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Abstract—Owing to its several merits over other DNA se-
quencing technologies, nanopore sequencers hold an immense
potential to revolutionize the efficiency of DNA storage systems.
However, their higher error rates necessitate further research to
devise practical and efficient coding schemes that would allow
accurate retrieval of the data stored. Our work takes a step in
this direction by adopting a simplified model of the nanopore
sequencer inspired by Mao et al., which incorporates some of its
physical aspects. This channel model can be viewed as a sliding
window of length ℓ that passes over the incoming input sequence
and produces the Hamming weight of the enclosed ℓ bits, while
shifting by one position at each time step. The resulting (ℓ+1)-ary
vector, referred to as the ℓ-read vector, is susceptible to deletion
errors due to imperfections inherent in the sequencing process.
We establish that at least logn−ℓ bits of redundancy are needed
to correct a single deletion. An error-correcting code that is
optimal up to an additive constant, is also proposed. Furthermore,
we find that for ℓ ⩾ 2, reconstruction from two distinct noisy
ℓ-read vectors can be accomplished without any redundancy, and
provide a suitable reconstruction algorithm to this effect.

I. INTRODUCTION

Our ever-increasing data storage requirements have
prompted extensive research into DNA storage, as it promises
high density and unmatched longevity. While there continue
to be significant efforts to improve upon existing synthesis and
sequencing technologies, nanopore sequencing holds particular
appeal due to better portability, ability to read longer DNA
strands, and real-time analysis [1]–[3]. The sequencing opera-
tion involves the transmigration of a DNA fragment through a
microscopic pore in a lipid membrane, across which a voltage
difference exists. The nucleotides in the pore at a given time
instant, influence the variations in the ionic current, which are
measured and fed to a basecaller that predicts the nucleotides
in the examined DNA strand. Despite its strengths, certain
physical aspects of the nanopore sequencer lead to various
distortions in the final readout. For instance, the variations
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in the measured current are governed by multiple nucleotides
instead of just one due to the depth of the pore, thus hinting
at the presence of intersymbol interference (ISI). Moreover,
the DNA strand often passes through the pore unevenly, i.e.,
a few nucleotides may be skipped, or some backtracking may
occur. This naturally implies deletions and duplications in the
final readout, respectively.

Prior work in this area was largely aimed at either de-
veloping faithful mathematical models for the sequencer or
designing error-correcting codes that incorporate such models
to correct errors in the readouts efficiently. For instance, the
authors of [4] introduced a channel model that incorporates
ISI, deletions, and measurement noise. Upper bounds on
channel capacity were also established. The work in [5]
adopted a more deterministic model, devised an algorithm to
compute the capacity of the same, and also suggested efficient
coding schemes. A finite-state semi-Markov channel (FSMC)-
based model, introduced more recently in [6], encapsulates
the effects of ISI, duplications, and noisy measurements that
affect the final sequencing output. Another promising line of
work aims to design codes such that the current reading of
the constituent DNA sequences, as produced by a nanopore
sequencer, can be decoded accurately with high probability
despite sample duplications and amplitude noise [7]–[9]. In
[10], a specific model inspired by [4], [5] was considered, and
an optimal single-substitution-correcting code was presented.

This work endeavors to extend [10] by designing efficient
deletion-correcting codes for nanopore sequencers. To this
end, we use the channel model employed in [10]. This model
also resembles the transverse-read channel [11], [12], which
is relevant to racetrack memories. More specifically, nanopore
sequencing is interpreted as a concatenation of three channels,
as illustrated in Fig. 1. The ISI component, parameterized
by ℓ, signifies how the measured current depends on the ℓ
consecutive nucleotides in the pore at any given time. This
stage may be viewed as a sliding window of length ℓ passing
over an input sequence and shifting by a single position after
each time step, producing a sequence of ℓ-mers, i.e., strings
of ℓ symbols. Subsequently, a discrete memoryless channel
converts each of the ℓ-mers into a discrete voltage level based
on a deterministic function, in our analysis the Hamming
weight. In the end, the deletion channel accounts for the effect
of skipping forward by corrupting the sequence of discrete
voltage levels with deletions.

We now state the problem more formally. For an input
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Figure 1. Simplified model of a nanopore sequencer

x ∈ Σn
2 , let Rℓ(x) represent the deletion-free channel output

(Definition 1). Thus, we are interested in codes that correct
t deletions in Rℓ(x) as opposed to x itself, to guarantee
the unique recovery of x despite ISI, followed by at most
t deletions.

To summarize the main contributions of this work, we
establish a lower bound on the redundancy required by a code
that corrects a single deletion in ℓ-read vectors, and suggest
an instantiation of the same whose redundancy is optimal up
to an additive constant. Since nanopore sequencers tend to
produce multiple erroneous reads for each input strand, we
also examine how leveraging this feature might help achieve
a lower redundancy requirement. To this end, we find that for
any x ∈ Σn

2 and ℓ ⩾ 2, two distinct noisy channel outputs that
arise from the same input x, suffice to recover x uniquely. A
suitable reconstruction algorithm is also stated.

II. PRELIMINARIES

A. Notations and Terminology

In the following, we let Σq indicate the q-ary alphabet
{0, 1, . . . , q − 1}. Additionally, [n] is used to denote the set
{1, 2, . . . , n}. Element-wise modulo operation on a vector, say
y ∈ Σn

q , is represented as

y mod a ≜
(
y1 mod a, y2 mod a, . . . , yn mod a

)
.

For any vector x = (x1, . . . , xn), we refer to its substring
(xi, xi+1, . . . , xj) as xj

i . The Hamming weight of a vector x
is denoted by wt(x), while the number of runs in x, which are
of length greater than or equal to some a ⩾ 1, is represented as
ρ⩾a(x). We designate the number of all runs, i.e., when a =
1, by ρ(x). We also extensively use the Hamming distance,
which is defined for any two vectors x,y ∈ Σn

q as

dH(x,y) = |{i : i ∈ [n], xi ̸= yi}|.
We focus on the case of q = 2 and in this framework, the

channel output is defined as follows.

Definition 1 The ℓ-read vector of any x ∈ Σn
2 is of length

n+ ℓ− 1 over Σℓ+1, and is denoted by

Rℓ(x) ≜ (wt(x1
2−ℓ),wt(x

2
3−ℓ), . . . ,wt(x

n+ℓ−1
n )),

where for ease of notation we simply let xi = 0 for any
i ̸∈ [n] (i.e., when the above definition includes indices which
are either negative or greater than n).

Additionally, the i-th element of Rℓ(x) is denoted by
Rℓ(x)i; that is, Rℓ(x)i = wt(xi

i−ℓ+1). When clear from the
context, ℓ will be removed from the preceding notations.

Example 2 The 3-read vector of x = (1, 0, 1, 1, 0, 0) is given
by R(x) = (1, 1, 2, 2, 2, 1, 0, 0). Its third element is R(x)3 =
2.

A similar model was investigated in [11], wherein the output
sequence, termed as the transverse-read vector, is a substring
of the ℓ-read vector as defined here, for certain parameter
choices. The information limit of this transverse-read channel
was computed for various parameters, and several coding
schemes enabling exact recovery were presented. Some error-
correcting codes for the case of ℓ = 2 were also suggested.

Next, to facilitate our analysis, some key properties of ℓ-
read vectors are stated below.

Proposition 3 ([13]) P1 For any ℓ ⩾ 1 and x ∈ Σn
2 , it

holds that
∑n+ℓ−1

i=1 R(x)i = ℓ · wt(x), where the sum is
performed over integers.

P2 For any ℓ ⩾ 1 and x ∈ Σn
2 , it holds that |R(x)j+1 −

R(x)j | ⩽ 1 for all j ∈ [n+ ℓ− 2].
P3 For any x ∈ Σn

2 , x can be uniquely and efficiently deter-
mined from the first or last n elements of R(x) mod 2.

The preceding definitions can be extended to the non-binary
alphabet by replacing the notion of Hamming weights with
compositions, as done in [10].

B. Error Model

To suitably define what constitutes an error-correcting con-
struction in our framework, we first let D(u) refer to the set of
all vectors of length n−1, that can be obtained by deleting one
symbol from u ∈ Σn, for any alphabet Σ. Naturally, we are
interested in D(R(x)) for some x ∈ Σn

2 . A code that corrects
a single deletion in R(x) can thus be defined as follows.

Definition 4 For n ⩾ ℓ, a code C ⊆ Σn
2 is said to be a single-

deletion ℓ-read code if for any two distinct x,y ∈ C, it holds
that D(Rℓ(x)) ∩D(Rℓ(y)) = ∅.

III. CORRECTING A SINGLE DELETION

A useful consequence of the inherent characteristics of
ℓ-read vectors, summarized in Proposition 3, is that certain
deletions can be corrected immediately without any redun-
dancy, as shown in the next lemma.

Lemma 5 Let R′ arise from a single deletion on R(x) for
some x ∈ Σn

2 . If there exists some i ∈ [n + ℓ − 3] such that
|R′

i+1 − R′
i| > 1, then R(x) (and thereby also x) can be

readily recovered.

Proof: From P1, we infer that the existence of an i ∈
[n+ℓ−3] such that |R′

i+1−R′
i| > 1 unambiguously reveals the

error location. Note that |R′
i+1−R′

i| ⩽ 2. Assuming R′
i+1 −

R′
i = 2, we observe that the only x for which R′ ∈ D(R(x)),

bears the following ℓ-read vector.

R(x) = (R′
1, . . . ,R′

i,R′
i + 1,R′

i+1, . . . ,R′
n+ℓ−2).

For the case of R′
i+1 − R′

i = −2, the argument works
similarly. Once R(x) is known, x can also uniquely recovered
as suggested by P3.



A. Upper Bound on the Size of Codes

This section establishes an upper bound on the cardinality
of a single-deletion ℓ-read code. We do so by limiting our
focus to a subset of deletion patterns on an ℓ-read vector,
say R(x), which bear an intriguing connection with sticky
deletions [14]–[17] on its respective binary vector, x. We
consider a specific variant of a sticky deletion, defined below.

Definition 6 An r-sticky deletion, for r ⩾ 1, is a deletion in
a run of length at least r, in x.

The error ball of a single r-sticky deletion for any u ∈ Σn
2

is represented by

DS(u; r) ≜
{
(u1u2 . . . ui−1ui+1 . . . un) : i ∈ [n− r + 1],

ui = · · · = ui+r−1

}
.

Naturally, DS(u; 1) = D(u) and |DS(u; r)| = ρ⩾r(u). As
will be established shortly, such sticky deletions translate to
specific deletion events on the respective ℓ-read vectors, which
we define formally as follows.

Definition 7 A k-restricted deletion is a deletion that only
deletes a symbol if it equals 0 or k.

The error ball of a k-restricted deletion for any u ∈ Σn
q can

be expressed as

DR(u; k) ≜ {(u1u2 . . . ui−1ui+1 . . . un) : i ∈ [n− ℓ+ 1],

ui ∈ {0, k}}.
The upcoming lemma explains the link between ℓ-sticky

deletions in binary vectors and ℓ-restricted deletions in their
respective ℓ-read vectors.

Lemma 8 For any x ∈ Σn
2 with ρ⩾ℓ(0

ℓ−1x0ℓ−1) ⩾ 1, it
holds that

DR(R(x); ℓ) = {R(y) : 0ℓ−1y0ℓ−1 ∈ DS(0ℓ−1x0ℓ−1; ℓ)}.

Proof: Consider an R′ ∈ DR(R(x); ℓ), that arises from
a deletion in R(x) at index i, and assume that R(x)i = 0,
or equivalently, xi

i−ℓ+1 = 0ℓ. For the case of R(x)i = ℓ, the
proof follows similarly.

If ℓ + 1 ⩽ i ⩽ n, we note that for y = (xi−ℓ
1 0ℓ−1xn

i+1) ∈
DS(x; ℓ), we get R′ = R(y), since xi−1

1 = yi−1
1 ensures that

R(y)j = R(x)j for j ∈ [i− 1], while for i ⩽ j ⩽ n+ ℓ− 2,
we have R(y)j = wt(yj

j−ℓ+1) = wt(xj+1
j−ℓ+2) = R(x)j+1.

Next, consider i ∈ [ℓ]. Since xi
1 = 0i, it follows that

for y = (0i−1xn
i+1), R′ = R(y). Observe that (0ℓ−1y) ∈

DS(0ℓ−1x; ℓ).
Finally when i ⩾ n+1, we can similarly argue that for y =

(xi−ℓ
1 0ℓ−(i−n)−1), which upholds (y0ℓ−1) ∈ DS(x0ℓ−1; ℓ),

R′ = R(y). In all of the aforementioned cases 0ℓ−1y0ℓ−1 ∈
DS(0ℓ−1x0ℓ−1; ℓ) and sinceR(y) is fixed, y is clearly unique.

To prove the other direction, assume some x ∈ Σn
2 and y ∈

Σn−1
2 such that ŷ = 0ℓ−1y0ℓ−1 ∈ DS(x̂ = 0ℓ−1x0ℓ−1; ℓ). In

particular, let the run (of length ⩾ ℓ) in x̂ that suffers the
ℓ-sticky deletion start at index j, i.e., x̂j+ℓ−1

j = aℓ for some
a ∈ Σ2 and ŷ = x̂j−1

1 x̂n+2ℓ−1
j+1 . If j = 1, then x̂ℓ

1 = x1
−ℓ+2,

R(x)1 = 0 and ŷ = 0ℓ−1y0ℓ−1 = 0ℓ−1xn
20

ℓ−1 directly imply
that for all p ∈ [n + ℓ − 2], R(y)p = R(x)p+1 and thereby
R(y) ∈ DR(R(x); ℓ).

For the remaining cases, we have j ∈ {ℓ, . . . , n + ℓ − 1}.
Note that yj−ℓ

1 = ŷj−1
ℓ = x̂j−1

ℓ = xj−ℓ
1 in combination with

yj−1
j−ℓ+1 = xj−1

j−ℓ+1 = aℓ−1 establishes that for all p ∈ [j − 1],
R(y)p = R(x)p. Evidently, R(x)j = ℓ · a ∈ {0, ℓ}. Next,
from yn−1

j−ℓ+10
ℓ−1 = ŷn+2ℓ−3

j = x̂n+2ℓ−2
j+1 = xn

j−ℓ+20
ℓ−1,

observe that for all p ∈ {j, . . . , n+ℓ−2}, R(y)p = R(x)p+1.
Thus R(y) ∈ DR(R(x); ℓ) and the statement follows.

Example 9 Recall x = (1, 0, 1, 1, 0, 0) from Example 2, with
the 3-read vector R(x) = (1, 1, 2, 2, 2, 1, 0, 0). Consider
R′ = (1, 1, 2, 2, 2, 1, 0) that arises from deleting a 0 in R(x),
i.e., R′ ∈ DR(R(x); ℓ) where ℓ = 3. Observe that for
y = (1, 0, 1, 1, 0), we have 0ℓ−1y0ℓ−1 ∈ DS(0ℓ−1x0ℓ−1; ℓ)
and R(y) = R′.

Thus for any x ∈ Σn
2 with ρ⩾ℓ(0

ℓ−1x0ℓ−1) ⩾ 1,
it holds that |DR(R(x); ℓ)| = |DS(0ℓ−1x0ℓ−1; ℓ)| =
ρ⩾ℓ(0

ℓ−1x0ℓ−1) ⩾ ρ⩾ℓ(x). The following corollary summa-
rizes our strategy for bounding the size of any single-deletion-
correcting read code.

Corollary 10 Any single-deletion ℓ-read code is also a single-
ℓ-sticky-deletion-correcting code.

Proof: Based on Lemma 8, {R(y) : y ∈ DS(x; ℓ)} ⊆{
R(y) : 0ℓ−1y0ℓ−1 ∈ DS(0ℓ−1x0ℓ−1; ℓ)

}
= DR(R(x); ℓ) ⊆

D(R(x)) for any x ∈ Σn
2 . Then, for any two distinct

codewords c, c′ of a single-deletion ℓ-read code we necessarily
have {R(y) : y ∈ DS(c; ℓ)} ∩ {R(y) : y ∈ DS(c′; ℓ)} = ∅,
which in particular implies DS(c; ℓ) ∩DS(c′; ℓ) = ∅, i.e., the
code is also single-ℓ-sticky-deletion-correcting.

Consequently, the cardinality of a single-deletion ℓ-read
code is bounded from above by the size of the largest code
that corrects a single ℓ-sticky deletion.

Now to establish an upper bound on the cardinality of a
code that corrects a single ℓ-sticky deletion. We first note that
for a randomly chosen x ∈ Σn

2 , the expected value of ρ⩾a(x)
is given by 2−a(n−a+2). Also note that a change in any xi

may increase or decrease ρ⩾a(x) by at most 1. It then follows
from McDiarmid’s inequality [18] that for any ϵ > 0

2−n

∣∣∣∣{x ∈ Σn
2 : ρ⩾a(x) <

n− a+ 2

2a
− ϵn

}∣∣∣∣ ⩽ exp
(
−2ϵ2n

)
.

By choosing ϵ = 2−a−1, we obtain∣∣∣∣{x ∈ Σn
2 : ρ⩾a(x) <

n− 2a+ 4

2a+1

}∣∣∣∣ ⩽ 2n exp
(
− n

22a+1

)
.

In the following analysis, assume that ℓ ⩾ 2. We proceed to
apply the generalized sphere-packing bound [19] to obtain an
upper bound on the cardinality of the largest length-n single
ℓ-sticky-deletion-correcting code, which we denote by A(n, ℓ).

Theorem 11 [19] For an error channel that outputs any
y ∈ B(x) given an input x ∈ X , construct a hypergraph
H(Y, E), whereby the vertex set Y comprises all possible
channel outputs while the hyperedge set E = {B(x) : x ∈ X}.
Assume an assignment of weights wy for each y ∈ Y ,



satisfying wy ⩾ 0 for all y ∈ Y , and
∑

y∈E wy ⩾ 1 for
all E ∈ E . Then, the size of any error-correcting code for this
channel is upper bounded by

∑
y∈Y wy .

The hypergraph for our single ℓ-sticky deletion channel,
say H(Y, E), constitutes the vertex set Y = Σn−1

2 and the
hyperedge set E = {DS(x; ℓ) : x ∈ Σn

2 , ρ⩾ℓ(x) ⩾ 1}. The
restriction on ρ⩾ℓ(x) simply serves to exclude the empty set.
We choose the following weight assignment for the vertices
in Y . For each y ∈ Y ,

wy ≜

{
1

ρ⩾ℓ(y)
if ρ⩾ℓ(y) ⩾ 1,

1 if ρ⩾ℓ(y) = 0.

While this clearly fulfills the positivity criterion of Theo-
rem 11, observe that for all x ∈ Σn

2 that fulfill either ρ⩾ℓ(x) ⩾
2 or ρ⩾ℓ(x) = ρ⩾ℓ+1(x) = 1, it holds that ρ⩾ℓ(y) ⩾ 1
for each y ∈ DS(x; ℓ), since a single ℓ-sticky deletion
only shortens a single run by one. Thus

∑
y∈DS(x;ℓ) wy =∑

y∈DS(x;ℓ)
1

ρ⩾ℓ(y)
⩾

∑
y∈DS(x;ℓ)

1
ρ⩾ℓ(x)

= 1. Similarly,
when ρ⩾ℓ(x) = 1 while ρ⩾ℓ+1(x) = 0 (i.e., x has a unique
longest run, of length ℓ), it follows that DS(x; ℓ) = {y}
wherein ρ⩾ℓ(y) = 0, leading us to

∑
y∈DS(x;ℓ) wy = 1.

We now derive an upper bound on the cardinality A(n, ℓ) of
the largest length-n single ℓ-sticky-deletion-correcting code.

A(n, ℓ) ⩽
∑
y∈Y

wy =
∣∣{y ∈ Σn−1

2 : ρ⩾ℓ(y) = 0
}∣∣+

⌊n−1
ℓ ⌋∑

i=1

1

i

∣∣{y ∈ Σn−1
2 : ρ⩾ℓ(y) = i}

∣∣
<

∣∣∣∣{y ∈ Σn−1
2 : ρ⩾ℓ(y) <

n− 2ℓ+ 3

2ℓ+1

}∣∣∣∣+
1⌈

n−2ℓ+3
2ℓ+1

⌉ ⌊n−1
ℓ ⌋∑

i=⌈n−2ℓ+3

2ℓ+1 ⌉

∣∣{y ∈ Σn−1
2 : ρ⩾ℓ(y) = i

}∣∣
⩽ 2n−1 exp

(
−n− 1

22ℓ+1

)
+

2n+ℓ

n− 2ℓ+ 3

⩽
2n+ℓ−1

n

(
2−ℓn exp

(
−n− 1

22ℓ+1

)
+

2n

n− 2ℓ

)
.

We merge this with Corollary 10 to get the following bound.

Theorem 12 The redundancy of a single-deletion ℓ-read code
is bounded from below by

log n− ℓ+ 1− log

(
2

1− 2ℓ/n
+ 2−ℓn exp

(
−n− 1

22ℓ+1

))
.

Remark: As mentioned earlier, for any x ∈ Σn
2 , the

transverse-read vector as defined in [11], is a substring of
Rℓ(x) for certain choices of parameters. Consequently in these
cases, Lemma 8 can be suitably modified to help establish a
similar redundancy bound for the transverse-read channel.

B. Single-Deletion ℓ-Read Codes

It is implied by P3 that protecting the first n entries of the
ℓ-read vector taken modulo 2 suffices to exactly recover the
corresponding length-n binary vector. This naturally leads us
to the following single-deletion ℓ-read code.

Construction A

C(n, ℓ, a)={x ∈ Σn
2 :

n∑
i=1

i(R(x)i mod 2)= a (mod n+ 1)}.

where a ∈ Σn+1. □

Note that for every u ∈ Σn
2 , there exists x ∈ Σn

2 such that
u = (R(x)1, . . . ,R(x)n) mod 2. Thus by the pigeonhole
principle, there exists a ∈ Σn+1 for which the redundancy
required by the preceding construction is log2(n + 1) bits,
implying that Construction A is optimal up to a constant.

The accuracy of this construction is demonstrated below.

Theorem 13 For all a ∈ Σn+1, the code C(n, ℓ, a) is a single-
deletion ℓ-read code.

Proof: Consider a vector R′ resulting from a single
deletion on the ℓ-read vector of some x ∈ C(n, ℓ, a). Also, due
to Lemma 5, we only consider the case when no pair of con-
secutive elements in R′ have an absolute difference exceeding
1, as the deletion is immediately correctable otherwise.

Now consider a truncation of R′, given by
R̃′ = (R′

1, . . . ,R′
n−1). Due to the VT constraint

in Construction A and the fact that R̃′ mod 2 ∈
D((R(x)1, . . . ,R(x)n) mod 2), one can uniquely recover
(R(x)1, . . . ,R(x)n) mod 2, which suffices for the recovery
of R(x) and thereby x, as indicated by P3.

IV. MULTIPLE READS

DNA synthesis technologies typically generate multiple
copies of each strand, while PCR amplification during se-
quencing tends to boost the number of copies even further,
albeit introducing errors in the process [20]–[23]. Investigating
how the availability of multiple noisy versions at the receiver
might ease the reconstruction process, is thus a relevant and
intriguing problem [24]–[31].

In one of the earliest works on reconstruction from multiple
noisy sequences, Levenshtein [25, Corollary 1] established that
for any alphabet Σ and two distinct vectors u,v ∈ Σn, it
holds that |D(u) ∩ D(v)| ⩽ 2. Now given any two distinct
binary vectors x,y ∈ Σn

2 , we may replace u and v with
R(x) and R(y) respectively, and thereby conclude that three
noisy versions of an ℓ-read vector are sufficient to uniquely
determine the channel input. To examine if and how the
intrinsic characteristics of ℓ-read vectors might allow for more
efficient reconstruction strategies, we endeavor to assess in
this section, how the availability of two distinct noisy ℓ-read
vectors might lower the redundancy required to correct a single
deletion. Equivalently, we are interested in the conditions
under which two distinct binary vectors x,y ∈ Σn

2 have ℓ-read
vectors such that |D(R(x)) ∩ D(R(y))| = 2. To accomplish
this, we employ the following proposition from [32].

Definition 14 [32] Two words u and v of length n are said
to be confusable if there exist subwords a, b and c such that

• u = acb and v = acb with |c| = |c| ⩾ 2;
• {c, c} = {αβαβ . . . αβ, βαβα . . . βα},

for some α, β ∈ Σq .



Remark: Such vectors are named Type-A confusable in [32].

Proposition 15 [32] For any two distinct words u,v ∈ Σn
q ,

it holds that if dH(u,v) ⩾ 2, we have |D(u) ∩D(v)| = 2 if
and only if u and v are confusable.

Thus, we seek to ascertain when and how two binary vectors
might possess confusable ℓ-read vectors.

Lemma 16 When ℓ ⩾ 2, there exist no two distinct x,y ∈ Σn
2

such that R(x) and R(y) are confusable.

Proof: We prove this by contradiction, i.e., we proceed
by assuming the existence of two distinct x,y ∈ Σn

2 such that
their respective read vectors are confusable.

Let i refer to the first index where R(x) and R(y)
disagree, implying that xi−1

1 = yi−1
1 . Now assume w.l.o.g.

that (xi, yi) = (0, 1), causing R(y)i = R(x)i + 1. For
simplicity of exposition, we let R(x)i and R(y)i be denoted
by α and β respectively, where β = α + 1. By virtue
of the confusability of the read vectors, we know that for
some m > 0, (R(x)i, . . . ,R(x)i+2m−1) = (αβ)m while
(R(y)i, . . . ,R(y)i+2m−1) = (βα)m. Now the fact that
R(x)i+1 − R(x)i = R(y)i − R(y)i+1 = 1 necessitates
(xi+1, xi−ℓ+1) = (yi−ℓ+1, yi+1) = (1, 0). However for ℓ ⩾ 2,
the requirement xi−ℓ+1 ̸= yi−ℓ+1 contradicts xi−1

1 = yi−1
1 .

Thus, x and y do not exist.
For ℓ ⩾ 2, the above lemma implies the following outcome

on the redundancy needed to uniquely recover a binary vector
from two distinct erroneous copies of its ℓ-read vector.

Lemma 17 When ℓ ⩾ 2, for any two distinct x,y ∈ Σn
2 ,

|D(R(x)) ∩D(R(y))| ⩽ 1.

Proof: We know from [25, Corollary 1] that |D(R(x))∩
D(R(y))| ⩽ 2 since distinct binary vectors have distinct ℓ
read vectors, as suggested by P3. Additionally [13, Lemma 1]
asserts that for ℓ ⩾ 2, it holds that dH(R(x),R(y)) ⩾ 2
for distinct x and y. Upon combining these facts with Propo-
sition 15 and Lemma 16, we arrive at the statement of the
lemma.

We can thus infer the following on the redundancy required
for reconstruction with two noisy read vectors.

Corollary 18 For any ℓ ⩾ 2, x ∈ Σn
2 and given any two

distinct noisy read vectors R′,R′ ∈ D(R(x)), R(x) can be
uniquely recovered.

One possible method to accomplish reconstruction with two
corrupted ℓ-read vectors is outlined in Algorithm 1 and its
correctness is proved in the next lemma.

Lemma 19 For any ℓ ⩾ 2 and x ∈ Σn
2 such that D(R(x)) ⩾

2, given any two distinct vectors in D(R(x)), Algorithm 1
returns R(x).

Proof: Let the two noisy reads be denoted by R′ and R′

respectively. By virtue of Lemma 5, we deem it sufficient to
study the case wherein neither of these vectors has a pair of
consecutive elements with an absolute difference exceeding 1.

Algorithm 1: Reconstruct
Input: n, ℓ, set {R′,R′} ⊆ D(R(x)) for some

x ∈ Σn
2

Output: R(x)
init

Let i and j be the first and last indices at which
R′ and R′ disagree.
R̂(x)← (R′

1, . . . ,R′
i−1,R

′
i,R′

i, . . . ,R′
n+ℓ−2);

R̃(x)← (R′
1, . . . ,R′

j ,R
′
j ,R′

j+1, . . . ,R′
n+ℓ−2).

if R̂(x) is the ℓ-read vector1of any vector in Σn
2 then

R(x)← R̂(x).
else
R(x)← R̃(x).

Let i and j denote the first and last indices at which R′

and R′ disagree. Of course, i = j when dH(R′,R′) = 1.
Also assume that R′ and R′ arise from a deletion on R(x)
at indices a and b respectively. Evidently, {a, b} = {i, j +1}.

Now consider the vectors

R̂(x) = (R′
1, . . . ,R′

i−1,R
′
i,R′

i, . . . ,R′
n+ℓ−2),

R̃(x) = (R′
1, . . . ,R′

j ,R
′
j ,R′

j+1, . . . ,R′
n+ℓ−2).

These are clearly distinct and depending on whether a = i
or a = j + 1, R(x) is either equal to R̂(x) or R̃(x). Next,
observe that R̂(x) and R̃(x) cannot be legitimate read vectors
according to [13, Proposition 1], simultaneously, as Lemma 17
would be otherwise contradicted. Thus, Algorithm 1 chooses
one of R̂(x) and R̃(x), as advised by [13, Proposition 1].

Remark: Prior work [14], [26], [33] states that for the stan-
dard single deletion channel, i.e., ℓ = 1, the required redun-
dancy decreases gracefully from log2 n+O(1) to log2 log2 n−
O(1), given one and two distinct erroneous copies of an ℓ-read
vector, respectively. It is thus somewhat surprising to learn that
when ℓ ⩾ 2, the minimal redundancy cost remains the same for
one received sequence, while for two noisy copies, it instantly
drops to 0. This behavior can perhaps be attributed to the
close connection between certain deletions in the read vector
and sticky deletions in the original sequence, established in
Lemma 8, as it is known that two distinct erroneous reads are
sufficient for reconstruction from a single sticky deletion (an
equivalent result for sticky insertions appears, e.g., in [31]).

V. CONCLUSION

This work investigates how the inherent redundancy imbued
by the physical aspects of a nanopore sequencer into its reads
might help achieve more efficient deletion-correcting codes. To
this end, we found that for the simplified model of nanopore
sequencing adopted here, the minimal redundancy required
to correct a single deletion reduces remarkably when the
receiver is provided two distinct erroneous received sequences,
as opposed to just one. This raises further questions regarding
the case of multiple deletions and more received sequences,
which we plan to explore in future work.

1For more details, and a description of an efficient verification procedure,
we refer the reader to [13].
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