Co-Design for Training and Verifying
Neural Networks

Background

The verification of neural networks is essential for their application in systems that have
to meet performance guarantees. To obtain all possible outcomes of a neural network for
a set of inputs, one can propagate sets through neural networks. Previous works use linear
approximations of activation functions, which results in overly conservative results, while
nonlinear approximations quickly become computationally infeasible in deep neural networks.
We address this issue for the first time by a novel co-design of the training and the verification
of neural networks. The main idea is to train the neural network in a way that the verification
problem is simplified in the sense that simple approximations of activation functions suffice
to verify the neural network.

In order to transfer the verification results to real systems, we additionally add uncertainty to
the output of the neural network so that the true outcome is included. It is crucial that the
right amount of uncertainty is added so that the results can be transferred without adding to
much uncertainty, which would make it impossible to verify the neural network against given
specifications.

Description

The main focus of this work is the realization of the novel co-design for training and verifying
neural networks. For the conformance checking, existing approaches previously developed at
our chair (e.g., [1, 4]) should be integrated in the overall process. Similarly, for the supervised
learning of the metal forming process, standard approaches should be implemented, such as
those surveyed in [7].

For the co-design of training and verifying the neural network, we envision to not only minimi-
ze the average squared error between the output of the network and the desired output, but
also the size of the output set when adding uncertainty to the input of the neural network.
Computing an over-approximation of the output set would be computationally expensive and
is not required to robustify the neural network — only the fully trained neural network has to be
formally verified. For this final verification, we will use our previous work on over-approximative
set propagation of neural networks as a basis [2, 3]. Instead, we will use efficient approxi-
mations for the robustification of neural network using a) sensitivity analysis, b) reachability
analysis without approximation errors (see [6]), and c) approximated approximation errors

(see [5])-

Tasks

e Implementation of supervised learning to model metal forming processes.

e Formalization of specifications for a specific metal forming process with a Bihler ma-
chine at the chair of Metal Forming and Casting.

e Integration of the approximate size of output sets in supervised learning.

e Reachset conformance checking of the resulting neural network using set propagation
and additive uncertainties.

e Formal verification of the resulting neural network using set propagation.
e Optional: order reduction of the used set representation.

e Optional: consideration of multiplicative uncertaintes for conformance checking rather
than additive uncertainties.

e Implementation of the developed approaches in CORA.
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