Picture of Alexander Hepp

Alexander Hepp

Technical University of Munich

Place of employment

Chair of Security in Information Technology (Prof. Sigl)

Work:
Theresienstr. 90(0101)/1.ZG
80333 München

Room: N1007ZG

 

Research Interests

  • Hardware trojan design/identification
  • Netlist reverse engineering
  • Neuro engineering

Teaching

Winter term 2021/22

Summer term 2022

Open positions for students

Errors in XSL file parameters: Unknown parameter(s): lang

Bachelor's Theses

Exploring netlist representations for netlist RE

Description

Reverse engineering of silicon hardware designs is an interesting task for various applications in science and industry, such as patent infringement detection, security analysis or hardware trojan detection.

One of the most challenging tasks is to go from the flat netlist, that is a graph of logic gates and wires between them, to a high level description of the design.

In this work, you will analyze and compare different methods for representing a netlist and the benefits and problems when analyzing the netlist using the different representations

 

Prerequisites

The following list of prerequisites is neither complete nor binding, but shall give you an idea, what the topic is about.

  • Sufficient knowledge in a python to use our existing framework
  • Basic knowledge of a hardware description language such as vhdl or verilog to understand what you are analyzing
  • Basic knowledge in graph theory, algorithms etc. to cope with problems on the way.

 

Contact

If you are interested in this topic, don't hesitate to ask for an appointment via

alex.hepp@tum.de

Please include a grade report and a CV, so I can evaluate different focus areas to fit your experience.

 

Supervisor:

Alexander Hepp

Bringing a RISC-V to Life: Implementation of tooling for a RISC-V CPU

Description

RISC-V is the upcoming instruction set architecture of the future. We have taped out our own RISC-V chip for security purposes.

Your task is to implement various testing routines for a RISC-V CPU existing at the chair.

Prerequisites

This list is not final, rather a guideline for the competences required for successfully completing the project.

  • Sufficient knowledge of C
  • Experience with embedded programming and environment
  • Some knowledge of cmake, as compilation works via cmake
  • Some knowledge of python, as tooling is partially implemented with it.

Supervisor:

Alexander Hepp

Master's Theses

Exploring netlist representations for netlist RE

Description

Reverse engineering of silicon hardware designs is an interesting task for various applications in science and industry, such as patent infringement detection, security analysis or hardware trojan detection.

One of the most challenging tasks is to go from the flat netlist, that is a graph of logic gates and wires between them, to a high level description of the design.

In this work, you will analyze and compare different methods for representing a netlist and the benefits and problems when analyzing the netlist using the different representations

 

Prerequisites

The following list of prerequisites is neither complete nor binding, but shall give you an idea, what the topic is about.

  • Sufficient knowledge in a python to use our existing framework
  • Basic knowledge of a hardware description language such as vhdl or verilog to understand what you are analyzing
  • Basic knowledge in graph theory, algorithms etc. to cope with problems on the way.

 

Contact

If you are interested in this topic, don't hesitate to ask for an appointment via

alex.hepp@tum.de

Please include a grade report and a CV, so I can evaluate different focus areas to fit your experience.

 

Supervisor:

Alexander Hepp

Research Internships (Forschungspraxis)

Exploring netlist representations for netlist RE

Description

Reverse engineering of silicon hardware designs is an interesting task for various applications in science and industry, such as patent infringement detection, security analysis or hardware trojan detection.

One of the most challenging tasks is to go from the flat netlist, that is a graph of logic gates and wires between them, to a high level description of the design.

In this work, you will analyze and compare different methods for representing a netlist and the benefits and problems when analyzing the netlist using the different representations

 

Prerequisites

The following list of prerequisites is neither complete nor binding, but shall give you an idea, what the topic is about.

  • Sufficient knowledge in a python to use our existing framework
  • Basic knowledge of a hardware description language such as vhdl or verilog to understand what you are analyzing
  • Basic knowledge in graph theory, algorithms etc. to cope with problems on the way.

 

Contact

If you are interested in this topic, don't hesitate to ask for an appointment via

alex.hepp@tum.de

Please include a grade report and a CV, so I can evaluate different focus areas to fit your experience.

 

Supervisor:

Alexander Hepp

Internships

Exploring netlist representations for netlist RE

Description

Reverse engineering of silicon hardware designs is an interesting task for various applications in science and industry, such as patent infringement detection, security analysis or hardware trojan detection.

One of the most challenging tasks is to go from the flat netlist, that is a graph of logic gates and wires between them, to a high level description of the design.

In this work, you will analyze and compare different methods for representing a netlist and the benefits and problems when analyzing the netlist using the different representations

 

Prerequisites

The following list of prerequisites is neither complete nor binding, but shall give you an idea, what the topic is about.

  • Sufficient knowledge in a python to use our existing framework
  • Basic knowledge of a hardware description language such as vhdl or verilog to understand what you are analyzing
  • Basic knowledge in graph theory, algorithms etc. to cope with problems on the way.

 

Contact

If you are interested in this topic, don't hesitate to ask for an appointment via

alex.hepp@tum.de

Please include a grade report and a CV, so I can evaluate different focus areas to fit your experience.

 

Supervisor:

Alexander Hepp

Bringing a RISC-V to Life: Implementation of tooling for a RISC-V CPU

Description

RISC-V is the upcoming instruction set architecture of the future. We have taped out our own RISC-V chip for security purposes.

Your task is to implement various testing routines for a RISC-V CPU existing at the chair.

Prerequisites

This list is not final, rather a guideline for the competences required for successfully completing the project.

  • Sufficient knowledge of C
  • Experience with embedded programming and environment
  • Some knowledge of cmake, as compilation works via cmake
  • Some knowledge of python, as tooling is partially implemented with it.

Supervisor:

Alexander Hepp

Student Assistant Jobs

Exploring netlist representations for netlist RE

Description

Reverse engineering of silicon hardware designs is an interesting task for various applications in science and industry, such as patent infringement detection, security analysis or hardware trojan detection.

One of the most challenging tasks is to go from the flat netlist, that is a graph of logic gates and wires between them, to a high level description of the design.

In this work, you will analyze and compare different methods for representing a netlist and the benefits and problems when analyzing the netlist using the different representations

 

Prerequisites

The following list of prerequisites is neither complete nor binding, but shall give you an idea, what the topic is about.

  • Sufficient knowledge in a python to use our existing framework
  • Basic knowledge of a hardware description language such as vhdl or verilog to understand what you are analyzing
  • Basic knowledge in graph theory, algorithms etc. to cope with problems on the way.

 

Contact

If you are interested in this topic, don't hesitate to ask for an appointment via

alex.hepp@tum.de

Please include a grade report and a CV, so I can evaluate different focus areas to fit your experience.

 

Supervisor:

Alexander Hepp

Current Publications

Search
No result

Note: This “quick search” only finds text in the shown fields, not in abstracts or keywords. The search term must have at least 3 letters.

2022

  • Aksoy, Levent and Hepp, Alexander and Baehr, Johanna and Pagliarini, Samuel: Hardware Obfuscation of Digital FIR Filters. 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems, IEEE, 2022Prague, Czech Republic, 68-73 more… BibTeX Full text ( DOI )
  • Brunner, Michaela and Hepp, Alexander and Baehr, Johanna and Sigl, Georg: Toward a Human-Readable State Machine Extraction. ACM Trans. Des. Autom. Electron. Syst. 27 (6), 2022 more… BibTeX Full text ( DOI )
  • Hepp, Alexander and Baehr, Johanna and Sigl, Georg: Golden Model-Free Hardware Trojan Detection by Classification of Netlist Module Graphs. Design, Automation and Test in Europe Conference, IEEE, 2022Antwerp, Belgium, 1317-1322 more… BibTeX Full text ( DOI )
  • Lippmann, Bernhard and Ludwig, Matthias and Mutter, Johannes and Bette, Ann-Christin and Hepp, Alexander and Baehr, Johanna and Rasche, Martin and Kellermann, Oliver and Gieser, Horst and Zweifel, Tobias and Kovac, Nicola: Physical and Functional Reverse Engineering Challenges for Advanced Semiconductor Solutions. 2022 Design, Automation & Test in Europe Conference & Exhibition DATE, IEEE, 2022Antwerp, Belgium more… BibTeX

2021

  • Hepp, Alexander and Sigl, Georg: Tapeout of a RISC-V Crypto Chip with Hardware Trojans: A Case-Study on Trojan Design and Pre-Silicon Detectability. Proceedings of the 18th ACM International Conference on Computing Frontiers (CF '21), Association for Computing Machinery, 2021Virtual: Catania, Italy more… BibTeX Full text ( DOI )
  • Ludwig, Matthias and Hepp, Alexander and Brunner, Michaela and Baehr, Johanna: CRESS: Framework for Vulnerability Assessment of Attack Scenarios in Hardware Reverse Engineering. 2021 IEEE Physical Assurance and Inspection of Electronics (PAINE), 2021Washington DC, US more… BibTeX Full text ( DOI )

Free fulltexts for my publications