
End-to-end Hyperdimensional Computing with
24.65 µJ per Training Sample in 22 nm Technology

Wei-Ji Chao∗†, Paul R. Genssler∗, Sandy A. Wasif∗, Albi Mema∗ and Hussam Amrouch∗
∗Chair of AI Processor Design; Munich Institute of Robotics and Machine Intelligence

Technical University of Munich; TUM School of Computation, Information and Technology, Munich, Germany
†Department of Electrical Engineering, National Sun Yat-sen University, Taiwan

amrouch@tum.de

Abstract—Hyperdimensional computing (HDC) is an emerging
computing paradigm promising to replace classical machine
learning algorithms for edge training. This work proposes
FixedHD as an end-to-end efficient and generic fixed-point
HDC for edge AI. To efficiently deploy FixedHD, a chip is
fabricated with an extended RISC-V. The extensions include vector
computation and customized instructions. The chip, fabricated in
22 nm, can perform a training iteration for the UCI-HAR dataset
with 24.65 µJ energy consumption in 93 ms per sample at 20 MHz.
Our chip is capable of operating up to 120 MHz, which decreases
the training time per sample to 15.6 ms. Our custom instructions
provide a 4x speedup compared to the baseline processor.

Index Terms—Hyperdimensional Computing, RISC-V, Edge
AI, Energy Efficient, Real Time

I. INTRODUCTION

Hyperdimensional computing (HDC) is an emerging com-
putational paradigm that holds the promise of bringing AI
training to the edge with success in multiple applications [1].
Fine-tuning AI models at the edge is essential for subject-
specific medical applications involving wearables [2]. HDC
processes data as patterns rather than absolute values, re-
placing complex computations with lightweight operations
more suitable for constrained devices. The representation of
the HDC model depends on the application specifications.
Binary HDC architectures are implemented using simple
hardware, therefore consume less power [3]. However, accuracy
is restricted, and the dimensionality increases to compensate
for lost representation. On the other hand, floating-point
HDC offers accuracy comparable to neural networks at the
expense of significant design complexity. In this work, fixed-
point representation is employed to balance the contradicting
demands of inference accuracy and design complexity.
In the literature, different implementation platforms for HDC
were explored, such as GPUs, FPGAs, ASICs, and custom
processors [1]. Customized processors as a platform for
HDC benefit from design flexibility, scalability, generality,
compactness, and efficiency [4]; however, these explorations
were only conducted for binary HDC. RISC-V customization
for acceleration includes vector extensions to benefit from the
fact that HDC operation relies on multiple computations over
many independent data items.
In this work, a 1 mm2 chip featuring a RISC-V processor with
vector extensions is fabricated in 22 nm to deploy a generic
HDC model for complete end-to-end operation, including

training, retraining, and inference. A training sample takes 93
ms with an energy consumption of 24.65 µJ for the UCI-HAR
dataset at a 20 MHz clock frequency. At a higher frequency of
120 MHz, the energy consumption increases by 2.5x to 60.71
µJ but the time is reduced by 5.9x to 15.6 ms.

II. OUR PROPOSED HDC FIXEDHD MODEL

The computation of the proposed FixedHD model is di-
vided into three stages: training, retraining, and inference,
as shown in Fig. 1. One common module in all stages is
encoding, which converts data with n-features into hypervectors
with d-dimensions. This non-linear mapping process involves
matrix multiplication between the data feature vector (F)
and a randomly generated matrix (B) with standard normal
distribution. Encoding consumes most of the computation time
as it scales with features and dimensionality. The encoded
sample is then normalized using trigonometric functions.
The data is represented in fixed-point format to balance
inference accuracy with computational complexity. Fixed-point
format can maintain same inference accuracy as floating-point
representation while performing simple computations on integer
data. For the proposed 16-bit fixed-point model, a detailed bit
distribution analysis is conducted to fit various applications such
as MNIST and Isolet into the HDC model. The trigonometric
functions for normalization are realized with codebooks to
replace the computation with memory access. To benefit from
HDC resiliency against errors, the codebooks are quantized to
reduce memory requirements with minimal effect on accuracy.
The first stage is training, which is the process of model
creation, conducted through two phases: initial model creation
through hypervector bundling, followed by adaptive training
through cosine similarity to fine-tune the model. Adaptive
training improves the model’s accuracy and achieves faster
convergence [5]. The second stage is retraining to enhance the
model through a few extra iterations of adaptive model tuning
across the complete training dataset. In FixedHD, convergence
is achieved for multiple datasets with only 10 retraining
iterations. The final stage is the inference that tests the accuracy
of the model against unseen test data items. The same encoding
and cosine similarity modules are used again in inference.
The model is implemented in C code and is compiled for a
32-bit RISC-V architecture that supports integer operations,
including multiplications. Software optimizations are applied



Encdoing Matrix
B00 B0D

BNDBN0

F0 FN

1xN

NxD

X

Input Sample Data

Mi

Hi

Train 
Samples

Test
Samples

Encoding Training

Model Initialization Adaptive Training

Hi = cos(Mi + bi) ∗ sin(Mi)

Ck = Σ HVi
Cc = Cc + η * (1 - δ) * HV
Cw = Cw - η * (1 - δ') * HV

Inference Cosine Similarity

δ (A,B) = A . B

||A||  . ||B||

Retraining

Adaptive retrainnig for
full dataset

# of iterations = 10

Trigonometric
Normalization

Figure 1: Overview of the FixedHD Model highlighting the main computational stages: training, retraining, and inference. Encoding is a
common step for all stages, it contains the normalization through trigonometric functions to produce hypervector H. Training initializes the
model through addition of hypervector belonging to the same class (C). The adaptive training applies for wrongly predicted only, where the
wrongly predicted hypervector is added to the correct class and subtracted from the wrong class scaled with the cosine similarity δ and the
learning rate η. Cosine similarity is the metric utilized in the inference stage.

Figure 2: Fabricated 1 mm2 chip for customized RISC-V processor
with the 32 KB instruction memory and 128 KB data memory

to achieve a compact model suitable for edge applications.
These optimizations include approximate codebooks to replace
trigonometric functions, and compressed encoding matrix
through rotational accessing. The model can fit various datasets,
such as MNIST, FMNIST, UCI-HAR, and Isolet, with compa-
rable accuracy; the details of the implementation and results
of FixedHD are presented in our previous work [6].

III. CHIP ARCHITRECTURE

The proposed chip contains the vector-extended RISC-
V processor with separate instruction and data memories.
Additionally, there is an AXI-lite inspired bus for commu-
nication that is controlled through a UART master module.
Multiple registers are utilized to configure the chip and monitor
performance. The fabricated chip is presented in Fig. 2.

A. Core processor

The 32-bit RISC-V processor architecture is shown in
Fig. 3. It is provided by Synopsys ASIP designer based on
the RVIM32 instruction set [7]. It consists of five standard
pipeline stages, an ALU, and a register file with 32 registers. To
accelerate the encoding step in both the training and inference
stages, the processor is extended to support SIMD (Single
Instruction Multiple Data) architecture. This is accomplished
by introducing a vector register file, vector pipeline stages, and
customized vector instructions. The vector register file consists
of eight registers, each holding 128-bit data. The customized

vector instruction is a VMAC-shift, combining three processes:
multiplication, accumulation, and shifting on four data items
in one clock cycle. To implement this instruction, the hardware
is extended with four 16-bit MAC units that have direct access
to the vector register file through vector pipeline stages. The
data access for vector instructions is 128-bits per clock cycle.

B. Memories

The chip contains two memories for instructions and data
with sizes of 3072x64 (32 kB) and 8192x128 (128 kB),
respectively. They support standard one read port and one
write port. The memories are loaded through UART with data
and instructions before running any application on the core
processor.

C. Control Registers

There are 16 control registers that can be read or written
through the bus and three registers that are read-only by the
bus. The registers are used to change the chip configurations,
such as the baud rate for UART communication and the reset
signal for the processor. They are also used to monitor outputs
from the processor, for example, the number of clock cycles
to execute a test program.

D. Communication protocol

The communication between the peripherals, memories, and
registers is performed through an AXI-lite inspired bus. This
bus has a width of 32 bits and can only be accessed by one
entity at a time, the bus master is controlled by the UART.

E. Printed Circuit Board (PCB)

Two PCBs are designed to connect the chip with the
necessary supplies and equipments as shown in Fig. 4. The
first PCB is connected to an external clock generator that is
capable of supplying an input clock up to 100 MHz. In this
version of the PCB, the chip is also connected to an external
voltage supply to power on the chip and peripheral devices.
Additionally an external USB to UART interface is connected
to complete the setup. The second PCB, has an on-board
clock generator that reaches up to 120 MHz and works at a
constant voltage supply of 0.8 V. Both PCBs contain extra



IF ID Ex Mem WB

Program 
Memory

 Interface 

Data 
Memory

 Interface 

Scalar 
Register 

File

Vector 
Register 

File

Pi
pe

lin
e 

St
ag

es
  V

ec
to

r 
/ S

ca
la

r

Decode
 Logic

Pi
pe

lin
e 

St
ag

es
  V

ec
to

r 
/ S

ca
la

r

ALU

VMAC
Shift

M
ux

Load
&

Store

Update
Register

File

Pi
pe

lin
e 

St
ag

es
  V

ec
to

r 
/ S

ca
la

r

Pi
pe

lin
e 

St
ag

es
  V

ec
to

r 
/ S

ca
la

r

Figure 3: Processor Architecture with vector extensions added to the data-path.

(a) (b)
Figure 4: (a) PCB version 1 with external clock generator and power
supply. (b) PCB version 2 with on-board clock generator and power
supply.

ICs that are added to facilitate power measurements as well as
communication.

IV. CHIP EVALUATION

A. Experimental Setup

The evaluation is conducted to verify the functionality under
different operating conditions and for various test applications.
The test applications are prepared by generating the data
memory and program memory binary files to be loaded onto
the chip memories. This step is performed using Synopsys
ASIP designer [7]. Chip specifications are listed in Tab. I.

Table I: Chip specifications.

Fabrication Technology GF 22 nm FDSOI
Die Size 1 mm2

Voltage level 0.55 – 1.0 V
Frequency 10 – 120 MHz
Gate Count 1.97 M

B. Energy Measurements

Energy analysis is conducted for HDC in different configu-
rations, all the measurements are for an average of 10 samples
from the UCI-HAR dataset [12]. The dimensions used are 1408
for FixedHD and 4096 for Binary HDC. The reported inference

Fixe
dH

D

Sca
lar

Trai
n

Fixe
dH

D

Vec
tor

Trai
n

Fixe
dH

D

Sca
lar

Inf
.

Fixe
dH

D

Vec
tor

Inf
.

Bina
ry

Inf
.

0

25

50

75

100

E
ne

rg
y

C
on

su
m

pt
io

n
(µ

J)

10 MHz
20 MHz

VDD@0.8V

Figure 5: Energy Consumption for various frequencies at constant
voltage 0.55 V. Vector operations reduces energy consumption
significantly even compared to binary HDC.

Fixe
dH

D

Sca
lar

Trai
n

Fixe
dH

D

Vec
tor

Trai
n

Fixe
dH

D

Sca
lar

Inf
.

Fixe
dH

D

Vec
tor

Inf
.

Bina
ry

Inf
.

0

200

400

600

E
ne

rg
y

C
on

su
m

pt
io

n
(µ

J)

0.6 V
0.8 V
1.0 V

Freq.@10MHz

Figure 6: Energy Consumption for various voltage levels at constant
frequency 10 MHz. The lowest energy consumption is observed at
0.6 V. however, larger voltages can be utilized for higher frequencies.

accuracy with 10 retraining epochs is 94.03 %, 91.72 %, and
89.31 % for scalar FixedHD, vector FixedHD, and binary
HDC, respectively. In Fig. 5, energy is reported for different
frequencies at the voltage of 0.55 V. The energy consumption
for FixedHD with VMAC-shift utilization is reduced by 4x
when compared to scalar FixedHD, due to the speedup of 4
VMAC-shift units operating in parallel. The FixedHD with
VMAC-shift also consumes less energy than binary HDC by
almost 2.5x. At 20 MHz configuration, the vector training
sample consumes 24.65 µJ with a computation time of 93
ms. Another analysis of energy consumption with different
operating voltages is shown in Fig. 6. The larger voltage
is required for high clock frequency like 120 MHz, but for
lower frequencies, 0.55 V is very suitable with the least power
consumption. For example, a single training iteration takes only
15.6 ms at 120 MHz but the energy consumption is around
60.71 µJ as the supply voltage is 0.8 V.



Table II: Comparison with state of the art HDC

Risc-HD Edge-side BRIC Human Centric IoT E3HDC TinyHD Proposed FixedHD
[4] [8] [9] [3] [10] [11] Scalar Vector

Platform FPGA FPGA FPGA ASIC FPGA ASIC ASIC ASIC
Technology Vritex-7 Zynq-7000 Kintex-7 28 nm PYNQ-Z2 22 nm 22 nm 22 nm

Representation Binary Binary Binary Binary Binary 8 Bit Int 16 bit Int 16 bit Int
Application Isolet MNIST Isolet Lang Isolet UCIHAR, k*=12 UCIHAR, k*=6 UCIHAR, k*=6
Energy (µJ) 50 N/A 0.1 0.25 1.9 0.2 96.99 22.58
Power (mW) 753 630 N/A 267 308 10 0.264 0.296

Time (µs) 72.28 1,103 0.3 N/A 6.17 22.85 367 * 103 76.3 * 103

Accuracy (%) 86 97.18 93 90 85.18 95.5 94.03 91.72
Frequency (MHz) 83 N/A N/A 417 100 400 20 20

Voltage (V) N/A N/A N/A 0.8 N/A 1.1 0.55 0.55
Area (mm2) N/A N/A N/A 1.27 N/A 0.496 1.0 1.0

Support Training × ✓ ✓ ✓ ✓ × ✓ ✓
* k stands for number of classes

C. Comparison with state-of-the-art HDC

Comparison with related work from the literature is presented
in Tab. II for two different configurations: scalar and vector
inference. This work has the lowest power consumption as
compared to all other work listed in Tab. II. However, the
energy is relatively high due to longer sample processing time.
It is also worth noting that other works validated across FPGAs
which have much lower energy consumption [9, 10]. However,
FPGAs are unsuitable for edge applications as their area is too
large and with considerable power consumption.

V. CONCLUSION

In this work, a modified RISC-V processor is designed,
fabricated, and measured. for HDC acceleration with vector
extensions and fixed-point operation. The optimized chip
is generic, and various applications can benefit from the
optimizations. Results show that a training sample with fixed-
point HDC representation takes 93 ms and 24.65 µJ for 20
MHz and 0.55 V.

ACKNOWLEDGMENT

Authors would like to thank Daniel Spitze from TU Munich
for his contribution in developing the measurement PCBs.

REFERENCES

[1] C.-Y. Chang, Y.-C. Chuang, et al., “Recent progress
and development of hyperdimensional computing (hdc)
for edge intelligence,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 13, no. 1,
pp. 119–136, 2023.

[2] M. R. Islam, D. Massicotte, et al., “Surface emg-
based intersession/intersubject gesture recognition by
leveraging lightweight all-convnet and transfer learning,”
IEEE Transactions on Instrumentation and Measurement,
vol. 73, pp. 1–16, 2024.

[3] S. Datta, R. A. Antonio, et al., “A programmable hyper-
dimensional processor architecture for human-centric
iot,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 9, no. 3, pp. 439–452, 2019.

[4] F. Taheri, S. Bayat-Sarmadi, et al., “Risc-hd: Lightweight
risc-v processor for efficient hyperdimensional comput-
ing inference,” IEEE Internet of Things Journal, vol. 9,
no. 23, pp. 24 030–24 037, 2022.

[5] M. Imani, J. Morris, et al., “Adapthd: Adaptive efficient
training for brain-inspired hyperdimensional comput-
ing,” in 2019 IEEE Biomedical Circuits and Systems
Conference (BioCAS), IEEE, 2019, pp. 1–4.

[6] S. A. Wasif, M. Wael, et al., “Domain-specific hyperdi-
mensional risc-v processor for edge-ai training,” IEEE
Transactions on Circuits and Systems I: Regular Papers,
pp. 1–14, 2025.

[7] Synopsys. “Asip designer.” (2023), [Online]. Available:
https : / /www.synopsys . com/dw/ ipdir.php?ds=asip -
designer.

[8] T. Yu, B. Wu, et al., “Fully learnable hyperdimensional
computing framework with ultratiny accelerator for edge-
side applications,” IEEE Transactions on Computers,
vol. 73, no. 2, pp. 574–585, 2023.

[9] M. Imani, J. Morris, et al., “Bric: Locality-based encod-
ing for energy-efficient brain-inspired hyperdimensional
computing,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

[10] M. S. Roodsari, J. Krautter, et al., “E 3 hdc: Energy
efficient encoding for hyper-dimensional computing on
edge devices,” in 2024 34th International Conference
on Field-Programmable Logic and Applications (FPL),
IEEE, 2024, pp. 274–280.

[11] B. Khaleghi, H. Xu, et al., “Tiny-hd: Ultra-efficient
hyperdimensional computing engine for iot applications,”
in 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE), IEEE, 2021, pp. 408–413.

[12] D. Anguita, A. Ghio, et al., “Human activity recognition
on smartphones using a multiclass hardware-friendly
support vector machine,” in Ambient Assisted Living and
Home Care: 4th International Workshop, IWAAL 2012,
Vitoria-Gasteiz, Spain, December 3-5, 2012. Proceedings
4, Springer, 2012, pp. 216–223.

https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer

	Introduction
	Our Proposed HDC FixedHD Model
	Chip Architrecture
	Core processor
	Memories
	Control Registers
	Communication protocol
	Printed Circuit Board (PCB)

	Chip Evaluation
	Experimental Setup
	Energy Measurements
	Comparison with state-of-the-art HDC

	Conclusion

