which are projected from detected 3D bounding boxes to 2D boxes. We keep the detected boxes with confidence
score over 0.3.

54 6 Results

Figure 6.4: BEV detection result using Pointpillars+ on a scene in the KITTI dataset. This scene is the same as
figure 6.3. The first figure (top) depcicts the ground truth bounding boxes that are projected into the BEV. The
second figure (down) shows the prediction results using our Pointpillars+ on the BEV.

6.1 Detector Performance 55

100

150

200

250

300

350

250

250

Figure 6.5: 2D detection result using Pointpillars+ on a scene in the KITTI dataset. The first figure (top) shows the
ground truth bounding boxes that are projected into the image. In the second figure (middle), we projects scanned
LiDAR points into the 2D image. The third figure (down) presents the prediction results using our Pointpillars+,
which are projected from detected 3D bounding boxes to 2D boxes. We keep the detected boxes with confidence
score over 0.3.

56 6 Results

Figure 6.6: BEV detection result using Pointpillars+ on a scene in the KITTI dataset. This scene is the same as
figure 6.5. The first figure (top) depcicts the ground truth bounding boxes that are projected into the BEV. The
second figure (down) shows the prediction results using our Pointpillars+ on the BEV.

6.2 SAPL Performance on Providentia 57

6.2 SAPL Performance on Providentia

We prove the effectiveness of our SAPL algorithm on the Providentia dataset in this
section from two aspects: the effect of statistical normalization, the effect of pseudo
labeling. As mentioned in section 5.2.1, we evaluate our results on 200 frames Prov-
identia testing dataset.

6.2.1 Effect of Statistical Normalization

We implement statistical normalization following section 5.2.3 and produce a new
rescaled KITTI dataset. We train two Pointpilars+ networks on both the original
KITTI dataset and rescaled KITTI’s dataset after statistical normalization. We report
the results of detectors that are purely trained on KITTI’s dataset at epoch = 0. We
also investigate the performance of few-shot fine-tuning using 100 training samples
for two already trained detectors. Table 6.9 and the corresponding figure show the
BEV performance of car and van on our Providentia testing dataset during the train-
ing process.

a0 # without SN
with SN
£ *
%3 *
E *
@ *
25
20
*
II} 10 20 30 40 50
Epoch
BEV mAP (%)
Epoch without SN | with SN
0 16.25 19.29
20 26.46 31.03
30 29.65 41.07
40 35.45 40.18
50 28.49 23.02

Table 6.9: BEV detection results mAPg, of fine-tuned model trained on Providentia training dataset for car and
van categories with IOU threshold 0.25 with 40 recall positions.

6.2.2 Effect of Pseudo Labeling

We explore the effectiveness of pseudo labeling in our SAPL algorithm from two parts.
In table 6.10 we re-train the model, which is already trained on rescaled KITTI’s

58 6 Results

dataset, on Providentia training sets and pseudo labeling sets. We use the model that
is pre-trained on rescaled KITTT’s dataset and fine-tuned on 100 Providentia training
datasets to produce pseudo labels. We set the confidence threshold to 0.2 to filter
low-quality proposals in the generated pseudo labels.

Num Pseudo- Num Labeled | Percent Labeled
Labeled Samples Samples Samples (%) BEV mAP (%)
0 100 100 41.07
50 100 67 44.77
100 100 50 45.05
150 100 40 37.26

Table 6.10: BEV detection results mAPgg, of fine-tuned model trained on Providentia training dataset and gener-
ated pesudo labeled dataset with confidence threshold 0.2 for filtering low quality proposals. The BEV results are
evaluated on car and van categories with IOU threshold 0.25 with 40 recall positions.

Table 6.11 shows the effect of pseudo-labeling confidence threshold on the final de-
tection performance. We re-trained the model on a mixed dataset with 100 frames
Providenia training samples and 100 frames pseudo labels under different confidence
thresholds. The BEV mAP in the table for each scenario is the best result during the
whole training process.

Conf. BEV mAP
Threshold (%)

0.08 43.45
0.1 47.56
0.15 46.09
0.2 45.05

Table 6.11: BEV detection results mAPgg, of fine-tuned model trained on 100 frames Providentia training dataset
and 100 frames generated pesudo labeled dataset under different confidence thresholds. The BEV results are
evaluated on car and van categories with 10U threshold 0.25 with 40 recall positions.

Figure 6.7 depicts the performance of pseudo labels with a confidence threshold of
0.2. The model for generating pseudo labels is trained on rescaled KITTI’s dataset
and 100 frames Providentia training sets.

6.2 SAPL Performance on Providentia 59

Figure 6.7: Pseudo labeled frames with confidence threshold 0.2

6.2.3 Quantitive Comparision

Table 6.12 summarizes the effect of each component in SAPL algorithm. We display
the BEV mAP results on the Car and Van category at IOU threshold 0.25 with 40
recall positions. We use the model that is trained on the original KITTI dataset as the
baseline and shows the improvement of three main modules in our SAPL algorithm.
The fine-tuning module introduces 100 labeled frames in the target domain, and the
pseudo labeling module introduces 100 unlabeled frames in the target domain.

SAPL
Statistical Fine Pseudo BEV mAP (%)
Normalization | Tuning | Labeling

16.25

v 19.29

Vv 35.45

v v 41.07

v v v 47.56

Table 6.12: Ablation Study of SAPL algorithm. BEV results mAPggy, are evaluated on Providentia testing
dataset for Car and Van category at 0.25 IOU threshold with 40 recall positions.

Chapter 7

Discussion

In this chapter, we analyze and discuss the experimental results of Pointpillars+ and
SAPL algorithm from chapter 6. We discuss the effect of sparsity-aware part-sensitive
warping, the effect of stacked triple attention, the effect of attentive hierarchical
backbone in Pointpillars+ and also discuss the performance of double attentive dy-
namic voxelization and multi-view Pointpillars in section 7.1. In section 7.2, we
analyze the effect of statistical normalization, the effect of few-shot fine-tuning, and
the effect of pseudo labeling in the SAPL algorithm.

7.1 Detector Analysis

7.1.1 Sparsity-Aware Part-Sensitive Warping

The original PS-Warp is the same as our SAPS-Warp module with k' = 28. Table 6.1
shows that the orignal PS-Warp block boosts the 3D mAP of Pointpillars by (0.72%,
2.16%, 2.59%) on easy, moderate, hard difficulties and boosts the BEV mAP by
(0.25%, 1.43%) on easy, moderate difficulties respectively. In comparison with the
original PS-Warp, SAPS-Warp increases the 3D mAP by 0.08% and 0.98% on easy
and moderate difficulty with k' = 24.

The 3D mAP and BEV mAP results of SAPS-Warp in table 6.1 with k’ = 10 are both
worse than the original PS-Warp module. One possible reason is that the number
of sampled points is too low to represent the whole structure of the bounding box,
which leads to large information loss. SAPS-Warp with k’ = 24 performs the best
among all parameters, which achieves 3D mAP at 79.14% on moderate difficulty. In
this case, the most representative parts in the boxes are kept without losing too much
structural information. SAPS-Warp (K’ = 24) improves the 3D mAP and BEV mAP at
all difficulty levels compared to Pointpillars baseline except the BEV mAP on hard
samples. The 3D mAP of hard samples increases from 72.25% to 74.38%, while its
BEV mAP slightly drops from 86.76% to 86.38%. It can be assumed that the serve
occlusion and truncation of hard samples may lead to some re-scoring bias on the
bird eye view when we reweight the confidence of the bounding box depending on
its part structure. Furthermore, SAPS-Warp (k' = 24) alleviates this structural bias

7.1 Detector Analysis 61

by discarding the scores of some low-confidence parts and increases BEV mAP from
85.11% to 86.38% for hard samples compared to the original PS-Warp.

7.1.2 Stacked Triple Attention

The results in table 6.2 show that the stacked triple attention module can greatly
improve the 3D mAP and BEV mAP of the model by 0.76%, 2.28%, 0.71% on easy,
moderate, and hard 3D mAP, and 2.35%, 2.12% on easy and hard BEV mAP respec-
tively in comparison with the baseline. It introduces only 2ms additional inference
speed latency, which is effective and worthy.

7000 1

G000

5000 1

4000 1

number of voxels

3000 1

2000 1

1000 -

(-30m 30-50m 50-70m

Figure 7.1: Distribution of voxels in different distance range

Table 6.3 shows that the stacked TA module considerably increases the 3D mAP for
near objects from 0 to 50 meters by 0.58% and 3.42% on 0-30m and 30-50m re-
spectively compared to the baseline. However, table 6.3 also presents that both the
TA module and stacked TA module are not helpful for improving the performance
of hard objects over 50 meters. The 3D mAP and BEV mAP drop from 5.85% and
15.58% to 5.14% and 14.19% separately for distant objects between 50 and 70 me-
ters. One possible reason is that the TA module tends to assign a higher weight to
the voxels within 50 meters in the voxel-wise attention branch. Figure 7.1 shows the
distribution of voxels in three different distance range. It can be seen that the voxels
in near areas (within 30 meters) make up the majority of the whole sampled voxels,
which dominate the gradient descent during the training process.

The stacked TA module improves the 3D mAP by 0.16% and 0.22% on moderate
and hard difficulty, and 0.68% on 30-50m range, respectively, compared to the single
residual TA module. However, in comparison to the single TA module, stacking two
TA modules does not get an obvious increment on BEV mAP. The effect of two TA
modules in the stacked TA module overlaps for improving the bird eye view accuracy.

62 7 Discussion

Overall, the stacked TA module only introduces 1ms extra speed latency compared
to the single TA module and brings 3D mAP improvement, which is acceptable.

7.1.3 Attentive Hierarchical Backbone

Table 6.4 presents that our attentive hierarchical (AH) backbone brings promising
improvement on both 3D mAP and BEV mAP. The 3D mAP and BEV mAP of the
model with AH backbone increases by (0.54%, 2.26%, 1.98%), and (2.08%, 0.13%,
0%) on easy, moderate, and hard difficulty compared to the Pointpillars baseline. The
AH backbone introduces no extra inference time when we replace the attentive fusion
block with a simple addition or concatenation operation. Surprisingly, it improves the
performance at almost all the difficulty levels on both 3D mAP and BEV mAP even
without attentive fusion block compared to the Pointpillars baseline. Our AH back-
bone with single addition operation increases the 3D mAP by (0.14%, 1.76%, 1.32%)
on easy, moderate, hard objects and increases the BEV mAP by (2.13%, 0.09%) on
easy, moderate objects compared to the default backbone in Pointpillars. As shown in
table 6.5, our AH backbone improves the 3D mAP and BEV mAP at all three distance
ranges by (0.52%, 2.98%, 0.22%) and (0.14%, 0.21%, 1.38%) on 0-30m, 30-50m
and 50-70m separately. Considering the case without attentive fusion block, the AH
backbone with addition operation still improves 3D mAP and BEV mAP of the model
by (0.13%, 2.66%, 1.17%), and (-0.17%, 0.15%, 0.52%).

As shown in table 6.4, our proposed attentive fusion block brings 2ms speed la-
tency. Compared to the AH backbone with single addition operation, the attentive
fusion module improves the 3D mAP by (0.40%, 0.50%, 0.66%) on easy, moderate,
and hard difficulties and improves the BEV mAP by (0.04%, 0.08%) on moderate
and hard difficulties. Table 6.5 presents that attentive fusion block boosts the 3D
mAP by (0.39%, 0.32%) on 0-30m and 30-50m, and boosts the BEV mAP by (0.21%,
0.06%, 0.86%) on 0-30m, 30-50m and 50-70m respectively compared to the single
addition operation in AH backbone. The attentive fusion module in the AH backbone
brings significant improvement on 3D mAP and a slight improvement on BEV mAP.
It probably benefits from the rich spatial and semantic features that are adaptively
aggregated and fused.

We compare the performance of two optional operations in the AH backbone: ad-
dition and concatenation. Channel-wise concatenation increases output channel di-
mension from 128 to 128 3. It directly keeps the raw output features and allows the
network itself to learn how to fuse features during the training process. Element-wise
addition operation fixes the fusion pattern and enriches the information for each ele-
ment while keeps the output channel dimension unchanged. The results in table 6.4
and table 6.5 empirically proves that addition operation is more suitable for our AH
backbone. We also compare two activation functions in our attentive fusion module:
sigmoid and softmax function. The sigmoid function allows the network to empha-
size multiple features at the same time. The features in the attentive fusion block are

7.1 Detector Analysis 63

independently activated and then fused. The softmax function normalizes the whole
input and assigns weight jointly. It tights the connection between the input features
and only emphasizes few elements that are globally important. Table 6.4 and table
6.5 presents that attentive fusion block with softmax as activation function performs
far better than sigmoid. Hence, we finally choose the softmax-based attentive fusion
block as the fusion method in our AH backbone.

7.1.4 Double Attentive Dynamic Voxelization

We compare the results of Pointpillars with dynamic voxelization and double atten-
tive dynamic voxelization in table 6.6. As shown in the table, the 3D mAP and
BEV mAP of Pointpillars with double attentive dynamic voxelization is improved by
(0.06%, 0.70%, 0.63%), (0.30%, 0.73%, 0.08%) compared to the baseline on easy,
moderate and hard difficulties. Moreover, the proposed double attentive dynamic
voxelization boosts the 3D mAP by (0.08%, 0.45%, 0.09%) on easy, moderate, hard
samples, and boosts the BEV mAP by (0.20%, 0.59%) on easy, moderate difficulties
in comparison with the dynamic voxelization.

The effectiveness of dynamic voxelization is reasonable because it uses all the points
within voxels as input and keeps all the sampled voxels for training, which enriches
the input features compared to hard voxelization in Pointpillars. However, both dy-
namic voxelization and double attentive dynamic voxelization introduces too much
latency, which is not acceptable for the real-time requirement (25 FPS) of our model.
The inference speed of Pointpillars with dynamic voxelization is 45ms, and the ad-
ditional double attentive module brings 3ms more. Hence, we do not introduce this
block to our final Pointpillars+.

7.1.5 Multi-View Pointpillars

As shown in the table 6.7, both Multi-view Pointpillars and Attentive Multi-view
Pointpillars improves the performance of baseline by a large margin. The 3D AP
and BEV AP of Multi-view Pointpillars increases by (2.24%, 0.81%, 2.3%), (2.29%,
0.41%, 0.56%) compared to Pointpillars baseline for Car category on easy, moderate
and hard difficulties separately. The average orientation similarity also gets greatly
improved, especially on easy samples from 95.61% to 97.28%. After introducing an
attentive mechanism in Multi-view Pointpillars, the 3D AP and BEV AP of the model
are further boosted by (0.13%, 1.07%), (0.34%, 1.85%) on easy and moderate diffi-
culties separately.

It can be seen from table 6.7 that both 3D AP and BEV AP drop on hard samples
after introducing an attentive mechanism. One possible reason is that the attentive
block in the attentive multi-view feature encoding net tends to assign a higher weight
to the points that are useful for detecting easy and moderate objects, which are also
the majority of all foreground points. The useful points for hard samples only make

64 7 Discussion

up a small proportion, which is easy to be overwhelmed by other points.

Overall, the introduction of multi-view information to Pointpillars greatly improve
its 3D and BEV performance. However, multiple gather and scatter operations in
multi-view Pointpillars significantly slow down the running speed of the model. Ta-
ble 6.7 presents that the Multi-view Pointpillars bring 7ms latency, and the additional
attentive mechanism also adds extra 1ms. Due to the real-time requirement, we fi-
nally do not choose Multi-view Pointpillars as our final model.

7.1.6 Summary

Table 6.8 presents the ablation study for three main components in our Pointpillars+.
Our Pointpillars+ achieves 3D mAP improvement by (3.44%, 4.53%, 3.25%) on easy,
moderate and hard difficulties respectively compared to the Pointpillars baseline. Our
Pointpillars+ adds only 4ms latency which stastifies our real-time speed requirement.
Figure 6.2, figure 6.4 and figure 6.6 show that our Pointpillars+ has strong general-
ization ability, and is able to detect objects that are not labeled in the ground truth.

7.2 SAPL Analysis

7.2.1 Statistical Normalization

Table 6.9 compares the BEV detection results of two models with different pre-trained
weights before and after few-shot fine-tuning. Epoch 0 shows the scenario that when
we directly evaluate the model that is merely trained on the KITTI dataset, on our
Providentia testing sets, the model with pre-trained weight on statistical normalized
KITTI outperforms the model with pre-trained weight on the original KITTI dataset
by 3.04% BEV mAP. In addition, the fine-tuned model that is pre-trained on rescaled
KITTT’s dataset still has higher BEV mAP than the model with pre-trained weight on
original KITTI. The BEV mAP gap between the two models increases from 3.04% be-
fore few-shot fine-tuning to 5.62% after few-shot fine-tuning. One possible reason
is that when we employ statistical normalization, we take all 300 labeling frames
into consideration, which introduces some prior knowledge of the vehicle’s size from
Providentia testing sets to the final model. Moreover, it also shows that the vehicle’s
size distribution in the source domain deeply affects the final detection performance
of the target domain even with few-shot fine-tuning.

The corresponding figure of table 6.9 also shows that the model with statistical nor-
malized pre-trained weight reaches the optimal parameters earlier than the model
with the original pre-trained weight. The model with SN performs best at around
30 epochs, while the model without SN reaches the best performance at about 40
epochs. It is easy to explain that the rescaled KTTI’s dataset has a shorter distribu-
tion distance to the target domain than the original KITTI’s dataset.

7.2 SAPL Analysis 65

7.2.2 Pseudo Labeling

We analyze the effect of labeled samples’ percentage in the mixed training dataset.
We choose the model pre-trained on rescaled KITTI dataset and fine-tuned with 100
Providentia training samples as our baseline in table 6.10. The model with 50 and
100 additional pseudo labeled samples outperforms our baseline, while the perfor-
mance of the model with 150 additional pseudo-labeled samples shows worse results
than baseline. It is clear that the produced pseudo labels are not completely accu-
rate, and technically its has a similar effect as data argumentation methods with some
labeling noise. Since we use the same Pointpillars+ as both student and teacher mod-
els, the improvement of pseudo labeling on the student model should have limited
margin benefits. In our case, when the percentage of pseudo-labeled data reaches
60%, the labeling technique loses efficacy, and the performance of the model dete-
riorates. A number of factors may be accountable for this situation. One possible
reason is that the number of noisy frames is too large, which overwhelms the origi-
nal, accurate labeled samples and dominates the training process. Another possible
reason is that our produced pseudo labels are not accurate enough, and there may
exist many false-negative objects when we set the confidence threshold too high,
where too many noisy objects are then introduced. To sum up, the performance of
the pseudo labeling technique reaches the best when the percentage of labeled sam-
ples takes half of the whole dataset under the 0.2 confidence threshold in our case.

Table 6.11 shows the effect of the confidence threshold on the performance of pseudo
labeling. We re-train the model with pre-trained weight from rescaled KITTI on 100
frames Providentia training sets and 100 pseudo-labeled frames. As shown in the
table, the model performs best when we set the confidence threshold to 0.1, and
the BEV mAP drops slightly when the confidence threshold is set too high or too set.
This is easy to be explained that many false positive objects appear when we set the
confidence threshold to a low value, and there exist many false-negative objects if
the confidence threshold is set to a high value. In our case, the model reaches a good
trade-off between false positive and false negative pseudo labels at the confidence
threshold of 0.1.

7.2.3 Summary

Table 6.12 presents the contribution of three main components in our SAPL algo-
rithm: Statistical normalization, few-shot fine-tuning, and pseudo labeling. The re-
sults show that all three modules improve the performance of the model in the target
domain and few-shot fine-tuning contributes the most among the three modules. Af-
ter applying the SAPL algorithm, the BEV mAP of the model increases by 31.31%
with the help of 100 labeled, 100 unlabeled frames, and the size distribution of the
target domain.

Chapter 8

Conlusion

Autonomous driving is deeply involved with our future, and the Providentia project
aims at providing intelligent infrastructure which accelerates the development of au-
tonomous driving. As a fundamental part of the Providentia project, our thesis focus
on two main problems that commonly exist in the perception field of autonomous
driving: design of real-time 3D object detector and label shortage problem. Firstly,
we propose a real-time LiDAR-based Pointpillars+ model to detect the 3D positions
of vehicles on the highway. Secondly, we present a statistical-aware pseudo labeling
algorithm to solve the label-shortage problem in 3D object detection. We experimen-
tally prove that our Pointpillars+ network outperforms the original Pointpillars by a
large margin and the SAPL algorithm effectively improves the model’s performance
in the tagert domain.

Three main modules in Pointpillars+: sparsity-aware part-sensitive warping, stacked
triple attention, and attentive hierarchical backbone, all contribute to the improve-
ment of the model with few additional inference time latency. Besides, both double
attentive dynamic voxelization and multi-view Pointpillars boost the 3D detection
accuracy of the model. However, they are more suitable for the scenario where the
model’s inference speed is not of great importance. Three main components in the
SAPL algorithm: statistical normalization, few-shot fine-tuning, and pseudo labeling
also all make contributions to domain adaption. It can be used in the scenario where
few labeled samples and size statistics of the target domain are available. Both Point-
pillars+ and SAPL algorithms are practical and can be easily applied to other similar
problems.

Chapter 9

Future Work

As a fundamental part of the Providentia project, there are still many insufficiencies
of our work that can be improved and investigated in the future. We list the possible
improvements that are discovered during the implementation and evaluation process
as follows:

* As mentioned in section 5.2.1, LiDAR sensor has a limited detection range and
can only detect few closely gathered foreground points for distant objects over
50 meters due to its installation position. It is also hard for the LiDAR only
network to classify the categories of distant vehicles and estimate their sizes
only based on few points. In this case, it is necessary to introduce additional
image information for better classification and size estimation performance. We
install several RGB camera sensors for data fusion in our Providentia system,
which is necessary based on our analysis.

* The proposed sparsity-aware part-sensitive warping module in Pointpillars+
uses Top K’ to adaptively select the most representative parts in the predicted
bounding boxes. However, we need to adjust the value of K’ to find out the
most suitable parameter, which is dependent on different models and is a little
bit time-consuming. We can design an attentive mechanism in the future to
selectively control the importance of each part instead of deprecating all other
less useful classification scores.

* As mentioned in the previous chapters, the proposed double attentive dynamic
voxelization, and multi-view Pointpillars can also improve the detection perfor-
mance to some extent. However, their current implementations consume too
much time, which can not satisfy real-time requirements. We can re-implement
these two algorithms for faster running speed in the future.

* In the SAPL algorithm, we choose Pointpillars+ as both our teacher and stu-
dent model for the sake of simplicity. However, since we do not have inference
time requirements for the teacher model, we can choose some slower but more
accurate 3D object detectors such as PV-RCNN as our teachers, which can theo-
retically produce pseudo labels with better quality and then improve the perfor-
mance of pseudo labeling in our SAPL algorithm. We may even choose multiple

68

9 Future Work

teacher models to generate pseudo labels separately and then fuse their propos-
als together for robust results.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

Barrera, A., Guindel, C., Beltran, J., and Garcia, F. BirdNet+: End-to-End 3D Object
Detection in LiDAR Bird’s Eye View. Tech. rep. arXiv: 2003.04188v1.

Behrendt, K. Boxy Vehicle Detection in Large Images. Tech. rep. URL: https://boxy-
dataset.com/.

Beltran, J., Guindel, C., Moreno, F. M., Cruzado, D., Garcia, F., and De La Escalera, A.
BirdNet: a 3D Object Detection Framework from LiDAR information. Tech. rep. arXiv:
1805.01195v1.

Braun, M., Krebs, S., Flohr, F., and Gavrila, D. M. The EuroCity Persons Dataset: A Novel
Benchmark for Object Detection. Tech. rep. arXiv: 1805.07193v2.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan,
Y., Baldan, G., Beijpbom, O., and Company, A. nuScenes: A multimodal dataset for au-
tonomous driving. Tech. rep. arXiv: 1903.11027v5.

Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Hartnett, A., Wang, D., Carr, P., Lucey,
S., Ramanan, D., and Hays, J. Argoverse: 3D Tracking and Forecasting with Rich Maps.
Tech. rep.

Chen, Q., Sun, L., Wang, Z., Jia, K., and Yuille, A. Object as Hotspots: An Anchor-Free
3D Object Detection Approach via Firing of Hotspots. Tech. rep.

Chen, Y., Liu, S., Shen, X., and Jia, J. Fast Point R-CNN. Tech. rep. arXiv: 1908.02990v2.

Dalal, N. and Triggs, B. Histograms of Oriented Gradients for Human Detection. Tech.
rep. 2005. URL: http://lear.inrialpes.fr.

Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., and Li, H. Voxel R-CNN: Towards High
Performance Voxel-based 3D Object Detection. Tech. rep. 2021. arXiv: 2012.15712v2.
URL: https://github.com/djiajunustc/Voxel-R-CNN..

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. Vision meets Robotics: The KITTI Dataset.
Tech. rep. URL: http://www.cvlibs.net/datasets/XKitti..

Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies for accurate
object detection and semantic segmentation Tech report (v5). Tech. rep. arXiv: 1311.
2524v5. urL: http://www.cs.berkeley.edu/%CB%9Crbg/rcnn..

He, C., Zeng, H., Huang, J., Hua, X.-S., and Zhang, L. Structure Aware Single-stage 3D
Object Detection from Point Cloud. Tech. rep.

Houston, J., Zuidhof, G., Bergamini, L., Ye, Y., Chen, L., Jain, A., Omari, S., Iglovikov,
V., Ondruska, P., and Level, L. One Thousand and One Hours: Self-driving Motion Pre-
diction Dataset. Tech. rep. arXiv: 2006.14480v2.

https://arxiv.org/abs/2003.04188v1
https://boxy-dataset.com/
https://boxy-dataset.com/
https://arxiv.org/abs/1805.01195v1
https://arxiv.org/abs/1805.07193v2
https://arxiv.org/abs/1903.11027v5
https://arxiv.org/abs/1908.02990v2
http://lear.inrialpes.fr
https://arxiv.org/abs/2012.15712v2
https://github.com/djiajunustc/Voxel-R-CNN.
http://www.cvlibs.net/datasets/kitti.
https://arxiv.org/abs/1311.2524v5
https://arxiv.org/abs/1311.2524v5
http://www.cs.berkeley.edu/%CB%9Crbg/rcnn.
https://arxiv.org/abs/2006.14480v2

70

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Bibliography

Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q., and Yang, R. The ApolloScape Open
Dataset for Autonomous Driving and its Application. Tech. rep. arXiv: 1803.06184v4.

Jeong, J., Lee, S., Kim, J., and Kwak, N. Consistency-based Semi-supervised Learning for
Object Detection. Tech. rep. URL: https://github.com/s0089/CSD-SSD.

Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., and Beijbom, O. PointPillars: Fast
Encoders for Object Detection from Point Clouds. Tech. rep. arXiv: 1812.05784v2. URL:
https://github.com/nutonomy/second.pytorch.

Lee, D.-H. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for
Deep Neural Networks. Tech. rep.

Li, C.R. Q., Hao, Y., Leonidas, S., and Guibas, J. PointNet+ +: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. Tech. rep. arXiv: 1706.02413v1.

Li, Z., Yao, Y., Quan, Z., Yang, W., and Xie, J. SIENet: Spatial Information Enhancement
Network for 3D Object Detection from Point Cloud. Tech. rep. arXiv: 2103.15396v2. URL:
https://github.com/.

Lin, T.-Y., Dollér, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. Feature Pyra-
mid Networks for Object Detection. Tech. rep.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollar, P. Focal Loss for Dense Object
Detection. Tech. rep.

Lindeberg, T. Scale Invariant Feature Transform. Tech. rep. 2012. URL: www.scholarpedia.
org/article/Scale%7B%5C_%7DInvariant%7B%5C_%7DFeature%7B%5C_%?7DTransform.
Liy, Y.-C., Ma, C.-Y., He, Z., Kuo, C.-W., Chen, K., Zhang, P., Wu, B., Kira, Z., and Vajda,

P. UNBIASED TEACHER FOR SEMI-SUPERVISED OBJECT DETECTION. Tech. rep. arXiv:
2102.09480v1. URL: https://github.com/facebookresearch/unbiased-teacher..

Liu, Z., Tang, H., Lin, Y., and Han, S. Point-Voxel CNN for Efficient 3D Deep Learning.
Tech. rep.

Liu, Z., Tang, H., Lin, Y., and Han, S. Point-Voxel CNN for Efficient 3D Deep Learning.
Tech. rep.

Luo, H., Ji, L., Li, T., Duan, N., and Jiang, D. GRACE: Gradient Harmonized and Cas-
caded Labeling for Aspect-based Sentiment Analysis. Tech. rep. arXiv: 2009.10557v2.

Luo, H., Ji, L., Li, T., Duan, N., and Jiang, D. GRACE: Gradient Harmonized and Cas-
caded Labeling for Aspect-based Sentiment Analysis. Tech. rep. arXiv: 2009.10557v2.

Luo, H., Ji, L., Li, T., Duan, N., and Jiang, D. GRACE: Gradient Harmonized and Cas-
caded Labeling for Aspect-based Sentiment Analysis. Tech. rep. arXiv: 2009.10557v2.

Mohapatra, S., Yogamani, S., Gotzig, H., Milz, S., and Méder, P. BEVDetNet: Bird’s Eye
View LiDAR Point Cloud based Real-time 3D Object Detection for Autonomous Driving.
Tech. rep. arXiv: 2104.10780v1.

Noh, J., Lee, S., and Ham, B. HVPR: Hybrid Voxel-Point Representation for Single-stage
3D Object Detection. Tech. rep. arXiv: 2104.00902v1.

Patil, A., Malla, S., Gang, H., and Chen, Y.-T. The H3D Dataset for Full-Surround 3D
Multi-Object Detection and Tracking in Crowded Urban Scenes. Tech. rep. arXiv: 1903.
01568v1. URL: http://www.ros.org/.

https://arxiv.org/abs/1803.06184v4
https://github.com/soo89/CSD-SSD
https://arxiv.org/abs/1812.05784v2
https://github.com/nutonomy/second.pytorch
https://arxiv.org/abs/1706.02413v1
https://arxiv.org/abs/2103.15396v2
https://github.com/
www.scholarpedia.org/article/Scale%7B%5C_%7DInvariant%7B%5C_%7DFeature%7B%5C_%7DTransform
www.scholarpedia.org/article/Scale%7B%5C_%7DInvariant%7B%5C_%7DFeature%7B%5C_%7DTransform
https://arxiv.org/abs/2102.09480v1
https://github.com/facebookresearch/unbiased-teacher.
https://arxiv.org/abs/2009.10557v2
https://arxiv.org/abs/2009.10557v2
https://arxiv.org/abs/2009.10557v2
https://arxiv.org/abs/2104.10780v1
https://arxiv.org/abs/2104.00902v1
https://arxiv.org/abs/1903.01568v1
https://arxiv.org/abs/1903.01568v1
http://www.ros.org/

Bibliography g

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Pham, Q.-H., Sevestre, P., Singh Pahwa, R., Zhan, H., Pang, C. H., Chen, Y., Mustafa, A.,
Chandrasekhar, V., and Lin, J. A*3D Dataset: Towards Autonomous Driving in Challeng-
ing Environments. Tech. rep. arXiv: 1909.07541v1. URL: https://github.com/I2RDL2/
ASTAR-3D.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. Tech. rep. arXiv: 1612.00593v2.

Ren, S., He, K., Girshick, R., and Sun, J. Faster R-CNN: Towards Real-Time Object De-
tection with Region Proposal Networks. Tech. rep. arXiv: 1506.01497v3. URL: http:
//image-net.org/challenges/LSVRC/2015/results.

Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., and Li, H. PV-RCNN: Point-Voxel
Feature Set Abstraction for 3D Object Detection. Tech. rep. arXiv: 1912.13192v1.

Shi, S., Wang, X., and Li, H. PointRCNN: 3D Object Proposal Generation and Detec-
tion from Point Cloud. Tech. rep. arXiv: 1812.04244v2. URL: https://github.com/
sshaoshuai/PointRCNN..

Shrivastava, A., Gupta, A., and Girshick, R. Training Region-based Object Detectors with
Online Hard Example Mining. Tech. rep. arXiv: 1604.03540v1.

Sohn, K., Zhang, Z., Li, C.-L., Zhang, H., Lee, C.-Y., and Pfister, T. A Simple Semi-
Supervised Learning Framework for Object Detection. Tech. rep. arXiv: 2005.04757v2.
URL: https://github..

Song, S., Lichtenberg, S. P., and Xiao, J. SUN RGB-D: A RGB-D Scene Understanding
Benchmark Suite. Tech. rep. URL: http://rgbd.cs.princeton.edu.

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou,
Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeev, A.,
Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhao, S., Cheng, S., Zhang, Y., Shlens, J.,
Chen, Z., and Anguelov, D. Scalability in Perception for Autonomous Driving: Waymo
Open Dataset. Tech. rep. arXiv: 1912.04838v7. URL: http://www.waymo.com/open..

Vaswani, A., Brain, G., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L.., and Polosukhin, I. Attention Is All You Need. Tech. rep. arXiv: 1706.03762v5.

Wang, H., Cong, Y., Litany, O., Gao, Y., and Guibas, L. J. 3DIoUMatch: Leveraging IoU
Prediction for Semi-Supervised 3D Object Detection. Tech. rep. arXiv: 2012.04355v2.
URL: http://thul7cyz.github.io/3DIoUMatch.

Wang, Y., Chen, X., You, Y., Li, L. E., Hariharan, B., Campbell, M., Weinberger, K. Q.,
and Chao, W.-L. Train in Germany, Test in The USA: Making 3D Object Detectors Gener-
alize. Tech. rep. URL: https://www.best-selling-cars.com/germanyy/ .

Wang, Y., Fathi, A., Kundu, A., Ross, D. A., Pantofaru, C., Funkhouser, T., and Solomon,
J. Pillar-based Object Detection for Autonomous Driving. Tech. rep. URL: https://github.
com/WangYueFt/pillar-od..

Xue, J., Fang, J., Li, T., Zhang, B., Zhang, P., Ye, Z., and Dou, J. BLVD: Building A
Large-scale 5D Semantics Benchmark for Autonomous Driving. Tech. rep. arXiv: 1903.
06405v1. URL: https://github.com/VCCIV/BLVD/ ..

Yan, Y., Mao, Y., and Li, B. “SECOND: Sparsely Embedded Convolutional Detection”.
In: (). pot: 10.3390/s18103337. URL: www.mdpi.com/journal/sensors.

https://arxiv.org/abs/1909.07541v1
https://github.com/I2RDL2/ASTAR-3D
https://github.com/I2RDL2/ASTAR-3D
https://arxiv.org/abs/1612.00593v2
https://arxiv.org/abs/1506.01497v3
http://image-net.org/challenges/LSVRC/2015/results
http://image-net.org/challenges/LSVRC/2015/results
https://arxiv.org/abs/1912.13192v1
https://arxiv.org/abs/1812.04244v2
https://github.com/sshaoshuai/PointRCNN.
https://github.com/sshaoshuai/PointRCNN.
https://arxiv.org/abs/1604.03540v1
https://arxiv.org/abs/2005.04757v2
https://github.
http://rgbd.cs.princeton.edu
https://arxiv.org/abs/1912.04838v7
http://www.waymo.com/open.
https://arxiv.org/abs/1706.03762v5
https://arxiv.org/abs/2012.04355v2
http://thu17cyz.github.io/3DIoUMatch
https://www.best-selling-cars.com/germany/
https://github.com/WangYueFt/pillar-od.
https://github.com/WangYueFt/pillar-od.
https://arxiv.org/abs/1903.06405v1
https://arxiv.org/abs/1903.06405v1
https://github.com/VCCIV/BLVD/.
https://doi.org/10.3390/s18103337
www.mdpi.com/journal/sensors

72

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Bibliography

Yang, B., Luo, W., and Urtasun, R. PIXOR: Real-time 3D Object Detection from Point
Clouds. Tech. rep. arXiv: 1902.06326v3.

Yang, Z., Sun, Y., Liu, S., and Jia, J. “3DSSD: Point-Based 3D Single Stage Object
Detector”. In: (2020), pp. 11037-11045. po1: 10.1109/cvpr42600.2020.01105. arXiv:
2002.10187.

Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J., and Lab, Y. STD: Sparse-to-Dense 3D Object
Detector for Point Cloud. Tech. rep. arXiv: 1907.10471v1.

Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., and Darrell, T.
BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning. Tech. rep.
arXiv: 1805.04687v2. URL: https://www.getnexar.com.

Zarzar, J., Giancola, S., and Ghanem, B. PointRGCN: Graph Convolution Networks for
3D Vehicles Detection Refinement. Tech. rep. arXiv: 1911.12236v1.

Zhao, N., Chua, T.-S., and Lee, G. H. SESS: Self-Ensembling Semi-Supervised 3D Object
Detection. Tech. rep. arXiv: 1912.11803v3. URL: https://github.com/Na-Z/sess..

Zhao, X., Bai, X., Liu, Z., Huang, T., Hu, R., and Zhou, Y. TANet: Robust 3D Object De-
tection from Point Clouds with Triple Attention Object Detection; Scene Text Recognition;
Deep Learning View project Adversarial Learning Based Saliency Detection View project
TANet: Robust 3D Object Detection from Point Clouds w. Tech. rep. arXiv: 1912.05163v1.
URL: www.aaai.org.

Zheng, W., Tang, W., Chen, S., Jiang, L., and Fu, C.-W. CIA-SSD: Confident IoU-Aware
Single-Stage Object Detector From Point Cloud. Tech. rep. 2021. arXiv: 2012.03015v1.
URL: https://github.com/Vegeta2020/CIA-SSD..

Zhou, Y., Sun, P., Zhang, Y., Anguelov, D., Gao, J., Ouyang, T., Guo, J., Ngiam, J.,
and Vasudevan, V. End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point
Clouds. Tech. rep.

Zhou, Y. and Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object
Detection. Tech. rep. arXiv: 1711.06396v1.

Zimmer, W. 3D Bounding Box Annotation Tool (3D-BAT) Point cloud and Image Labeling.
2020. urL: https://github.com/walzimmer/3d-bat.

https://arxiv.org/abs/1902.06326v3
https://doi.org/10.1109/cvpr42600.2020.01105
https://arxiv.org/abs/2002.10187
https://arxiv.org/abs/1907.10471v1
https://arxiv.org/abs/1805.04687v2
https://www.getnexar.com
https://arxiv.org/abs/1911.12236v1
https://arxiv.org/abs/1912.11803v3
https://github.com/Na-Z/sess.
https://arxiv.org/abs/1912.05163v1
www.aaai.org
https://arxiv.org/abs/2012.03015v1
https://github.com/Vegeta2020/CIA-SSD.
https://arxiv.org/abs/1711.06396v1
https://github.com/walzimmer/3d-bat

	Abstract
	Abbreviations
	Introduction
	Motivation
	Problem Statement and Challenges
	Contribution
	Thesis Outline

	Theoretical Background
	LiDAR Sensor and Point Cloud
	Introduction of LiDAR Sensor
	Properties of Point Cloud Data

	Object Detection Task
	Attention Mechanism in Computer Vision
	Self-Attention Mechanism
	Squeeze-and-Excitation Network

	Evaluation Metrics of 3D Object Detection

	Related Work
	3D Object Detection Datasets
	SOTA Point-Cloud Based 3D Object Detection
	Voxel-Based Methods
	Point-Based Methods
	Projection-Based Methods
	Hybrid Methods

	Semi-Supervised Learning for Object Detection
	Semi-Supervised 2D Object Detection
	Semi-Supervised 3D Object Detection

	Solution
	Proposed Detection Solution
	Network Overivew
	Staked Triple Attention Block
	Attentive Hierarchical Backbone
	Sparsity-Aware Part-Sensitive Warping
	Two Extra Proposed Modules

	Proposed Semi-supervised Solution
	Pseudo Labeling
	Domain Adaption from KITTI Dataset
	Statistical-Aware Pseudo Labeling for 3D Object Detection

	Experimental Details
	Pointpillars+ Implementation Details
	Dataset
	Data Augmentation
	Training
	Network
	Loss Function
	Evaluation

	SAPL Implementation Details
	Providentia Dataset
	Network
	Statistical Normalization

	Results
	Detector Performance
	Effect of Sparsity-Aware Part-Sensitive Warping
	Effect of Stacked Triple Attention
	Effect of Attentive Hierarchical Backbone
	Effect of Double Attentive Dynamic Voxelization
	Effect of Multi-View Pointpillars
	Qualitative Comparision

	SAPL Performance on Providentia
	Effect of Statistical Normalization
	Effect of Pseudo Labeling
	Quantitive Comparision

	Discussion
	Detector Analysis
	Sparsity-Aware Part-Sensitive Warping
	Stacked Triple Attention
	Attentive Hierarchical Backbone
	Double Attentive Dynamic Voxelization
	Multi-View Pointpillars
	Summary

	SAPL Analysis
	Statistical Normalization
	Pseudo Labeling
	Summary

	Conlusion
	Future Work
	Bibliography

